Properties

Label 8910.2.a.cd.1.7
Level $8910$
Weight $2$
Character 8910.1
Self dual yes
Analytic conductor $71.147$
Analytic rank $0$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8910,2,Mod(1,8910)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8910, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8910.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 8910 = 2 \cdot 3^{4} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8910.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [7,7,0,7,7,0,5,7,0,7,7,0,5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(71.1467082010\)
Analytic rank: \(0\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - 3x^{6} - 13x^{5} + 31x^{4} + 21x^{3} - 37x^{2} - 15x + 6 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: no (minimal twist has level 990)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Root \(-0.729749\) of defining polynomial
Character \(\chi\) \(=\) 8910.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.00000 q^{4} +1.00000 q^{5} +4.74624 q^{7} +1.00000 q^{8} +1.00000 q^{10} +1.00000 q^{11} +0.902331 q^{13} +4.74624 q^{14} +1.00000 q^{16} -4.57073 q^{17} +4.76727 q^{19} +1.00000 q^{20} +1.00000 q^{22} -4.01374 q^{23} +1.00000 q^{25} +0.902331 q^{26} +4.74624 q^{28} -5.51350 q^{29} +6.62116 q^{31} +1.00000 q^{32} -4.57073 q^{34} +4.74624 q^{35} -3.67903 q^{37} +4.76727 q^{38} +1.00000 q^{40} +5.11141 q^{41} +7.37532 q^{43} +1.00000 q^{44} -4.01374 q^{46} -7.25024 q^{47} +15.5268 q^{49} +1.00000 q^{50} +0.902331 q^{52} +2.77789 q^{53} +1.00000 q^{55} +4.74624 q^{56} -5.51350 q^{58} +14.5733 q^{59} +11.5897 q^{61} +6.62116 q^{62} +1.00000 q^{64} +0.902331 q^{65} -11.8465 q^{67} -4.57073 q^{68} +4.74624 q^{70} -7.93501 q^{71} -11.7843 q^{73} -3.67903 q^{74} +4.76727 q^{76} +4.74624 q^{77} +9.63130 q^{79} +1.00000 q^{80} +5.11141 q^{82} -14.4184 q^{83} -4.57073 q^{85} +7.37532 q^{86} +1.00000 q^{88} +9.10413 q^{89} +4.28268 q^{91} -4.01374 q^{92} -7.25024 q^{94} +4.76727 q^{95} +3.26319 q^{97} +15.5268 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q + 7 q^{2} + 7 q^{4} + 7 q^{5} + 5 q^{7} + 7 q^{8} + 7 q^{10} + 7 q^{11} + 5 q^{13} + 5 q^{14} + 7 q^{16} + 3 q^{17} + 11 q^{19} + 7 q^{20} + 7 q^{22} + 3 q^{23} + 7 q^{25} + 5 q^{26} + 5 q^{28} + 12 q^{29}+ \cdots + 12 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) 4.74624 1.79391 0.896955 0.442123i \(-0.145774\pi\)
0.896955 + 0.442123i \(0.145774\pi\)
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) 1.00000 0.316228
\(11\) 1.00000 0.301511
\(12\) 0 0
\(13\) 0.902331 0.250261 0.125131 0.992140i \(-0.460065\pi\)
0.125131 + 0.992140i \(0.460065\pi\)
\(14\) 4.74624 1.26849
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −4.57073 −1.10857 −0.554283 0.832328i \(-0.687007\pi\)
−0.554283 + 0.832328i \(0.687007\pi\)
\(18\) 0 0
\(19\) 4.76727 1.09369 0.546843 0.837235i \(-0.315829\pi\)
0.546843 + 0.837235i \(0.315829\pi\)
\(20\) 1.00000 0.223607
\(21\) 0 0
\(22\) 1.00000 0.213201
\(23\) −4.01374 −0.836923 −0.418462 0.908234i \(-0.637431\pi\)
−0.418462 + 0.908234i \(0.637431\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0.902331 0.176962
\(27\) 0 0
\(28\) 4.74624 0.896955
\(29\) −5.51350 −1.02383 −0.511916 0.859035i \(-0.671064\pi\)
−0.511916 + 0.859035i \(0.671064\pi\)
\(30\) 0 0
\(31\) 6.62116 1.18919 0.594597 0.804024i \(-0.297311\pi\)
0.594597 + 0.804024i \(0.297311\pi\)
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) −4.57073 −0.783875
\(35\) 4.74624 0.802261
\(36\) 0 0
\(37\) −3.67903 −0.604828 −0.302414 0.953177i \(-0.597793\pi\)
−0.302414 + 0.953177i \(0.597793\pi\)
\(38\) 4.76727 0.773353
\(39\) 0 0
\(40\) 1.00000 0.158114
\(41\) 5.11141 0.798269 0.399134 0.916892i \(-0.369311\pi\)
0.399134 + 0.916892i \(0.369311\pi\)
\(42\) 0 0
\(43\) 7.37532 1.12473 0.562363 0.826891i \(-0.309892\pi\)
0.562363 + 0.826891i \(0.309892\pi\)
\(44\) 1.00000 0.150756
\(45\) 0 0
\(46\) −4.01374 −0.591794
\(47\) −7.25024 −1.05756 −0.528778 0.848760i \(-0.677350\pi\)
−0.528778 + 0.848760i \(0.677350\pi\)
\(48\) 0 0
\(49\) 15.5268 2.21811
\(50\) 1.00000 0.141421
\(51\) 0 0
\(52\) 0.902331 0.125131
\(53\) 2.77789 0.381573 0.190786 0.981632i \(-0.438896\pi\)
0.190786 + 0.981632i \(0.438896\pi\)
\(54\) 0 0
\(55\) 1.00000 0.134840
\(56\) 4.74624 0.634243
\(57\) 0 0
\(58\) −5.51350 −0.723959
\(59\) 14.5733 1.89728 0.948641 0.316354i \(-0.102459\pi\)
0.948641 + 0.316354i \(0.102459\pi\)
\(60\) 0 0
\(61\) 11.5897 1.48391 0.741953 0.670452i \(-0.233900\pi\)
0.741953 + 0.670452i \(0.233900\pi\)
\(62\) 6.62116 0.840888
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 0.902331 0.111920
\(66\) 0 0
\(67\) −11.8465 −1.44729 −0.723643 0.690174i \(-0.757534\pi\)
−0.723643 + 0.690174i \(0.757534\pi\)
\(68\) −4.57073 −0.554283
\(69\) 0 0
\(70\) 4.74624 0.567284
\(71\) −7.93501 −0.941712 −0.470856 0.882210i \(-0.656055\pi\)
−0.470856 + 0.882210i \(0.656055\pi\)
\(72\) 0 0
\(73\) −11.7843 −1.37925 −0.689627 0.724165i \(-0.742225\pi\)
−0.689627 + 0.724165i \(0.742225\pi\)
\(74\) −3.67903 −0.427678
\(75\) 0 0
\(76\) 4.76727 0.546843
\(77\) 4.74624 0.540884
\(78\) 0 0
\(79\) 9.63130 1.08361 0.541803 0.840506i \(-0.317742\pi\)
0.541803 + 0.840506i \(0.317742\pi\)
\(80\) 1.00000 0.111803
\(81\) 0 0
\(82\) 5.11141 0.564461
\(83\) −14.4184 −1.58263 −0.791313 0.611412i \(-0.790602\pi\)
−0.791313 + 0.611412i \(0.790602\pi\)
\(84\) 0 0
\(85\) −4.57073 −0.495766
\(86\) 7.37532 0.795301
\(87\) 0 0
\(88\) 1.00000 0.106600
\(89\) 9.10413 0.965036 0.482518 0.875886i \(-0.339722\pi\)
0.482518 + 0.875886i \(0.339722\pi\)
\(90\) 0 0
\(91\) 4.28268 0.448946
\(92\) −4.01374 −0.418462
\(93\) 0 0
\(94\) −7.25024 −0.747805
\(95\) 4.76727 0.489111
\(96\) 0 0
\(97\) 3.26319 0.331327 0.165663 0.986182i \(-0.447023\pi\)
0.165663 + 0.986182i \(0.447023\pi\)
\(98\) 15.5268 1.56844
\(99\) 0 0
\(100\) 1.00000 0.100000
\(101\) 11.1922 1.11367 0.556835 0.830623i \(-0.312016\pi\)
0.556835 + 0.830623i \(0.312016\pi\)
\(102\) 0 0
\(103\) 0.973785 0.0959498 0.0479749 0.998849i \(-0.484723\pi\)
0.0479749 + 0.998849i \(0.484723\pi\)
\(104\) 0.902331 0.0884808
\(105\) 0 0
\(106\) 2.77789 0.269813
\(107\) 11.0164 1.06499 0.532497 0.846432i \(-0.321254\pi\)
0.532497 + 0.846432i \(0.321254\pi\)
\(108\) 0 0
\(109\) 10.9050 1.04451 0.522254 0.852790i \(-0.325091\pi\)
0.522254 + 0.852790i \(0.325091\pi\)
\(110\) 1.00000 0.0953463
\(111\) 0 0
\(112\) 4.74624 0.448477
\(113\) 8.20932 0.772268 0.386134 0.922443i \(-0.373810\pi\)
0.386134 + 0.922443i \(0.373810\pi\)
\(114\) 0 0
\(115\) −4.01374 −0.374284
\(116\) −5.51350 −0.511916
\(117\) 0 0
\(118\) 14.5733 1.34158
\(119\) −21.6938 −1.98867
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 11.5897 1.04928
\(123\) 0 0
\(124\) 6.62116 0.594597
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) −10.6046 −0.941007 −0.470503 0.882398i \(-0.655928\pi\)
−0.470503 + 0.882398i \(0.655928\pi\)
\(128\) 1.00000 0.0883883
\(129\) 0 0
\(130\) 0.902331 0.0791396
\(131\) −6.53972 −0.571378 −0.285689 0.958322i \(-0.592222\pi\)
−0.285689 + 0.958322i \(0.592222\pi\)
\(132\) 0 0
\(133\) 22.6266 1.96197
\(134\) −11.8465 −1.02339
\(135\) 0 0
\(136\) −4.57073 −0.391937
\(137\) 20.5462 1.75538 0.877689 0.479230i \(-0.159084\pi\)
0.877689 + 0.479230i \(0.159084\pi\)
\(138\) 0 0
\(139\) −6.29325 −0.533786 −0.266893 0.963726i \(-0.585997\pi\)
−0.266893 + 0.963726i \(0.585997\pi\)
\(140\) 4.74624 0.401130
\(141\) 0 0
\(142\) −7.93501 −0.665891
\(143\) 0.902331 0.0754567
\(144\) 0 0
\(145\) −5.51350 −0.457872
\(146\) −11.7843 −0.975280
\(147\) 0 0
\(148\) −3.67903 −0.302414
\(149\) −7.78011 −0.637371 −0.318686 0.947860i \(-0.603241\pi\)
−0.318686 + 0.947860i \(0.603241\pi\)
\(150\) 0 0
\(151\) 5.05466 0.411343 0.205671 0.978621i \(-0.434062\pi\)
0.205671 + 0.978621i \(0.434062\pi\)
\(152\) 4.76727 0.386676
\(153\) 0 0
\(154\) 4.74624 0.382463
\(155\) 6.62116 0.531824
\(156\) 0 0
\(157\) 14.5734 1.16309 0.581543 0.813516i \(-0.302449\pi\)
0.581543 + 0.813516i \(0.302449\pi\)
\(158\) 9.63130 0.766225
\(159\) 0 0
\(160\) 1.00000 0.0790569
\(161\) −19.0502 −1.50136
\(162\) 0 0
\(163\) −16.7404 −1.31121 −0.655604 0.755105i \(-0.727586\pi\)
−0.655604 + 0.755105i \(0.727586\pi\)
\(164\) 5.11141 0.399134
\(165\) 0 0
\(166\) −14.4184 −1.11909
\(167\) −16.0736 −1.24381 −0.621907 0.783091i \(-0.713642\pi\)
−0.621907 + 0.783091i \(0.713642\pi\)
\(168\) 0 0
\(169\) −12.1858 −0.937369
\(170\) −4.57073 −0.350559
\(171\) 0 0
\(172\) 7.37532 0.562363
\(173\) −1.50662 −0.114546 −0.0572732 0.998359i \(-0.518241\pi\)
−0.0572732 + 0.998359i \(0.518241\pi\)
\(174\) 0 0
\(175\) 4.74624 0.358782
\(176\) 1.00000 0.0753778
\(177\) 0 0
\(178\) 9.10413 0.682383
\(179\) −15.9536 −1.19243 −0.596216 0.802824i \(-0.703330\pi\)
−0.596216 + 0.802824i \(0.703330\pi\)
\(180\) 0 0
\(181\) −16.0426 −1.19244 −0.596219 0.802822i \(-0.703331\pi\)
−0.596219 + 0.802822i \(0.703331\pi\)
\(182\) 4.28268 0.317453
\(183\) 0 0
\(184\) −4.01374 −0.295897
\(185\) −3.67903 −0.270487
\(186\) 0 0
\(187\) −4.57073 −0.334245
\(188\) −7.25024 −0.528778
\(189\) 0 0
\(190\) 4.76727 0.345854
\(191\) 15.1478 1.09605 0.548027 0.836460i \(-0.315379\pi\)
0.548027 + 0.836460i \(0.315379\pi\)
\(192\) 0 0
\(193\) 0.108369 0.00780058 0.00390029 0.999992i \(-0.498758\pi\)
0.00390029 + 0.999992i \(0.498758\pi\)
\(194\) 3.26319 0.234283
\(195\) 0 0
\(196\) 15.5268 1.10906
\(197\) −18.1938 −1.29625 −0.648127 0.761532i \(-0.724448\pi\)
−0.648127 + 0.761532i \(0.724448\pi\)
\(198\) 0 0
\(199\) −14.5370 −1.03050 −0.515249 0.857040i \(-0.672301\pi\)
−0.515249 + 0.857040i \(0.672301\pi\)
\(200\) 1.00000 0.0707107
\(201\) 0 0
\(202\) 11.1922 0.787483
\(203\) −26.1684 −1.83666
\(204\) 0 0
\(205\) 5.11141 0.356997
\(206\) 0.973785 0.0678468
\(207\) 0 0
\(208\) 0.902331 0.0625654
\(209\) 4.76727 0.329759
\(210\) 0 0
\(211\) −6.87778 −0.473486 −0.236743 0.971572i \(-0.576080\pi\)
−0.236743 + 0.971572i \(0.576080\pi\)
\(212\) 2.77789 0.190786
\(213\) 0 0
\(214\) 11.0164 0.753065
\(215\) 7.37532 0.502993
\(216\) 0 0
\(217\) 31.4256 2.13331
\(218\) 10.9050 0.738578
\(219\) 0 0
\(220\) 1.00000 0.0674200
\(221\) −4.12431 −0.277431
\(222\) 0 0
\(223\) 27.7666 1.85939 0.929695 0.368331i \(-0.120071\pi\)
0.929695 + 0.368331i \(0.120071\pi\)
\(224\) 4.74624 0.317121
\(225\) 0 0
\(226\) 8.20932 0.546076
\(227\) 6.60000 0.438057 0.219029 0.975718i \(-0.429711\pi\)
0.219029 + 0.975718i \(0.429711\pi\)
\(228\) 0 0
\(229\) −15.4162 −1.01873 −0.509366 0.860550i \(-0.670120\pi\)
−0.509366 + 0.860550i \(0.670120\pi\)
\(230\) −4.01374 −0.264658
\(231\) 0 0
\(232\) −5.51350 −0.361979
\(233\) −17.6519 −1.15641 −0.578207 0.815890i \(-0.696248\pi\)
−0.578207 + 0.815890i \(0.696248\pi\)
\(234\) 0 0
\(235\) −7.25024 −0.472953
\(236\) 14.5733 0.948641
\(237\) 0 0
\(238\) −21.6938 −1.40620
\(239\) 3.17998 0.205696 0.102848 0.994697i \(-0.467204\pi\)
0.102848 + 0.994697i \(0.467204\pi\)
\(240\) 0 0
\(241\) 1.58689 0.102220 0.0511101 0.998693i \(-0.483724\pi\)
0.0511101 + 0.998693i \(0.483724\pi\)
\(242\) 1.00000 0.0642824
\(243\) 0 0
\(244\) 11.5897 0.741953
\(245\) 15.5268 0.991969
\(246\) 0 0
\(247\) 4.30165 0.273707
\(248\) 6.62116 0.420444
\(249\) 0 0
\(250\) 1.00000 0.0632456
\(251\) −15.1957 −0.959141 −0.479571 0.877503i \(-0.659208\pi\)
−0.479571 + 0.877503i \(0.659208\pi\)
\(252\) 0 0
\(253\) −4.01374 −0.252342
\(254\) −10.6046 −0.665392
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 15.8537 0.988927 0.494463 0.869198i \(-0.335365\pi\)
0.494463 + 0.869198i \(0.335365\pi\)
\(258\) 0 0
\(259\) −17.4615 −1.08501
\(260\) 0.902331 0.0559602
\(261\) 0 0
\(262\) −6.53972 −0.404025
\(263\) −24.3795 −1.50330 −0.751651 0.659561i \(-0.770742\pi\)
−0.751651 + 0.659561i \(0.770742\pi\)
\(264\) 0 0
\(265\) 2.77789 0.170644
\(266\) 22.6266 1.38732
\(267\) 0 0
\(268\) −11.8465 −0.723643
\(269\) 13.5591 0.826712 0.413356 0.910570i \(-0.364357\pi\)
0.413356 + 0.910570i \(0.364357\pi\)
\(270\) 0 0
\(271\) 20.2337 1.22911 0.614554 0.788874i \(-0.289336\pi\)
0.614554 + 0.788874i \(0.289336\pi\)
\(272\) −4.57073 −0.277142
\(273\) 0 0
\(274\) 20.5462 1.24124
\(275\) 1.00000 0.0603023
\(276\) 0 0
\(277\) −15.1332 −0.909266 −0.454633 0.890679i \(-0.650230\pi\)
−0.454633 + 0.890679i \(0.650230\pi\)
\(278\) −6.29325 −0.377444
\(279\) 0 0
\(280\) 4.74624 0.283642
\(281\) 16.3497 0.975338 0.487669 0.873029i \(-0.337847\pi\)
0.487669 + 0.873029i \(0.337847\pi\)
\(282\) 0 0
\(283\) −16.7738 −0.997100 −0.498550 0.866861i \(-0.666134\pi\)
−0.498550 + 0.866861i \(0.666134\pi\)
\(284\) −7.93501 −0.470856
\(285\) 0 0
\(286\) 0.902331 0.0533559
\(287\) 24.2600 1.43202
\(288\) 0 0
\(289\) 3.89162 0.228919
\(290\) −5.51350 −0.323764
\(291\) 0 0
\(292\) −11.7843 −0.689627
\(293\) −5.43829 −0.317708 −0.158854 0.987302i \(-0.550780\pi\)
−0.158854 + 0.987302i \(0.550780\pi\)
\(294\) 0 0
\(295\) 14.5733 0.848491
\(296\) −3.67903 −0.213839
\(297\) 0 0
\(298\) −7.78011 −0.450690
\(299\) −3.62172 −0.209450
\(300\) 0 0
\(301\) 35.0050 2.01766
\(302\) 5.05466 0.290863
\(303\) 0 0
\(304\) 4.76727 0.273421
\(305\) 11.5897 0.663622
\(306\) 0 0
\(307\) 9.37652 0.535146 0.267573 0.963538i \(-0.413778\pi\)
0.267573 + 0.963538i \(0.413778\pi\)
\(308\) 4.74624 0.270442
\(309\) 0 0
\(310\) 6.62116 0.376056
\(311\) 12.6466 0.717122 0.358561 0.933506i \(-0.383267\pi\)
0.358561 + 0.933506i \(0.383267\pi\)
\(312\) 0 0
\(313\) −11.6705 −0.659658 −0.329829 0.944041i \(-0.606991\pi\)
−0.329829 + 0.944041i \(0.606991\pi\)
\(314\) 14.5734 0.822426
\(315\) 0 0
\(316\) 9.63130 0.541803
\(317\) 25.4187 1.42766 0.713828 0.700321i \(-0.246960\pi\)
0.713828 + 0.700321i \(0.246960\pi\)
\(318\) 0 0
\(319\) −5.51350 −0.308697
\(320\) 1.00000 0.0559017
\(321\) 0 0
\(322\) −19.0502 −1.06163
\(323\) −21.7899 −1.21242
\(324\) 0 0
\(325\) 0.902331 0.0500523
\(326\) −16.7404 −0.927164
\(327\) 0 0
\(328\) 5.11141 0.282231
\(329\) −34.4114 −1.89716
\(330\) 0 0
\(331\) −15.5359 −0.853928 −0.426964 0.904269i \(-0.640417\pi\)
−0.426964 + 0.904269i \(0.640417\pi\)
\(332\) −14.4184 −0.791313
\(333\) 0 0
\(334\) −16.0736 −0.879509
\(335\) −11.8465 −0.647246
\(336\) 0 0
\(337\) −21.4931 −1.17081 −0.585403 0.810742i \(-0.699064\pi\)
−0.585403 + 0.810742i \(0.699064\pi\)
\(338\) −12.1858 −0.662820
\(339\) 0 0
\(340\) −4.57073 −0.247883
\(341\) 6.62116 0.358556
\(342\) 0 0
\(343\) 40.4701 2.18518
\(344\) 7.37532 0.397651
\(345\) 0 0
\(346\) −1.50662 −0.0809965
\(347\) 30.6326 1.64444 0.822221 0.569168i \(-0.192735\pi\)
0.822221 + 0.569168i \(0.192735\pi\)
\(348\) 0 0
\(349\) −2.07686 −0.111172 −0.0555858 0.998454i \(-0.517703\pi\)
−0.0555858 + 0.998454i \(0.517703\pi\)
\(350\) 4.74624 0.253697
\(351\) 0 0
\(352\) 1.00000 0.0533002
\(353\) −15.3883 −0.819036 −0.409518 0.912302i \(-0.634303\pi\)
−0.409518 + 0.912302i \(0.634303\pi\)
\(354\) 0 0
\(355\) −7.93501 −0.421147
\(356\) 9.10413 0.482518
\(357\) 0 0
\(358\) −15.9536 −0.843176
\(359\) 2.63989 0.139328 0.0696640 0.997571i \(-0.477807\pi\)
0.0696640 + 0.997571i \(0.477807\pi\)
\(360\) 0 0
\(361\) 3.72683 0.196149
\(362\) −16.0426 −0.843181
\(363\) 0 0
\(364\) 4.28268 0.224473
\(365\) −11.7843 −0.616821
\(366\) 0 0
\(367\) 12.8038 0.668351 0.334175 0.942511i \(-0.391542\pi\)
0.334175 + 0.942511i \(0.391542\pi\)
\(368\) −4.01374 −0.209231
\(369\) 0 0
\(370\) −3.67903 −0.191264
\(371\) 13.1845 0.684507
\(372\) 0 0
\(373\) −9.70724 −0.502622 −0.251311 0.967906i \(-0.580862\pi\)
−0.251311 + 0.967906i \(0.580862\pi\)
\(374\) −4.57073 −0.236347
\(375\) 0 0
\(376\) −7.25024 −0.373903
\(377\) −4.97500 −0.256226
\(378\) 0 0
\(379\) −19.7800 −1.01603 −0.508015 0.861348i \(-0.669620\pi\)
−0.508015 + 0.861348i \(0.669620\pi\)
\(380\) 4.76727 0.244556
\(381\) 0 0
\(382\) 15.1478 0.775028
\(383\) 2.00397 0.102398 0.0511990 0.998688i \(-0.483696\pi\)
0.0511990 + 0.998688i \(0.483696\pi\)
\(384\) 0 0
\(385\) 4.74624 0.241891
\(386\) 0.108369 0.00551584
\(387\) 0 0
\(388\) 3.26319 0.165663
\(389\) −4.44981 −0.225615 −0.112807 0.993617i \(-0.535984\pi\)
−0.112807 + 0.993617i \(0.535984\pi\)
\(390\) 0 0
\(391\) 18.3458 0.927785
\(392\) 15.5268 0.784220
\(393\) 0 0
\(394\) −18.1938 −0.916590
\(395\) 9.63130 0.484603
\(396\) 0 0
\(397\) −38.5665 −1.93560 −0.967800 0.251722i \(-0.919003\pi\)
−0.967800 + 0.251722i \(0.919003\pi\)
\(398\) −14.5370 −0.728672
\(399\) 0 0
\(400\) 1.00000 0.0500000
\(401\) −1.46851 −0.0733338 −0.0366669 0.999328i \(-0.511674\pi\)
−0.0366669 + 0.999328i \(0.511674\pi\)
\(402\) 0 0
\(403\) 5.97447 0.297610
\(404\) 11.1922 0.556835
\(405\) 0 0
\(406\) −26.1684 −1.29872
\(407\) −3.67903 −0.182363
\(408\) 0 0
\(409\) 7.17759 0.354909 0.177455 0.984129i \(-0.443214\pi\)
0.177455 + 0.984129i \(0.443214\pi\)
\(410\) 5.11141 0.252435
\(411\) 0 0
\(412\) 0.973785 0.0479749
\(413\) 69.1684 3.40355
\(414\) 0 0
\(415\) −14.4184 −0.707772
\(416\) 0.902331 0.0442404
\(417\) 0 0
\(418\) 4.76727 0.233175
\(419\) 5.68512 0.277736 0.138868 0.990311i \(-0.455654\pi\)
0.138868 + 0.990311i \(0.455654\pi\)
\(420\) 0 0
\(421\) 7.36149 0.358777 0.179389 0.983778i \(-0.442588\pi\)
0.179389 + 0.983778i \(0.442588\pi\)
\(422\) −6.87778 −0.334805
\(423\) 0 0
\(424\) 2.77789 0.134906
\(425\) −4.57073 −0.221713
\(426\) 0 0
\(427\) 55.0073 2.66199
\(428\) 11.0164 0.532497
\(429\) 0 0
\(430\) 7.37532 0.355670
\(431\) −2.27955 −0.109802 −0.0549011 0.998492i \(-0.517484\pi\)
−0.0549011 + 0.998492i \(0.517484\pi\)
\(432\) 0 0
\(433\) 12.0353 0.578381 0.289190 0.957272i \(-0.406614\pi\)
0.289190 + 0.957272i \(0.406614\pi\)
\(434\) 31.4256 1.50848
\(435\) 0 0
\(436\) 10.9050 0.522254
\(437\) −19.1346 −0.915331
\(438\) 0 0
\(439\) 3.78394 0.180598 0.0902989 0.995915i \(-0.471218\pi\)
0.0902989 + 0.995915i \(0.471218\pi\)
\(440\) 1.00000 0.0476731
\(441\) 0 0
\(442\) −4.12431 −0.196174
\(443\) −28.1658 −1.33820 −0.669100 0.743173i \(-0.733320\pi\)
−0.669100 + 0.743173i \(0.733320\pi\)
\(444\) 0 0
\(445\) 9.10413 0.431577
\(446\) 27.7666 1.31479
\(447\) 0 0
\(448\) 4.74624 0.224239
\(449\) 6.77168 0.319575 0.159788 0.987151i \(-0.448919\pi\)
0.159788 + 0.987151i \(0.448919\pi\)
\(450\) 0 0
\(451\) 5.11141 0.240687
\(452\) 8.20932 0.386134
\(453\) 0 0
\(454\) 6.60000 0.309753
\(455\) 4.28268 0.200775
\(456\) 0 0
\(457\) 17.7551 0.830549 0.415274 0.909696i \(-0.363686\pi\)
0.415274 + 0.909696i \(0.363686\pi\)
\(458\) −15.4162 −0.720353
\(459\) 0 0
\(460\) −4.01374 −0.187142
\(461\) 33.2182 1.54713 0.773563 0.633719i \(-0.218472\pi\)
0.773563 + 0.633719i \(0.218472\pi\)
\(462\) 0 0
\(463\) −19.4191 −0.902480 −0.451240 0.892403i \(-0.649018\pi\)
−0.451240 + 0.892403i \(0.649018\pi\)
\(464\) −5.51350 −0.255958
\(465\) 0 0
\(466\) −17.6519 −0.817709
\(467\) 22.8797 1.05875 0.529373 0.848389i \(-0.322427\pi\)
0.529373 + 0.848389i \(0.322427\pi\)
\(468\) 0 0
\(469\) −56.2265 −2.59630
\(470\) −7.25024 −0.334429
\(471\) 0 0
\(472\) 14.5733 0.670791
\(473\) 7.37532 0.339118
\(474\) 0 0
\(475\) 4.76727 0.218737
\(476\) −21.6938 −0.994333
\(477\) 0 0
\(478\) 3.17998 0.145449
\(479\) −7.91106 −0.361466 −0.180733 0.983532i \(-0.557847\pi\)
−0.180733 + 0.983532i \(0.557847\pi\)
\(480\) 0 0
\(481\) −3.31970 −0.151365
\(482\) 1.58689 0.0722807
\(483\) 0 0
\(484\) 1.00000 0.0454545
\(485\) 3.26319 0.148174
\(486\) 0 0
\(487\) 40.5746 1.83861 0.919306 0.393544i \(-0.128751\pi\)
0.919306 + 0.393544i \(0.128751\pi\)
\(488\) 11.5897 0.524640
\(489\) 0 0
\(490\) 15.5268 0.701428
\(491\) 3.55897 0.160614 0.0803071 0.996770i \(-0.474410\pi\)
0.0803071 + 0.996770i \(0.474410\pi\)
\(492\) 0 0
\(493\) 25.2008 1.13499
\(494\) 4.30165 0.193540
\(495\) 0 0
\(496\) 6.62116 0.297299
\(497\) −37.6614 −1.68935
\(498\) 0 0
\(499\) 23.6158 1.05719 0.528594 0.848875i \(-0.322720\pi\)
0.528594 + 0.848875i \(0.322720\pi\)
\(500\) 1.00000 0.0447214
\(501\) 0 0
\(502\) −15.1957 −0.678215
\(503\) −40.2594 −1.79508 −0.897539 0.440934i \(-0.854647\pi\)
−0.897539 + 0.440934i \(0.854647\pi\)
\(504\) 0 0
\(505\) 11.1922 0.498048
\(506\) −4.01374 −0.178433
\(507\) 0 0
\(508\) −10.6046 −0.470503
\(509\) −2.82837 −0.125365 −0.0626826 0.998034i \(-0.519966\pi\)
−0.0626826 + 0.998034i \(0.519966\pi\)
\(510\) 0 0
\(511\) −55.9313 −2.47426
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) 15.8537 0.699277
\(515\) 0.973785 0.0429101
\(516\) 0 0
\(517\) −7.25024 −0.318865
\(518\) −17.4615 −0.767216
\(519\) 0 0
\(520\) 0.902331 0.0395698
\(521\) −5.24617 −0.229839 −0.114919 0.993375i \(-0.536661\pi\)
−0.114919 + 0.993375i \(0.536661\pi\)
\(522\) 0 0
\(523\) 41.3842 1.80960 0.904802 0.425833i \(-0.140019\pi\)
0.904802 + 0.425833i \(0.140019\pi\)
\(524\) −6.53972 −0.285689
\(525\) 0 0
\(526\) −24.3795 −1.06300
\(527\) −30.2636 −1.31830
\(528\) 0 0
\(529\) −6.88986 −0.299559
\(530\) 2.77789 0.120664
\(531\) 0 0
\(532\) 22.6266 0.980987
\(533\) 4.61218 0.199776
\(534\) 0 0
\(535\) 11.0164 0.476280
\(536\) −11.8465 −0.511693
\(537\) 0 0
\(538\) 13.5591 0.584573
\(539\) 15.5268 0.668785
\(540\) 0 0
\(541\) 43.4527 1.86818 0.934089 0.357039i \(-0.116214\pi\)
0.934089 + 0.357039i \(0.116214\pi\)
\(542\) 20.2337 0.869111
\(543\) 0 0
\(544\) −4.57073 −0.195969
\(545\) 10.9050 0.467118
\(546\) 0 0
\(547\) 14.6453 0.626188 0.313094 0.949722i \(-0.398634\pi\)
0.313094 + 0.949722i \(0.398634\pi\)
\(548\) 20.5462 0.877689
\(549\) 0 0
\(550\) 1.00000 0.0426401
\(551\) −26.2843 −1.11975
\(552\) 0 0
\(553\) 45.7124 1.94389
\(554\) −15.1332 −0.642948
\(555\) 0 0
\(556\) −6.29325 −0.266893
\(557\) −42.4840 −1.80010 −0.900052 0.435782i \(-0.856472\pi\)
−0.900052 + 0.435782i \(0.856472\pi\)
\(558\) 0 0
\(559\) 6.65498 0.281476
\(560\) 4.74624 0.200565
\(561\) 0 0
\(562\) 16.3497 0.689668
\(563\) 1.76894 0.0745518 0.0372759 0.999305i \(-0.488132\pi\)
0.0372759 + 0.999305i \(0.488132\pi\)
\(564\) 0 0
\(565\) 8.20932 0.345369
\(566\) −16.7738 −0.705056
\(567\) 0 0
\(568\) −7.93501 −0.332946
\(569\) −27.3228 −1.14543 −0.572716 0.819754i \(-0.694110\pi\)
−0.572716 + 0.819754i \(0.694110\pi\)
\(570\) 0 0
\(571\) −11.7047 −0.489828 −0.244914 0.969545i \(-0.578760\pi\)
−0.244914 + 0.969545i \(0.578760\pi\)
\(572\) 0.902331 0.0377283
\(573\) 0 0
\(574\) 24.2600 1.01259
\(575\) −4.01374 −0.167385
\(576\) 0 0
\(577\) 44.8871 1.86867 0.934336 0.356392i \(-0.115993\pi\)
0.934336 + 0.356392i \(0.115993\pi\)
\(578\) 3.89162 0.161870
\(579\) 0 0
\(580\) −5.51350 −0.228936
\(581\) −68.4332 −2.83909
\(582\) 0 0
\(583\) 2.77789 0.115048
\(584\) −11.7843 −0.487640
\(585\) 0 0
\(586\) −5.43829 −0.224654
\(587\) −21.5291 −0.888600 −0.444300 0.895878i \(-0.646548\pi\)
−0.444300 + 0.895878i \(0.646548\pi\)
\(588\) 0 0
\(589\) 31.5648 1.30061
\(590\) 14.5733 0.599973
\(591\) 0 0
\(592\) −3.67903 −0.151207
\(593\) −6.96602 −0.286060 −0.143030 0.989718i \(-0.545685\pi\)
−0.143030 + 0.989718i \(0.545685\pi\)
\(594\) 0 0
\(595\) −21.6938 −0.889359
\(596\) −7.78011 −0.318686
\(597\) 0 0
\(598\) −3.62172 −0.148103
\(599\) −17.7521 −0.725332 −0.362666 0.931919i \(-0.618133\pi\)
−0.362666 + 0.931919i \(0.618133\pi\)
\(600\) 0 0
\(601\) −22.6035 −0.922015 −0.461008 0.887396i \(-0.652512\pi\)
−0.461008 + 0.887396i \(0.652512\pi\)
\(602\) 35.0050 1.42670
\(603\) 0 0
\(604\) 5.05466 0.205671
\(605\) 1.00000 0.0406558
\(606\) 0 0
\(607\) −2.29881 −0.0933058 −0.0466529 0.998911i \(-0.514855\pi\)
−0.0466529 + 0.998911i \(0.514855\pi\)
\(608\) 4.76727 0.193338
\(609\) 0 0
\(610\) 11.5897 0.469252
\(611\) −6.54211 −0.264666
\(612\) 0 0
\(613\) −25.1350 −1.01519 −0.507596 0.861595i \(-0.669466\pi\)
−0.507596 + 0.861595i \(0.669466\pi\)
\(614\) 9.37652 0.378405
\(615\) 0 0
\(616\) 4.74624 0.191231
\(617\) −15.9144 −0.640690 −0.320345 0.947301i \(-0.603799\pi\)
−0.320345 + 0.947301i \(0.603799\pi\)
\(618\) 0 0
\(619\) −47.1805 −1.89635 −0.948173 0.317754i \(-0.897071\pi\)
−0.948173 + 0.317754i \(0.897071\pi\)
\(620\) 6.62116 0.265912
\(621\) 0 0
\(622\) 12.6466 0.507082
\(623\) 43.2104 1.73119
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) −11.6705 −0.466449
\(627\) 0 0
\(628\) 14.5734 0.581543
\(629\) 16.8159 0.670492
\(630\) 0 0
\(631\) 10.4051 0.414221 0.207111 0.978318i \(-0.433594\pi\)
0.207111 + 0.978318i \(0.433594\pi\)
\(632\) 9.63130 0.383113
\(633\) 0 0
\(634\) 25.4187 1.00951
\(635\) −10.6046 −0.420831
\(636\) 0 0
\(637\) 14.0103 0.555108
\(638\) −5.51350 −0.218282
\(639\) 0 0
\(640\) 1.00000 0.0395285
\(641\) −19.7955 −0.781873 −0.390937 0.920418i \(-0.627849\pi\)
−0.390937 + 0.920418i \(0.627849\pi\)
\(642\) 0 0
\(643\) 25.7817 1.01673 0.508366 0.861141i \(-0.330250\pi\)
0.508366 + 0.861141i \(0.330250\pi\)
\(644\) −19.0502 −0.750682
\(645\) 0 0
\(646\) −21.7899 −0.857313
\(647\) −4.40776 −0.173287 −0.0866435 0.996239i \(-0.527614\pi\)
−0.0866435 + 0.996239i \(0.527614\pi\)
\(648\) 0 0
\(649\) 14.5733 0.572052
\(650\) 0.902331 0.0353923
\(651\) 0 0
\(652\) −16.7404 −0.655604
\(653\) −1.30666 −0.0511335 −0.0255668 0.999673i \(-0.508139\pi\)
−0.0255668 + 0.999673i \(0.508139\pi\)
\(654\) 0 0
\(655\) −6.53972 −0.255528
\(656\) 5.11141 0.199567
\(657\) 0 0
\(658\) −34.4114 −1.34149
\(659\) 47.5992 1.85420 0.927100 0.374813i \(-0.122293\pi\)
0.927100 + 0.374813i \(0.122293\pi\)
\(660\) 0 0
\(661\) 3.40376 0.132391 0.0661955 0.997807i \(-0.478914\pi\)
0.0661955 + 0.997807i \(0.478914\pi\)
\(662\) −15.5359 −0.603818
\(663\) 0 0
\(664\) −14.4184 −0.559543
\(665\) 22.6266 0.877421
\(666\) 0 0
\(667\) 22.1298 0.856869
\(668\) −16.0736 −0.621907
\(669\) 0 0
\(670\) −11.8465 −0.457672
\(671\) 11.5897 0.447414
\(672\) 0 0
\(673\) −44.7962 −1.72677 −0.863384 0.504547i \(-0.831659\pi\)
−0.863384 + 0.504547i \(0.831659\pi\)
\(674\) −21.4931 −0.827885
\(675\) 0 0
\(676\) −12.1858 −0.468685
\(677\) 36.3059 1.39535 0.697674 0.716415i \(-0.254218\pi\)
0.697674 + 0.716415i \(0.254218\pi\)
\(678\) 0 0
\(679\) 15.4879 0.594370
\(680\) −4.57073 −0.175280
\(681\) 0 0
\(682\) 6.62116 0.253537
\(683\) 22.7675 0.871174 0.435587 0.900147i \(-0.356541\pi\)
0.435587 + 0.900147i \(0.356541\pi\)
\(684\) 0 0
\(685\) 20.5462 0.785029
\(686\) 40.4701 1.54516
\(687\) 0 0
\(688\) 7.37532 0.281181
\(689\) 2.50658 0.0954929
\(690\) 0 0
\(691\) 2.41991 0.0920578 0.0460289 0.998940i \(-0.485343\pi\)
0.0460289 + 0.998940i \(0.485343\pi\)
\(692\) −1.50662 −0.0572732
\(693\) 0 0
\(694\) 30.6326 1.16280
\(695\) −6.29325 −0.238716
\(696\) 0 0
\(697\) −23.3629 −0.884934
\(698\) −2.07686 −0.0786103
\(699\) 0 0
\(700\) 4.74624 0.179391
\(701\) −3.44745 −0.130208 −0.0651042 0.997878i \(-0.520738\pi\)
−0.0651042 + 0.997878i \(0.520738\pi\)
\(702\) 0 0
\(703\) −17.5389 −0.661492
\(704\) 1.00000 0.0376889
\(705\) 0 0
\(706\) −15.3883 −0.579146
\(707\) 53.1210 1.99782
\(708\) 0 0
\(709\) 19.1432 0.718940 0.359470 0.933157i \(-0.382958\pi\)
0.359470 + 0.933157i \(0.382958\pi\)
\(710\) −7.93501 −0.297796
\(711\) 0 0
\(712\) 9.10413 0.341192
\(713\) −26.5756 −0.995265
\(714\) 0 0
\(715\) 0.902331 0.0337453
\(716\) −15.9536 −0.596216
\(717\) 0 0
\(718\) 2.63989 0.0985198
\(719\) 24.1115 0.899208 0.449604 0.893228i \(-0.351565\pi\)
0.449604 + 0.893228i \(0.351565\pi\)
\(720\) 0 0
\(721\) 4.62181 0.172125
\(722\) 3.72683 0.138698
\(723\) 0 0
\(724\) −16.0426 −0.596219
\(725\) −5.51350 −0.204766
\(726\) 0 0
\(727\) 31.4145 1.16510 0.582549 0.812795i \(-0.302055\pi\)
0.582549 + 0.812795i \(0.302055\pi\)
\(728\) 4.28268 0.158727
\(729\) 0 0
\(730\) −11.7843 −0.436158
\(731\) −33.7106 −1.24683
\(732\) 0 0
\(733\) −29.8552 −1.10273 −0.551363 0.834265i \(-0.685892\pi\)
−0.551363 + 0.834265i \(0.685892\pi\)
\(734\) 12.8038 0.472595
\(735\) 0 0
\(736\) −4.01374 −0.147949
\(737\) −11.8465 −0.436373
\(738\) 0 0
\(739\) −4.30474 −0.158352 −0.0791762 0.996861i \(-0.525229\pi\)
−0.0791762 + 0.996861i \(0.525229\pi\)
\(740\) −3.67903 −0.135244
\(741\) 0 0
\(742\) 13.1845 0.484019
\(743\) −19.6056 −0.719260 −0.359630 0.933095i \(-0.617097\pi\)
−0.359630 + 0.933095i \(0.617097\pi\)
\(744\) 0 0
\(745\) −7.78011 −0.285041
\(746\) −9.70724 −0.355407
\(747\) 0 0
\(748\) −4.57073 −0.167123
\(749\) 52.2864 1.91050
\(750\) 0 0
\(751\) −6.58613 −0.240331 −0.120166 0.992754i \(-0.538343\pi\)
−0.120166 + 0.992754i \(0.538343\pi\)
\(752\) −7.25024 −0.264389
\(753\) 0 0
\(754\) −4.97500 −0.181179
\(755\) 5.05466 0.183958
\(756\) 0 0
\(757\) −3.26658 −0.118726 −0.0593629 0.998236i \(-0.518907\pi\)
−0.0593629 + 0.998236i \(0.518907\pi\)
\(758\) −19.7800 −0.718441
\(759\) 0 0
\(760\) 4.76727 0.172927
\(761\) −21.6045 −0.783161 −0.391581 0.920144i \(-0.628072\pi\)
−0.391581 + 0.920144i \(0.628072\pi\)
\(762\) 0 0
\(763\) 51.7576 1.87375
\(764\) 15.1478 0.548027
\(765\) 0 0
\(766\) 2.00397 0.0724063
\(767\) 13.1499 0.474817
\(768\) 0 0
\(769\) −8.79420 −0.317127 −0.158564 0.987349i \(-0.550686\pi\)
−0.158564 + 0.987349i \(0.550686\pi\)
\(770\) 4.74624 0.171043
\(771\) 0 0
\(772\) 0.108369 0.00390029
\(773\) −21.3813 −0.769033 −0.384516 0.923118i \(-0.625632\pi\)
−0.384516 + 0.923118i \(0.625632\pi\)
\(774\) 0 0
\(775\) 6.62116 0.237839
\(776\) 3.26319 0.117142
\(777\) 0 0
\(778\) −4.44981 −0.159534
\(779\) 24.3675 0.873055
\(780\) 0 0
\(781\) −7.93501 −0.283937
\(782\) 18.3458 0.656043
\(783\) 0 0
\(784\) 15.5268 0.554528
\(785\) 14.5734 0.520148
\(786\) 0 0
\(787\) 14.2727 0.508767 0.254384 0.967103i \(-0.418127\pi\)
0.254384 + 0.967103i \(0.418127\pi\)
\(788\) −18.1938 −0.648127
\(789\) 0 0
\(790\) 9.63130 0.342666
\(791\) 38.9634 1.38538
\(792\) 0 0
\(793\) 10.4577 0.371364
\(794\) −38.5665 −1.36868
\(795\) 0 0
\(796\) −14.5370 −0.515249
\(797\) −2.33265 −0.0826266 −0.0413133 0.999146i \(-0.513154\pi\)
−0.0413133 + 0.999146i \(0.513154\pi\)
\(798\) 0 0
\(799\) 33.1389 1.17237
\(800\) 1.00000 0.0353553
\(801\) 0 0
\(802\) −1.46851 −0.0518548
\(803\) −11.7843 −0.415861
\(804\) 0 0
\(805\) −19.0502 −0.671431
\(806\) 5.97447 0.210442
\(807\) 0 0
\(808\) 11.1922 0.393742
\(809\) −5.00683 −0.176031 −0.0880154 0.996119i \(-0.528052\pi\)
−0.0880154 + 0.996119i \(0.528052\pi\)
\(810\) 0 0
\(811\) 22.3073 0.783315 0.391657 0.920111i \(-0.371902\pi\)
0.391657 + 0.920111i \(0.371902\pi\)
\(812\) −26.1684 −0.918331
\(813\) 0 0
\(814\) −3.67903 −0.128950
\(815\) −16.7404 −0.586390
\(816\) 0 0
\(817\) 35.1601 1.23010
\(818\) 7.17759 0.250959
\(819\) 0 0
\(820\) 5.11141 0.178498
\(821\) −4.85415 −0.169411 −0.0847055 0.996406i \(-0.526995\pi\)
−0.0847055 + 0.996406i \(0.526995\pi\)
\(822\) 0 0
\(823\) −0.332656 −0.0115957 −0.00579783 0.999983i \(-0.501846\pi\)
−0.00579783 + 0.999983i \(0.501846\pi\)
\(824\) 0.973785 0.0339234
\(825\) 0 0
\(826\) 69.1684 2.40668
\(827\) −46.2224 −1.60731 −0.803655 0.595095i \(-0.797114\pi\)
−0.803655 + 0.595095i \(0.797114\pi\)
\(828\) 0 0
\(829\) −34.3165 −1.19186 −0.595931 0.803036i \(-0.703217\pi\)
−0.595931 + 0.803036i \(0.703217\pi\)
\(830\) −14.4184 −0.500470
\(831\) 0 0
\(832\) 0.902331 0.0312827
\(833\) −70.9688 −2.45892
\(834\) 0 0
\(835\) −16.0736 −0.556250
\(836\) 4.76727 0.164879
\(837\) 0 0
\(838\) 5.68512 0.196389
\(839\) 23.3675 0.806735 0.403367 0.915038i \(-0.367840\pi\)
0.403367 + 0.915038i \(0.367840\pi\)
\(840\) 0 0
\(841\) 1.39873 0.0482321
\(842\) 7.36149 0.253694
\(843\) 0 0
\(844\) −6.87778 −0.236743
\(845\) −12.1858 −0.419204
\(846\) 0 0
\(847\) 4.74624 0.163083
\(848\) 2.77789 0.0953931
\(849\) 0 0
\(850\) −4.57073 −0.156775
\(851\) 14.7667 0.506195
\(852\) 0 0
\(853\) 9.99714 0.342296 0.171148 0.985245i \(-0.445252\pi\)
0.171148 + 0.985245i \(0.445252\pi\)
\(854\) 55.0073 1.88231
\(855\) 0 0
\(856\) 11.0164 0.376532
\(857\) 17.5743 0.600325 0.300163 0.953888i \(-0.402959\pi\)
0.300163 + 0.953888i \(0.402959\pi\)
\(858\) 0 0
\(859\) −32.8079 −1.11939 −0.559695 0.828698i \(-0.689082\pi\)
−0.559695 + 0.828698i \(0.689082\pi\)
\(860\) 7.37532 0.251496
\(861\) 0 0
\(862\) −2.27955 −0.0776418
\(863\) 23.7700 0.809140 0.404570 0.914507i \(-0.367421\pi\)
0.404570 + 0.914507i \(0.367421\pi\)
\(864\) 0 0
\(865\) −1.50662 −0.0512267
\(866\) 12.0353 0.408977
\(867\) 0 0
\(868\) 31.4256 1.06665
\(869\) 9.63130 0.326719
\(870\) 0 0
\(871\) −10.6895 −0.362200
\(872\) 10.9050 0.369289
\(873\) 0 0
\(874\) −19.1346 −0.647237
\(875\) 4.74624 0.160452
\(876\) 0 0
\(877\) 37.8910 1.27949 0.639745 0.768587i \(-0.279040\pi\)
0.639745 + 0.768587i \(0.279040\pi\)
\(878\) 3.78394 0.127702
\(879\) 0 0
\(880\) 1.00000 0.0337100
\(881\) −20.0800 −0.676512 −0.338256 0.941054i \(-0.609837\pi\)
−0.338256 + 0.941054i \(0.609837\pi\)
\(882\) 0 0
\(883\) −56.9302 −1.91585 −0.957927 0.287011i \(-0.907339\pi\)
−0.957927 + 0.287011i \(0.907339\pi\)
\(884\) −4.12431 −0.138716
\(885\) 0 0
\(886\) −28.1658 −0.946250
\(887\) −41.9429 −1.40831 −0.704153 0.710049i \(-0.748673\pi\)
−0.704153 + 0.710049i \(0.748673\pi\)
\(888\) 0 0
\(889\) −50.3320 −1.68808
\(890\) 9.10413 0.305171
\(891\) 0 0
\(892\) 27.7666 0.929695
\(893\) −34.5638 −1.15663
\(894\) 0 0
\(895\) −15.9536 −0.533272
\(896\) 4.74624 0.158561
\(897\) 0 0
\(898\) 6.77168 0.225974
\(899\) −36.5058 −1.21754
\(900\) 0 0
\(901\) −12.6970 −0.422998
\(902\) 5.11141 0.170191
\(903\) 0 0
\(904\) 8.20932 0.273038
\(905\) −16.0426 −0.533274
\(906\) 0 0
\(907\) 29.9519 0.994536 0.497268 0.867597i \(-0.334337\pi\)
0.497268 + 0.867597i \(0.334337\pi\)
\(908\) 6.60000 0.219029
\(909\) 0 0
\(910\) 4.28268 0.141969
\(911\) −28.6779 −0.950142 −0.475071 0.879947i \(-0.657578\pi\)
−0.475071 + 0.879947i \(0.657578\pi\)
\(912\) 0 0
\(913\) −14.4184 −0.477179
\(914\) 17.7551 0.587287
\(915\) 0 0
\(916\) −15.4162 −0.509366
\(917\) −31.0391 −1.02500
\(918\) 0 0
\(919\) 19.1234 0.630821 0.315411 0.948955i \(-0.397858\pi\)
0.315411 + 0.948955i \(0.397858\pi\)
\(920\) −4.01374 −0.132329
\(921\) 0 0
\(922\) 33.2182 1.09398
\(923\) −7.16000 −0.235674
\(924\) 0 0
\(925\) −3.67903 −0.120966
\(926\) −19.4191 −0.638150
\(927\) 0 0
\(928\) −5.51350 −0.180990
\(929\) −30.2329 −0.991910 −0.495955 0.868348i \(-0.665182\pi\)
−0.495955 + 0.868348i \(0.665182\pi\)
\(930\) 0 0
\(931\) 74.0203 2.42592
\(932\) −17.6519 −0.578207
\(933\) 0 0
\(934\) 22.8797 0.748647
\(935\) −4.57073 −0.149479
\(936\) 0 0
\(937\) 7.62598 0.249130 0.124565 0.992211i \(-0.460246\pi\)
0.124565 + 0.992211i \(0.460246\pi\)
\(938\) −56.2265 −1.83586
\(939\) 0 0
\(940\) −7.25024 −0.236477
\(941\) −15.1076 −0.492493 −0.246246 0.969207i \(-0.579197\pi\)
−0.246246 + 0.969207i \(0.579197\pi\)
\(942\) 0 0
\(943\) −20.5159 −0.668090
\(944\) 14.5733 0.474321
\(945\) 0 0
\(946\) 7.37532 0.239792
\(947\) −12.9844 −0.421937 −0.210968 0.977493i \(-0.567662\pi\)
−0.210968 + 0.977493i \(0.567662\pi\)
\(948\) 0 0
\(949\) −10.6334 −0.345174
\(950\) 4.76727 0.154671
\(951\) 0 0
\(952\) −21.6938 −0.703100
\(953\) 35.9475 1.16445 0.582227 0.813026i \(-0.302181\pi\)
0.582227 + 0.813026i \(0.302181\pi\)
\(954\) 0 0
\(955\) 15.1478 0.490171
\(956\) 3.17998 0.102848
\(957\) 0 0
\(958\) −7.91106 −0.255595
\(959\) 97.5170 3.14899
\(960\) 0 0
\(961\) 12.8397 0.414184
\(962\) −3.31970 −0.107031
\(963\) 0 0
\(964\) 1.58689 0.0511101
\(965\) 0.108369 0.00348853
\(966\) 0 0
\(967\) 22.0328 0.708528 0.354264 0.935145i \(-0.384731\pi\)
0.354264 + 0.935145i \(0.384731\pi\)
\(968\) 1.00000 0.0321412
\(969\) 0 0
\(970\) 3.26319 0.104775
\(971\) −27.6515 −0.887380 −0.443690 0.896180i \(-0.646331\pi\)
−0.443690 + 0.896180i \(0.646331\pi\)
\(972\) 0 0
\(973\) −29.8692 −0.957564
\(974\) 40.5746 1.30009
\(975\) 0 0
\(976\) 11.5897 0.370976
\(977\) −4.70788 −0.150618 −0.0753092 0.997160i \(-0.523994\pi\)
−0.0753092 + 0.997160i \(0.523994\pi\)
\(978\) 0 0
\(979\) 9.10413 0.290969
\(980\) 15.5268 0.495985
\(981\) 0 0
\(982\) 3.55897 0.113571
\(983\) −3.76974 −0.120236 −0.0601180 0.998191i \(-0.519148\pi\)
−0.0601180 + 0.998191i \(0.519148\pi\)
\(984\) 0 0
\(985\) −18.1938 −0.579703
\(986\) 25.2008 0.802556
\(987\) 0 0
\(988\) 4.30165 0.136854
\(989\) −29.6026 −0.941309
\(990\) 0 0
\(991\) −25.2153 −0.800991 −0.400496 0.916299i \(-0.631162\pi\)
−0.400496 + 0.916299i \(0.631162\pi\)
\(992\) 6.62116 0.210222
\(993\) 0 0
\(994\) −37.6614 −1.19455
\(995\) −14.5370 −0.460853
\(996\) 0 0
\(997\) 25.0474 0.793259 0.396629 0.917979i \(-0.370180\pi\)
0.396629 + 0.917979i \(0.370180\pi\)
\(998\) 23.6158 0.747544
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8910.2.a.cd.1.7 7
3.2 odd 2 8910.2.a.ca.1.7 7
9.2 odd 6 2970.2.i.k.1981.1 14
9.4 even 3 990.2.i.j.331.4 14
9.5 odd 6 2970.2.i.k.991.1 14
9.7 even 3 990.2.i.j.661.4 yes 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
990.2.i.j.331.4 14 9.4 even 3
990.2.i.j.661.4 yes 14 9.7 even 3
2970.2.i.k.991.1 14 9.5 odd 6
2970.2.i.k.1981.1 14 9.2 odd 6
8910.2.a.ca.1.7 7 3.2 odd 2
8910.2.a.cd.1.7 7 1.1 even 1 trivial