Properties

Label 8910.2.a.cd.1.5
Level $8910$
Weight $2$
Character 8910.1
Self dual yes
Analytic conductor $71.147$
Analytic rank $0$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8910,2,Mod(1,8910)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8910, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8910.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 8910 = 2 \cdot 3^{4} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8910.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [7,7,0,7,7,0,5,7,0,7,7,0,5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(71.1467082010\)
Analytic rank: \(0\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - 3x^{6} - 13x^{5} + 31x^{4} + 21x^{3} - 37x^{2} - 15x + 6 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: no (minimal twist has level 990)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(2.10401\) of defining polynomial
Character \(\chi\) \(=\) 8910.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.00000 q^{4} +1.00000 q^{5} +2.17324 q^{7} +1.00000 q^{8} +1.00000 q^{10} +1.00000 q^{11} +4.48444 q^{13} +2.17324 q^{14} +1.00000 q^{16} +0.0509592 q^{17} +2.99191 q^{19} +1.00000 q^{20} +1.00000 q^{22} +6.53625 q^{23} +1.00000 q^{25} +4.48444 q^{26} +2.17324 q^{28} -1.16515 q^{29} -6.71607 q^{31} +1.00000 q^{32} +0.0509592 q^{34} +2.17324 q^{35} +8.52258 q^{37} +2.99191 q^{38} +1.00000 q^{40} -9.02069 q^{41} +4.22169 q^{43} +1.00000 q^{44} +6.53625 q^{46} +6.66762 q^{47} -2.27701 q^{49} +1.00000 q^{50} +4.48444 q^{52} -2.99527 q^{53} +1.00000 q^{55} +2.17324 q^{56} -1.16515 q^{58} -5.20217 q^{59} -0.0438644 q^{61} -6.71607 q^{62} +1.00000 q^{64} +4.48444 q^{65} -11.5425 q^{67} +0.0509592 q^{68} +2.17324 q^{70} +6.04471 q^{71} +15.8864 q^{73} +8.52258 q^{74} +2.99191 q^{76} +2.17324 q^{77} +4.69956 q^{79} +1.00000 q^{80} -9.02069 q^{82} +1.50162 q^{83} +0.0509592 q^{85} +4.22169 q^{86} +1.00000 q^{88} -16.3756 q^{89} +9.74578 q^{91} +6.53625 q^{92} +6.66762 q^{94} +2.99191 q^{95} +7.13655 q^{97} -2.27701 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q + 7 q^{2} + 7 q^{4} + 7 q^{5} + 5 q^{7} + 7 q^{8} + 7 q^{10} + 7 q^{11} + 5 q^{13} + 5 q^{14} + 7 q^{16} + 3 q^{17} + 11 q^{19} + 7 q^{20} + 7 q^{22} + 3 q^{23} + 7 q^{25} + 5 q^{26} + 5 q^{28} + 12 q^{29}+ \cdots + 12 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) 2.17324 0.821409 0.410705 0.911768i \(-0.365283\pi\)
0.410705 + 0.911768i \(0.365283\pi\)
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) 1.00000 0.316228
\(11\) 1.00000 0.301511
\(12\) 0 0
\(13\) 4.48444 1.24376 0.621880 0.783113i \(-0.286369\pi\)
0.621880 + 0.783113i \(0.286369\pi\)
\(14\) 2.17324 0.580824
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 0.0509592 0.0123594 0.00617971 0.999981i \(-0.498033\pi\)
0.00617971 + 0.999981i \(0.498033\pi\)
\(18\) 0 0
\(19\) 2.99191 0.686391 0.343195 0.939264i \(-0.388491\pi\)
0.343195 + 0.939264i \(0.388491\pi\)
\(20\) 1.00000 0.223607
\(21\) 0 0
\(22\) 1.00000 0.213201
\(23\) 6.53625 1.36290 0.681451 0.731864i \(-0.261349\pi\)
0.681451 + 0.731864i \(0.261349\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 4.48444 0.879471
\(27\) 0 0
\(28\) 2.17324 0.410705
\(29\) −1.16515 −0.216364 −0.108182 0.994131i \(-0.534503\pi\)
−0.108182 + 0.994131i \(0.534503\pi\)
\(30\) 0 0
\(31\) −6.71607 −1.20624 −0.603121 0.797650i \(-0.706076\pi\)
−0.603121 + 0.797650i \(0.706076\pi\)
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) 0.0509592 0.00873943
\(35\) 2.17324 0.367345
\(36\) 0 0
\(37\) 8.52258 1.40110 0.700551 0.713602i \(-0.252937\pi\)
0.700551 + 0.713602i \(0.252937\pi\)
\(38\) 2.99191 0.485352
\(39\) 0 0
\(40\) 1.00000 0.158114
\(41\) −9.02069 −1.40879 −0.704397 0.709806i \(-0.748783\pi\)
−0.704397 + 0.709806i \(0.748783\pi\)
\(42\) 0 0
\(43\) 4.22169 0.643802 0.321901 0.946773i \(-0.395678\pi\)
0.321901 + 0.946773i \(0.395678\pi\)
\(44\) 1.00000 0.150756
\(45\) 0 0
\(46\) 6.53625 0.963717
\(47\) 6.66762 0.972572 0.486286 0.873800i \(-0.338351\pi\)
0.486286 + 0.873800i \(0.338351\pi\)
\(48\) 0 0
\(49\) −2.27701 −0.325287
\(50\) 1.00000 0.141421
\(51\) 0 0
\(52\) 4.48444 0.621880
\(53\) −2.99527 −0.411432 −0.205716 0.978612i \(-0.565952\pi\)
−0.205716 + 0.978612i \(0.565952\pi\)
\(54\) 0 0
\(55\) 1.00000 0.134840
\(56\) 2.17324 0.290412
\(57\) 0 0
\(58\) −1.16515 −0.152992
\(59\) −5.20217 −0.677265 −0.338632 0.940919i \(-0.609964\pi\)
−0.338632 + 0.940919i \(0.609964\pi\)
\(60\) 0 0
\(61\) −0.0438644 −0.00561627 −0.00280813 0.999996i \(-0.500894\pi\)
−0.00280813 + 0.999996i \(0.500894\pi\)
\(62\) −6.71607 −0.852942
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 4.48444 0.556226
\(66\) 0 0
\(67\) −11.5425 −1.41015 −0.705073 0.709135i \(-0.749086\pi\)
−0.705073 + 0.709135i \(0.749086\pi\)
\(68\) 0.0509592 0.00617971
\(69\) 0 0
\(70\) 2.17324 0.259752
\(71\) 6.04471 0.717376 0.358688 0.933458i \(-0.383224\pi\)
0.358688 + 0.933458i \(0.383224\pi\)
\(72\) 0 0
\(73\) 15.8864 1.85937 0.929683 0.368361i \(-0.120081\pi\)
0.929683 + 0.368361i \(0.120081\pi\)
\(74\) 8.52258 0.990729
\(75\) 0 0
\(76\) 2.99191 0.343195
\(77\) 2.17324 0.247664
\(78\) 0 0
\(79\) 4.69956 0.528741 0.264371 0.964421i \(-0.414836\pi\)
0.264371 + 0.964421i \(0.414836\pi\)
\(80\) 1.00000 0.111803
\(81\) 0 0
\(82\) −9.02069 −0.996168
\(83\) 1.50162 0.164824 0.0824120 0.996598i \(-0.473738\pi\)
0.0824120 + 0.996598i \(0.473738\pi\)
\(84\) 0 0
\(85\) 0.0509592 0.00552730
\(86\) 4.22169 0.455237
\(87\) 0 0
\(88\) 1.00000 0.106600
\(89\) −16.3756 −1.73581 −0.867905 0.496730i \(-0.834534\pi\)
−0.867905 + 0.496730i \(0.834534\pi\)
\(90\) 0 0
\(91\) 9.74578 1.02164
\(92\) 6.53625 0.681451
\(93\) 0 0
\(94\) 6.66762 0.687713
\(95\) 2.99191 0.306963
\(96\) 0 0
\(97\) 7.13655 0.724607 0.362303 0.932060i \(-0.381990\pi\)
0.362303 + 0.932060i \(0.381990\pi\)
\(98\) −2.27701 −0.230013
\(99\) 0 0
\(100\) 1.00000 0.100000
\(101\) −17.5693 −1.74822 −0.874108 0.485732i \(-0.838553\pi\)
−0.874108 + 0.485732i \(0.838553\pi\)
\(102\) 0 0
\(103\) −18.6707 −1.83968 −0.919840 0.392293i \(-0.871682\pi\)
−0.919840 + 0.392293i \(0.871682\pi\)
\(104\) 4.48444 0.439735
\(105\) 0 0
\(106\) −2.99527 −0.290926
\(107\) −8.99123 −0.869215 −0.434608 0.900620i \(-0.643113\pi\)
−0.434608 + 0.900620i \(0.643113\pi\)
\(108\) 0 0
\(109\) 5.02945 0.481734 0.240867 0.970558i \(-0.422568\pi\)
0.240867 + 0.970558i \(0.422568\pi\)
\(110\) 1.00000 0.0953463
\(111\) 0 0
\(112\) 2.17324 0.205352
\(113\) 10.0035 0.941051 0.470525 0.882386i \(-0.344064\pi\)
0.470525 + 0.882386i \(0.344064\pi\)
\(114\) 0 0
\(115\) 6.53625 0.609508
\(116\) −1.16515 −0.108182
\(117\) 0 0
\(118\) −5.20217 −0.478898
\(119\) 0.110747 0.0101521
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) −0.0438644 −0.00397130
\(123\) 0 0
\(124\) −6.71607 −0.603121
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) 1.56837 0.139170 0.0695850 0.997576i \(-0.477833\pi\)
0.0695850 + 0.997576i \(0.477833\pi\)
\(128\) 1.00000 0.0883883
\(129\) 0 0
\(130\) 4.48444 0.393311
\(131\) −6.52716 −0.570281 −0.285140 0.958486i \(-0.592040\pi\)
−0.285140 + 0.958486i \(0.592040\pi\)
\(132\) 0 0
\(133\) 6.50215 0.563808
\(134\) −11.5425 −0.997123
\(135\) 0 0
\(136\) 0.0509592 0.00436972
\(137\) 13.9447 1.19138 0.595689 0.803215i \(-0.296879\pi\)
0.595689 + 0.803215i \(0.296879\pi\)
\(138\) 0 0
\(139\) −15.0553 −1.27698 −0.638488 0.769632i \(-0.720440\pi\)
−0.638488 + 0.769632i \(0.720440\pi\)
\(140\) 2.17324 0.183673
\(141\) 0 0
\(142\) 6.04471 0.507261
\(143\) 4.48444 0.375008
\(144\) 0 0
\(145\) −1.16515 −0.0967607
\(146\) 15.8864 1.31477
\(147\) 0 0
\(148\) 8.52258 0.700551
\(149\) 2.34416 0.192041 0.0960206 0.995379i \(-0.469389\pi\)
0.0960206 + 0.995379i \(0.469389\pi\)
\(150\) 0 0
\(151\) −21.2074 −1.72583 −0.862916 0.505348i \(-0.831364\pi\)
−0.862916 + 0.505348i \(0.831364\pi\)
\(152\) 2.99191 0.242676
\(153\) 0 0
\(154\) 2.17324 0.175125
\(155\) −6.71607 −0.539448
\(156\) 0 0
\(157\) 8.50606 0.678858 0.339429 0.940632i \(-0.389766\pi\)
0.339429 + 0.940632i \(0.389766\pi\)
\(158\) 4.69956 0.373877
\(159\) 0 0
\(160\) 1.00000 0.0790569
\(161\) 14.2049 1.11950
\(162\) 0 0
\(163\) 24.1125 1.88863 0.944317 0.329036i \(-0.106724\pi\)
0.944317 + 0.329036i \(0.106724\pi\)
\(164\) −9.02069 −0.704397
\(165\) 0 0
\(166\) 1.50162 0.116548
\(167\) −11.1014 −0.859050 −0.429525 0.903055i \(-0.641319\pi\)
−0.429525 + 0.903055i \(0.641319\pi\)
\(168\) 0 0
\(169\) 7.11019 0.546938
\(170\) 0.0509592 0.00390839
\(171\) 0 0
\(172\) 4.22169 0.321901
\(173\) −8.85369 −0.673133 −0.336567 0.941660i \(-0.609266\pi\)
−0.336567 + 0.941660i \(0.609266\pi\)
\(174\) 0 0
\(175\) 2.17324 0.164282
\(176\) 1.00000 0.0753778
\(177\) 0 0
\(178\) −16.3756 −1.22740
\(179\) 1.94083 0.145064 0.0725321 0.997366i \(-0.476892\pi\)
0.0725321 + 0.997366i \(0.476892\pi\)
\(180\) 0 0
\(181\) −15.6795 −1.16545 −0.582724 0.812670i \(-0.698013\pi\)
−0.582724 + 0.812670i \(0.698013\pi\)
\(182\) 9.74578 0.722405
\(183\) 0 0
\(184\) 6.53625 0.481859
\(185\) 8.52258 0.626592
\(186\) 0 0
\(187\) 0.0509592 0.00372651
\(188\) 6.66762 0.486286
\(189\) 0 0
\(190\) 2.99191 0.217056
\(191\) 13.7569 0.995418 0.497709 0.867344i \(-0.334175\pi\)
0.497709 + 0.867344i \(0.334175\pi\)
\(192\) 0 0
\(193\) −1.77539 −0.127795 −0.0638977 0.997956i \(-0.520353\pi\)
−0.0638977 + 0.997956i \(0.520353\pi\)
\(194\) 7.13655 0.512374
\(195\) 0 0
\(196\) −2.27701 −0.162643
\(197\) 23.7919 1.69510 0.847552 0.530712i \(-0.178075\pi\)
0.847552 + 0.530712i \(0.178075\pi\)
\(198\) 0 0
\(199\) 2.15809 0.152983 0.0764916 0.997070i \(-0.475628\pi\)
0.0764916 + 0.997070i \(0.475628\pi\)
\(200\) 1.00000 0.0707107
\(201\) 0 0
\(202\) −17.5693 −1.23617
\(203\) −2.53216 −0.177723
\(204\) 0 0
\(205\) −9.02069 −0.630032
\(206\) −18.6707 −1.30085
\(207\) 0 0
\(208\) 4.48444 0.310940
\(209\) 2.99191 0.206955
\(210\) 0 0
\(211\) 22.1373 1.52400 0.761998 0.647580i \(-0.224219\pi\)
0.761998 + 0.647580i \(0.224219\pi\)
\(212\) −2.99527 −0.205716
\(213\) 0 0
\(214\) −8.99123 −0.614628
\(215\) 4.22169 0.287917
\(216\) 0 0
\(217\) −14.5957 −0.990818
\(218\) 5.02945 0.340638
\(219\) 0 0
\(220\) 1.00000 0.0674200
\(221\) 0.228523 0.0153721
\(222\) 0 0
\(223\) −8.75047 −0.585975 −0.292987 0.956116i \(-0.594649\pi\)
−0.292987 + 0.956116i \(0.594649\pi\)
\(224\) 2.17324 0.145206
\(225\) 0 0
\(226\) 10.0035 0.665423
\(227\) −5.93425 −0.393870 −0.196935 0.980417i \(-0.563099\pi\)
−0.196935 + 0.980417i \(0.563099\pi\)
\(228\) 0 0
\(229\) 1.12065 0.0740549 0.0370275 0.999314i \(-0.488211\pi\)
0.0370275 + 0.999314i \(0.488211\pi\)
\(230\) 6.53625 0.430987
\(231\) 0 0
\(232\) −1.16515 −0.0764961
\(233\) −18.6243 −1.22012 −0.610060 0.792356i \(-0.708855\pi\)
−0.610060 + 0.792356i \(0.708855\pi\)
\(234\) 0 0
\(235\) 6.66762 0.434948
\(236\) −5.20217 −0.338632
\(237\) 0 0
\(238\) 0.110747 0.00717865
\(239\) 7.19057 0.465119 0.232560 0.972582i \(-0.425290\pi\)
0.232560 + 0.972582i \(0.425290\pi\)
\(240\) 0 0
\(241\) −1.40835 −0.0907199 −0.0453600 0.998971i \(-0.514443\pi\)
−0.0453600 + 0.998971i \(0.514443\pi\)
\(242\) 1.00000 0.0642824
\(243\) 0 0
\(244\) −0.0438644 −0.00280813
\(245\) −2.27701 −0.145473
\(246\) 0 0
\(247\) 13.4170 0.853705
\(248\) −6.71607 −0.426471
\(249\) 0 0
\(250\) 1.00000 0.0632456
\(251\) 7.90649 0.499053 0.249527 0.968368i \(-0.419725\pi\)
0.249527 + 0.968368i \(0.419725\pi\)
\(252\) 0 0
\(253\) 6.53625 0.410930
\(254\) 1.56837 0.0984080
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −27.5444 −1.71818 −0.859088 0.511829i \(-0.828968\pi\)
−0.859088 + 0.511829i \(0.828968\pi\)
\(258\) 0 0
\(259\) 18.5216 1.15088
\(260\) 4.48444 0.278113
\(261\) 0 0
\(262\) −6.52716 −0.403249
\(263\) −0.311983 −0.0192377 −0.00961885 0.999954i \(-0.503062\pi\)
−0.00961885 + 0.999954i \(0.503062\pi\)
\(264\) 0 0
\(265\) −2.99527 −0.183998
\(266\) 6.50215 0.398672
\(267\) 0 0
\(268\) −11.5425 −0.705073
\(269\) 16.7369 1.02047 0.510233 0.860036i \(-0.329559\pi\)
0.510233 + 0.860036i \(0.329559\pi\)
\(270\) 0 0
\(271\) 22.7888 1.38432 0.692161 0.721744i \(-0.256659\pi\)
0.692161 + 0.721744i \(0.256659\pi\)
\(272\) 0.0509592 0.00308986
\(273\) 0 0
\(274\) 13.9447 0.842431
\(275\) 1.00000 0.0603023
\(276\) 0 0
\(277\) 8.95288 0.537926 0.268963 0.963150i \(-0.413319\pi\)
0.268963 + 0.963150i \(0.413319\pi\)
\(278\) −15.0553 −0.902958
\(279\) 0 0
\(280\) 2.17324 0.129876
\(281\) −8.40687 −0.501512 −0.250756 0.968050i \(-0.580679\pi\)
−0.250756 + 0.968050i \(0.580679\pi\)
\(282\) 0 0
\(283\) 14.0918 0.837670 0.418835 0.908062i \(-0.362439\pi\)
0.418835 + 0.908062i \(0.362439\pi\)
\(284\) 6.04471 0.358688
\(285\) 0 0
\(286\) 4.48444 0.265170
\(287\) −19.6042 −1.15720
\(288\) 0 0
\(289\) −16.9974 −0.999847
\(290\) −1.16515 −0.0684202
\(291\) 0 0
\(292\) 15.8864 0.929683
\(293\) −14.1511 −0.826714 −0.413357 0.910569i \(-0.635644\pi\)
−0.413357 + 0.910569i \(0.635644\pi\)
\(294\) 0 0
\(295\) −5.20217 −0.302882
\(296\) 8.52258 0.495365
\(297\) 0 0
\(298\) 2.34416 0.135794
\(299\) 29.3114 1.69512
\(300\) 0 0
\(301\) 9.17477 0.528825
\(302\) −21.2074 −1.22035
\(303\) 0 0
\(304\) 2.99191 0.171598
\(305\) −0.0438644 −0.00251167
\(306\) 0 0
\(307\) 0.924724 0.0527768 0.0263884 0.999652i \(-0.491599\pi\)
0.0263884 + 0.999652i \(0.491599\pi\)
\(308\) 2.17324 0.123832
\(309\) 0 0
\(310\) −6.71607 −0.381447
\(311\) −3.62726 −0.205683 −0.102842 0.994698i \(-0.532793\pi\)
−0.102842 + 0.994698i \(0.532793\pi\)
\(312\) 0 0
\(313\) 21.8892 1.23725 0.618626 0.785685i \(-0.287689\pi\)
0.618626 + 0.785685i \(0.287689\pi\)
\(314\) 8.50606 0.480025
\(315\) 0 0
\(316\) 4.69956 0.264371
\(317\) −19.4322 −1.09142 −0.545710 0.837974i \(-0.683740\pi\)
−0.545710 + 0.837974i \(0.683740\pi\)
\(318\) 0 0
\(319\) −1.16515 −0.0652361
\(320\) 1.00000 0.0559017
\(321\) 0 0
\(322\) 14.2049 0.791606
\(323\) 0.152465 0.00848340
\(324\) 0 0
\(325\) 4.48444 0.248752
\(326\) 24.1125 1.33547
\(327\) 0 0
\(328\) −9.02069 −0.498084
\(329\) 14.4904 0.798880
\(330\) 0 0
\(331\) 5.47362 0.300857 0.150429 0.988621i \(-0.451935\pi\)
0.150429 + 0.988621i \(0.451935\pi\)
\(332\) 1.50162 0.0824120
\(333\) 0 0
\(334\) −11.1014 −0.607440
\(335\) −11.5425 −0.630636
\(336\) 0 0
\(337\) 25.7022 1.40009 0.700043 0.714101i \(-0.253164\pi\)
0.700043 + 0.714101i \(0.253164\pi\)
\(338\) 7.11019 0.386744
\(339\) 0 0
\(340\) 0.0509592 0.00276365
\(341\) −6.71607 −0.363696
\(342\) 0 0
\(343\) −20.1612 −1.08860
\(344\) 4.22169 0.227618
\(345\) 0 0
\(346\) −8.85369 −0.475977
\(347\) 30.8475 1.65598 0.827992 0.560740i \(-0.189483\pi\)
0.827992 + 0.560740i \(0.189483\pi\)
\(348\) 0 0
\(349\) 11.0961 0.593962 0.296981 0.954883i \(-0.404020\pi\)
0.296981 + 0.954883i \(0.404020\pi\)
\(350\) 2.17324 0.116165
\(351\) 0 0
\(352\) 1.00000 0.0533002
\(353\) 13.4324 0.714934 0.357467 0.933926i \(-0.383640\pi\)
0.357467 + 0.933926i \(0.383640\pi\)
\(354\) 0 0
\(355\) 6.04471 0.320820
\(356\) −16.3756 −0.867905
\(357\) 0 0
\(358\) 1.94083 0.102576
\(359\) −11.2447 −0.593474 −0.296737 0.954959i \(-0.595899\pi\)
−0.296737 + 0.954959i \(0.595899\pi\)
\(360\) 0 0
\(361\) −10.0485 −0.528867
\(362\) −15.6795 −0.824096
\(363\) 0 0
\(364\) 9.74578 0.510818
\(365\) 15.8864 0.831534
\(366\) 0 0
\(367\) 22.1691 1.15722 0.578608 0.815606i \(-0.303596\pi\)
0.578608 + 0.815606i \(0.303596\pi\)
\(368\) 6.53625 0.340725
\(369\) 0 0
\(370\) 8.52258 0.443068
\(371\) −6.50945 −0.337954
\(372\) 0 0
\(373\) −21.5923 −1.11801 −0.559003 0.829166i \(-0.688816\pi\)
−0.559003 + 0.829166i \(0.688816\pi\)
\(374\) 0.0509592 0.00263504
\(375\) 0 0
\(376\) 6.66762 0.343856
\(377\) −5.22506 −0.269104
\(378\) 0 0
\(379\) −11.2563 −0.578199 −0.289099 0.957299i \(-0.593356\pi\)
−0.289099 + 0.957299i \(0.593356\pi\)
\(380\) 2.99191 0.153482
\(381\) 0 0
\(382\) 13.7569 0.703867
\(383\) 0.547464 0.0279741 0.0139870 0.999902i \(-0.495548\pi\)
0.0139870 + 0.999902i \(0.495548\pi\)
\(384\) 0 0
\(385\) 2.17324 0.110759
\(386\) −1.77539 −0.0903650
\(387\) 0 0
\(388\) 7.13655 0.362303
\(389\) −22.2724 −1.12926 −0.564628 0.825345i \(-0.690981\pi\)
−0.564628 + 0.825345i \(0.690981\pi\)
\(390\) 0 0
\(391\) 0.333082 0.0168447
\(392\) −2.27701 −0.115006
\(393\) 0 0
\(394\) 23.7919 1.19862
\(395\) 4.69956 0.236460
\(396\) 0 0
\(397\) −13.3297 −0.668999 −0.334500 0.942396i \(-0.608567\pi\)
−0.334500 + 0.942396i \(0.608567\pi\)
\(398\) 2.15809 0.108175
\(399\) 0 0
\(400\) 1.00000 0.0500000
\(401\) −8.07960 −0.403476 −0.201738 0.979440i \(-0.564659\pi\)
−0.201738 + 0.979440i \(0.564659\pi\)
\(402\) 0 0
\(403\) −30.1178 −1.50027
\(404\) −17.5693 −0.874108
\(405\) 0 0
\(406\) −2.53216 −0.125669
\(407\) 8.52258 0.422448
\(408\) 0 0
\(409\) −8.83292 −0.436760 −0.218380 0.975864i \(-0.570077\pi\)
−0.218380 + 0.975864i \(0.570077\pi\)
\(410\) −9.02069 −0.445500
\(411\) 0 0
\(412\) −18.6707 −0.919840
\(413\) −11.3056 −0.556312
\(414\) 0 0
\(415\) 1.50162 0.0737115
\(416\) 4.48444 0.219868
\(417\) 0 0
\(418\) 2.99191 0.146339
\(419\) −5.17941 −0.253031 −0.126515 0.991965i \(-0.540379\pi\)
−0.126515 + 0.991965i \(0.540379\pi\)
\(420\) 0 0
\(421\) 6.64176 0.323699 0.161850 0.986815i \(-0.448254\pi\)
0.161850 + 0.986815i \(0.448254\pi\)
\(422\) 22.1373 1.07763
\(423\) 0 0
\(424\) −2.99527 −0.145463
\(425\) 0.0509592 0.00247188
\(426\) 0 0
\(427\) −0.0953282 −0.00461325
\(428\) −8.99123 −0.434608
\(429\) 0 0
\(430\) 4.22169 0.203588
\(431\) −29.6036 −1.42595 −0.712977 0.701188i \(-0.752654\pi\)
−0.712977 + 0.701188i \(0.752654\pi\)
\(432\) 0 0
\(433\) 26.1933 1.25877 0.629384 0.777094i \(-0.283307\pi\)
0.629384 + 0.777094i \(0.283307\pi\)
\(434\) −14.5957 −0.700614
\(435\) 0 0
\(436\) 5.02945 0.240867
\(437\) 19.5559 0.935484
\(438\) 0 0
\(439\) 14.5524 0.694550 0.347275 0.937763i \(-0.387107\pi\)
0.347275 + 0.937763i \(0.387107\pi\)
\(440\) 1.00000 0.0476731
\(441\) 0 0
\(442\) 0.228523 0.0108698
\(443\) −19.6834 −0.935185 −0.467593 0.883944i \(-0.654879\pi\)
−0.467593 + 0.883944i \(0.654879\pi\)
\(444\) 0 0
\(445\) −16.3756 −0.776278
\(446\) −8.75047 −0.414347
\(447\) 0 0
\(448\) 2.17324 0.102676
\(449\) 24.0348 1.13427 0.567137 0.823623i \(-0.308051\pi\)
0.567137 + 0.823623i \(0.308051\pi\)
\(450\) 0 0
\(451\) −9.02069 −0.424768
\(452\) 10.0035 0.470525
\(453\) 0 0
\(454\) −5.93425 −0.278508
\(455\) 9.74578 0.456889
\(456\) 0 0
\(457\) −20.3728 −0.953000 −0.476500 0.879174i \(-0.658095\pi\)
−0.476500 + 0.879174i \(0.658095\pi\)
\(458\) 1.12065 0.0523648
\(459\) 0 0
\(460\) 6.53625 0.304754
\(461\) −0.0295634 −0.00137690 −0.000688452 1.00000i \(-0.500219\pi\)
−0.000688452 1.00000i \(0.500219\pi\)
\(462\) 0 0
\(463\) −27.6808 −1.28644 −0.643218 0.765683i \(-0.722401\pi\)
−0.643218 + 0.765683i \(0.722401\pi\)
\(464\) −1.16515 −0.0540909
\(465\) 0 0
\(466\) −18.6243 −0.862755
\(467\) −7.38942 −0.341941 −0.170971 0.985276i \(-0.554690\pi\)
−0.170971 + 0.985276i \(0.554690\pi\)
\(468\) 0 0
\(469\) −25.0848 −1.15831
\(470\) 6.66762 0.307554
\(471\) 0 0
\(472\) −5.20217 −0.239449
\(473\) 4.22169 0.194114
\(474\) 0 0
\(475\) 2.99191 0.137278
\(476\) 0.110747 0.00507607
\(477\) 0 0
\(478\) 7.19057 0.328889
\(479\) 22.4611 1.02628 0.513138 0.858306i \(-0.328483\pi\)
0.513138 + 0.858306i \(0.328483\pi\)
\(480\) 0 0
\(481\) 38.2190 1.74264
\(482\) −1.40835 −0.0641487
\(483\) 0 0
\(484\) 1.00000 0.0454545
\(485\) 7.13655 0.324054
\(486\) 0 0
\(487\) 33.9578 1.53878 0.769388 0.638782i \(-0.220561\pi\)
0.769388 + 0.638782i \(0.220561\pi\)
\(488\) −0.0438644 −0.00198565
\(489\) 0 0
\(490\) −2.27701 −0.102865
\(491\) −29.6810 −1.33948 −0.669741 0.742594i \(-0.733595\pi\)
−0.669741 + 0.742594i \(0.733595\pi\)
\(492\) 0 0
\(493\) −0.0593753 −0.00267413
\(494\) 13.4170 0.603661
\(495\) 0 0
\(496\) −6.71607 −0.301560
\(497\) 13.1366 0.589259
\(498\) 0 0
\(499\) −9.82210 −0.439697 −0.219849 0.975534i \(-0.570556\pi\)
−0.219849 + 0.975534i \(0.570556\pi\)
\(500\) 1.00000 0.0447214
\(501\) 0 0
\(502\) 7.90649 0.352884
\(503\) −0.682461 −0.0304294 −0.0152147 0.999884i \(-0.504843\pi\)
−0.0152147 + 0.999884i \(0.504843\pi\)
\(504\) 0 0
\(505\) −17.5693 −0.781826
\(506\) 6.53625 0.290572
\(507\) 0 0
\(508\) 1.56837 0.0695850
\(509\) −21.7766 −0.965230 −0.482615 0.875833i \(-0.660313\pi\)
−0.482615 + 0.875833i \(0.660313\pi\)
\(510\) 0 0
\(511\) 34.5251 1.52730
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) −27.5444 −1.21493
\(515\) −18.6707 −0.822730
\(516\) 0 0
\(517\) 6.66762 0.293242
\(518\) 18.5216 0.813794
\(519\) 0 0
\(520\) 4.48444 0.196656
\(521\) 38.5129 1.68728 0.843640 0.536910i \(-0.180408\pi\)
0.843640 + 0.536910i \(0.180408\pi\)
\(522\) 0 0
\(523\) −2.35549 −0.102998 −0.0514991 0.998673i \(-0.516400\pi\)
−0.0514991 + 0.998673i \(0.516400\pi\)
\(524\) −6.52716 −0.285140
\(525\) 0 0
\(526\) −0.311983 −0.0136031
\(527\) −0.342246 −0.0149084
\(528\) 0 0
\(529\) 19.7225 0.857501
\(530\) −2.99527 −0.130106
\(531\) 0 0
\(532\) 6.50215 0.281904
\(533\) −40.4527 −1.75220
\(534\) 0 0
\(535\) −8.99123 −0.388725
\(536\) −11.5425 −0.498562
\(537\) 0 0
\(538\) 16.7369 0.721578
\(539\) −2.27701 −0.0980777
\(540\) 0 0
\(541\) −25.7546 −1.10728 −0.553638 0.832757i \(-0.686761\pi\)
−0.553638 + 0.832757i \(0.686761\pi\)
\(542\) 22.7888 0.978863
\(543\) 0 0
\(544\) 0.0509592 0.00218486
\(545\) 5.02945 0.215438
\(546\) 0 0
\(547\) 36.6960 1.56901 0.784504 0.620124i \(-0.212918\pi\)
0.784504 + 0.620124i \(0.212918\pi\)
\(548\) 13.9447 0.595689
\(549\) 0 0
\(550\) 1.00000 0.0426401
\(551\) −3.48603 −0.148510
\(552\) 0 0
\(553\) 10.2133 0.434313
\(554\) 8.95288 0.380371
\(555\) 0 0
\(556\) −15.0553 −0.638488
\(557\) 4.32507 0.183259 0.0916295 0.995793i \(-0.470792\pi\)
0.0916295 + 0.995793i \(0.470792\pi\)
\(558\) 0 0
\(559\) 18.9319 0.800735
\(560\) 2.17324 0.0918363
\(561\) 0 0
\(562\) −8.40687 −0.354622
\(563\) −28.2678 −1.19135 −0.595674 0.803227i \(-0.703115\pi\)
−0.595674 + 0.803227i \(0.703115\pi\)
\(564\) 0 0
\(565\) 10.0035 0.420851
\(566\) 14.0918 0.592322
\(567\) 0 0
\(568\) 6.04471 0.253631
\(569\) −9.81446 −0.411443 −0.205722 0.978611i \(-0.565954\pi\)
−0.205722 + 0.978611i \(0.565954\pi\)
\(570\) 0 0
\(571\) 34.7843 1.45568 0.727838 0.685749i \(-0.240525\pi\)
0.727838 + 0.685749i \(0.240525\pi\)
\(572\) 4.48444 0.187504
\(573\) 0 0
\(574\) −19.6042 −0.818262
\(575\) 6.53625 0.272580
\(576\) 0 0
\(577\) 26.6306 1.10865 0.554323 0.832302i \(-0.312977\pi\)
0.554323 + 0.832302i \(0.312977\pi\)
\(578\) −16.9974 −0.706999
\(579\) 0 0
\(580\) −1.16515 −0.0483804
\(581\) 3.26338 0.135388
\(582\) 0 0
\(583\) −2.99527 −0.124051
\(584\) 15.8864 0.657385
\(585\) 0 0
\(586\) −14.1511 −0.584575
\(587\) 38.4009 1.58498 0.792488 0.609887i \(-0.208785\pi\)
0.792488 + 0.609887i \(0.208785\pi\)
\(588\) 0 0
\(589\) −20.0939 −0.827953
\(590\) −5.20217 −0.214170
\(591\) 0 0
\(592\) 8.52258 0.350276
\(593\) −29.5196 −1.21223 −0.606113 0.795378i \(-0.707272\pi\)
−0.606113 + 0.795378i \(0.707272\pi\)
\(594\) 0 0
\(595\) 0.110747 0.00454018
\(596\) 2.34416 0.0960206
\(597\) 0 0
\(598\) 29.3114 1.19863
\(599\) 22.7841 0.930934 0.465467 0.885065i \(-0.345886\pi\)
0.465467 + 0.885065i \(0.345886\pi\)
\(600\) 0 0
\(601\) 19.7176 0.804299 0.402150 0.915574i \(-0.368263\pi\)
0.402150 + 0.915574i \(0.368263\pi\)
\(602\) 9.17477 0.373936
\(603\) 0 0
\(604\) −21.2074 −0.862916
\(605\) 1.00000 0.0406558
\(606\) 0 0
\(607\) 39.2182 1.59182 0.795908 0.605418i \(-0.206994\pi\)
0.795908 + 0.605418i \(0.206994\pi\)
\(608\) 2.99191 0.121338
\(609\) 0 0
\(610\) −0.0438644 −0.00177602
\(611\) 29.9005 1.20965
\(612\) 0 0
\(613\) 21.4815 0.867628 0.433814 0.901002i \(-0.357167\pi\)
0.433814 + 0.901002i \(0.357167\pi\)
\(614\) 0.924724 0.0373188
\(615\) 0 0
\(616\) 2.17324 0.0875625
\(617\) 3.96947 0.159805 0.0799024 0.996803i \(-0.474539\pi\)
0.0799024 + 0.996803i \(0.474539\pi\)
\(618\) 0 0
\(619\) −36.3919 −1.46271 −0.731357 0.681995i \(-0.761113\pi\)
−0.731357 + 0.681995i \(0.761113\pi\)
\(620\) −6.71607 −0.269724
\(621\) 0 0
\(622\) −3.62726 −0.145440
\(623\) −35.5882 −1.42581
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 21.8892 0.874870
\(627\) 0 0
\(628\) 8.50606 0.339429
\(629\) 0.434304 0.0173168
\(630\) 0 0
\(631\) −30.1410 −1.19989 −0.599946 0.800040i \(-0.704811\pi\)
−0.599946 + 0.800040i \(0.704811\pi\)
\(632\) 4.69956 0.186938
\(633\) 0 0
\(634\) −19.4322 −0.771750
\(635\) 1.56837 0.0622387
\(636\) 0 0
\(637\) −10.2111 −0.404579
\(638\) −1.16515 −0.0461289
\(639\) 0 0
\(640\) 1.00000 0.0395285
\(641\) 24.2764 0.958860 0.479430 0.877580i \(-0.340843\pi\)
0.479430 + 0.877580i \(0.340843\pi\)
\(642\) 0 0
\(643\) 25.3102 0.998138 0.499069 0.866562i \(-0.333675\pi\)
0.499069 + 0.866562i \(0.333675\pi\)
\(644\) 14.2049 0.559750
\(645\) 0 0
\(646\) 0.152465 0.00599867
\(647\) 9.98234 0.392446 0.196223 0.980559i \(-0.437132\pi\)
0.196223 + 0.980559i \(0.437132\pi\)
\(648\) 0 0
\(649\) −5.20217 −0.204203
\(650\) 4.48444 0.175894
\(651\) 0 0
\(652\) 24.1125 0.944317
\(653\) −49.1351 −1.92280 −0.961402 0.275147i \(-0.911273\pi\)
−0.961402 + 0.275147i \(0.911273\pi\)
\(654\) 0 0
\(655\) −6.52716 −0.255037
\(656\) −9.02069 −0.352199
\(657\) 0 0
\(658\) 14.4904 0.564893
\(659\) −33.7939 −1.31642 −0.658212 0.752832i \(-0.728687\pi\)
−0.658212 + 0.752832i \(0.728687\pi\)
\(660\) 0 0
\(661\) −15.0390 −0.584948 −0.292474 0.956273i \(-0.594479\pi\)
−0.292474 + 0.956273i \(0.594479\pi\)
\(662\) 5.47362 0.212738
\(663\) 0 0
\(664\) 1.50162 0.0582741
\(665\) 6.50215 0.252143
\(666\) 0 0
\(667\) −7.61573 −0.294882
\(668\) −11.1014 −0.429525
\(669\) 0 0
\(670\) −11.5425 −0.445927
\(671\) −0.0438644 −0.00169337
\(672\) 0 0
\(673\) −17.8656 −0.688667 −0.344334 0.938847i \(-0.611895\pi\)
−0.344334 + 0.938847i \(0.611895\pi\)
\(674\) 25.7022 0.990010
\(675\) 0 0
\(676\) 7.11019 0.273469
\(677\) −26.2476 −1.00878 −0.504389 0.863476i \(-0.668282\pi\)
−0.504389 + 0.863476i \(0.668282\pi\)
\(678\) 0 0
\(679\) 15.5095 0.595199
\(680\) 0.0509592 0.00195420
\(681\) 0 0
\(682\) −6.71607 −0.257172
\(683\) 14.6318 0.559872 0.279936 0.960019i \(-0.409687\pi\)
0.279936 + 0.960019i \(0.409687\pi\)
\(684\) 0 0
\(685\) 13.9447 0.532800
\(686\) −20.1612 −0.769758
\(687\) 0 0
\(688\) 4.22169 0.160951
\(689\) −13.4321 −0.511722
\(690\) 0 0
\(691\) 26.7461 1.01747 0.508735 0.860923i \(-0.330113\pi\)
0.508735 + 0.860923i \(0.330113\pi\)
\(692\) −8.85369 −0.336567
\(693\) 0 0
\(694\) 30.8475 1.17096
\(695\) −15.0553 −0.571081
\(696\) 0 0
\(697\) −0.459687 −0.0174119
\(698\) 11.0961 0.419994
\(699\) 0 0
\(700\) 2.17324 0.0821409
\(701\) 0.623098 0.0235341 0.0117670 0.999931i \(-0.496254\pi\)
0.0117670 + 0.999931i \(0.496254\pi\)
\(702\) 0 0
\(703\) 25.4988 0.961704
\(704\) 1.00000 0.0376889
\(705\) 0 0
\(706\) 13.4324 0.505535
\(707\) −38.1825 −1.43600
\(708\) 0 0
\(709\) −18.0552 −0.678077 −0.339038 0.940773i \(-0.610102\pi\)
−0.339038 + 0.940773i \(0.610102\pi\)
\(710\) 6.04471 0.226854
\(711\) 0 0
\(712\) −16.3756 −0.613702
\(713\) −43.8979 −1.64399
\(714\) 0 0
\(715\) 4.48444 0.167709
\(716\) 1.94083 0.0725321
\(717\) 0 0
\(718\) −11.2447 −0.419650
\(719\) −50.7877 −1.89406 −0.947031 0.321143i \(-0.895933\pi\)
−0.947031 + 0.321143i \(0.895933\pi\)
\(720\) 0 0
\(721\) −40.5760 −1.51113
\(722\) −10.0485 −0.373966
\(723\) 0 0
\(724\) −15.6795 −0.582724
\(725\) −1.16515 −0.0432727
\(726\) 0 0
\(727\) 4.21428 0.156299 0.0781494 0.996942i \(-0.475099\pi\)
0.0781494 + 0.996942i \(0.475099\pi\)
\(728\) 9.74578 0.361203
\(729\) 0 0
\(730\) 15.8864 0.587983
\(731\) 0.215134 0.00795702
\(732\) 0 0
\(733\) −49.4129 −1.82511 −0.912553 0.408958i \(-0.865892\pi\)
−0.912553 + 0.408958i \(0.865892\pi\)
\(734\) 22.1691 0.818275
\(735\) 0 0
\(736\) 6.53625 0.240929
\(737\) −11.5425 −0.425175
\(738\) 0 0
\(739\) 8.54493 0.314330 0.157165 0.987572i \(-0.449764\pi\)
0.157165 + 0.987572i \(0.449764\pi\)
\(740\) 8.52258 0.313296
\(741\) 0 0
\(742\) −6.50945 −0.238969
\(743\) 29.7018 1.08965 0.544827 0.838549i \(-0.316595\pi\)
0.544827 + 0.838549i \(0.316595\pi\)
\(744\) 0 0
\(745\) 2.34416 0.0858834
\(746\) −21.5923 −0.790549
\(747\) 0 0
\(748\) 0.0509592 0.00186325
\(749\) −19.5401 −0.713981
\(750\) 0 0
\(751\) 29.0023 1.05831 0.529155 0.848525i \(-0.322509\pi\)
0.529155 + 0.848525i \(0.322509\pi\)
\(752\) 6.66762 0.243143
\(753\) 0 0
\(754\) −5.22506 −0.190285
\(755\) −21.2074 −0.771815
\(756\) 0 0
\(757\) 38.6709 1.40552 0.702758 0.711429i \(-0.251952\pi\)
0.702758 + 0.711429i \(0.251952\pi\)
\(758\) −11.2563 −0.408848
\(759\) 0 0
\(760\) 2.99191 0.108528
\(761\) −18.3920 −0.666710 −0.333355 0.942801i \(-0.608181\pi\)
−0.333355 + 0.942801i \(0.608181\pi\)
\(762\) 0 0
\(763\) 10.9302 0.395701
\(764\) 13.7569 0.497709
\(765\) 0 0
\(766\) 0.547464 0.0197807
\(767\) −23.3288 −0.842355
\(768\) 0 0
\(769\) 22.6827 0.817960 0.408980 0.912543i \(-0.365885\pi\)
0.408980 + 0.912543i \(0.365885\pi\)
\(770\) 2.17324 0.0783183
\(771\) 0 0
\(772\) −1.77539 −0.0638977
\(773\) −26.7574 −0.962396 −0.481198 0.876612i \(-0.659798\pi\)
−0.481198 + 0.876612i \(0.659798\pi\)
\(774\) 0 0
\(775\) −6.71607 −0.241248
\(776\) 7.13655 0.256187
\(777\) 0 0
\(778\) −22.2724 −0.798505
\(779\) −26.9891 −0.966984
\(780\) 0 0
\(781\) 6.04471 0.216297
\(782\) 0.333082 0.0119110
\(783\) 0 0
\(784\) −2.27701 −0.0813217
\(785\) 8.50606 0.303594
\(786\) 0 0
\(787\) 22.8617 0.814932 0.407466 0.913220i \(-0.366412\pi\)
0.407466 + 0.913220i \(0.366412\pi\)
\(788\) 23.7919 0.847552
\(789\) 0 0
\(790\) 4.69956 0.167203
\(791\) 21.7401 0.772988
\(792\) 0 0
\(793\) −0.196707 −0.00698529
\(794\) −13.3297 −0.473054
\(795\) 0 0
\(796\) 2.15809 0.0764916
\(797\) 6.14102 0.217526 0.108763 0.994068i \(-0.465311\pi\)
0.108763 + 0.994068i \(0.465311\pi\)
\(798\) 0 0
\(799\) 0.339777 0.0120204
\(800\) 1.00000 0.0353553
\(801\) 0 0
\(802\) −8.07960 −0.285301
\(803\) 15.8864 0.560620
\(804\) 0 0
\(805\) 14.2049 0.500656
\(806\) −30.1178 −1.06085
\(807\) 0 0
\(808\) −17.5693 −0.618087
\(809\) 55.8430 1.96334 0.981668 0.190599i \(-0.0610432\pi\)
0.981668 + 0.190599i \(0.0610432\pi\)
\(810\) 0 0
\(811\) −23.7202 −0.832929 −0.416464 0.909152i \(-0.636731\pi\)
−0.416464 + 0.909152i \(0.636731\pi\)
\(812\) −2.53216 −0.0888615
\(813\) 0 0
\(814\) 8.52258 0.298716
\(815\) 24.1125 0.844623
\(816\) 0 0
\(817\) 12.6309 0.441900
\(818\) −8.83292 −0.308836
\(819\) 0 0
\(820\) −9.02069 −0.315016
\(821\) 10.3178 0.360092 0.180046 0.983658i \(-0.442375\pi\)
0.180046 + 0.983658i \(0.442375\pi\)
\(822\) 0 0
\(823\) −35.4214 −1.23471 −0.617356 0.786684i \(-0.711796\pi\)
−0.617356 + 0.786684i \(0.711796\pi\)
\(824\) −18.6707 −0.650425
\(825\) 0 0
\(826\) −11.3056 −0.393372
\(827\) −40.8064 −1.41898 −0.709489 0.704717i \(-0.751074\pi\)
−0.709489 + 0.704717i \(0.751074\pi\)
\(828\) 0 0
\(829\) 16.9261 0.587868 0.293934 0.955826i \(-0.405035\pi\)
0.293934 + 0.955826i \(0.405035\pi\)
\(830\) 1.50162 0.0521219
\(831\) 0 0
\(832\) 4.48444 0.155470
\(833\) −0.116035 −0.00402036
\(834\) 0 0
\(835\) −11.1014 −0.384179
\(836\) 2.99191 0.103477
\(837\) 0 0
\(838\) −5.17941 −0.178920
\(839\) 12.7446 0.439992 0.219996 0.975501i \(-0.429396\pi\)
0.219996 + 0.975501i \(0.429396\pi\)
\(840\) 0 0
\(841\) −27.6424 −0.953187
\(842\) 6.64176 0.228890
\(843\) 0 0
\(844\) 22.1373 0.761998
\(845\) 7.11019 0.244598
\(846\) 0 0
\(847\) 2.17324 0.0746736
\(848\) −2.99527 −0.102858
\(849\) 0 0
\(850\) 0.0509592 0.00174789
\(851\) 55.7057 1.90957
\(852\) 0 0
\(853\) 7.90817 0.270770 0.135385 0.990793i \(-0.456773\pi\)
0.135385 + 0.990793i \(0.456773\pi\)
\(854\) −0.0953282 −0.00326206
\(855\) 0 0
\(856\) −8.99123 −0.307314
\(857\) −32.0389 −1.09443 −0.547214 0.836993i \(-0.684312\pi\)
−0.547214 + 0.836993i \(0.684312\pi\)
\(858\) 0 0
\(859\) −7.85760 −0.268098 −0.134049 0.990975i \(-0.542798\pi\)
−0.134049 + 0.990975i \(0.542798\pi\)
\(860\) 4.22169 0.143959
\(861\) 0 0
\(862\) −29.6036 −1.00830
\(863\) 10.0931 0.343574 0.171787 0.985134i \(-0.445046\pi\)
0.171787 + 0.985134i \(0.445046\pi\)
\(864\) 0 0
\(865\) −8.85369 −0.301034
\(866\) 26.1933 0.890084
\(867\) 0 0
\(868\) −14.5957 −0.495409
\(869\) 4.69956 0.159422
\(870\) 0 0
\(871\) −51.7618 −1.75388
\(872\) 5.02945 0.170319
\(873\) 0 0
\(874\) 19.5559 0.661487
\(875\) 2.17324 0.0734691
\(876\) 0 0
\(877\) 0.204196 0.00689522 0.00344761 0.999994i \(-0.498903\pi\)
0.00344761 + 0.999994i \(0.498903\pi\)
\(878\) 14.5524 0.491121
\(879\) 0 0
\(880\) 1.00000 0.0337100
\(881\) −15.6635 −0.527718 −0.263859 0.964561i \(-0.584995\pi\)
−0.263859 + 0.964561i \(0.584995\pi\)
\(882\) 0 0
\(883\) 40.1215 1.35019 0.675097 0.737729i \(-0.264102\pi\)
0.675097 + 0.737729i \(0.264102\pi\)
\(884\) 0.228523 0.00768607
\(885\) 0 0
\(886\) −19.6834 −0.661276
\(887\) 13.4026 0.450015 0.225008 0.974357i \(-0.427759\pi\)
0.225008 + 0.974357i \(0.427759\pi\)
\(888\) 0 0
\(889\) 3.40844 0.114315
\(890\) −16.3756 −0.548911
\(891\) 0 0
\(892\) −8.75047 −0.292987
\(893\) 19.9489 0.667565
\(894\) 0 0
\(895\) 1.94083 0.0648746
\(896\) 2.17324 0.0726030
\(897\) 0 0
\(898\) 24.0348 0.802053
\(899\) 7.82525 0.260987
\(900\) 0 0
\(901\) −0.152636 −0.00508506
\(902\) −9.02069 −0.300356
\(903\) 0 0
\(904\) 10.0035 0.332712
\(905\) −15.6795 −0.521204
\(906\) 0 0
\(907\) 14.1787 0.470795 0.235398 0.971899i \(-0.424361\pi\)
0.235398 + 0.971899i \(0.424361\pi\)
\(908\) −5.93425 −0.196935
\(909\) 0 0
\(910\) 9.74578 0.323070
\(911\) −14.6298 −0.484707 −0.242353 0.970188i \(-0.577919\pi\)
−0.242353 + 0.970188i \(0.577919\pi\)
\(912\) 0 0
\(913\) 1.50162 0.0496963
\(914\) −20.3728 −0.673873
\(915\) 0 0
\(916\) 1.12065 0.0370275
\(917\) −14.1851 −0.468434
\(918\) 0 0
\(919\) −1.15658 −0.0381521 −0.0190760 0.999818i \(-0.506072\pi\)
−0.0190760 + 0.999818i \(0.506072\pi\)
\(920\) 6.53625 0.215494
\(921\) 0 0
\(922\) −0.0295634 −0.000973618 0
\(923\) 27.1072 0.892243
\(924\) 0 0
\(925\) 8.52258 0.280221
\(926\) −27.6808 −0.909647
\(927\) 0 0
\(928\) −1.16515 −0.0382480
\(929\) −2.36225 −0.0775028 −0.0387514 0.999249i \(-0.512338\pi\)
−0.0387514 + 0.999249i \(0.512338\pi\)
\(930\) 0 0
\(931\) −6.81260 −0.223274
\(932\) −18.6243 −0.610060
\(933\) 0 0
\(934\) −7.38942 −0.241789
\(935\) 0.0509592 0.00166654
\(936\) 0 0
\(937\) 0.756699 0.0247203 0.0123601 0.999924i \(-0.496066\pi\)
0.0123601 + 0.999924i \(0.496066\pi\)
\(938\) −25.0848 −0.819046
\(939\) 0 0
\(940\) 6.66762 0.217474
\(941\) −21.2252 −0.691921 −0.345961 0.938249i \(-0.612447\pi\)
−0.345961 + 0.938249i \(0.612447\pi\)
\(942\) 0 0
\(943\) −58.9614 −1.92005
\(944\) −5.20217 −0.169316
\(945\) 0 0
\(946\) 4.22169 0.137259
\(947\) −22.3925 −0.727658 −0.363829 0.931466i \(-0.618531\pi\)
−0.363829 + 0.931466i \(0.618531\pi\)
\(948\) 0 0
\(949\) 71.2417 2.31260
\(950\) 2.99191 0.0970703
\(951\) 0 0
\(952\) 0.110747 0.00358932
\(953\) 26.8894 0.871034 0.435517 0.900181i \(-0.356566\pi\)
0.435517 + 0.900181i \(0.356566\pi\)
\(954\) 0 0
\(955\) 13.7569 0.445164
\(956\) 7.19057 0.232560
\(957\) 0 0
\(958\) 22.4611 0.725686
\(959\) 30.3053 0.978609
\(960\) 0 0
\(961\) 14.1056 0.455019
\(962\) 38.2190 1.23223
\(963\) 0 0
\(964\) −1.40835 −0.0453600
\(965\) −1.77539 −0.0571519
\(966\) 0 0
\(967\) 59.4607 1.91213 0.956063 0.293161i \(-0.0947072\pi\)
0.956063 + 0.293161i \(0.0947072\pi\)
\(968\) 1.00000 0.0321412
\(969\) 0 0
\(970\) 7.13655 0.229141
\(971\) −56.6074 −1.81662 −0.908309 0.418301i \(-0.862626\pi\)
−0.908309 + 0.418301i \(0.862626\pi\)
\(972\) 0 0
\(973\) −32.7189 −1.04892
\(974\) 33.9578 1.08808
\(975\) 0 0
\(976\) −0.0438644 −0.00140407
\(977\) −38.3417 −1.22666 −0.613330 0.789827i \(-0.710170\pi\)
−0.613330 + 0.789827i \(0.710170\pi\)
\(978\) 0 0
\(979\) −16.3756 −0.523366
\(980\) −2.27701 −0.0727364
\(981\) 0 0
\(982\) −29.6810 −0.947157
\(983\) −50.4365 −1.60867 −0.804337 0.594173i \(-0.797479\pi\)
−0.804337 + 0.594173i \(0.797479\pi\)
\(984\) 0 0
\(985\) 23.7919 0.758074
\(986\) −0.0593753 −0.00189089
\(987\) 0 0
\(988\) 13.4170 0.426853
\(989\) 27.5940 0.877439
\(990\) 0 0
\(991\) 2.77450 0.0881348 0.0440674 0.999029i \(-0.485968\pi\)
0.0440674 + 0.999029i \(0.485968\pi\)
\(992\) −6.71607 −0.213235
\(993\) 0 0
\(994\) 13.1366 0.416669
\(995\) 2.15809 0.0684162
\(996\) 0 0
\(997\) −51.2718 −1.62379 −0.811897 0.583801i \(-0.801565\pi\)
−0.811897 + 0.583801i \(0.801565\pi\)
\(998\) −9.82210 −0.310913
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8910.2.a.cd.1.5 7
3.2 odd 2 8910.2.a.ca.1.5 7
9.2 odd 6 2970.2.i.k.1981.3 14
9.4 even 3 990.2.i.j.331.1 14
9.5 odd 6 2970.2.i.k.991.3 14
9.7 even 3 990.2.i.j.661.1 yes 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
990.2.i.j.331.1 14 9.4 even 3
990.2.i.j.661.1 yes 14 9.7 even 3
2970.2.i.k.991.3 14 9.5 odd 6
2970.2.i.k.1981.3 14 9.2 odd 6
8910.2.a.ca.1.5 7 3.2 odd 2
8910.2.a.cd.1.5 7 1.1 even 1 trivial