Properties

Label 8910.2.a.bt.1.3
Level $8910$
Weight $2$
Character 8910.1
Self dual yes
Analytic conductor $71.147$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8910,2,Mod(1,8910)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8910, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8910.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 8910 = 2 \cdot 3^{4} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8910.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,4,0,4,-4,0,-6,4,0,-4,-4,0,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(71.1467082010\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{3}, \sqrt{7})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 5x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(0.456850\) of defining polynomial
Character \(\chi\) \(=\) 8910.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.00000 q^{4} -1.00000 q^{5} -1.39761 q^{7} +1.00000 q^{8} -1.00000 q^{10} -1.00000 q^{11} +4.24814 q^{13} -1.39761 q^{14} +1.00000 q^{16} +4.19615 q^{17} -5.31463 q^{19} -1.00000 q^{20} -1.00000 q^{22} -7.83071 q^{23} +1.00000 q^{25} +4.24814 q^{26} -1.39761 q^{28} -3.98019 q^{29} +0.957065 q^{31} +1.00000 q^{32} +4.19615 q^{34} +1.39761 q^{35} +0.118474 q^{37} -5.31463 q^{38} -1.00000 q^{40} -1.35425 q^{41} +4.73205 q^{43} -1.00000 q^{44} -7.83071 q^{46} +11.0037 q^{47} -5.04668 q^{49} +1.00000 q^{50} +4.24814 q^{52} -9.72129 q^{53} +1.00000 q^{55} -1.39761 q^{56} -3.98019 q^{58} -1.17260 q^{59} -1.82740 q^{61} +0.957065 q^{62} +1.00000 q^{64} -4.24814 q^{65} -6.75186 q^{67} +4.19615 q^{68} +1.39761 q^{70} +1.24814 q^{71} +9.62594 q^{73} +0.118474 q^{74} -5.31463 q^{76} +1.39761 q^{77} +2.59377 q^{79} -1.00000 q^{80} -1.35425 q^{82} -13.5971 q^{83} -4.19615 q^{85} +4.73205 q^{86} -1.00000 q^{88} +0.431927 q^{89} -5.93725 q^{91} -7.83071 q^{92} +11.0037 q^{94} +5.31463 q^{95} -5.45334 q^{97} -5.04668 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} + 4 q^{4} - 4 q^{5} - 6 q^{7} + 4 q^{8} - 4 q^{10} - 4 q^{11} + 6 q^{13} - 6 q^{14} + 4 q^{16} - 4 q^{17} + 4 q^{19} - 4 q^{20} - 4 q^{22} - 2 q^{23} + 4 q^{25} + 6 q^{26} - 6 q^{28} + 2 q^{29}+ \cdots + 12 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) −1.39761 −0.528248 −0.264124 0.964489i \(-0.585083\pi\)
−0.264124 + 0.964489i \(0.585083\pi\)
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) −1.00000 −0.316228
\(11\) −1.00000 −0.301511
\(12\) 0 0
\(13\) 4.24814 1.17822 0.589111 0.808052i \(-0.299478\pi\)
0.589111 + 0.808052i \(0.299478\pi\)
\(14\) −1.39761 −0.373528
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 4.19615 1.01772 0.508858 0.860850i \(-0.330068\pi\)
0.508858 + 0.860850i \(0.330068\pi\)
\(18\) 0 0
\(19\) −5.31463 −1.21926 −0.609629 0.792687i \(-0.708682\pi\)
−0.609629 + 0.792687i \(0.708682\pi\)
\(20\) −1.00000 −0.223607
\(21\) 0 0
\(22\) −1.00000 −0.213201
\(23\) −7.83071 −1.63282 −0.816408 0.577475i \(-0.804038\pi\)
−0.816408 + 0.577475i \(0.804038\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 4.24814 0.833128
\(27\) 0 0
\(28\) −1.39761 −0.264124
\(29\) −3.98019 −0.739103 −0.369551 0.929210i \(-0.620489\pi\)
−0.369551 + 0.929210i \(0.620489\pi\)
\(30\) 0 0
\(31\) 0.957065 0.171894 0.0859470 0.996300i \(-0.472608\pi\)
0.0859470 + 0.996300i \(0.472608\pi\)
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) 4.19615 0.719634
\(35\) 1.39761 0.236240
\(36\) 0 0
\(37\) 0.118474 0.0194770 0.00973851 0.999953i \(-0.496900\pi\)
0.00973851 + 0.999953i \(0.496900\pi\)
\(38\) −5.31463 −0.862146
\(39\) 0 0
\(40\) −1.00000 −0.158114
\(41\) −1.35425 −0.211498 −0.105749 0.994393i \(-0.533724\pi\)
−0.105749 + 0.994393i \(0.533724\pi\)
\(42\) 0 0
\(43\) 4.73205 0.721631 0.360815 0.932637i \(-0.382498\pi\)
0.360815 + 0.932637i \(0.382498\pi\)
\(44\) −1.00000 −0.150756
\(45\) 0 0
\(46\) −7.83071 −1.15458
\(47\) 11.0037 1.60506 0.802530 0.596611i \(-0.203487\pi\)
0.802530 + 0.596611i \(0.203487\pi\)
\(48\) 0 0
\(49\) −5.04668 −0.720954
\(50\) 1.00000 0.141421
\(51\) 0 0
\(52\) 4.24814 0.589111
\(53\) −9.72129 −1.33532 −0.667661 0.744465i \(-0.732704\pi\)
−0.667661 + 0.744465i \(0.732704\pi\)
\(54\) 0 0
\(55\) 1.00000 0.134840
\(56\) −1.39761 −0.186764
\(57\) 0 0
\(58\) −3.98019 −0.522624
\(59\) −1.17260 −0.152659 −0.0763297 0.997083i \(-0.524320\pi\)
−0.0763297 + 0.997083i \(0.524320\pi\)
\(60\) 0 0
\(61\) −1.82740 −0.233975 −0.116987 0.993133i \(-0.537324\pi\)
−0.116987 + 0.993133i \(0.537324\pi\)
\(62\) 0.957065 0.121547
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −4.24814 −0.526917
\(66\) 0 0
\(67\) −6.75186 −0.824871 −0.412436 0.910987i \(-0.635322\pi\)
−0.412436 + 0.910987i \(0.635322\pi\)
\(68\) 4.19615 0.508858
\(69\) 0 0
\(70\) 1.39761 0.167047
\(71\) 1.24814 0.148127 0.0740634 0.997254i \(-0.476403\pi\)
0.0740634 + 0.997254i \(0.476403\pi\)
\(72\) 0 0
\(73\) 9.62594 1.12663 0.563316 0.826242i \(-0.309526\pi\)
0.563316 + 0.826242i \(0.309526\pi\)
\(74\) 0.118474 0.0137723
\(75\) 0 0
\(76\) −5.31463 −0.609629
\(77\) 1.39761 0.159273
\(78\) 0 0
\(79\) 2.59377 0.291821 0.145911 0.989298i \(-0.453389\pi\)
0.145911 + 0.989298i \(0.453389\pi\)
\(80\) −1.00000 −0.111803
\(81\) 0 0
\(82\) −1.35425 −0.149552
\(83\) −13.5971 −1.49247 −0.746237 0.665681i \(-0.768141\pi\)
−0.746237 + 0.665681i \(0.768141\pi\)
\(84\) 0 0
\(85\) −4.19615 −0.455137
\(86\) 4.73205 0.510270
\(87\) 0 0
\(88\) −1.00000 −0.106600
\(89\) 0.431927 0.0457842 0.0228921 0.999738i \(-0.492713\pi\)
0.0228921 + 0.999738i \(0.492713\pi\)
\(90\) 0 0
\(91\) −5.93725 −0.622393
\(92\) −7.83071 −0.816408
\(93\) 0 0
\(94\) 11.0037 1.13495
\(95\) 5.31463 0.545269
\(96\) 0 0
\(97\) −5.45334 −0.553703 −0.276851 0.960913i \(-0.589291\pi\)
−0.276851 + 0.960913i \(0.589291\pi\)
\(98\) −5.04668 −0.509791
\(99\) 0 0
\(100\) 1.00000 0.100000
\(101\) −17.5508 −1.74637 −0.873186 0.487386i \(-0.837950\pi\)
−0.873186 + 0.487386i \(0.837950\pi\)
\(102\) 0 0
\(103\) −17.5632 −1.73055 −0.865276 0.501295i \(-0.832857\pi\)
−0.865276 + 0.501295i \(0.832857\pi\)
\(104\) 4.24814 0.416564
\(105\) 0 0
\(106\) −9.72129 −0.944215
\(107\) −0.201461 −0.0194759 −0.00973797 0.999953i \(-0.503100\pi\)
−0.00973797 + 0.999953i \(0.503100\pi\)
\(108\) 0 0
\(109\) 6.93725 0.664468 0.332234 0.943197i \(-0.392198\pi\)
0.332234 + 0.943197i \(0.392198\pi\)
\(110\) 1.00000 0.0953463
\(111\) 0 0
\(112\) −1.39761 −0.132062
\(113\) 12.5198 1.17777 0.588883 0.808218i \(-0.299568\pi\)
0.588883 + 0.808218i \(0.299568\pi\)
\(114\) 0 0
\(115\) 7.83071 0.730218
\(116\) −3.98019 −0.369551
\(117\) 0 0
\(118\) −1.17260 −0.107946
\(119\) −5.86460 −0.537607
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) −1.82740 −0.165445
\(123\) 0 0
\(124\) 0.957065 0.0859470
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) −0.0916079 −0.00812888 −0.00406444 0.999992i \(-0.501294\pi\)
−0.00406444 + 0.999992i \(0.501294\pi\)
\(128\) 1.00000 0.0883883
\(129\) 0 0
\(130\) −4.24814 −0.372586
\(131\) −14.2519 −1.24519 −0.622596 0.782543i \(-0.713922\pi\)
−0.622596 + 0.782543i \(0.713922\pi\)
\(132\) 0 0
\(133\) 7.42779 0.644071
\(134\) −6.75186 −0.583272
\(135\) 0 0
\(136\) 4.19615 0.359817
\(137\) 20.3935 1.74233 0.871166 0.490988i \(-0.163364\pi\)
0.871166 + 0.490988i \(0.163364\pi\)
\(138\) 0 0
\(139\) −4.90508 −0.416043 −0.208022 0.978124i \(-0.566702\pi\)
−0.208022 + 0.978124i \(0.566702\pi\)
\(140\) 1.39761 0.118120
\(141\) 0 0
\(142\) 1.24814 0.104741
\(143\) −4.24814 −0.355247
\(144\) 0 0
\(145\) 3.98019 0.330537
\(146\) 9.62594 0.796648
\(147\) 0 0
\(148\) 0.118474 0.00973851
\(149\) −23.2230 −1.90250 −0.951252 0.308415i \(-0.900201\pi\)
−0.951252 + 0.308415i \(0.900201\pi\)
\(150\) 0 0
\(151\) −3.19572 −0.260064 −0.130032 0.991510i \(-0.541508\pi\)
−0.130032 + 0.991510i \(0.541508\pi\)
\(152\) −5.31463 −0.431073
\(153\) 0 0
\(154\) 1.39761 0.112623
\(155\) −0.957065 −0.0768733
\(156\) 0 0
\(157\) 3.74398 0.298803 0.149401 0.988777i \(-0.452265\pi\)
0.149401 + 0.988777i \(0.452265\pi\)
\(158\) 2.59377 0.206349
\(159\) 0 0
\(160\) −1.00000 −0.0790569
\(161\) 10.9443 0.862532
\(162\) 0 0
\(163\) 3.20734 0.251218 0.125609 0.992080i \(-0.459911\pi\)
0.125609 + 0.992080i \(0.459911\pi\)
\(164\) −1.35425 −0.105749
\(165\) 0 0
\(166\) −13.5971 −1.05534
\(167\) −0.0722263 −0.00558904 −0.00279452 0.999996i \(-0.500890\pi\)
−0.00279452 + 0.999996i \(0.500890\pi\)
\(168\) 0 0
\(169\) 5.04668 0.388206
\(170\) −4.19615 −0.321830
\(171\) 0 0
\(172\) 4.73205 0.360815
\(173\) −25.4592 −1.93563 −0.967814 0.251665i \(-0.919022\pi\)
−0.967814 + 0.251665i \(0.919022\pi\)
\(174\) 0 0
\(175\) −1.39761 −0.105650
\(176\) −1.00000 −0.0753778
\(177\) 0 0
\(178\) 0.431927 0.0323743
\(179\) 13.2515 0.990460 0.495230 0.868762i \(-0.335084\pi\)
0.495230 + 0.868762i \(0.335084\pi\)
\(180\) 0 0
\(181\) −3.51277 −0.261102 −0.130551 0.991442i \(-0.541675\pi\)
−0.130551 + 0.991442i \(0.541675\pi\)
\(182\) −5.93725 −0.440099
\(183\) 0 0
\(184\) −7.83071 −0.577288
\(185\) −0.118474 −0.00871039
\(186\) 0 0
\(187\) −4.19615 −0.306853
\(188\) 11.0037 0.802530
\(189\) 0 0
\(190\) 5.31463 0.385564
\(191\) −26.5777 −1.92309 −0.961547 0.274639i \(-0.911442\pi\)
−0.961547 + 0.274639i \(0.911442\pi\)
\(192\) 0 0
\(193\) −1.56159 −0.112406 −0.0562029 0.998419i \(-0.517899\pi\)
−0.0562029 + 0.998419i \(0.517899\pi\)
\(194\) −5.45334 −0.391527
\(195\) 0 0
\(196\) −5.04668 −0.360477
\(197\) 5.43022 0.386887 0.193443 0.981111i \(-0.438034\pi\)
0.193443 + 0.981111i \(0.438034\pi\)
\(198\) 0 0
\(199\) 8.23695 0.583902 0.291951 0.956433i \(-0.405696\pi\)
0.291951 + 0.956433i \(0.405696\pi\)
\(200\) 1.00000 0.0707107
\(201\) 0 0
\(202\) −17.5508 −1.23487
\(203\) 5.56276 0.390430
\(204\) 0 0
\(205\) 1.35425 0.0945848
\(206\) −17.5632 −1.22369
\(207\) 0 0
\(208\) 4.24814 0.294555
\(209\) 5.31463 0.367620
\(210\) 0 0
\(211\) 4.47315 0.307945 0.153972 0.988075i \(-0.450793\pi\)
0.153972 + 0.988075i \(0.450793\pi\)
\(212\) −9.72129 −0.667661
\(213\) 0 0
\(214\) −0.201461 −0.0137716
\(215\) −4.73205 −0.322723
\(216\) 0 0
\(217\) −1.33761 −0.0908027
\(218\) 6.93725 0.469850
\(219\) 0 0
\(220\) 1.00000 0.0674200
\(221\) 17.8258 1.19910
\(222\) 0 0
\(223\) −11.3919 −0.762856 −0.381428 0.924398i \(-0.624568\pi\)
−0.381428 + 0.924398i \(0.624568\pi\)
\(224\) −1.39761 −0.0933820
\(225\) 0 0
\(226\) 12.5198 0.832807
\(227\) −21.6495 −1.43693 −0.718464 0.695564i \(-0.755154\pi\)
−0.718464 + 0.695564i \(0.755154\pi\)
\(228\) 0 0
\(229\) 4.43724 0.293221 0.146610 0.989194i \(-0.453164\pi\)
0.146610 + 0.989194i \(0.453164\pi\)
\(230\) 7.83071 0.516342
\(231\) 0 0
\(232\) −3.98019 −0.261312
\(233\) 18.2642 1.19653 0.598265 0.801298i \(-0.295857\pi\)
0.598265 + 0.801298i \(0.295857\pi\)
\(234\) 0 0
\(235\) −11.0037 −0.717805
\(236\) −1.17260 −0.0763297
\(237\) 0 0
\(238\) −5.86460 −0.380145
\(239\) −11.1061 −0.718395 −0.359197 0.933262i \(-0.616949\pi\)
−0.359197 + 0.933262i \(0.616949\pi\)
\(240\) 0 0
\(241\) 15.2915 0.985012 0.492506 0.870309i \(-0.336081\pi\)
0.492506 + 0.870309i \(0.336081\pi\)
\(242\) 1.00000 0.0642824
\(243\) 0 0
\(244\) −1.82740 −0.116987
\(245\) 5.04668 0.322420
\(246\) 0 0
\(247\) −22.5773 −1.43656
\(248\) 0.957065 0.0607737
\(249\) 0 0
\(250\) −1.00000 −0.0632456
\(251\) −3.65437 −0.230662 −0.115331 0.993327i \(-0.536793\pi\)
−0.115331 + 0.993327i \(0.536793\pi\)
\(252\) 0 0
\(253\) 7.83071 0.492313
\(254\) −0.0916079 −0.00574799
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −4.79148 −0.298885 −0.149442 0.988770i \(-0.547748\pi\)
−0.149442 + 0.988770i \(0.547748\pi\)
\(258\) 0 0
\(259\) −0.165581 −0.0102887
\(260\) −4.24814 −0.263458
\(261\) 0 0
\(262\) −14.2519 −0.880484
\(263\) 7.77659 0.479525 0.239763 0.970832i \(-0.422930\pi\)
0.239763 + 0.970832i \(0.422930\pi\)
\(264\) 0 0
\(265\) 9.72129 0.597174
\(266\) 7.42779 0.455427
\(267\) 0 0
\(268\) −6.75186 −0.412436
\(269\) −9.21639 −0.561933 −0.280967 0.959718i \(-0.590655\pi\)
−0.280967 + 0.959718i \(0.590655\pi\)
\(270\) 0 0
\(271\) 11.1008 0.674326 0.337163 0.941446i \(-0.390533\pi\)
0.337163 + 0.941446i \(0.390533\pi\)
\(272\) 4.19615 0.254429
\(273\) 0 0
\(274\) 20.3935 1.23202
\(275\) −1.00000 −0.0603023
\(276\) 0 0
\(277\) −7.43481 −0.446714 −0.223357 0.974737i \(-0.571702\pi\)
−0.223357 + 0.974737i \(0.571702\pi\)
\(278\) −4.90508 −0.294187
\(279\) 0 0
\(280\) 1.39761 0.0835234
\(281\) −21.9518 −1.30953 −0.654766 0.755832i \(-0.727233\pi\)
−0.654766 + 0.755832i \(0.727233\pi\)
\(282\) 0 0
\(283\) −23.7734 −1.41318 −0.706592 0.707622i \(-0.749768\pi\)
−0.706592 + 0.707622i \(0.749768\pi\)
\(284\) 1.24814 0.0740634
\(285\) 0 0
\(286\) −4.24814 −0.251198
\(287\) 1.89272 0.111723
\(288\) 0 0
\(289\) 0.607695 0.0357468
\(290\) 3.98019 0.233725
\(291\) 0 0
\(292\) 9.62594 0.563316
\(293\) 17.9476 1.04851 0.524256 0.851561i \(-0.324344\pi\)
0.524256 + 0.851561i \(0.324344\pi\)
\(294\) 0 0
\(295\) 1.17260 0.0682714
\(296\) 0.118474 0.00688617
\(297\) 0 0
\(298\) −23.2230 −1.34527
\(299\) −33.2660 −1.92382
\(300\) 0 0
\(301\) −6.61358 −0.381200
\(302\) −3.19572 −0.183893
\(303\) 0 0
\(304\) −5.31463 −0.304815
\(305\) 1.82740 0.104637
\(306\) 0 0
\(307\) −8.45003 −0.482269 −0.241134 0.970492i \(-0.577519\pi\)
−0.241134 + 0.970492i \(0.577519\pi\)
\(308\) 1.39761 0.0796364
\(309\) 0 0
\(310\) −0.957065 −0.0543576
\(311\) −0.985927 −0.0559068 −0.0279534 0.999609i \(-0.508899\pi\)
−0.0279534 + 0.999609i \(0.508899\pi\)
\(312\) 0 0
\(313\) 12.9794 0.733642 0.366821 0.930292i \(-0.380446\pi\)
0.366821 + 0.930292i \(0.380446\pi\)
\(314\) 3.74398 0.211285
\(315\) 0 0
\(316\) 2.59377 0.145911
\(317\) −17.1603 −0.963817 −0.481908 0.876222i \(-0.660056\pi\)
−0.481908 + 0.876222i \(0.660056\pi\)
\(318\) 0 0
\(319\) 3.98019 0.222848
\(320\) −1.00000 −0.0559017
\(321\) 0 0
\(322\) 10.9443 0.609902
\(323\) −22.3010 −1.24086
\(324\) 0 0
\(325\) 4.24814 0.235644
\(326\) 3.20734 0.177638
\(327\) 0 0
\(328\) −1.35425 −0.0747759
\(329\) −15.3790 −0.847870
\(330\) 0 0
\(331\) −25.2915 −1.39015 −0.695073 0.718939i \(-0.744628\pi\)
−0.695073 + 0.718939i \(0.744628\pi\)
\(332\) −13.5971 −0.746237
\(333\) 0 0
\(334\) −0.0722263 −0.00395205
\(335\) 6.75186 0.368894
\(336\) 0 0
\(337\) −9.25188 −0.503982 −0.251991 0.967730i \(-0.581085\pi\)
−0.251991 + 0.967730i \(0.581085\pi\)
\(338\) 5.04668 0.274503
\(339\) 0 0
\(340\) −4.19615 −0.227568
\(341\) −0.957065 −0.0518280
\(342\) 0 0
\(343\) 16.8366 0.909091
\(344\) 4.73205 0.255135
\(345\) 0 0
\(346\) −25.4592 −1.36870
\(347\) −15.5918 −0.837010 −0.418505 0.908214i \(-0.637446\pi\)
−0.418505 + 0.908214i \(0.637446\pi\)
\(348\) 0 0
\(349\) 3.31919 0.177672 0.0888361 0.996046i \(-0.471685\pi\)
0.0888361 + 0.996046i \(0.471685\pi\)
\(350\) −1.39761 −0.0747056
\(351\) 0 0
\(352\) −1.00000 −0.0533002
\(353\) −22.4368 −1.19419 −0.597096 0.802170i \(-0.703679\pi\)
−0.597096 + 0.802170i \(0.703679\pi\)
\(354\) 0 0
\(355\) −1.24814 −0.0662443
\(356\) 0.431927 0.0228921
\(357\) 0 0
\(358\) 13.2515 0.700361
\(359\) −11.0016 −0.580642 −0.290321 0.956929i \(-0.593762\pi\)
−0.290321 + 0.956929i \(0.593762\pi\)
\(360\) 0 0
\(361\) 9.24525 0.486592
\(362\) −3.51277 −0.184627
\(363\) 0 0
\(364\) −5.93725 −0.311197
\(365\) −9.62594 −0.503845
\(366\) 0 0
\(367\) −26.2276 −1.36907 −0.684534 0.728981i \(-0.739994\pi\)
−0.684534 + 0.728981i \(0.739994\pi\)
\(368\) −7.83071 −0.408204
\(369\) 0 0
\(370\) −0.118474 −0.00615917
\(371\) 13.5866 0.705381
\(372\) 0 0
\(373\) 31.8890 1.65115 0.825575 0.564292i \(-0.190851\pi\)
0.825575 + 0.564292i \(0.190851\pi\)
\(374\) −4.19615 −0.216978
\(375\) 0 0
\(376\) 11.0037 0.567475
\(377\) −16.9084 −0.870826
\(378\) 0 0
\(379\) −12.2601 −0.629758 −0.314879 0.949132i \(-0.601964\pi\)
−0.314879 + 0.949132i \(0.601964\pi\)
\(380\) 5.31463 0.272635
\(381\) 0 0
\(382\) −26.5777 −1.35983
\(383\) −21.1693 −1.08170 −0.540851 0.841118i \(-0.681898\pi\)
−0.540851 + 0.841118i \(0.681898\pi\)
\(384\) 0 0
\(385\) −1.39761 −0.0712290
\(386\) −1.56159 −0.0794829
\(387\) 0 0
\(388\) −5.45334 −0.276851
\(389\) 23.7193 1.20262 0.601308 0.799017i \(-0.294646\pi\)
0.601308 + 0.799017i \(0.294646\pi\)
\(390\) 0 0
\(391\) −32.8589 −1.66174
\(392\) −5.04668 −0.254896
\(393\) 0 0
\(394\) 5.43022 0.273570
\(395\) −2.59377 −0.130507
\(396\) 0 0
\(397\) 35.6587 1.78966 0.894829 0.446409i \(-0.147297\pi\)
0.894829 + 0.446409i \(0.147297\pi\)
\(398\) 8.23695 0.412881
\(399\) 0 0
\(400\) 1.00000 0.0500000
\(401\) −14.1491 −0.706571 −0.353286 0.935515i \(-0.614936\pi\)
−0.353286 + 0.935515i \(0.614936\pi\)
\(402\) 0 0
\(403\) 4.06574 0.202529
\(404\) −17.5508 −0.873186
\(405\) 0 0
\(406\) 5.56276 0.276075
\(407\) −0.118474 −0.00587254
\(408\) 0 0
\(409\) −33.2907 −1.64612 −0.823059 0.567956i \(-0.807734\pi\)
−0.823059 + 0.567956i \(0.807734\pi\)
\(410\) 1.35425 0.0668816
\(411\) 0 0
\(412\) −17.5632 −0.865276
\(413\) 1.63884 0.0806420
\(414\) 0 0
\(415\) 13.5971 0.667454
\(416\) 4.24814 0.208282
\(417\) 0 0
\(418\) 5.31463 0.259947
\(419\) −9.84104 −0.480766 −0.240383 0.970678i \(-0.577273\pi\)
−0.240383 + 0.970678i \(0.577273\pi\)
\(420\) 0 0
\(421\) 33.8811 1.65127 0.825633 0.564208i \(-0.190818\pi\)
0.825633 + 0.564208i \(0.190818\pi\)
\(422\) 4.47315 0.217750
\(423\) 0 0
\(424\) −9.72129 −0.472108
\(425\) 4.19615 0.203543
\(426\) 0 0
\(427\) 2.55400 0.123597
\(428\) −0.201461 −0.00973797
\(429\) 0 0
\(430\) −4.73205 −0.228200
\(431\) −38.7317 −1.86564 −0.932819 0.360345i \(-0.882659\pi\)
−0.932819 + 0.360345i \(0.882659\pi\)
\(432\) 0 0
\(433\) −29.7601 −1.43018 −0.715089 0.699033i \(-0.753614\pi\)
−0.715089 + 0.699033i \(0.753614\pi\)
\(434\) −1.33761 −0.0642072
\(435\) 0 0
\(436\) 6.93725 0.332234
\(437\) 41.6173 1.99083
\(438\) 0 0
\(439\) 24.6004 1.17411 0.587056 0.809546i \(-0.300287\pi\)
0.587056 + 0.809546i \(0.300287\pi\)
\(440\) 1.00000 0.0476731
\(441\) 0 0
\(442\) 17.8258 0.847889
\(443\) −13.4286 −0.638013 −0.319006 0.947753i \(-0.603349\pi\)
−0.319006 + 0.947753i \(0.603349\pi\)
\(444\) 0 0
\(445\) −0.431927 −0.0204753
\(446\) −11.3919 −0.539421
\(447\) 0 0
\(448\) −1.39761 −0.0660310
\(449\) −4.79597 −0.226336 −0.113168 0.993576i \(-0.536100\pi\)
−0.113168 + 0.993576i \(0.536100\pi\)
\(450\) 0 0
\(451\) 1.35425 0.0637691
\(452\) 12.5198 0.588883
\(453\) 0 0
\(454\) −21.6495 −1.01606
\(455\) 5.93725 0.278343
\(456\) 0 0
\(457\) 16.1458 0.755267 0.377634 0.925955i \(-0.376738\pi\)
0.377634 + 0.925955i \(0.376738\pi\)
\(458\) 4.43724 0.207338
\(459\) 0 0
\(460\) 7.83071 0.365109
\(461\) −18.6755 −0.869805 −0.434902 0.900478i \(-0.643217\pi\)
−0.434902 + 0.900478i \(0.643217\pi\)
\(462\) 0 0
\(463\) −16.8696 −0.783996 −0.391998 0.919966i \(-0.628216\pi\)
−0.391998 + 0.919966i \(0.628216\pi\)
\(464\) −3.98019 −0.184776
\(465\) 0 0
\(466\) 18.2642 0.846075
\(467\) 27.3270 1.26454 0.632271 0.774747i \(-0.282123\pi\)
0.632271 + 0.774747i \(0.282123\pi\)
\(468\) 0 0
\(469\) 9.43649 0.435737
\(470\) −11.0037 −0.507565
\(471\) 0 0
\(472\) −1.17260 −0.0539732
\(473\) −4.73205 −0.217580
\(474\) 0 0
\(475\) −5.31463 −0.243852
\(476\) −5.86460 −0.268803
\(477\) 0 0
\(478\) −11.1061 −0.507982
\(479\) −5.62049 −0.256807 −0.128403 0.991722i \(-0.540985\pi\)
−0.128403 + 0.991722i \(0.540985\pi\)
\(480\) 0 0
\(481\) 0.503294 0.0229482
\(482\) 15.2915 0.696509
\(483\) 0 0
\(484\) 1.00000 0.0454545
\(485\) 5.45334 0.247623
\(486\) 0 0
\(487\) 31.5562 1.42995 0.714973 0.699152i \(-0.246439\pi\)
0.714973 + 0.699152i \(0.246439\pi\)
\(488\) −1.82740 −0.0827226
\(489\) 0 0
\(490\) 5.04668 0.227986
\(491\) 3.65163 0.164796 0.0823979 0.996600i \(-0.473742\pi\)
0.0823979 + 0.996600i \(0.473742\pi\)
\(492\) 0 0
\(493\) −16.7015 −0.752197
\(494\) −22.5773 −1.01580
\(495\) 0 0
\(496\) 0.957065 0.0429735
\(497\) −1.74441 −0.0782477
\(498\) 0 0
\(499\) 24.0632 1.07722 0.538609 0.842556i \(-0.318950\pi\)
0.538609 + 0.842556i \(0.318950\pi\)
\(500\) −1.00000 −0.0447214
\(501\) 0 0
\(502\) −3.65437 −0.163103
\(503\) 23.7953 1.06098 0.530489 0.847692i \(-0.322008\pi\)
0.530489 + 0.847692i \(0.322008\pi\)
\(504\) 0 0
\(505\) 17.5508 0.781002
\(506\) 7.83071 0.348118
\(507\) 0 0
\(508\) −0.0916079 −0.00406444
\(509\) −13.5889 −0.602317 −0.301158 0.953574i \(-0.597373\pi\)
−0.301158 + 0.953574i \(0.597373\pi\)
\(510\) 0 0
\(511\) −13.4533 −0.595141
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) −4.79148 −0.211343
\(515\) 17.5632 0.773927
\(516\) 0 0
\(517\) −11.0037 −0.483944
\(518\) −0.165581 −0.00727521
\(519\) 0 0
\(520\) −4.24814 −0.186293
\(521\) 5.06980 0.222112 0.111056 0.993814i \(-0.464577\pi\)
0.111056 + 0.993814i \(0.464577\pi\)
\(522\) 0 0
\(523\) −11.5112 −0.503350 −0.251675 0.967812i \(-0.580981\pi\)
−0.251675 + 0.967812i \(0.580981\pi\)
\(524\) −14.2519 −0.622596
\(525\) 0 0
\(526\) 7.77659 0.339075
\(527\) 4.01599 0.174939
\(528\) 0 0
\(529\) 38.3201 1.66609
\(530\) 9.72129 0.422266
\(531\) 0 0
\(532\) 7.42779 0.322036
\(533\) −5.75304 −0.249192
\(534\) 0 0
\(535\) 0.201461 0.00870991
\(536\) −6.75186 −0.291636
\(537\) 0 0
\(538\) −9.21639 −0.397347
\(539\) 5.04668 0.217376
\(540\) 0 0
\(541\) −10.1801 −0.437676 −0.218838 0.975761i \(-0.570227\pi\)
−0.218838 + 0.975761i \(0.570227\pi\)
\(542\) 11.1008 0.476820
\(543\) 0 0
\(544\) 4.19615 0.179909
\(545\) −6.93725 −0.297159
\(546\) 0 0
\(547\) −30.2217 −1.29219 −0.646094 0.763258i \(-0.723599\pi\)
−0.646094 + 0.763258i \(0.723599\pi\)
\(548\) 20.3935 0.871166
\(549\) 0 0
\(550\) −1.00000 −0.0426401
\(551\) 21.1532 0.901157
\(552\) 0 0
\(553\) −3.62508 −0.154154
\(554\) −7.43481 −0.315875
\(555\) 0 0
\(556\) −4.90508 −0.208022
\(557\) −20.1850 −0.855264 −0.427632 0.903953i \(-0.640652\pi\)
−0.427632 + 0.903953i \(0.640652\pi\)
\(558\) 0 0
\(559\) 20.1024 0.850241
\(560\) 1.39761 0.0590599
\(561\) 0 0
\(562\) −21.9518 −0.925979
\(563\) 19.6090 0.826421 0.413211 0.910635i \(-0.364407\pi\)
0.413211 + 0.910635i \(0.364407\pi\)
\(564\) 0 0
\(565\) −12.5198 −0.526713
\(566\) −23.7734 −0.999271
\(567\) 0 0
\(568\) 1.24814 0.0523707
\(569\) 10.4523 0.438184 0.219092 0.975704i \(-0.429691\pi\)
0.219092 + 0.975704i \(0.429691\pi\)
\(570\) 0 0
\(571\) 4.80973 0.201281 0.100640 0.994923i \(-0.467911\pi\)
0.100640 + 0.994923i \(0.467911\pi\)
\(572\) −4.24814 −0.177624
\(573\) 0 0
\(574\) 1.89272 0.0790004
\(575\) −7.83071 −0.326563
\(576\) 0 0
\(577\) 2.32164 0.0966513 0.0483257 0.998832i \(-0.484611\pi\)
0.0483257 + 0.998832i \(0.484611\pi\)
\(578\) 0.607695 0.0252768
\(579\) 0 0
\(580\) 3.98019 0.165268
\(581\) 19.0035 0.788396
\(582\) 0 0
\(583\) 9.72129 0.402615
\(584\) 9.62594 0.398324
\(585\) 0 0
\(586\) 17.9476 0.741409
\(587\) −28.8540 −1.19093 −0.595465 0.803381i \(-0.703032\pi\)
−0.595465 + 0.803381i \(0.703032\pi\)
\(588\) 0 0
\(589\) −5.08644 −0.209583
\(590\) 1.17260 0.0482751
\(591\) 0 0
\(592\) 0.118474 0.00486925
\(593\) 20.0744 0.824357 0.412178 0.911103i \(-0.364768\pi\)
0.412178 + 0.911103i \(0.364768\pi\)
\(594\) 0 0
\(595\) 5.86460 0.240425
\(596\) −23.2230 −0.951252
\(597\) 0 0
\(598\) −33.2660 −1.36035
\(599\) 23.6324 0.965595 0.482797 0.875732i \(-0.339621\pi\)
0.482797 + 0.875732i \(0.339621\pi\)
\(600\) 0 0
\(601\) 29.1735 1.19001 0.595005 0.803722i \(-0.297150\pi\)
0.595005 + 0.803722i \(0.297150\pi\)
\(602\) −6.61358 −0.269549
\(603\) 0 0
\(604\) −3.19572 −0.130032
\(605\) −1.00000 −0.0406558
\(606\) 0 0
\(607\) −24.5869 −0.997951 −0.498976 0.866616i \(-0.666290\pi\)
−0.498976 + 0.866616i \(0.666290\pi\)
\(608\) −5.31463 −0.215537
\(609\) 0 0
\(610\) 1.82740 0.0739893
\(611\) 46.7454 1.89112
\(612\) 0 0
\(613\) 14.2222 0.574428 0.287214 0.957866i \(-0.407271\pi\)
0.287214 + 0.957866i \(0.407271\pi\)
\(614\) −8.45003 −0.341015
\(615\) 0 0
\(616\) 1.39761 0.0563114
\(617\) −4.26221 −0.171590 −0.0857951 0.996313i \(-0.527343\pi\)
−0.0857951 + 0.996313i \(0.527343\pi\)
\(618\) 0 0
\(619\) −8.52026 −0.342458 −0.171229 0.985231i \(-0.554774\pi\)
−0.171229 + 0.985231i \(0.554774\pi\)
\(620\) −0.957065 −0.0384367
\(621\) 0 0
\(622\) −0.985927 −0.0395321
\(623\) −0.603667 −0.0241854
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 12.9794 0.518763
\(627\) 0 0
\(628\) 3.74398 0.149401
\(629\) 0.497135 0.0198221
\(630\) 0 0
\(631\) 30.4733 1.21312 0.606562 0.795036i \(-0.292548\pi\)
0.606562 + 0.795036i \(0.292548\pi\)
\(632\) 2.59377 0.103174
\(633\) 0 0
\(634\) −17.1603 −0.681521
\(635\) 0.0916079 0.00363535
\(636\) 0 0
\(637\) −21.4390 −0.849443
\(638\) 3.98019 0.157577
\(639\) 0 0
\(640\) −1.00000 −0.0395285
\(641\) 6.84147 0.270222 0.135111 0.990830i \(-0.456861\pi\)
0.135111 + 0.990830i \(0.456861\pi\)
\(642\) 0 0
\(643\) −9.01611 −0.355561 −0.177780 0.984070i \(-0.556892\pi\)
−0.177780 + 0.984070i \(0.556892\pi\)
\(644\) 10.9443 0.431266
\(645\) 0 0
\(646\) −22.3010 −0.877420
\(647\) 40.6301 1.59733 0.798667 0.601773i \(-0.205539\pi\)
0.798667 + 0.601773i \(0.205539\pi\)
\(648\) 0 0
\(649\) 1.17260 0.0460285
\(650\) 4.24814 0.166626
\(651\) 0 0
\(652\) 3.20734 0.125609
\(653\) −30.1317 −1.17915 −0.589573 0.807715i \(-0.700704\pi\)
−0.589573 + 0.807715i \(0.700704\pi\)
\(654\) 0 0
\(655\) 14.2519 0.556867
\(656\) −1.35425 −0.0528745
\(657\) 0 0
\(658\) −15.3790 −0.599535
\(659\) 50.6336 1.97240 0.986202 0.165547i \(-0.0529390\pi\)
0.986202 + 0.165547i \(0.0529390\pi\)
\(660\) 0 0
\(661\) 32.4104 1.26062 0.630309 0.776344i \(-0.282928\pi\)
0.630309 + 0.776344i \(0.282928\pi\)
\(662\) −25.2915 −0.982982
\(663\) 0 0
\(664\) −13.5971 −0.527669
\(665\) −7.42779 −0.288037
\(666\) 0 0
\(667\) 31.1677 1.20682
\(668\) −0.0722263 −0.00279452
\(669\) 0 0
\(670\) 6.75186 0.260847
\(671\) 1.82740 0.0705460
\(672\) 0 0
\(673\) −0.149905 −0.00577840 −0.00288920 0.999996i \(-0.500920\pi\)
−0.00288920 + 0.999996i \(0.500920\pi\)
\(674\) −9.25188 −0.356369
\(675\) 0 0
\(676\) 5.04668 0.194103
\(677\) 20.0226 0.769531 0.384765 0.923014i \(-0.374282\pi\)
0.384765 + 0.923014i \(0.374282\pi\)
\(678\) 0 0
\(679\) 7.62166 0.292493
\(680\) −4.19615 −0.160915
\(681\) 0 0
\(682\) −0.957065 −0.0366479
\(683\) 41.7322 1.59684 0.798420 0.602101i \(-0.205670\pi\)
0.798420 + 0.602101i \(0.205670\pi\)
\(684\) 0 0
\(685\) −20.3935 −0.779195
\(686\) 16.8366 0.642824
\(687\) 0 0
\(688\) 4.73205 0.180408
\(689\) −41.2974 −1.57331
\(690\) 0 0
\(691\) 44.7638 1.70290 0.851448 0.524439i \(-0.175725\pi\)
0.851448 + 0.524439i \(0.175725\pi\)
\(692\) −25.4592 −0.967814
\(693\) 0 0
\(694\) −15.5918 −0.591855
\(695\) 4.90508 0.186060
\(696\) 0 0
\(697\) −5.68263 −0.215245
\(698\) 3.31919 0.125633
\(699\) 0 0
\(700\) −1.39761 −0.0528248
\(701\) −32.1479 −1.21421 −0.607106 0.794621i \(-0.707670\pi\)
−0.607106 + 0.794621i \(0.707670\pi\)
\(702\) 0 0
\(703\) −0.629645 −0.0237475
\(704\) −1.00000 −0.0376889
\(705\) 0 0
\(706\) −22.4368 −0.844422
\(707\) 24.5293 0.922518
\(708\) 0 0
\(709\) 33.9064 1.27338 0.636691 0.771119i \(-0.280303\pi\)
0.636691 + 0.771119i \(0.280303\pi\)
\(710\) −1.24814 −0.0468418
\(711\) 0 0
\(712\) 0.431927 0.0161871
\(713\) −7.49450 −0.280671
\(714\) 0 0
\(715\) 4.24814 0.158871
\(716\) 13.2515 0.495230
\(717\) 0 0
\(718\) −11.0016 −0.410576
\(719\) −2.38482 −0.0889388 −0.0444694 0.999011i \(-0.514160\pi\)
−0.0444694 + 0.999011i \(0.514160\pi\)
\(720\) 0 0
\(721\) 24.5466 0.914161
\(722\) 9.24525 0.344073
\(723\) 0 0
\(724\) −3.51277 −0.130551
\(725\) −3.98019 −0.147821
\(726\) 0 0
\(727\) 5.58831 0.207259 0.103630 0.994616i \(-0.466954\pi\)
0.103630 + 0.994616i \(0.466954\pi\)
\(728\) −5.93725 −0.220049
\(729\) 0 0
\(730\) −9.62594 −0.356272
\(731\) 19.8564 0.734416
\(732\) 0 0
\(733\) −43.7520 −1.61602 −0.808009 0.589170i \(-0.799455\pi\)
−0.808009 + 0.589170i \(0.799455\pi\)
\(734\) −26.2276 −0.968078
\(735\) 0 0
\(736\) −7.83071 −0.288644
\(737\) 6.75186 0.248708
\(738\) 0 0
\(739\) 13.3060 0.489469 0.244735 0.969590i \(-0.421299\pi\)
0.244735 + 0.969590i \(0.421299\pi\)
\(740\) −0.118474 −0.00435519
\(741\) 0 0
\(742\) 13.5866 0.498780
\(743\) −38.2515 −1.40331 −0.701655 0.712517i \(-0.747555\pi\)
−0.701655 + 0.712517i \(0.747555\pi\)
\(744\) 0 0
\(745\) 23.2230 0.850826
\(746\) 31.8890 1.16754
\(747\) 0 0
\(748\) −4.19615 −0.153427
\(749\) 0.281564 0.0102881
\(750\) 0 0
\(751\) 49.4741 1.80533 0.902667 0.430339i \(-0.141606\pi\)
0.902667 + 0.430339i \(0.141606\pi\)
\(752\) 11.0037 0.401265
\(753\) 0 0
\(754\) −16.9084 −0.615767
\(755\) 3.19572 0.116304
\(756\) 0 0
\(757\) 15.7122 0.571071 0.285536 0.958368i \(-0.407829\pi\)
0.285536 + 0.958368i \(0.407829\pi\)
\(758\) −12.2601 −0.445306
\(759\) 0 0
\(760\) 5.31463 0.192782
\(761\) 25.8399 0.936696 0.468348 0.883544i \(-0.344849\pi\)
0.468348 + 0.883544i \(0.344849\pi\)
\(762\) 0 0
\(763\) −9.69560 −0.351004
\(764\) −26.5777 −0.961547
\(765\) 0 0
\(766\) −21.1693 −0.764879
\(767\) −4.98136 −0.179867
\(768\) 0 0
\(769\) 5.23503 0.188780 0.0943900 0.995535i \(-0.469910\pi\)
0.0943900 + 0.995535i \(0.469910\pi\)
\(770\) −1.39761 −0.0503665
\(771\) 0 0
\(772\) −1.56159 −0.0562029
\(773\) −30.7776 −1.10699 −0.553497 0.832851i \(-0.686707\pi\)
−0.553497 + 0.832851i \(0.686707\pi\)
\(774\) 0 0
\(775\) 0.957065 0.0343788
\(776\) −5.45334 −0.195764
\(777\) 0 0
\(778\) 23.7193 0.850378
\(779\) 7.19733 0.257871
\(780\) 0 0
\(781\) −1.24814 −0.0446619
\(782\) −32.8589 −1.17503
\(783\) 0 0
\(784\) −5.04668 −0.180238
\(785\) −3.74398 −0.133629
\(786\) 0 0
\(787\) 11.5879 0.413063 0.206532 0.978440i \(-0.433782\pi\)
0.206532 + 0.978440i \(0.433782\pi\)
\(788\) 5.43022 0.193443
\(789\) 0 0
\(790\) −2.59377 −0.0922820
\(791\) −17.4979 −0.622153
\(792\) 0 0
\(793\) −7.76305 −0.275674
\(794\) 35.6587 1.26548
\(795\) 0 0
\(796\) 8.23695 0.291951
\(797\) −34.8992 −1.23619 −0.618097 0.786102i \(-0.712096\pi\)
−0.618097 + 0.786102i \(0.712096\pi\)
\(798\) 0 0
\(799\) 46.1734 1.63350
\(800\) 1.00000 0.0353553
\(801\) 0 0
\(802\) −14.1491 −0.499621
\(803\) −9.62594 −0.339692
\(804\) 0 0
\(805\) −10.9443 −0.385736
\(806\) 4.06574 0.143210
\(807\) 0 0
\(808\) −17.5508 −0.617436
\(809\) 49.8791 1.75366 0.876829 0.480803i \(-0.159655\pi\)
0.876829 + 0.480803i \(0.159655\pi\)
\(810\) 0 0
\(811\) 11.0546 0.388178 0.194089 0.980984i \(-0.437825\pi\)
0.194089 + 0.980984i \(0.437825\pi\)
\(812\) 5.56276 0.195215
\(813\) 0 0
\(814\) −0.118474 −0.00415251
\(815\) −3.20734 −0.112348
\(816\) 0 0
\(817\) −25.1491 −0.879855
\(818\) −33.2907 −1.16398
\(819\) 0 0
\(820\) 1.35425 0.0472924
\(821\) −34.4750 −1.20318 −0.601592 0.798803i \(-0.705467\pi\)
−0.601592 + 0.798803i \(0.705467\pi\)
\(822\) 0 0
\(823\) −41.0471 −1.43081 −0.715407 0.698708i \(-0.753759\pi\)
−0.715407 + 0.698708i \(0.753759\pi\)
\(824\) −17.5632 −0.611843
\(825\) 0 0
\(826\) 1.63884 0.0570225
\(827\) 11.2842 0.392389 0.196194 0.980565i \(-0.437142\pi\)
0.196194 + 0.980565i \(0.437142\pi\)
\(828\) 0 0
\(829\) 21.0688 0.731751 0.365875 0.930664i \(-0.380770\pi\)
0.365875 + 0.930664i \(0.380770\pi\)
\(830\) 13.5971 0.471961
\(831\) 0 0
\(832\) 4.24814 0.147278
\(833\) −21.1766 −0.733727
\(834\) 0 0
\(835\) 0.0722263 0.00249949
\(836\) 5.31463 0.183810
\(837\) 0 0
\(838\) −9.84104 −0.339953
\(839\) 39.6822 1.36998 0.684992 0.728551i \(-0.259806\pi\)
0.684992 + 0.728551i \(0.259806\pi\)
\(840\) 0 0
\(841\) −13.1581 −0.453727
\(842\) 33.8811 1.16762
\(843\) 0 0
\(844\) 4.47315 0.153972
\(845\) −5.04668 −0.173611
\(846\) 0 0
\(847\) −1.39761 −0.0480226
\(848\) −9.72129 −0.333830
\(849\) 0 0
\(850\) 4.19615 0.143927
\(851\) −0.927737 −0.0318024
\(852\) 0 0
\(853\) 53.9572 1.84746 0.923730 0.383043i \(-0.125124\pi\)
0.923730 + 0.383043i \(0.125124\pi\)
\(854\) 2.55400 0.0873961
\(855\) 0 0
\(856\) −0.201461 −0.00688579
\(857\) 32.2697 1.10231 0.551156 0.834402i \(-0.314187\pi\)
0.551156 + 0.834402i \(0.314187\pi\)
\(858\) 0 0
\(859\) −16.3919 −0.559285 −0.279642 0.960104i \(-0.590216\pi\)
−0.279642 + 0.960104i \(0.590216\pi\)
\(860\) −4.73205 −0.161362
\(861\) 0 0
\(862\) −38.7317 −1.31921
\(863\) −19.6176 −0.667792 −0.333896 0.942610i \(-0.608363\pi\)
−0.333896 + 0.942610i \(0.608363\pi\)
\(864\) 0 0
\(865\) 25.4592 0.865640
\(866\) −29.7601 −1.01129
\(867\) 0 0
\(868\) −1.33761 −0.0454013
\(869\) −2.59377 −0.0879875
\(870\) 0 0
\(871\) −28.6828 −0.971881
\(872\) 6.93725 0.234925
\(873\) 0 0
\(874\) 41.6173 1.40773
\(875\) 1.39761 0.0472480
\(876\) 0 0
\(877\) 0.508325 0.0171649 0.00858246 0.999963i \(-0.497268\pi\)
0.00858246 + 0.999963i \(0.497268\pi\)
\(878\) 24.6004 0.830223
\(879\) 0 0
\(880\) 1.00000 0.0337100
\(881\) −10.5839 −0.356579 −0.178290 0.983978i \(-0.557056\pi\)
−0.178290 + 0.983978i \(0.557056\pi\)
\(882\) 0 0
\(883\) −18.1160 −0.609654 −0.304827 0.952408i \(-0.598599\pi\)
−0.304827 + 0.952408i \(0.598599\pi\)
\(884\) 17.8258 0.599548
\(885\) 0 0
\(886\) −13.4286 −0.451143
\(887\) −48.4251 −1.62596 −0.812978 0.582295i \(-0.802155\pi\)
−0.812978 + 0.582295i \(0.802155\pi\)
\(888\) 0 0
\(889\) 0.128032 0.00429407
\(890\) −0.431927 −0.0144782
\(891\) 0 0
\(892\) −11.3919 −0.381428
\(893\) −58.4808 −1.95698
\(894\) 0 0
\(895\) −13.2515 −0.442947
\(896\) −1.39761 −0.0466910
\(897\) 0 0
\(898\) −4.79597 −0.160044
\(899\) −3.80930 −0.127047
\(900\) 0 0
\(901\) −40.7920 −1.35898
\(902\) 1.35425 0.0450915
\(903\) 0 0
\(904\) 12.5198 0.416403
\(905\) 3.51277 0.116769
\(906\) 0 0
\(907\) 33.7338 1.12011 0.560056 0.828455i \(-0.310780\pi\)
0.560056 + 0.828455i \(0.310780\pi\)
\(908\) −21.6495 −0.718464
\(909\) 0 0
\(910\) 5.93725 0.196818
\(911\) −47.5081 −1.57401 −0.787006 0.616945i \(-0.788370\pi\)
−0.787006 + 0.616945i \(0.788370\pi\)
\(912\) 0 0
\(913\) 13.5971 0.449998
\(914\) 16.1458 0.534055
\(915\) 0 0
\(916\) 4.43724 0.146610
\(917\) 19.9186 0.657771
\(918\) 0 0
\(919\) −32.1034 −1.05899 −0.529497 0.848312i \(-0.677619\pi\)
−0.529497 + 0.848312i \(0.677619\pi\)
\(920\) 7.83071 0.258171
\(921\) 0 0
\(922\) −18.6755 −0.615045
\(923\) 5.30226 0.174526
\(924\) 0 0
\(925\) 0.118474 0.00389540
\(926\) −16.8696 −0.554369
\(927\) 0 0
\(928\) −3.98019 −0.130656
\(929\) 8.57941 0.281481 0.140741 0.990047i \(-0.455052\pi\)
0.140741 + 0.990047i \(0.455052\pi\)
\(930\) 0 0
\(931\) 26.8212 0.879029
\(932\) 18.2642 0.598265
\(933\) 0 0
\(934\) 27.3270 0.894166
\(935\) 4.19615 0.137229
\(936\) 0 0
\(937\) −15.6862 −0.512444 −0.256222 0.966618i \(-0.582478\pi\)
−0.256222 + 0.966618i \(0.582478\pi\)
\(938\) 9.43649 0.308112
\(939\) 0 0
\(940\) −11.0037 −0.358903
\(941\) 26.9355 0.878074 0.439037 0.898469i \(-0.355320\pi\)
0.439037 + 0.898469i \(0.355320\pi\)
\(942\) 0 0
\(943\) 10.6047 0.345338
\(944\) −1.17260 −0.0381648
\(945\) 0 0
\(946\) −4.73205 −0.153852
\(947\) −23.7524 −0.771850 −0.385925 0.922530i \(-0.626118\pi\)
−0.385925 + 0.922530i \(0.626118\pi\)
\(948\) 0 0
\(949\) 40.8923 1.32742
\(950\) −5.31463 −0.172429
\(951\) 0 0
\(952\) −5.86460 −0.190073
\(953\) −34.0434 −1.10277 −0.551386 0.834250i \(-0.685901\pi\)
−0.551386 + 0.834250i \(0.685901\pi\)
\(954\) 0 0
\(955\) 26.5777 0.860034
\(956\) −11.1061 −0.359197
\(957\) 0 0
\(958\) −5.62049 −0.181590
\(959\) −28.5022 −0.920384
\(960\) 0 0
\(961\) −30.0840 −0.970452
\(962\) 0.503294 0.0162269
\(963\) 0 0
\(964\) 15.2915 0.492506
\(965\) 1.56159 0.0502694
\(966\) 0 0
\(967\) 32.9097 1.05830 0.529152 0.848527i \(-0.322510\pi\)
0.529152 + 0.848527i \(0.322510\pi\)
\(968\) 1.00000 0.0321412
\(969\) 0 0
\(970\) 5.45334 0.175096
\(971\) 30.8666 0.990557 0.495279 0.868734i \(-0.335066\pi\)
0.495279 + 0.868734i \(0.335066\pi\)
\(972\) 0 0
\(973\) 6.85540 0.219774
\(974\) 31.5562 1.01113
\(975\) 0 0
\(976\) −1.82740 −0.0584937
\(977\) −7.42448 −0.237530 −0.118765 0.992922i \(-0.537894\pi\)
−0.118765 + 0.992922i \(0.537894\pi\)
\(978\) 0 0
\(979\) −0.431927 −0.0138044
\(980\) 5.04668 0.161210
\(981\) 0 0
\(982\) 3.65163 0.116528
\(983\) −28.1581 −0.898104 −0.449052 0.893506i \(-0.648238\pi\)
−0.449052 + 0.893506i \(0.648238\pi\)
\(984\) 0 0
\(985\) −5.43022 −0.173021
\(986\) −16.7015 −0.531883
\(987\) 0 0
\(988\) −22.5773 −0.718279
\(989\) −37.0553 −1.17829
\(990\) 0 0
\(991\) −46.5021 −1.47719 −0.738593 0.674151i \(-0.764510\pi\)
−0.738593 + 0.674151i \(0.764510\pi\)
\(992\) 0.957065 0.0303868
\(993\) 0 0
\(994\) −1.74441 −0.0553295
\(995\) −8.23695 −0.261129
\(996\) 0 0
\(997\) 40.0438 1.26820 0.634100 0.773251i \(-0.281371\pi\)
0.634100 + 0.773251i \(0.281371\pi\)
\(998\) 24.0632 0.761708
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8910.2.a.bt.1.3 yes 4
3.2 odd 2 8910.2.a.br.1.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
8910.2.a.br.1.3 4 3.2 odd 2
8910.2.a.bt.1.3 yes 4 1.1 even 1 trivial