Properties

Label 891.1.q
Level $891$
Weight $1$
Character orbit 891.q
Rep. character $\chi_{891}(10,\cdot)$
Character field $\Q(\zeta_{18})$
Dimension $6$
Newform subspaces $1$
Sturm bound $108$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 891 = 3^{4} \cdot 11 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 891.q (of order \(18\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 297 \)
Character field: \(\Q(\zeta_{18})\)
Newform subspaces: \( 1 \)
Sturm bound: \(108\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(891, [\chi])\).

Total New Old
Modular forms 54 18 36
Cusp forms 18 6 12
Eisenstein series 36 12 24

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 6 0 0 0

Trace form

\( 6 q + 3 q^{5} - 6 q^{20} - 3 q^{25} - 3 q^{31} + 3 q^{44} + 3 q^{47} + 3 q^{59} - 3 q^{64} + 6 q^{67} - 3 q^{89} + 6 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(891, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
891.1.q.a 891.q 297.q $6$ $0.445$ \(\Q(\zeta_{18})\) $D_{9}$ \(\Q(\sqrt{-11}) \) None 297.1.q.a \(0\) \(0\) \(3\) \(0\) \(q-\zeta_{18}^{5}q^{4}+(\zeta_{18}^{3}-\zeta_{18}^{4})q^{5}+\zeta_{18}q^{11}+\cdots\)

Decomposition of \(S_{1}^{\mathrm{old}}(891, [\chi])\) into lower level spaces

\( S_{1}^{\mathrm{old}}(891, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(297, [\chi])\)\(^{\oplus 2}\)