Properties

Label 8910.2.a.bw.1.4
Level $8910$
Weight $2$
Character 8910.1
Self dual yes
Analytic conductor $71.147$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8910,2,Mod(1,8910)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8910, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8910.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 8910 = 2 \cdot 3^{4} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8910.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,-6,0,6,-6,0,-2,-6,0,6,6,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(71.1467082010\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.1526544576.4
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 26x^{4} + 30x^{3} + 129x^{2} - 180x + 36 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(0.244904\) of defining polynomial
Character \(\chi\) \(=\) 8910.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +1.00000 q^{4} -1.00000 q^{5} -0.244904 q^{7} -1.00000 q^{8} +1.00000 q^{10} +1.00000 q^{11} +5.37770 q^{13} +0.244904 q^{14} +1.00000 q^{16} -2.66909 q^{17} +3.73205 q^{19} -1.00000 q^{20} -1.00000 q^{22} +1.30292 q^{23} +1.00000 q^{25} -5.37770 q^{26} -0.244904 q^{28} -0.755096 q^{29} -7.84180 q^{31} -1.00000 q^{32} +2.66909 q^{34} +0.244904 q^{35} -11.0695 q^{37} -3.73205 q^{38} +1.00000 q^{40} -0.656874 q^{41} +12.8138 q^{43} +1.00000 q^{44} -1.30292 q^{46} -10.2564 q^{47} -6.94002 q^{49} -1.00000 q^{50} +5.37770 q^{52} -10.1727 q^{53} -1.00000 q^{55} +0.244904 q^{56} +0.755096 q^{58} -9.74358 q^{59} +3.38932 q^{61} +7.84180 q^{62} +1.00000 q^{64} -5.37770 q^{65} -5.21425 q^{67} -2.66909 q^{68} -0.244904 q^{70} +8.14698 q^{71} +10.6576 q^{73} +11.0695 q^{74} +3.73205 q^{76} -0.244904 q^{77} -4.70366 q^{79} -1.00000 q^{80} +0.656874 q^{82} -6.32596 q^{83} +2.66909 q^{85} -12.8138 q^{86} -1.00000 q^{88} -5.34244 q^{89} -1.31702 q^{91} +1.30292 q^{92} +10.2564 q^{94} -3.73205 q^{95} -5.40341 q^{97} +6.94002 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 6 q^{2} + 6 q^{4} - 6 q^{5} - 2 q^{7} - 6 q^{8} + 6 q^{10} + 6 q^{11} - 2 q^{13} + 2 q^{14} + 6 q^{16} - 8 q^{17} + 12 q^{19} - 6 q^{20} - 6 q^{22} - 10 q^{23} + 6 q^{25} + 2 q^{26} - 2 q^{28} - 4 q^{29}+ \cdots - 14 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) −0.244904 −0.0925651 −0.0462825 0.998928i \(-0.514737\pi\)
−0.0462825 + 0.998928i \(0.514737\pi\)
\(8\) −1.00000 −0.353553
\(9\) 0 0
\(10\) 1.00000 0.316228
\(11\) 1.00000 0.301511
\(12\) 0 0
\(13\) 5.37770 1.49151 0.745753 0.666223i \(-0.232090\pi\)
0.745753 + 0.666223i \(0.232090\pi\)
\(14\) 0.244904 0.0654534
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −2.66909 −0.647350 −0.323675 0.946168i \(-0.604918\pi\)
−0.323675 + 0.946168i \(0.604918\pi\)
\(18\) 0 0
\(19\) 3.73205 0.856191 0.428096 0.903733i \(-0.359185\pi\)
0.428096 + 0.903733i \(0.359185\pi\)
\(20\) −1.00000 −0.223607
\(21\) 0 0
\(22\) −1.00000 −0.213201
\(23\) 1.30292 0.271678 0.135839 0.990731i \(-0.456627\pi\)
0.135839 + 0.990731i \(0.456627\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) −5.37770 −1.05465
\(27\) 0 0
\(28\) −0.244904 −0.0462825
\(29\) −0.755096 −0.140218 −0.0701089 0.997539i \(-0.522335\pi\)
−0.0701089 + 0.997539i \(0.522335\pi\)
\(30\) 0 0
\(31\) −7.84180 −1.40843 −0.704214 0.709987i \(-0.748701\pi\)
−0.704214 + 0.709987i \(0.748701\pi\)
\(32\) −1.00000 −0.176777
\(33\) 0 0
\(34\) 2.66909 0.457745
\(35\) 0.244904 0.0413964
\(36\) 0 0
\(37\) −11.0695 −1.81982 −0.909911 0.414804i \(-0.863850\pi\)
−0.909911 + 0.414804i \(0.863850\pi\)
\(38\) −3.73205 −0.605419
\(39\) 0 0
\(40\) 1.00000 0.158114
\(41\) −0.656874 −0.102586 −0.0512932 0.998684i \(-0.516334\pi\)
−0.0512932 + 0.998684i \(0.516334\pi\)
\(42\) 0 0
\(43\) 12.8138 1.95409 0.977044 0.213038i \(-0.0683359\pi\)
0.977044 + 0.213038i \(0.0683359\pi\)
\(44\) 1.00000 0.150756
\(45\) 0 0
\(46\) −1.30292 −0.192105
\(47\) −10.2564 −1.49605 −0.748027 0.663668i \(-0.768999\pi\)
−0.748027 + 0.663668i \(0.768999\pi\)
\(48\) 0 0
\(49\) −6.94002 −0.991432
\(50\) −1.00000 −0.141421
\(51\) 0 0
\(52\) 5.37770 0.745753
\(53\) −10.1727 −1.39733 −0.698665 0.715449i \(-0.746222\pi\)
−0.698665 + 0.715449i \(0.746222\pi\)
\(54\) 0 0
\(55\) −1.00000 −0.134840
\(56\) 0.244904 0.0327267
\(57\) 0 0
\(58\) 0.755096 0.0991489
\(59\) −9.74358 −1.26851 −0.634253 0.773126i \(-0.718692\pi\)
−0.634253 + 0.773126i \(0.718692\pi\)
\(60\) 0 0
\(61\) 3.38932 0.433958 0.216979 0.976176i \(-0.430380\pi\)
0.216979 + 0.976176i \(0.430380\pi\)
\(62\) 7.84180 0.995910
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −5.37770 −0.667021
\(66\) 0 0
\(67\) −5.21425 −0.637022 −0.318511 0.947919i \(-0.603183\pi\)
−0.318511 + 0.947919i \(0.603183\pi\)
\(68\) −2.66909 −0.323675
\(69\) 0 0
\(70\) −0.244904 −0.0292717
\(71\) 8.14698 0.966869 0.483435 0.875381i \(-0.339389\pi\)
0.483435 + 0.875381i \(0.339389\pi\)
\(72\) 0 0
\(73\) 10.6576 1.24737 0.623687 0.781674i \(-0.285634\pi\)
0.623687 + 0.781674i \(0.285634\pi\)
\(74\) 11.0695 1.28681
\(75\) 0 0
\(76\) 3.73205 0.428096
\(77\) −0.244904 −0.0279094
\(78\) 0 0
\(79\) −4.70366 −0.529203 −0.264602 0.964358i \(-0.585240\pi\)
−0.264602 + 0.964358i \(0.585240\pi\)
\(80\) −1.00000 −0.111803
\(81\) 0 0
\(82\) 0.656874 0.0725396
\(83\) −6.32596 −0.694365 −0.347182 0.937798i \(-0.612862\pi\)
−0.347182 + 0.937798i \(0.612862\pi\)
\(84\) 0 0
\(85\) 2.66909 0.289504
\(86\) −12.8138 −1.38175
\(87\) 0 0
\(88\) −1.00000 −0.106600
\(89\) −5.34244 −0.566297 −0.283149 0.959076i \(-0.591379\pi\)
−0.283149 + 0.959076i \(0.591379\pi\)
\(90\) 0 0
\(91\) −1.31702 −0.138061
\(92\) 1.30292 0.135839
\(93\) 0 0
\(94\) 10.2564 1.05787
\(95\) −3.73205 −0.382900
\(96\) 0 0
\(97\) −5.40341 −0.548633 −0.274316 0.961640i \(-0.588452\pi\)
−0.274316 + 0.961640i \(0.588452\pi\)
\(98\) 6.94002 0.701048
\(99\) 0 0
\(100\) 1.00000 0.100000
\(101\) 18.4994 1.84076 0.920378 0.391029i \(-0.127881\pi\)
0.920378 + 0.391029i \(0.127881\pi\)
\(102\) 0 0
\(103\) 3.73431 0.367953 0.183976 0.982931i \(-0.441103\pi\)
0.183976 + 0.982931i \(0.441103\pi\)
\(104\) −5.37770 −0.527327
\(105\) 0 0
\(106\) 10.1727 0.988061
\(107\) −11.7159 −1.13262 −0.566308 0.824193i \(-0.691629\pi\)
−0.566308 + 0.824193i \(0.691629\pi\)
\(108\) 0 0
\(109\) 1.71983 0.164730 0.0823651 0.996602i \(-0.473753\pi\)
0.0823651 + 0.996602i \(0.473753\pi\)
\(110\) 1.00000 0.0953463
\(111\) 0 0
\(112\) −0.244904 −0.0231413
\(113\) 17.8339 1.67767 0.838835 0.544385i \(-0.183237\pi\)
0.838835 + 0.544385i \(0.183237\pi\)
\(114\) 0 0
\(115\) −1.30292 −0.121498
\(116\) −0.755096 −0.0701089
\(117\) 0 0
\(118\) 9.74358 0.896969
\(119\) 0.653672 0.0599220
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) −3.38932 −0.306855
\(123\) 0 0
\(124\) −7.84180 −0.704214
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) 7.85035 0.696605 0.348303 0.937382i \(-0.386758\pi\)
0.348303 + 0.937382i \(0.386758\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 0 0
\(130\) 5.37770 0.471655
\(131\) −0.0464883 −0.00406170 −0.00203085 0.999998i \(-0.500646\pi\)
−0.00203085 + 0.999998i \(0.500646\pi\)
\(132\) 0 0
\(133\) −0.913995 −0.0792534
\(134\) 5.21425 0.450443
\(135\) 0 0
\(136\) 2.66909 0.228873
\(137\) 5.47563 0.467815 0.233907 0.972259i \(-0.424849\pi\)
0.233907 + 0.972259i \(0.424849\pi\)
\(138\) 0 0
\(139\) −4.58548 −0.388935 −0.194467 0.980909i \(-0.562298\pi\)
−0.194467 + 0.980909i \(0.562298\pi\)
\(140\) 0.244904 0.0206982
\(141\) 0 0
\(142\) −8.14698 −0.683680
\(143\) 5.37770 0.449706
\(144\) 0 0
\(145\) 0.755096 0.0627073
\(146\) −10.6576 −0.882027
\(147\) 0 0
\(148\) −11.0695 −0.909911
\(149\) −3.53012 −0.289199 −0.144599 0.989490i \(-0.546189\pi\)
−0.144599 + 0.989490i \(0.546189\pi\)
\(150\) 0 0
\(151\) 9.77296 0.795312 0.397656 0.917535i \(-0.369824\pi\)
0.397656 + 0.917535i \(0.369824\pi\)
\(152\) −3.73205 −0.302709
\(153\) 0 0
\(154\) 0.244904 0.0197349
\(155\) 7.84180 0.629869
\(156\) 0 0
\(157\) −5.18947 −0.414165 −0.207082 0.978323i \(-0.566397\pi\)
−0.207082 + 0.978323i \(0.566397\pi\)
\(158\) 4.70366 0.374203
\(159\) 0 0
\(160\) 1.00000 0.0790569
\(161\) −0.319091 −0.0251479
\(162\) 0 0
\(163\) −18.9321 −1.48288 −0.741438 0.671021i \(-0.765856\pi\)
−0.741438 + 0.671021i \(0.765856\pi\)
\(164\) −0.656874 −0.0512932
\(165\) 0 0
\(166\) 6.32596 0.490990
\(167\) −25.3359 −1.96055 −0.980276 0.197631i \(-0.936675\pi\)
−0.980276 + 0.197631i \(0.936675\pi\)
\(168\) 0 0
\(169\) 15.9196 1.22459
\(170\) −2.66909 −0.204710
\(171\) 0 0
\(172\) 12.8138 0.977044
\(173\) 8.97666 0.682483 0.341242 0.939976i \(-0.389153\pi\)
0.341242 + 0.939976i \(0.389153\pi\)
\(174\) 0 0
\(175\) −0.244904 −0.0185130
\(176\) 1.00000 0.0753778
\(177\) 0 0
\(178\) 5.34244 0.400433
\(179\) 14.1974 1.06116 0.530581 0.847634i \(-0.321974\pi\)
0.530581 + 0.847634i \(0.321974\pi\)
\(180\) 0 0
\(181\) 15.8646 1.17920 0.589601 0.807694i \(-0.299285\pi\)
0.589601 + 0.807694i \(0.299285\pi\)
\(182\) 1.31702 0.0976241
\(183\) 0 0
\(184\) −1.30292 −0.0960525
\(185\) 11.0695 0.813849
\(186\) 0 0
\(187\) −2.66909 −0.195183
\(188\) −10.2564 −0.748027
\(189\) 0 0
\(190\) 3.73205 0.270751
\(191\) −1.22803 −0.0888574 −0.0444287 0.999013i \(-0.514147\pi\)
−0.0444287 + 0.999013i \(0.514147\pi\)
\(192\) 0 0
\(193\) −17.4354 −1.25503 −0.627515 0.778605i \(-0.715928\pi\)
−0.627515 + 0.778605i \(0.715928\pi\)
\(194\) 5.40341 0.387942
\(195\) 0 0
\(196\) −6.94002 −0.495716
\(197\) 5.18660 0.369530 0.184765 0.982783i \(-0.440848\pi\)
0.184765 + 0.982783i \(0.440848\pi\)
\(198\) 0 0
\(199\) 27.1395 1.92387 0.961935 0.273277i \(-0.0881076\pi\)
0.961935 + 0.273277i \(0.0881076\pi\)
\(200\) −1.00000 −0.0707107
\(201\) 0 0
\(202\) −18.4994 −1.30161
\(203\) 0.184926 0.0129793
\(204\) 0 0
\(205\) 0.656874 0.0458781
\(206\) −3.73431 −0.260182
\(207\) 0 0
\(208\) 5.37770 0.372876
\(209\) 3.73205 0.258151
\(210\) 0 0
\(211\) −14.9823 −1.03142 −0.515712 0.856762i \(-0.672473\pi\)
−0.515712 + 0.856762i \(0.672473\pi\)
\(212\) −10.1727 −0.698665
\(213\) 0 0
\(214\) 11.7159 0.800881
\(215\) −12.8138 −0.873895
\(216\) 0 0
\(217\) 1.92049 0.130371
\(218\) −1.71983 −0.116482
\(219\) 0 0
\(220\) −1.00000 −0.0674200
\(221\) −14.3536 −0.965525
\(222\) 0 0
\(223\) 10.9914 0.736041 0.368020 0.929818i \(-0.380036\pi\)
0.368020 + 0.929818i \(0.380036\pi\)
\(224\) 0.244904 0.0163634
\(225\) 0 0
\(226\) −17.8339 −1.18629
\(227\) 1.16282 0.0771791 0.0385895 0.999255i \(-0.487714\pi\)
0.0385895 + 0.999255i \(0.487714\pi\)
\(228\) 0 0
\(229\) −21.8910 −1.44660 −0.723298 0.690536i \(-0.757375\pi\)
−0.723298 + 0.690536i \(0.757375\pi\)
\(230\) 1.30292 0.0859120
\(231\) 0 0
\(232\) 0.755096 0.0495745
\(233\) −27.0119 −1.76961 −0.884805 0.465961i \(-0.845709\pi\)
−0.884805 + 0.465961i \(0.845709\pi\)
\(234\) 0 0
\(235\) 10.2564 0.669056
\(236\) −9.74358 −0.634253
\(237\) 0 0
\(238\) −0.653672 −0.0423712
\(239\) −18.2549 −1.18081 −0.590405 0.807107i \(-0.701032\pi\)
−0.590405 + 0.807107i \(0.701032\pi\)
\(240\) 0 0
\(241\) −8.96893 −0.577740 −0.288870 0.957368i \(-0.593279\pi\)
−0.288870 + 0.957368i \(0.593279\pi\)
\(242\) −1.00000 −0.0642824
\(243\) 0 0
\(244\) 3.38932 0.216979
\(245\) 6.94002 0.443382
\(246\) 0 0
\(247\) 20.0698 1.27701
\(248\) 7.84180 0.497955
\(249\) 0 0
\(250\) 1.00000 0.0632456
\(251\) −15.8686 −1.00162 −0.500809 0.865558i \(-0.666964\pi\)
−0.500809 + 0.865558i \(0.666964\pi\)
\(252\) 0 0
\(253\) 1.30292 0.0819139
\(254\) −7.85035 −0.492574
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −4.86558 −0.303506 −0.151753 0.988418i \(-0.548492\pi\)
−0.151753 + 0.988418i \(0.548492\pi\)
\(258\) 0 0
\(259\) 2.71098 0.168452
\(260\) −5.37770 −0.333511
\(261\) 0 0
\(262\) 0.0464883 0.00287206
\(263\) −6.67146 −0.411380 −0.205690 0.978617i \(-0.565944\pi\)
−0.205690 + 0.978617i \(0.565944\pi\)
\(264\) 0 0
\(265\) 10.1727 0.624905
\(266\) 0.913995 0.0560406
\(267\) 0 0
\(268\) −5.21425 −0.318511
\(269\) −16.6115 −1.01282 −0.506410 0.862293i \(-0.669028\pi\)
−0.506410 + 0.862293i \(0.669028\pi\)
\(270\) 0 0
\(271\) 22.4154 1.36164 0.680818 0.732453i \(-0.261624\pi\)
0.680818 + 0.732453i \(0.261624\pi\)
\(272\) −2.66909 −0.161837
\(273\) 0 0
\(274\) −5.47563 −0.330795
\(275\) 1.00000 0.0603023
\(276\) 0 0
\(277\) 22.6226 1.35926 0.679631 0.733554i \(-0.262140\pi\)
0.679631 + 0.733554i \(0.262140\pi\)
\(278\) 4.58548 0.275019
\(279\) 0 0
\(280\) −0.244904 −0.0146358
\(281\) −20.3902 −1.21638 −0.608189 0.793792i \(-0.708104\pi\)
−0.608189 + 0.793792i \(0.708104\pi\)
\(282\) 0 0
\(283\) 18.0154 1.07091 0.535453 0.844565i \(-0.320141\pi\)
0.535453 + 0.844565i \(0.320141\pi\)
\(284\) 8.14698 0.483435
\(285\) 0 0
\(286\) −5.37770 −0.317990
\(287\) 0.160871 0.00949592
\(288\) 0 0
\(289\) −9.87595 −0.580938
\(290\) −0.755096 −0.0443408
\(291\) 0 0
\(292\) 10.6576 0.623687
\(293\) −32.5118 −1.89936 −0.949681 0.313219i \(-0.898593\pi\)
−0.949681 + 0.313219i \(0.898593\pi\)
\(294\) 0 0
\(295\) 9.74358 0.567293
\(296\) 11.0695 0.643404
\(297\) 0 0
\(298\) 3.53012 0.204494
\(299\) 7.00671 0.405208
\(300\) 0 0
\(301\) −3.13816 −0.180880
\(302\) −9.77296 −0.562370
\(303\) 0 0
\(304\) 3.73205 0.214048
\(305\) −3.38932 −0.194072
\(306\) 0 0
\(307\) −30.1273 −1.71946 −0.859728 0.510751i \(-0.829367\pi\)
−0.859728 + 0.510751i \(0.829367\pi\)
\(308\) −0.244904 −0.0139547
\(309\) 0 0
\(310\) −7.84180 −0.445384
\(311\) 9.29102 0.526846 0.263423 0.964680i \(-0.415149\pi\)
0.263423 + 0.964680i \(0.415149\pi\)
\(312\) 0 0
\(313\) −20.5036 −1.15893 −0.579467 0.814996i \(-0.696739\pi\)
−0.579467 + 0.814996i \(0.696739\pi\)
\(314\) 5.18947 0.292859
\(315\) 0 0
\(316\) −4.70366 −0.264602
\(317\) 22.5858 1.26854 0.634272 0.773110i \(-0.281300\pi\)
0.634272 + 0.773110i \(0.281300\pi\)
\(318\) 0 0
\(319\) −0.755096 −0.0422772
\(320\) −1.00000 −0.0559017
\(321\) 0 0
\(322\) 0.319091 0.0177822
\(323\) −9.96118 −0.554255
\(324\) 0 0
\(325\) 5.37770 0.298301
\(326\) 18.9321 1.04855
\(327\) 0 0
\(328\) 0.656874 0.0362698
\(329\) 2.51184 0.138482
\(330\) 0 0
\(331\) 12.1160 0.665957 0.332979 0.942934i \(-0.391946\pi\)
0.332979 + 0.942934i \(0.391946\pi\)
\(332\) −6.32596 −0.347182
\(333\) 0 0
\(334\) 25.3359 1.38632
\(335\) 5.21425 0.284885
\(336\) 0 0
\(337\) −29.4419 −1.60380 −0.801900 0.597458i \(-0.796177\pi\)
−0.801900 + 0.597458i \(0.796177\pi\)
\(338\) −15.9196 −0.865914
\(339\) 0 0
\(340\) 2.66909 0.144752
\(341\) −7.84180 −0.424657
\(342\) 0 0
\(343\) 3.41397 0.184337
\(344\) −12.8138 −0.690874
\(345\) 0 0
\(346\) −8.97666 −0.482588
\(347\) −24.8035 −1.33152 −0.665760 0.746166i \(-0.731892\pi\)
−0.665760 + 0.746166i \(0.731892\pi\)
\(348\) 0 0
\(349\) 1.80944 0.0968571 0.0484285 0.998827i \(-0.484579\pi\)
0.0484285 + 0.998827i \(0.484579\pi\)
\(350\) 0.244904 0.0130907
\(351\) 0 0
\(352\) −1.00000 −0.0533002
\(353\) −14.6947 −0.782121 −0.391060 0.920365i \(-0.627892\pi\)
−0.391060 + 0.920365i \(0.627892\pi\)
\(354\) 0 0
\(355\) −8.14698 −0.432397
\(356\) −5.34244 −0.283149
\(357\) 0 0
\(358\) −14.1974 −0.750355
\(359\) −32.6998 −1.72583 −0.862914 0.505350i \(-0.831363\pi\)
−0.862914 + 0.505350i \(0.831363\pi\)
\(360\) 0 0
\(361\) −5.07180 −0.266937
\(362\) −15.8646 −0.833822
\(363\) 0 0
\(364\) −1.31702 −0.0690307
\(365\) −10.6576 −0.557843
\(366\) 0 0
\(367\) 21.0799 1.10036 0.550181 0.835045i \(-0.314559\pi\)
0.550181 + 0.835045i \(0.314559\pi\)
\(368\) 1.30292 0.0679194
\(369\) 0 0
\(370\) −11.0695 −0.575478
\(371\) 2.49134 0.129344
\(372\) 0 0
\(373\) −30.5860 −1.58368 −0.791841 0.610728i \(-0.790877\pi\)
−0.791841 + 0.610728i \(0.790877\pi\)
\(374\) 2.66909 0.138015
\(375\) 0 0
\(376\) 10.2564 0.528935
\(377\) −4.06068 −0.209136
\(378\) 0 0
\(379\) −5.82392 −0.299155 −0.149577 0.988750i \(-0.547791\pi\)
−0.149577 + 0.988750i \(0.547791\pi\)
\(380\) −3.73205 −0.191450
\(381\) 0 0
\(382\) 1.22803 0.0628317
\(383\) 5.97542 0.305330 0.152665 0.988278i \(-0.451214\pi\)
0.152665 + 0.988278i \(0.451214\pi\)
\(384\) 0 0
\(385\) 0.244904 0.0124815
\(386\) 17.4354 0.887440
\(387\) 0 0
\(388\) −5.40341 −0.274316
\(389\) 38.1731 1.93546 0.967728 0.251998i \(-0.0810878\pi\)
0.967728 + 0.251998i \(0.0810878\pi\)
\(390\) 0 0
\(391\) −3.47761 −0.175870
\(392\) 6.94002 0.350524
\(393\) 0 0
\(394\) −5.18660 −0.261297
\(395\) 4.70366 0.236667
\(396\) 0 0
\(397\) −30.5803 −1.53478 −0.767392 0.641179i \(-0.778446\pi\)
−0.767392 + 0.641179i \(0.778446\pi\)
\(398\) −27.1395 −1.36038
\(399\) 0 0
\(400\) 1.00000 0.0500000
\(401\) 18.8798 0.942810 0.471405 0.881917i \(-0.343747\pi\)
0.471405 + 0.881917i \(0.343747\pi\)
\(402\) 0 0
\(403\) −42.1708 −2.10068
\(404\) 18.4994 0.920378
\(405\) 0 0
\(406\) −0.184926 −0.00917773
\(407\) −11.0695 −0.548697
\(408\) 0 0
\(409\) 20.7108 1.02409 0.512043 0.858960i \(-0.328889\pi\)
0.512043 + 0.858960i \(0.328889\pi\)
\(410\) −0.656874 −0.0324407
\(411\) 0 0
\(412\) 3.73431 0.183976
\(413\) 2.38624 0.117419
\(414\) 0 0
\(415\) 6.32596 0.310529
\(416\) −5.37770 −0.263663
\(417\) 0 0
\(418\) −3.73205 −0.182541
\(419\) 10.3608 0.506160 0.253080 0.967445i \(-0.418556\pi\)
0.253080 + 0.967445i \(0.418556\pi\)
\(420\) 0 0
\(421\) −36.5611 −1.78188 −0.890941 0.454120i \(-0.849954\pi\)
−0.890941 + 0.454120i \(0.849954\pi\)
\(422\) 14.9823 0.729327
\(423\) 0 0
\(424\) 10.1727 0.494030
\(425\) −2.66909 −0.129470
\(426\) 0 0
\(427\) −0.830060 −0.0401694
\(428\) −11.7159 −0.566308
\(429\) 0 0
\(430\) 12.8138 0.617937
\(431\) −19.6563 −0.946813 −0.473406 0.880844i \(-0.656976\pi\)
−0.473406 + 0.880844i \(0.656976\pi\)
\(432\) 0 0
\(433\) 32.8936 1.58077 0.790384 0.612612i \(-0.209881\pi\)
0.790384 + 0.612612i \(0.209881\pi\)
\(434\) −1.92049 −0.0921865
\(435\) 0 0
\(436\) 1.71983 0.0823651
\(437\) 4.86256 0.232608
\(438\) 0 0
\(439\) 14.5870 0.696202 0.348101 0.937457i \(-0.386827\pi\)
0.348101 + 0.937457i \(0.386827\pi\)
\(440\) 1.00000 0.0476731
\(441\) 0 0
\(442\) 14.3536 0.682729
\(443\) −3.60743 −0.171394 −0.0856971 0.996321i \(-0.527312\pi\)
−0.0856971 + 0.996321i \(0.527312\pi\)
\(444\) 0 0
\(445\) 5.34244 0.253256
\(446\) −10.9914 −0.520460
\(447\) 0 0
\(448\) −0.244904 −0.0115706
\(449\) 4.31769 0.203764 0.101882 0.994796i \(-0.467514\pi\)
0.101882 + 0.994796i \(0.467514\pi\)
\(450\) 0 0
\(451\) −0.656874 −0.0309310
\(452\) 17.8339 0.838835
\(453\) 0 0
\(454\) −1.16282 −0.0545738
\(455\) 1.31702 0.0617429
\(456\) 0 0
\(457\) 6.94112 0.324692 0.162346 0.986734i \(-0.448094\pi\)
0.162346 + 0.986734i \(0.448094\pi\)
\(458\) 21.8910 1.02290
\(459\) 0 0
\(460\) −1.30292 −0.0607489
\(461\) −21.6827 −1.00986 −0.504931 0.863159i \(-0.668482\pi\)
−0.504931 + 0.863159i \(0.668482\pi\)
\(462\) 0 0
\(463\) −25.9403 −1.20555 −0.602775 0.797912i \(-0.705938\pi\)
−0.602775 + 0.797912i \(0.705938\pi\)
\(464\) −0.755096 −0.0350544
\(465\) 0 0
\(466\) 27.0119 1.25130
\(467\) −27.6311 −1.27861 −0.639307 0.768952i \(-0.720779\pi\)
−0.639307 + 0.768952i \(0.720779\pi\)
\(468\) 0 0
\(469\) 1.27699 0.0589660
\(470\) −10.2564 −0.473094
\(471\) 0 0
\(472\) 9.74358 0.448485
\(473\) 12.8138 0.589180
\(474\) 0 0
\(475\) 3.73205 0.171238
\(476\) 0.653672 0.0299610
\(477\) 0 0
\(478\) 18.2549 0.834958
\(479\) 28.6571 1.30937 0.654687 0.755900i \(-0.272800\pi\)
0.654687 + 0.755900i \(0.272800\pi\)
\(480\) 0 0
\(481\) −59.5287 −2.71427
\(482\) 8.96893 0.408524
\(483\) 0 0
\(484\) 1.00000 0.0454545
\(485\) 5.40341 0.245356
\(486\) 0 0
\(487\) 23.4297 1.06170 0.530851 0.847465i \(-0.321872\pi\)
0.530851 + 0.847465i \(0.321872\pi\)
\(488\) −3.38932 −0.153427
\(489\) 0 0
\(490\) −6.94002 −0.313518
\(491\) 34.9801 1.57863 0.789314 0.613989i \(-0.210436\pi\)
0.789314 + 0.613989i \(0.210436\pi\)
\(492\) 0 0
\(493\) 2.01542 0.0907699
\(494\) −20.0698 −0.902985
\(495\) 0 0
\(496\) −7.84180 −0.352107
\(497\) −1.99523 −0.0894983
\(498\) 0 0
\(499\) −7.37154 −0.329996 −0.164998 0.986294i \(-0.552762\pi\)
−0.164998 + 0.986294i \(0.552762\pi\)
\(500\) −1.00000 −0.0447214
\(501\) 0 0
\(502\) 15.8686 0.708251
\(503\) 3.53995 0.157839 0.0789193 0.996881i \(-0.474853\pi\)
0.0789193 + 0.996881i \(0.474853\pi\)
\(504\) 0 0
\(505\) −18.4994 −0.823211
\(506\) −1.30292 −0.0579218
\(507\) 0 0
\(508\) 7.85035 0.348303
\(509\) −24.4026 −1.08163 −0.540814 0.841142i \(-0.681884\pi\)
−0.540814 + 0.841142i \(0.681884\pi\)
\(510\) 0 0
\(511\) −2.61008 −0.115463
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) 4.86558 0.214611
\(515\) −3.73431 −0.164554
\(516\) 0 0
\(517\) −10.2564 −0.451077
\(518\) −2.71098 −0.119114
\(519\) 0 0
\(520\) 5.37770 0.235828
\(521\) 11.6635 0.510988 0.255494 0.966811i \(-0.417762\pi\)
0.255494 + 0.966811i \(0.417762\pi\)
\(522\) 0 0
\(523\) 5.70574 0.249495 0.124747 0.992189i \(-0.460188\pi\)
0.124747 + 0.992189i \(0.460188\pi\)
\(524\) −0.0464883 −0.00203085
\(525\) 0 0
\(526\) 6.67146 0.290890
\(527\) 20.9305 0.911746
\(528\) 0 0
\(529\) −21.3024 −0.926191
\(530\) −10.1727 −0.441874
\(531\) 0 0
\(532\) −0.913995 −0.0396267
\(533\) −3.53247 −0.153008
\(534\) 0 0
\(535\) 11.7159 0.506522
\(536\) 5.21425 0.225221
\(537\) 0 0
\(538\) 16.6115 0.716172
\(539\) −6.94002 −0.298928
\(540\) 0 0
\(541\) 21.6734 0.931814 0.465907 0.884834i \(-0.345728\pi\)
0.465907 + 0.884834i \(0.345728\pi\)
\(542\) −22.4154 −0.962822
\(543\) 0 0
\(544\) 2.66909 0.114436
\(545\) −1.71983 −0.0736696
\(546\) 0 0
\(547\) 17.6072 0.752829 0.376414 0.926451i \(-0.377157\pi\)
0.376414 + 0.926451i \(0.377157\pi\)
\(548\) 5.47563 0.233907
\(549\) 0 0
\(550\) −1.00000 −0.0426401
\(551\) −2.81806 −0.120053
\(552\) 0 0
\(553\) 1.15195 0.0489858
\(554\) −22.6226 −0.961143
\(555\) 0 0
\(556\) −4.58548 −0.194467
\(557\) −24.1148 −1.02178 −0.510888 0.859647i \(-0.670683\pi\)
−0.510888 + 0.859647i \(0.670683\pi\)
\(558\) 0 0
\(559\) 68.9088 2.91453
\(560\) 0.244904 0.0103491
\(561\) 0 0
\(562\) 20.3902 0.860109
\(563\) 1.81089 0.0763199 0.0381600 0.999272i \(-0.487850\pi\)
0.0381600 + 0.999272i \(0.487850\pi\)
\(564\) 0 0
\(565\) −17.8339 −0.750277
\(566\) −18.0154 −0.757245
\(567\) 0 0
\(568\) −8.14698 −0.341840
\(569\) 19.9810 0.837649 0.418824 0.908067i \(-0.362442\pi\)
0.418824 + 0.908067i \(0.362442\pi\)
\(570\) 0 0
\(571\) −17.6296 −0.737776 −0.368888 0.929474i \(-0.620261\pi\)
−0.368888 + 0.929474i \(0.620261\pi\)
\(572\) 5.37770 0.224853
\(573\) 0 0
\(574\) −0.160871 −0.00671463
\(575\) 1.30292 0.0543355
\(576\) 0 0
\(577\) −19.6470 −0.817915 −0.408957 0.912554i \(-0.634108\pi\)
−0.408957 + 0.912554i \(0.634108\pi\)
\(578\) 9.87595 0.410786
\(579\) 0 0
\(580\) 0.755096 0.0313536
\(581\) 1.54926 0.0642739
\(582\) 0 0
\(583\) −10.1727 −0.421311
\(584\) −10.6576 −0.441014
\(585\) 0 0
\(586\) 32.5118 1.34305
\(587\) −29.8613 −1.23251 −0.616253 0.787548i \(-0.711350\pi\)
−0.616253 + 0.787548i \(0.711350\pi\)
\(588\) 0 0
\(589\) −29.2660 −1.20588
\(590\) −9.74358 −0.401137
\(591\) 0 0
\(592\) −11.0695 −0.454955
\(593\) 15.0014 0.616035 0.308018 0.951381i \(-0.400334\pi\)
0.308018 + 0.951381i \(0.400334\pi\)
\(594\) 0 0
\(595\) −0.653672 −0.0267979
\(596\) −3.53012 −0.144599
\(597\) 0 0
\(598\) −7.00671 −0.286526
\(599\) 22.9062 0.935923 0.467962 0.883749i \(-0.344989\pi\)
0.467962 + 0.883749i \(0.344989\pi\)
\(600\) 0 0
\(601\) 5.41954 0.221068 0.110534 0.993872i \(-0.464744\pi\)
0.110534 + 0.993872i \(0.464744\pi\)
\(602\) 3.13816 0.127902
\(603\) 0 0
\(604\) 9.77296 0.397656
\(605\) −1.00000 −0.0406558
\(606\) 0 0
\(607\) −45.6589 −1.85324 −0.926619 0.376003i \(-0.877298\pi\)
−0.926619 + 0.376003i \(0.877298\pi\)
\(608\) −3.73205 −0.151355
\(609\) 0 0
\(610\) 3.38932 0.137230
\(611\) −55.1560 −2.23137
\(612\) 0 0
\(613\) 3.12054 0.126037 0.0630187 0.998012i \(-0.479927\pi\)
0.0630187 + 0.998012i \(0.479927\pi\)
\(614\) 30.1273 1.21584
\(615\) 0 0
\(616\) 0.244904 0.00986747
\(617\) −3.51277 −0.141419 −0.0707093 0.997497i \(-0.522526\pi\)
−0.0707093 + 0.997497i \(0.522526\pi\)
\(618\) 0 0
\(619\) −34.3158 −1.37927 −0.689634 0.724159i \(-0.742228\pi\)
−0.689634 + 0.724159i \(0.742228\pi\)
\(620\) 7.84180 0.314934
\(621\) 0 0
\(622\) −9.29102 −0.372536
\(623\) 1.30839 0.0524193
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 20.5036 0.819489
\(627\) 0 0
\(628\) −5.18947 −0.207082
\(629\) 29.5456 1.17806
\(630\) 0 0
\(631\) −22.2642 −0.886322 −0.443161 0.896442i \(-0.646143\pi\)
−0.443161 + 0.896442i \(0.646143\pi\)
\(632\) 4.70366 0.187102
\(633\) 0 0
\(634\) −22.5858 −0.896997
\(635\) −7.85035 −0.311531
\(636\) 0 0
\(637\) −37.3213 −1.47873
\(638\) 0.755096 0.0298945
\(639\) 0 0
\(640\) 1.00000 0.0395285
\(641\) −11.5678 −0.456900 −0.228450 0.973556i \(-0.573366\pi\)
−0.228450 + 0.973556i \(0.573366\pi\)
\(642\) 0 0
\(643\) 0.138516 0.00546254 0.00273127 0.999996i \(-0.499131\pi\)
0.00273127 + 0.999996i \(0.499131\pi\)
\(644\) −0.319091 −0.0125739
\(645\) 0 0
\(646\) 9.96118 0.391917
\(647\) −6.69636 −0.263261 −0.131630 0.991299i \(-0.542021\pi\)
−0.131630 + 0.991299i \(0.542021\pi\)
\(648\) 0 0
\(649\) −9.74358 −0.382469
\(650\) −5.37770 −0.210931
\(651\) 0 0
\(652\) −18.9321 −0.741438
\(653\) −2.15144 −0.0841924 −0.0420962 0.999114i \(-0.513404\pi\)
−0.0420962 + 0.999114i \(0.513404\pi\)
\(654\) 0 0
\(655\) 0.0464883 0.00181645
\(656\) −0.656874 −0.0256466
\(657\) 0 0
\(658\) −2.51184 −0.0979219
\(659\) 8.56357 0.333589 0.166795 0.985992i \(-0.446658\pi\)
0.166795 + 0.985992i \(0.446658\pi\)
\(660\) 0 0
\(661\) 21.0533 0.818879 0.409440 0.912337i \(-0.365724\pi\)
0.409440 + 0.912337i \(0.365724\pi\)
\(662\) −12.1160 −0.470903
\(663\) 0 0
\(664\) 6.32596 0.245495
\(665\) 0.913995 0.0354432
\(666\) 0 0
\(667\) −0.983829 −0.0380940
\(668\) −25.3359 −0.980276
\(669\) 0 0
\(670\) −5.21425 −0.201444
\(671\) 3.38932 0.130843
\(672\) 0 0
\(673\) 8.97030 0.345780 0.172890 0.984941i \(-0.444690\pi\)
0.172890 + 0.984941i \(0.444690\pi\)
\(674\) 29.4419 1.13406
\(675\) 0 0
\(676\) 15.9196 0.612294
\(677\) 4.25694 0.163607 0.0818037 0.996648i \(-0.473932\pi\)
0.0818037 + 0.996648i \(0.473932\pi\)
\(678\) 0 0
\(679\) 1.32332 0.0507842
\(680\) −2.66909 −0.102355
\(681\) 0 0
\(682\) 7.84180 0.300278
\(683\) 25.1183 0.961123 0.480562 0.876961i \(-0.340433\pi\)
0.480562 + 0.876961i \(0.340433\pi\)
\(684\) 0 0
\(685\) −5.47563 −0.209213
\(686\) −3.41397 −0.130346
\(687\) 0 0
\(688\) 12.8138 0.488522
\(689\) −54.7058 −2.08412
\(690\) 0 0
\(691\) −1.98416 −0.0754811 −0.0377406 0.999288i \(-0.512016\pi\)
−0.0377406 + 0.999288i \(0.512016\pi\)
\(692\) 8.97666 0.341242
\(693\) 0 0
\(694\) 24.8035 0.941526
\(695\) 4.58548 0.173937
\(696\) 0 0
\(697\) 1.75326 0.0664093
\(698\) −1.80944 −0.0684883
\(699\) 0 0
\(700\) −0.244904 −0.00925651
\(701\) 25.9263 0.979225 0.489612 0.871940i \(-0.337138\pi\)
0.489612 + 0.871940i \(0.337138\pi\)
\(702\) 0 0
\(703\) −41.3121 −1.55812
\(704\) 1.00000 0.0376889
\(705\) 0 0
\(706\) 14.6947 0.553043
\(707\) −4.53057 −0.170390
\(708\) 0 0
\(709\) 0.429643 0.0161356 0.00806779 0.999967i \(-0.497432\pi\)
0.00806779 + 0.999967i \(0.497432\pi\)
\(710\) 8.14698 0.305751
\(711\) 0 0
\(712\) 5.34244 0.200216
\(713\) −10.2172 −0.382638
\(714\) 0 0
\(715\) −5.37770 −0.201115
\(716\) 14.1974 0.530581
\(717\) 0 0
\(718\) 32.6998 1.22034
\(719\) −29.2134 −1.08948 −0.544738 0.838606i \(-0.683371\pi\)
−0.544738 + 0.838606i \(0.683371\pi\)
\(720\) 0 0
\(721\) −0.914549 −0.0340596
\(722\) 5.07180 0.188753
\(723\) 0 0
\(724\) 15.8646 0.589601
\(725\) −0.755096 −0.0280436
\(726\) 0 0
\(727\) −15.9710 −0.592331 −0.296166 0.955137i \(-0.595708\pi\)
−0.296166 + 0.955137i \(0.595708\pi\)
\(728\) 1.31702 0.0488120
\(729\) 0 0
\(730\) 10.6576 0.394454
\(731\) −34.2012 −1.26498
\(732\) 0 0
\(733\) −35.0695 −1.29532 −0.647662 0.761928i \(-0.724253\pi\)
−0.647662 + 0.761928i \(0.724253\pi\)
\(734\) −21.0799 −0.778073
\(735\) 0 0
\(736\) −1.30292 −0.0480263
\(737\) −5.21425 −0.192069
\(738\) 0 0
\(739\) 6.22948 0.229155 0.114578 0.993414i \(-0.463449\pi\)
0.114578 + 0.993414i \(0.463449\pi\)
\(740\) 11.0695 0.406924
\(741\) 0 0
\(742\) −2.49134 −0.0914599
\(743\) 32.1666 1.18008 0.590040 0.807374i \(-0.299112\pi\)
0.590040 + 0.807374i \(0.299112\pi\)
\(744\) 0 0
\(745\) 3.53012 0.129334
\(746\) 30.5860 1.11983
\(747\) 0 0
\(748\) −2.66909 −0.0975916
\(749\) 2.86927 0.104841
\(750\) 0 0
\(751\) 50.3650 1.83785 0.918923 0.394437i \(-0.129060\pi\)
0.918923 + 0.394437i \(0.129060\pi\)
\(752\) −10.2564 −0.374014
\(753\) 0 0
\(754\) 4.06068 0.147881
\(755\) −9.77296 −0.355674
\(756\) 0 0
\(757\) 0.485112 0.0176317 0.00881586 0.999961i \(-0.497194\pi\)
0.00881586 + 0.999961i \(0.497194\pi\)
\(758\) 5.82392 0.211534
\(759\) 0 0
\(760\) 3.73205 0.135376
\(761\) 40.0985 1.45357 0.726785 0.686865i \(-0.241013\pi\)
0.726785 + 0.686865i \(0.241013\pi\)
\(762\) 0 0
\(763\) −0.421195 −0.0152483
\(764\) −1.22803 −0.0444287
\(765\) 0 0
\(766\) −5.97542 −0.215901
\(767\) −52.3980 −1.89198
\(768\) 0 0
\(769\) 30.2534 1.09097 0.545484 0.838122i \(-0.316346\pi\)
0.545484 + 0.838122i \(0.316346\pi\)
\(770\) −0.244904 −0.00882574
\(771\) 0 0
\(772\) −17.4354 −0.627515
\(773\) 44.5404 1.60201 0.801004 0.598660i \(-0.204300\pi\)
0.801004 + 0.598660i \(0.204300\pi\)
\(774\) 0 0
\(775\) −7.84180 −0.281686
\(776\) 5.40341 0.193971
\(777\) 0 0
\(778\) −38.1731 −1.36857
\(779\) −2.45149 −0.0878336
\(780\) 0 0
\(781\) 8.14698 0.291522
\(782\) 3.47761 0.124359
\(783\) 0 0
\(784\) −6.94002 −0.247858
\(785\) 5.18947 0.185220
\(786\) 0 0
\(787\) −14.4932 −0.516628 −0.258314 0.966061i \(-0.583167\pi\)
−0.258314 + 0.966061i \(0.583167\pi\)
\(788\) 5.18660 0.184765
\(789\) 0 0
\(790\) −4.70366 −0.167349
\(791\) −4.36759 −0.155294
\(792\) 0 0
\(793\) 18.2268 0.647251
\(794\) 30.5803 1.08526
\(795\) 0 0
\(796\) 27.1395 0.961935
\(797\) −16.3416 −0.578851 −0.289425 0.957201i \(-0.593464\pi\)
−0.289425 + 0.957201i \(0.593464\pi\)
\(798\) 0 0
\(799\) 27.3753 0.968470
\(800\) −1.00000 −0.0353553
\(801\) 0 0
\(802\) −18.8798 −0.666667
\(803\) 10.6576 0.376098
\(804\) 0 0
\(805\) 0.319091 0.0112465
\(806\) 42.1708 1.48540
\(807\) 0 0
\(808\) −18.4994 −0.650806
\(809\) −23.0812 −0.811493 −0.405747 0.913986i \(-0.632988\pi\)
−0.405747 + 0.913986i \(0.632988\pi\)
\(810\) 0 0
\(811\) 43.5350 1.52872 0.764360 0.644790i \(-0.223055\pi\)
0.764360 + 0.644790i \(0.223055\pi\)
\(812\) 0.184926 0.00648964
\(813\) 0 0
\(814\) 11.0695 0.387987
\(815\) 18.9321 0.663163
\(816\) 0 0
\(817\) 47.8218 1.67307
\(818\) −20.7108 −0.724137
\(819\) 0 0
\(820\) 0.656874 0.0229390
\(821\) −21.8047 −0.760988 −0.380494 0.924783i \(-0.624246\pi\)
−0.380494 + 0.924783i \(0.624246\pi\)
\(822\) 0 0
\(823\) −25.2264 −0.879335 −0.439668 0.898161i \(-0.644904\pi\)
−0.439668 + 0.898161i \(0.644904\pi\)
\(824\) −3.73431 −0.130091
\(825\) 0 0
\(826\) −2.38624 −0.0830280
\(827\) −4.61825 −0.160592 −0.0802962 0.996771i \(-0.525587\pi\)
−0.0802962 + 0.996771i \(0.525587\pi\)
\(828\) 0 0
\(829\) 28.1487 0.977646 0.488823 0.872383i \(-0.337426\pi\)
0.488823 + 0.872383i \(0.337426\pi\)
\(830\) −6.32596 −0.219577
\(831\) 0 0
\(832\) 5.37770 0.186438
\(833\) 18.5235 0.641803
\(834\) 0 0
\(835\) 25.3359 0.876786
\(836\) 3.73205 0.129076
\(837\) 0 0
\(838\) −10.3608 −0.357909
\(839\) 19.4500 0.671489 0.335744 0.941953i \(-0.391012\pi\)
0.335744 + 0.941953i \(0.391012\pi\)
\(840\) 0 0
\(841\) −28.4298 −0.980339
\(842\) 36.5611 1.25998
\(843\) 0 0
\(844\) −14.9823 −0.515712
\(845\) −15.9196 −0.547652
\(846\) 0 0
\(847\) −0.244904 −0.00841501
\(848\) −10.1727 −0.349332
\(849\) 0 0
\(850\) 2.66909 0.0915491
\(851\) −14.4227 −0.494405
\(852\) 0 0
\(853\) −40.0697 −1.37196 −0.685980 0.727621i \(-0.740626\pi\)
−0.685980 + 0.727621i \(0.740626\pi\)
\(854\) 0.830060 0.0284041
\(855\) 0 0
\(856\) 11.7159 0.400441
\(857\) 27.3356 0.933767 0.466883 0.884319i \(-0.345377\pi\)
0.466883 + 0.884319i \(0.345377\pi\)
\(858\) 0 0
\(859\) −19.9778 −0.681635 −0.340818 0.940129i \(-0.610704\pi\)
−0.340818 + 0.940129i \(0.610704\pi\)
\(860\) −12.8138 −0.436947
\(861\) 0 0
\(862\) 19.6563 0.669498
\(863\) 43.6948 1.48739 0.743693 0.668521i \(-0.233072\pi\)
0.743693 + 0.668521i \(0.233072\pi\)
\(864\) 0 0
\(865\) −8.97666 −0.305216
\(866\) −32.8936 −1.11777
\(867\) 0 0
\(868\) 1.92049 0.0651857
\(869\) −4.70366 −0.159561
\(870\) 0 0
\(871\) −28.0407 −0.950122
\(872\) −1.71983 −0.0582409
\(873\) 0 0
\(874\) −4.86256 −0.164479
\(875\) 0.244904 0.00827927
\(876\) 0 0
\(877\) 11.3636 0.383720 0.191860 0.981422i \(-0.438548\pi\)
0.191860 + 0.981422i \(0.438548\pi\)
\(878\) −14.5870 −0.492289
\(879\) 0 0
\(880\) −1.00000 −0.0337100
\(881\) −42.3780 −1.42775 −0.713875 0.700273i \(-0.753062\pi\)
−0.713875 + 0.700273i \(0.753062\pi\)
\(882\) 0 0
\(883\) −48.2231 −1.62284 −0.811418 0.584467i \(-0.801304\pi\)
−0.811418 + 0.584467i \(0.801304\pi\)
\(884\) −14.3536 −0.482763
\(885\) 0 0
\(886\) 3.60743 0.121194
\(887\) 15.7171 0.527728 0.263864 0.964560i \(-0.415003\pi\)
0.263864 + 0.964560i \(0.415003\pi\)
\(888\) 0 0
\(889\) −1.92258 −0.0644814
\(890\) −5.34244 −0.179079
\(891\) 0 0
\(892\) 10.9914 0.368020
\(893\) −38.2775 −1.28091
\(894\) 0 0
\(895\) −14.1974 −0.474566
\(896\) 0.244904 0.00818168
\(897\) 0 0
\(898\) −4.31769 −0.144083
\(899\) 5.92131 0.197487
\(900\) 0 0
\(901\) 27.1519 0.904560
\(902\) 0.656874 0.0218715
\(903\) 0 0
\(904\) −17.8339 −0.593146
\(905\) −15.8646 −0.527356
\(906\) 0 0
\(907\) −22.6927 −0.753498 −0.376749 0.926315i \(-0.622958\pi\)
−0.376749 + 0.926315i \(0.622958\pi\)
\(908\) 1.16282 0.0385895
\(909\) 0 0
\(910\) −1.31702 −0.0436588
\(911\) 0.577461 0.0191321 0.00956607 0.999954i \(-0.496955\pi\)
0.00956607 + 0.999954i \(0.496955\pi\)
\(912\) 0 0
\(913\) −6.32596 −0.209359
\(914\) −6.94112 −0.229592
\(915\) 0 0
\(916\) −21.8910 −0.723298
\(917\) 0.0113852 0.000375972 0
\(918\) 0 0
\(919\) −47.9577 −1.58198 −0.790989 0.611831i \(-0.790433\pi\)
−0.790989 + 0.611831i \(0.790433\pi\)
\(920\) 1.30292 0.0429560
\(921\) 0 0
\(922\) 21.6827 0.714081
\(923\) 43.8120 1.44209
\(924\) 0 0
\(925\) −11.0695 −0.363964
\(926\) 25.9403 0.852452
\(927\) 0 0
\(928\) 0.755096 0.0247872
\(929\) −54.2644 −1.78036 −0.890179 0.455611i \(-0.849421\pi\)
−0.890179 + 0.455611i \(0.849421\pi\)
\(930\) 0 0
\(931\) −25.9005 −0.848855
\(932\) −27.0119 −0.884805
\(933\) 0 0
\(934\) 27.6311 0.904116
\(935\) 2.66909 0.0872886
\(936\) 0 0
\(937\) 4.07367 0.133081 0.0665405 0.997784i \(-0.478804\pi\)
0.0665405 + 0.997784i \(0.478804\pi\)
\(938\) −1.27699 −0.0416953
\(939\) 0 0
\(940\) 10.2564 0.334528
\(941\) −0.723441 −0.0235835 −0.0117918 0.999930i \(-0.503754\pi\)
−0.0117918 + 0.999930i \(0.503754\pi\)
\(942\) 0 0
\(943\) −0.855854 −0.0278704
\(944\) −9.74358 −0.317126
\(945\) 0 0
\(946\) −12.8138 −0.416613
\(947\) −33.7945 −1.09817 −0.549086 0.835766i \(-0.685024\pi\)
−0.549086 + 0.835766i \(0.685024\pi\)
\(948\) 0 0
\(949\) 57.3132 1.86047
\(950\) −3.73205 −0.121084
\(951\) 0 0
\(952\) −0.653672 −0.0211856
\(953\) −41.4520 −1.34276 −0.671381 0.741112i \(-0.734299\pi\)
−0.671381 + 0.741112i \(0.734299\pi\)
\(954\) 0 0
\(955\) 1.22803 0.0397383
\(956\) −18.2549 −0.590405
\(957\) 0 0
\(958\) −28.6571 −0.925868
\(959\) −1.34100 −0.0433033
\(960\) 0 0
\(961\) 30.4938 0.983672
\(962\) 59.5287 1.91928
\(963\) 0 0
\(964\) −8.96893 −0.288870
\(965\) 17.4354 0.561266
\(966\) 0 0
\(967\) −1.78603 −0.0574349 −0.0287175 0.999588i \(-0.509142\pi\)
−0.0287175 + 0.999588i \(0.509142\pi\)
\(968\) −1.00000 −0.0321412
\(969\) 0 0
\(970\) −5.40341 −0.173493
\(971\) 16.2976 0.523014 0.261507 0.965202i \(-0.415780\pi\)
0.261507 + 0.965202i \(0.415780\pi\)
\(972\) 0 0
\(973\) 1.12300 0.0360018
\(974\) −23.4297 −0.750737
\(975\) 0 0
\(976\) 3.38932 0.108490
\(977\) −12.9577 −0.414552 −0.207276 0.978283i \(-0.566460\pi\)
−0.207276 + 0.978283i \(0.566460\pi\)
\(978\) 0 0
\(979\) −5.34244 −0.170745
\(980\) 6.94002 0.221691
\(981\) 0 0
\(982\) −34.9801 −1.11626
\(983\) 51.0597 1.62855 0.814276 0.580478i \(-0.197134\pi\)
0.814276 + 0.580478i \(0.197134\pi\)
\(984\) 0 0
\(985\) −5.18660 −0.165259
\(986\) −2.01542 −0.0641840
\(987\) 0 0
\(988\) 20.0698 0.638507
\(989\) 16.6954 0.530882
\(990\) 0 0
\(991\) −50.2854 −1.59737 −0.798684 0.601751i \(-0.794470\pi\)
−0.798684 + 0.601751i \(0.794470\pi\)
\(992\) 7.84180 0.248977
\(993\) 0 0
\(994\) 1.99523 0.0632849
\(995\) −27.1395 −0.860381
\(996\) 0 0
\(997\) 31.5446 0.999027 0.499514 0.866306i \(-0.333512\pi\)
0.499514 + 0.866306i \(0.333512\pi\)
\(998\) 7.37154 0.233342
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8910.2.a.bw.1.4 6
3.2 odd 2 8910.2.a.bz.1.4 yes 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
8910.2.a.bw.1.4 6 1.1 even 1 trivial
8910.2.a.bz.1.4 yes 6 3.2 odd 2