Properties

Label 89.2.g
Level $89$
Weight $2$
Character orbit 89.g
Rep. character $\chi_{89}(5,\cdot)$
Character field $\Q(\zeta_{44})$
Dimension $140$
Newform subspaces $1$
Sturm bound $15$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 89 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 89.g (of order \(44\) and degree \(20\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 89 \)
Character field: \(\Q(\zeta_{44})\)
Newform subspaces: \( 1 \)
Sturm bound: \(15\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(89, [\chi])\).

Total New Old
Modular forms 180 180 0
Cusp forms 140 140 0
Eisenstein series 40 40 0

Trace form

\( 140 q - 20 q^{2} - 20 q^{3} - 32 q^{4} - 22 q^{5} - 14 q^{6} - 20 q^{7} - 16 q^{8} - 22 q^{10} - 18 q^{11} + 6 q^{12} - 18 q^{13} + 76 q^{14} - 36 q^{15} - 40 q^{16} - 22 q^{17} - 22 q^{18} - 12 q^{19}+ \cdots - 132 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(89, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
89.2.g.a 89.g 89.g $140$ $0.711$ None 89.2.g.a \(-20\) \(-20\) \(-22\) \(-20\) $\mathrm{SU}(2)[C_{44}]$