Properties

Label 8910.2.a.y
Level $8910$
Weight $2$
Character orbit 8910.a
Self dual yes
Analytic conductor $71.147$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8910,2,Mod(1,8910)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8910, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8910.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 8910 = 2 \cdot 3^{4} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8910.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,-3,0,3,-3,0,-6,-3,0,3,-3,0,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(71.1467082010\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: \(\Q(\zeta_{18})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 3x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 990)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{2} + q^{4} - q^{5} + ( - \beta_1 - 2) q^{7} - q^{8} + q^{10} - q^{11} + ( - 3 \beta_{2} + \beta_1 - 1) q^{13} + (\beta_1 + 2) q^{14} + q^{16} + ( - 3 \beta_1 + 1) q^{17} + (3 \beta_{2} - 1) q^{19}+ \cdots + ( - \beta_{2} - 4 \beta_1 + 1) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 3 q^{2} + 3 q^{4} - 3 q^{5} - 6 q^{7} - 3 q^{8} + 3 q^{10} - 3 q^{11} - 3 q^{13} + 6 q^{14} + 3 q^{16} + 3 q^{17} - 3 q^{19} - 3 q^{20} + 3 q^{22} + 6 q^{23} + 3 q^{25} + 3 q^{26} - 6 q^{28} + 15 q^{29}+ \cdots + 3 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of \(\nu = \zeta_{18} + \zeta_{18}^{-1}\):

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
1.87939
−0.347296
−1.53209
−1.00000 0 1.00000 −1.00000 0 −3.87939 −1.00000 0 1.00000
1.2 −1.00000 0 1.00000 −1.00000 0 −1.65270 −1.00000 0 1.00000
1.3 −1.00000 0 1.00000 −1.00000 0 −0.467911 −1.00000 0 1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( +1 \)
\(5\) \( +1 \)
\(11\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 8910.2.a.y 3
3.b odd 2 1 8910.2.a.bm 3
9.c even 3 2 990.2.i.f 6
9.d odd 6 2 2970.2.i.e 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
990.2.i.f 6 9.c even 3 2
2970.2.i.e 6 9.d odd 6 2
8910.2.a.y 3 1.a even 1 1 trivial
8910.2.a.bm 3 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(8910))\):

\( T_{7}^{3} + 6T_{7}^{2} + 9T_{7} + 3 \) Copy content Toggle raw display
\( T_{13}^{3} + 3T_{13}^{2} - 18T_{13} - 57 \) Copy content Toggle raw display
\( T_{17}^{3} - 3T_{17}^{2} - 24T_{17} + 53 \) Copy content Toggle raw display
\( T_{23}^{3} - 6T_{23}^{2} - 27T_{23} + 51 \) Copy content Toggle raw display
\( T_{29}^{3} - 15T_{29}^{2} + 54T_{29} + 17 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 1)^{3} \) Copy content Toggle raw display
$3$ \( T^{3} \) Copy content Toggle raw display
$5$ \( (T + 1)^{3} \) Copy content Toggle raw display
$7$ \( T^{3} + 6 T^{2} + \cdots + 3 \) Copy content Toggle raw display
$11$ \( (T + 1)^{3} \) Copy content Toggle raw display
$13$ \( T^{3} + 3 T^{2} + \cdots - 57 \) Copy content Toggle raw display
$17$ \( T^{3} - 3 T^{2} + \cdots + 53 \) Copy content Toggle raw display
$19$ \( T^{3} + 3 T^{2} + \cdots + 1 \) Copy content Toggle raw display
$23$ \( T^{3} - 6 T^{2} + \cdots + 51 \) Copy content Toggle raw display
$29$ \( T^{3} - 15 T^{2} + \cdots + 17 \) Copy content Toggle raw display
$31$ \( T^{3} + 3T^{2} - 3 \) Copy content Toggle raw display
$37$ \( T^{3} + 12 T^{2} + \cdots - 3 \) Copy content Toggle raw display
$41$ \( T^{3} - 3 T^{2} + \cdots - 109 \) Copy content Toggle raw display
$43$ \( T^{3} - 3 T^{2} + \cdots - 1 \) Copy content Toggle raw display
$47$ \( T^{3} - 21T - 17 \) Copy content Toggle raw display
$53$ \( T^{3} - 3 T^{2} + \cdots + 53 \) Copy content Toggle raw display
$59$ \( T^{3} - 18 T^{2} + \cdots - 37 \) Copy content Toggle raw display
$61$ \( T^{3} - 12 T^{2} + \cdots - 19 \) Copy content Toggle raw display
$67$ \( T^{3} + 18 T^{2} + \cdots - 359 \) Copy content Toggle raw display
$71$ \( T^{3} - 18 T^{2} + \cdots + 136 \) Copy content Toggle raw display
$73$ \( T^{3} - 9 T^{2} + \cdots + 739 \) Copy content Toggle raw display
$79$ \( T^{3} + 15 T^{2} + \cdots + 89 \) Copy content Toggle raw display
$83$ \( T^{3} - 3 T^{2} + \cdots + 57 \) Copy content Toggle raw display
$89$ \( T^{3} - 252T - 72 \) Copy content Toggle raw display
$97$ \( T^{3} + 21 T^{2} + \cdots + 159 \) Copy content Toggle raw display
show more
show less