Properties

Label 888.2.br.a.569.37
Level $888$
Weight $2$
Character 888.569
Analytic conductor $7.091$
Analytic rank $0$
Dimension $152$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [888,2,Mod(473,888)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("888.473"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(888, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([0, 0, 6, 7])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 888 = 2^{3} \cdot 3 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 888.br (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.09071569949\)
Analytic rank: \(0\)
Dimension: \(152\)
Relative dimension: \(38\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 569.37
Character \(\chi\) \(=\) 888.569
Dual form 888.2.br.a.785.37

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.72010 - 0.203120i) q^{3} +(0.272728 - 1.01783i) q^{5} +(-0.338361 - 0.586058i) q^{7} +(2.91748 - 0.698774i) q^{9} +6.32941 q^{11} +(-3.74925 - 1.00461i) q^{13} +(0.262377 - 1.80617i) q^{15} +(2.40377 - 0.644088i) q^{17} +(-5.39309 - 1.44507i) q^{19} +(-0.701055 - 0.939351i) q^{21} +(0.0101113 + 0.0101113i) q^{23} +(3.36852 + 1.94482i) q^{25} +(4.87643 - 1.79456i) q^{27} +(-4.64952 + 4.64952i) q^{29} +(-1.74098 - 1.74098i) q^{31} +(10.8872 - 1.28563i) q^{33} +(-0.688791 + 0.184561i) q^{35} +(4.57479 - 4.00890i) q^{37} +(-6.65314 - 0.966478i) q^{39} +(-2.38864 - 4.13724i) q^{41} +(4.64758 - 4.64758i) q^{43} +(0.0844435 - 3.16009i) q^{45} +2.77052i q^{47} +(3.27102 - 5.66558i) q^{49} +(4.00390 - 1.59615i) q^{51} +(9.01397 + 5.20422i) q^{53} +(1.72621 - 6.44229i) q^{55} +(-9.57018 - 1.39023i) q^{57} +(-0.306327 + 0.0820801i) q^{59} +(-1.49014 + 5.56128i) q^{61} +(-1.39669 - 1.47338i) q^{63} +(-2.04505 + 3.54213i) q^{65} +(-7.70626 + 4.44921i) q^{67} +(0.0194463 + 0.0153386i) q^{69} +(-4.32903 + 2.49937i) q^{71} +16.2965i q^{73} +(6.18922 + 2.66106i) q^{75} +(-2.14162 - 3.70940i) q^{77} +(-2.45694 - 0.658334i) q^{79} +(8.02343 - 4.07732i) q^{81} +(-3.12080 - 1.80180i) q^{83} -2.62230i q^{85} +(-7.05323 + 8.94205i) q^{87} +(-1.49214 - 5.56874i) q^{89} +(0.679840 + 2.53720i) q^{91} +(-3.34828 - 2.64103i) q^{93} +(-2.94170 + 5.09517i) q^{95} +(-4.85415 + 4.85415i) q^{97} +(18.4659 - 4.42282i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 152 q + 4 q^{13} - 12 q^{15} + 4 q^{19} - 44 q^{31} - 12 q^{39} + 28 q^{43} + 20 q^{45} - 80 q^{49} - 12 q^{51} - 8 q^{55} - 40 q^{57} - 28 q^{61} + 48 q^{63} + 56 q^{69} + 64 q^{75} + 20 q^{79} + 16 q^{81}+ \cdots - 20 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/888\mathbb{Z}\right)^\times\).

\(n\) \(223\) \(409\) \(445\) \(593\)
\(\chi(n)\) \(1\) \(e\left(\frac{11}{12}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.72010 0.203120i 0.993100 0.117271i
\(4\) 0 0
\(5\) 0.272728 1.01783i 0.121968 0.455190i −0.877746 0.479127i \(-0.840953\pi\)
0.999713 + 0.0239370i \(0.00762012\pi\)
\(6\) 0 0
\(7\) −0.338361 0.586058i −0.127888 0.221509i 0.794970 0.606649i \(-0.207487\pi\)
−0.922858 + 0.385140i \(0.874153\pi\)
\(8\) 0 0
\(9\) 2.91748 0.698774i 0.972495 0.232925i
\(10\) 0 0
\(11\) 6.32941 1.90839 0.954194 0.299188i \(-0.0967158\pi\)
0.954194 + 0.299188i \(0.0967158\pi\)
\(12\) 0 0
\(13\) −3.74925 1.00461i −1.03985 0.278628i −0.301801 0.953371i \(-0.597588\pi\)
−0.738053 + 0.674743i \(0.764255\pi\)
\(14\) 0 0
\(15\) 0.262377 1.80617i 0.0677453 0.466352i
\(16\) 0 0
\(17\) 2.40377 0.644088i 0.583000 0.156214i 0.0447480 0.998998i \(-0.485752\pi\)
0.538252 + 0.842784i \(0.319085\pi\)
\(18\) 0 0
\(19\) −5.39309 1.44507i −1.23726 0.331523i −0.419858 0.907590i \(-0.637920\pi\)
−0.817402 + 0.576067i \(0.804587\pi\)
\(20\) 0 0
\(21\) −0.701055 0.939351i −0.152983 0.204983i
\(22\) 0 0
\(23\) 0.0101113 + 0.0101113i 0.00210835 + 0.00210835i 0.708160 0.706052i \(-0.249525\pi\)
−0.706052 + 0.708160i \(0.749525\pi\)
\(24\) 0 0
\(25\) 3.36852 + 1.94482i 0.673704 + 0.388963i
\(26\) 0 0
\(27\) 4.87643 1.79456i 0.938469 0.345363i
\(28\) 0 0
\(29\) −4.64952 + 4.64952i −0.863395 + 0.863395i −0.991731 0.128336i \(-0.959036\pi\)
0.128336 + 0.991731i \(0.459036\pi\)
\(30\) 0 0
\(31\) −1.74098 1.74098i −0.312689 0.312689i 0.533261 0.845950i \(-0.320966\pi\)
−0.845950 + 0.533261i \(0.820966\pi\)
\(32\) 0 0
\(33\) 10.8872 1.28563i 1.89522 0.223800i
\(34\) 0 0
\(35\) −0.688791 + 0.184561i −0.116427 + 0.0311965i
\(36\) 0 0
\(37\) 4.57479 4.00890i 0.752091 0.659059i
\(38\) 0 0
\(39\) −6.65314 0.966478i −1.06535 0.154760i
\(40\) 0 0
\(41\) −2.38864 4.13724i −0.373043 0.646129i 0.616989 0.786972i \(-0.288352\pi\)
−0.990032 + 0.140843i \(0.955019\pi\)
\(42\) 0 0
\(43\) 4.64758 4.64758i 0.708750 0.708750i −0.257522 0.966272i \(-0.582906\pi\)
0.966272 + 0.257522i \(0.0829061\pi\)
\(44\) 0 0
\(45\) 0.0844435 3.16009i 0.0125881 0.471079i
\(46\) 0 0
\(47\) 2.77052i 0.404122i 0.979373 + 0.202061i \(0.0647639\pi\)
−0.979373 + 0.202061i \(0.935236\pi\)
\(48\) 0 0
\(49\) 3.27102 5.66558i 0.467289 0.809368i
\(50\) 0 0
\(51\) 4.00390 1.59615i 0.560658 0.223506i
\(52\) 0 0
\(53\) 9.01397 + 5.20422i 1.23816 + 0.714854i 0.968719 0.248161i \(-0.0798263\pi\)
0.269446 + 0.963016i \(0.413160\pi\)
\(54\) 0 0
\(55\) 1.72621 6.44229i 0.232762 0.868679i
\(56\) 0 0
\(57\) −9.57018 1.39023i −1.26760 0.184140i
\(58\) 0 0
\(59\) −0.306327 + 0.0820801i −0.0398804 + 0.0106859i −0.278704 0.960377i \(-0.589905\pi\)
0.238824 + 0.971063i \(0.423238\pi\)
\(60\) 0 0
\(61\) −1.49014 + 5.56128i −0.190793 + 0.712049i 0.802523 + 0.596621i \(0.203490\pi\)
−0.993316 + 0.115428i \(0.963176\pi\)
\(62\) 0 0
\(63\) −1.39669 1.47338i −0.175966 0.185628i
\(64\) 0 0
\(65\) −2.04505 + 3.54213i −0.253657 + 0.439347i
\(66\) 0 0
\(67\) −7.70626 + 4.44921i −0.941469 + 0.543558i −0.890421 0.455139i \(-0.849590\pi\)
−0.0510488 + 0.998696i \(0.516256\pi\)
\(68\) 0 0
\(69\) 0.0194463 + 0.0153386i 0.00234106 + 0.00184656i
\(70\) 0 0
\(71\) −4.32903 + 2.49937i −0.513761 + 0.296620i −0.734378 0.678740i \(-0.762526\pi\)
0.220617 + 0.975360i \(0.429193\pi\)
\(72\) 0 0
\(73\) 16.2965i 1.90736i 0.300822 + 0.953680i \(0.402739\pi\)
−0.300822 + 0.953680i \(0.597261\pi\)
\(74\) 0 0
\(75\) 6.18922 + 2.66106i 0.714670 + 0.307273i
\(76\) 0 0
\(77\) −2.14162 3.70940i −0.244061 0.422726i
\(78\) 0 0
\(79\) −2.45694 0.658334i −0.276427 0.0740684i 0.117942 0.993020i \(-0.462370\pi\)
−0.394369 + 0.918952i \(0.629037\pi\)
\(80\) 0 0
\(81\) 8.02343 4.07732i 0.891492 0.453036i
\(82\) 0 0
\(83\) −3.12080 1.80180i −0.342553 0.197773i 0.318848 0.947806i \(-0.396704\pi\)
−0.661400 + 0.750033i \(0.730037\pi\)
\(84\) 0 0
\(85\) 2.62230i 0.284429i
\(86\) 0 0
\(87\) −7.05323 + 8.94205i −0.756186 + 0.958689i
\(88\) 0 0
\(89\) −1.49214 5.56874i −0.158166 0.590285i −0.998813 0.0487017i \(-0.984492\pi\)
0.840647 0.541584i \(-0.182175\pi\)
\(90\) 0 0
\(91\) 0.679840 + 2.53720i 0.0712666 + 0.265971i
\(92\) 0 0
\(93\) −3.34828 2.64103i −0.347201 0.273862i
\(94\) 0 0
\(95\) −2.94170 + 5.09517i −0.301812 + 0.522753i
\(96\) 0 0
\(97\) −4.85415 + 4.85415i −0.492864 + 0.492864i −0.909207 0.416343i \(-0.863311\pi\)
0.416343 + 0.909207i \(0.363311\pi\)
\(98\) 0 0
\(99\) 18.4659 4.42282i 1.85590 0.444511i
\(100\) 0 0
\(101\) 6.22502 0.619412 0.309706 0.950832i \(-0.399769\pi\)
0.309706 + 0.950832i \(0.399769\pi\)
\(102\) 0 0
\(103\) −12.7993 12.7993i −1.26115 1.26115i −0.950535 0.310616i \(-0.899465\pi\)
−0.310616 0.950535i \(-0.600535\pi\)
\(104\) 0 0
\(105\) −1.14730 + 0.457371i −0.111965 + 0.0446348i
\(106\) 0 0
\(107\) −14.2518 + 8.22829i −1.37778 + 0.795459i −0.991891 0.127088i \(-0.959437\pi\)
−0.385884 + 0.922547i \(0.626104\pi\)
\(108\) 0 0
\(109\) 4.25712 + 15.8878i 0.407758 + 1.52177i 0.798912 + 0.601448i \(0.205409\pi\)
−0.391154 + 0.920325i \(0.627924\pi\)
\(110\) 0 0
\(111\) 7.05481 7.82494i 0.669613 0.742710i
\(112\) 0 0
\(113\) 0.838296 + 3.12856i 0.0788602 + 0.294310i 0.994081 0.108643i \(-0.0346504\pi\)
−0.915221 + 0.402953i \(0.867984\pi\)
\(114\) 0 0
\(115\) 0.0130493 0.00753401i 0.00121685 0.000702550i
\(116\) 0 0
\(117\) −11.6404 0.311052i −1.07615 0.0287568i
\(118\) 0 0
\(119\) −1.19082 1.19082i −0.109162 0.109162i
\(120\) 0 0
\(121\) 29.0614 2.64195
\(122\) 0 0
\(123\) −4.94906 6.63129i −0.446241 0.597923i
\(124\) 0 0
\(125\) 6.62373 6.62373i 0.592444 0.592444i
\(126\) 0 0
\(127\) 3.93940 6.82325i 0.349566 0.605465i −0.636607 0.771189i \(-0.719663\pi\)
0.986172 + 0.165723i \(0.0529958\pi\)
\(128\) 0 0
\(129\) 7.05029 8.93832i 0.620743 0.786976i
\(130\) 0 0
\(131\) −0.567492 2.11791i −0.0495820 0.185043i 0.936694 0.350150i \(-0.113869\pi\)
−0.986276 + 0.165108i \(0.947203\pi\)
\(132\) 0 0
\(133\) 0.977914 + 3.64962i 0.0847959 + 0.316463i
\(134\) 0 0
\(135\) −0.496627 5.45283i −0.0427429 0.469305i
\(136\) 0 0
\(137\) 12.6181i 1.07804i 0.842293 + 0.539020i \(0.181205\pi\)
−0.842293 + 0.539020i \(0.818795\pi\)
\(138\) 0 0
\(139\) −11.5879 6.69027i −0.982871 0.567461i −0.0797354 0.996816i \(-0.525408\pi\)
−0.903136 + 0.429355i \(0.858741\pi\)
\(140\) 0 0
\(141\) 0.562748 + 4.76557i 0.0473920 + 0.401333i
\(142\) 0 0
\(143\) −23.7305 6.35857i −1.98445 0.531731i
\(144\) 0 0
\(145\) 3.46439 + 6.00050i 0.287702 + 0.498315i
\(146\) 0 0
\(147\) 4.47569 10.4098i 0.369149 0.858583i
\(148\) 0 0
\(149\) 23.1104i 1.89328i 0.322291 + 0.946641i \(0.395547\pi\)
−0.322291 + 0.946641i \(0.604453\pi\)
\(150\) 0 0
\(151\) 4.99696 2.88499i 0.406647 0.234778i −0.282701 0.959208i \(-0.591231\pi\)
0.689348 + 0.724430i \(0.257897\pi\)
\(152\) 0 0
\(153\) 6.56289 3.55881i 0.530578 0.287713i
\(154\) 0 0
\(155\) −2.24684 + 1.29722i −0.180471 + 0.104195i
\(156\) 0 0
\(157\) 2.36133 4.08995i 0.188455 0.326414i −0.756280 0.654248i \(-0.772985\pi\)
0.944735 + 0.327834i \(0.106319\pi\)
\(158\) 0 0
\(159\) 16.5620 + 7.12086i 1.31345 + 0.564721i
\(160\) 0 0
\(161\) 0.00250454 0.00934709i 0.000197386 0.000736654i
\(162\) 0 0
\(163\) −18.2222 + 4.88262i −1.42727 + 0.382436i −0.888058 0.459732i \(-0.847945\pi\)
−0.539214 + 0.842168i \(0.681279\pi\)
\(164\) 0 0
\(165\) 1.66069 11.4320i 0.129284 0.889981i
\(166\) 0 0
\(167\) −0.930683 + 3.47336i −0.0720184 + 0.268776i −0.992541 0.121914i \(-0.961097\pi\)
0.920522 + 0.390690i \(0.127764\pi\)
\(168\) 0 0
\(169\) 1.78929 + 1.03305i 0.137638 + 0.0794652i
\(170\) 0 0
\(171\) −16.7440 0.447432i −1.28045 0.0342160i
\(172\) 0 0
\(173\) −6.04334 + 10.4674i −0.459467 + 0.795819i −0.998933 0.0461879i \(-0.985293\pi\)
0.539466 + 0.842007i \(0.318626\pi\)
\(174\) 0 0
\(175\) 2.63220i 0.198976i
\(176\) 0 0
\(177\) −0.510241 + 0.203407i −0.0383521 + 0.0152890i
\(178\) 0 0
\(179\) −4.21960 + 4.21960i −0.315388 + 0.315388i −0.846993 0.531605i \(-0.821589\pi\)
0.531605 + 0.846993i \(0.321589\pi\)
\(180\) 0 0
\(181\) −8.29355 14.3648i −0.616454 1.06773i −0.990127 0.140170i \(-0.955235\pi\)
0.373673 0.927561i \(-0.378098\pi\)
\(182\) 0 0
\(183\) −1.43358 + 9.86863i −0.105973 + 0.729510i
\(184\) 0 0
\(185\) −2.83272 5.74972i −0.208266 0.422728i
\(186\) 0 0
\(187\) 15.2144 4.07670i 1.11259 0.298118i
\(188\) 0 0
\(189\) −2.70171 2.25066i −0.196520 0.163712i
\(190\) 0 0
\(191\) 14.0751 + 14.0751i 1.01844 + 1.01844i 0.999827 + 0.0186138i \(0.00592529\pi\)
0.0186138 + 0.999827i \(0.494075\pi\)
\(192\) 0 0
\(193\) −10.1730 + 10.1730i −0.732268 + 0.732268i −0.971069 0.238800i \(-0.923246\pi\)
0.238800 + 0.971069i \(0.423246\pi\)
\(194\) 0 0
\(195\) −2.79821 + 6.50821i −0.200384 + 0.466062i
\(196\) 0 0
\(197\) −7.06926 4.08144i −0.503664 0.290791i 0.226561 0.973997i \(-0.427252\pi\)
−0.730225 + 0.683206i \(0.760585\pi\)
\(198\) 0 0
\(199\) 11.4955 + 11.4955i 0.814894 + 0.814894i 0.985363 0.170469i \(-0.0545283\pi\)
−0.170469 + 0.985363i \(0.554528\pi\)
\(200\) 0 0
\(201\) −12.3518 + 9.21838i −0.871229 + 0.650215i
\(202\) 0 0
\(203\) 4.29811 + 1.15167i 0.301668 + 0.0808317i
\(204\) 0 0
\(205\) −4.86248 + 1.30290i −0.339610 + 0.0909983i
\(206\) 0 0
\(207\) 0.0365651 + 0.0224341i 0.00254145 + 0.00155928i
\(208\) 0 0
\(209\) −34.1351 9.14647i −2.36117 0.632674i
\(210\) 0 0
\(211\) −4.46448 −0.307348 −0.153674 0.988122i \(-0.549111\pi\)
−0.153674 + 0.988122i \(0.549111\pi\)
\(212\) 0 0
\(213\) −6.93869 + 5.17847i −0.475431 + 0.354823i
\(214\) 0 0
\(215\) −3.46295 5.99800i −0.236171 0.409060i
\(216\) 0 0
\(217\) −0.431236 + 1.60939i −0.0292742 + 0.109253i
\(218\) 0 0
\(219\) 3.31015 + 28.0316i 0.223679 + 1.89420i
\(220\) 0 0
\(221\) −9.65939 −0.649761
\(222\) 0 0
\(223\) −6.97846 −0.467312 −0.233656 0.972319i \(-0.575069\pi\)
−0.233656 + 0.972319i \(0.575069\pi\)
\(224\) 0 0
\(225\) 11.1866 + 3.32014i 0.745773 + 0.221342i
\(226\) 0 0
\(227\) −4.40962 + 16.4569i −0.292677 + 1.09229i 0.650368 + 0.759620i \(0.274615\pi\)
−0.943045 + 0.332666i \(0.892052\pi\)
\(228\) 0 0
\(229\) −3.66668 6.35087i −0.242301 0.419677i 0.719068 0.694939i \(-0.244569\pi\)
−0.961369 + 0.275262i \(0.911235\pi\)
\(230\) 0 0
\(231\) −4.43726 5.94553i −0.291950 0.391187i
\(232\) 0 0
\(233\) −15.7016 −1.02864 −0.514322 0.857597i \(-0.671956\pi\)
−0.514322 + 0.857597i \(0.671956\pi\)
\(234\) 0 0
\(235\) 2.81993 + 0.755598i 0.183952 + 0.0492898i
\(236\) 0 0
\(237\) −4.35990 0.633347i −0.283206 0.0411403i
\(238\) 0 0
\(239\) −9.35787 + 2.50743i −0.605310 + 0.162192i −0.548441 0.836189i \(-0.684779\pi\)
−0.0568694 + 0.998382i \(0.518112\pi\)
\(240\) 0 0
\(241\) 19.7145 + 5.28248i 1.26992 + 0.340274i 0.830000 0.557763i \(-0.188340\pi\)
0.439920 + 0.898037i \(0.355007\pi\)
\(242\) 0 0
\(243\) 12.9729 8.64312i 0.832213 0.554457i
\(244\) 0 0
\(245\) −4.87452 4.87452i −0.311422 0.311422i
\(246\) 0 0
\(247\) 18.7683 + 10.8359i 1.19420 + 0.689471i
\(248\) 0 0
\(249\) −5.73407 2.46537i −0.363382 0.156236i
\(250\) 0 0
\(251\) 15.2217 15.2217i 0.960787 0.960787i −0.0384723 0.999260i \(-0.512249\pi\)
0.999260 + 0.0384723i \(0.0122491\pi\)
\(252\) 0 0
\(253\) 0.0639986 + 0.0639986i 0.00402356 + 0.00402356i
\(254\) 0 0
\(255\) −0.532643 4.51062i −0.0333554 0.282466i
\(256\) 0 0
\(257\) 11.5529 3.09559i 0.720650 0.193097i 0.120188 0.992751i \(-0.461650\pi\)
0.600461 + 0.799654i \(0.294984\pi\)
\(258\) 0 0
\(259\) −3.89738 1.32464i −0.242171 0.0823091i
\(260\) 0 0
\(261\) −10.3159 + 16.8139i −0.638541 + 1.04075i
\(262\) 0 0
\(263\) −7.82699 13.5567i −0.482633 0.835945i 0.517168 0.855884i \(-0.326986\pi\)
−0.999801 + 0.0199391i \(0.993653\pi\)
\(264\) 0 0
\(265\) 7.75540 7.75540i 0.476410 0.476410i
\(266\) 0 0
\(267\) −3.69775 9.27570i −0.226299 0.567664i
\(268\) 0 0
\(269\) 25.6103i 1.56148i −0.624853 0.780742i \(-0.714841\pi\)
0.624853 0.780742i \(-0.285159\pi\)
\(270\) 0 0
\(271\) 1.49553 2.59034i 0.0908471 0.157352i −0.817021 0.576608i \(-0.804376\pi\)
0.907868 + 0.419257i \(0.137709\pi\)
\(272\) 0 0
\(273\) 1.68475 + 4.22614i 0.101966 + 0.255778i
\(274\) 0 0
\(275\) 21.3207 + 12.3095i 1.28569 + 0.742293i
\(276\) 0 0
\(277\) −1.46879 + 5.48160i −0.0882510 + 0.329357i −0.995910 0.0903513i \(-0.971201\pi\)
0.907659 + 0.419708i \(0.137868\pi\)
\(278\) 0 0
\(279\) −6.29583 3.86273i −0.376921 0.231256i
\(280\) 0 0
\(281\) 26.3734 7.06674i 1.57331 0.421567i 0.636462 0.771308i \(-0.280397\pi\)
0.936846 + 0.349742i \(0.113731\pi\)
\(282\) 0 0
\(283\) −2.71321 + 10.1258i −0.161284 + 0.601919i 0.837201 + 0.546895i \(0.184190\pi\)
−0.998485 + 0.0550242i \(0.982476\pi\)
\(284\) 0 0
\(285\) −4.02508 + 9.36171i −0.238425 + 0.554540i
\(286\) 0 0
\(287\) −1.61644 + 2.79976i −0.0954157 + 0.165265i
\(288\) 0 0
\(289\) −9.35917 + 5.40352i −0.550539 + 0.317854i
\(290\) 0 0
\(291\) −7.36364 + 9.33559i −0.431664 + 0.547262i
\(292\) 0 0
\(293\) −29.4345 + 16.9940i −1.71958 + 0.992802i −0.799908 + 0.600123i \(0.795118\pi\)
−0.919676 + 0.392679i \(0.871548\pi\)
\(294\) 0 0
\(295\) 0.334176i 0.0194565i
\(296\) 0 0
\(297\) 30.8649 11.3585i 1.79096 0.659087i
\(298\) 0 0
\(299\) −0.0277519 0.0480677i −0.00160493 0.00277983i
\(300\) 0 0
\(301\) −4.29632 1.15119i −0.247636 0.0663537i
\(302\) 0 0
\(303\) 10.7076 1.26443i 0.615138 0.0726394i
\(304\) 0 0
\(305\) 5.25406 + 3.03343i 0.300847 + 0.173694i
\(306\) 0 0
\(307\) 2.13249i 0.121707i −0.998147 0.0608537i \(-0.980618\pi\)
0.998147 0.0608537i \(-0.0193823\pi\)
\(308\) 0 0
\(309\) −24.6158 19.4163i −1.40035 1.10455i
\(310\) 0 0
\(311\) 5.20792 + 19.4362i 0.295314 + 1.10213i 0.940968 + 0.338496i \(0.109918\pi\)
−0.645654 + 0.763630i \(0.723415\pi\)
\(312\) 0 0
\(313\) −2.85943 10.6715i −0.161624 0.603190i −0.998447 0.0557156i \(-0.982256\pi\)
0.836822 0.547474i \(-0.184411\pi\)
\(314\) 0 0
\(315\) −1.88057 + 1.01976i −0.105958 + 0.0574571i
\(316\) 0 0
\(317\) −5.49309 + 9.51431i −0.308523 + 0.534377i −0.978039 0.208420i \(-0.933168\pi\)
0.669517 + 0.742797i \(0.266501\pi\)
\(318\) 0 0
\(319\) −29.4287 + 29.4287i −1.64769 + 1.64769i
\(320\) 0 0
\(321\) −22.8432 + 17.0483i −1.27498 + 0.951544i
\(322\) 0 0
\(323\) −13.8945 −0.773111
\(324\) 0 0
\(325\) −10.6756 10.6756i −0.592178 0.592178i
\(326\) 0 0
\(327\) 10.5498 + 26.4639i 0.583405 + 1.46345i
\(328\) 0 0
\(329\) 1.62369 0.937436i 0.0895167 0.0516825i
\(330\) 0 0
\(331\) −2.16389 8.07576i −0.118938 0.443884i 0.880613 0.473836i \(-0.157131\pi\)
−0.999551 + 0.0299524i \(0.990464\pi\)
\(332\) 0 0
\(333\) 10.5456 14.8926i 0.577894 0.816112i
\(334\) 0 0
\(335\) 2.42685 + 9.05713i 0.132593 + 0.494844i
\(336\) 0 0
\(337\) 1.06618 0.615557i 0.0580783 0.0335315i −0.470680 0.882304i \(-0.655991\pi\)
0.528758 + 0.848773i \(0.322658\pi\)
\(338\) 0 0
\(339\) 2.07743 + 5.21116i 0.112830 + 0.283032i
\(340\) 0 0
\(341\) −11.0194 11.0194i −0.596732 0.596732i
\(342\) 0 0
\(343\) −9.16420 −0.494820
\(344\) 0 0
\(345\) 0.0209158 0.0156098i 0.00112607 0.000840404i
\(346\) 0 0
\(347\) 11.4401 11.4401i 0.614136 0.614136i −0.329885 0.944021i \(-0.607010\pi\)
0.944021 + 0.329885i \(0.107010\pi\)
\(348\) 0 0
\(349\) 7.96710 13.7994i 0.426469 0.738666i −0.570087 0.821584i \(-0.693091\pi\)
0.996556 + 0.0829178i \(0.0264239\pi\)
\(350\) 0 0
\(351\) −20.0858 + 1.82935i −1.07210 + 0.0976436i
\(352\) 0 0
\(353\) 6.44304 + 24.0458i 0.342928 + 1.27983i 0.895014 + 0.446039i \(0.147166\pi\)
−0.552085 + 0.833788i \(0.686168\pi\)
\(354\) 0 0
\(355\) 1.36329 + 5.08789i 0.0723562 + 0.270037i
\(356\) 0 0
\(357\) −2.29020 1.80644i −0.121210 0.0956071i
\(358\) 0 0
\(359\) 28.4023i 1.49902i −0.661995 0.749508i \(-0.730290\pi\)
0.661995 0.749508i \(-0.269710\pi\)
\(360\) 0 0
\(361\) 10.5427 + 6.08684i 0.554880 + 0.320360i
\(362\) 0 0
\(363\) 49.9885 5.90296i 2.62372 0.309825i
\(364\) 0 0
\(365\) 16.5871 + 4.44451i 0.868211 + 0.232636i
\(366\) 0 0
\(367\) 0.929286 + 1.60957i 0.0485083 + 0.0840189i 0.889260 0.457402i \(-0.151220\pi\)
−0.840752 + 0.541421i \(0.817887\pi\)
\(368\) 0 0
\(369\) −9.85982 10.4012i −0.513282 0.541466i
\(370\) 0 0
\(371\) 7.04362i 0.365686i
\(372\) 0 0
\(373\) −6.49613 + 3.75054i −0.336357 + 0.194196i −0.658660 0.752441i \(-0.728876\pi\)
0.322303 + 0.946637i \(0.395543\pi\)
\(374\) 0 0
\(375\) 10.0481 12.7389i 0.518879 0.657833i
\(376\) 0 0
\(377\) 22.1032 12.7613i 1.13837 0.657239i
\(378\) 0 0
\(379\) −6.13655 + 10.6288i −0.315214 + 0.545966i −0.979483 0.201527i \(-0.935410\pi\)
0.664269 + 0.747493i \(0.268743\pi\)
\(380\) 0 0
\(381\) 5.39023 12.5368i 0.276150 0.642282i
\(382\) 0 0
\(383\) 6.32191 23.5937i 0.323035 1.20558i −0.593238 0.805027i \(-0.702151\pi\)
0.916273 0.400555i \(-0.131183\pi\)
\(384\) 0 0
\(385\) −4.35964 + 1.16816i −0.222188 + 0.0595351i
\(386\) 0 0
\(387\) 10.3116 16.8069i 0.524170 0.854341i
\(388\) 0 0
\(389\) −0.785586 + 2.93185i −0.0398308 + 0.148651i −0.982977 0.183726i \(-0.941184\pi\)
0.943147 + 0.332377i \(0.107851\pi\)
\(390\) 0 0
\(391\) 0.0308178 + 0.0177927i 0.00155853 + 0.000899815i
\(392\) 0 0
\(393\) −1.40633 3.52774i −0.0709401 0.177951i
\(394\) 0 0
\(395\) −1.34015 + 2.32121i −0.0674303 + 0.116793i
\(396\) 0 0
\(397\) 26.0070i 1.30525i −0.757679 0.652627i \(-0.773667\pi\)
0.757679 0.652627i \(-0.226333\pi\)
\(398\) 0 0
\(399\) 2.42342 + 6.07908i 0.121323 + 0.304335i
\(400\) 0 0
\(401\) 3.79949 3.79949i 0.189738 0.189738i −0.605845 0.795583i \(-0.707165\pi\)
0.795583 + 0.605845i \(0.207165\pi\)
\(402\) 0 0
\(403\) 4.77836 + 8.27636i 0.238027 + 0.412275i
\(404\) 0 0
\(405\) −1.96183 9.27853i −0.0974840 0.461054i
\(406\) 0 0
\(407\) 28.9557 25.3740i 1.43528 1.25774i
\(408\) 0 0
\(409\) 21.5118 5.76407i 1.06369 0.285015i 0.315792 0.948828i \(-0.397730\pi\)
0.747898 + 0.663813i \(0.231063\pi\)
\(410\) 0 0
\(411\) 2.56300 + 21.7044i 0.126423 + 1.07060i
\(412\) 0 0
\(413\) 0.151753 + 0.151753i 0.00746727 + 0.00746727i
\(414\) 0 0
\(415\) −2.68506 + 2.68506i −0.131804 + 0.131804i
\(416\) 0 0
\(417\) −21.2912 9.15419i −1.04264 0.448283i
\(418\) 0 0
\(419\) 11.1310 + 6.42647i 0.543784 + 0.313954i 0.746611 0.665261i \(-0.231680\pi\)
−0.202827 + 0.979215i \(0.565013\pi\)
\(420\) 0 0
\(421\) −24.7153 24.7153i −1.20455 1.20455i −0.972768 0.231780i \(-0.925545\pi\)
−0.231780 0.972768i \(-0.574455\pi\)
\(422\) 0 0
\(423\) 1.93597 + 8.08295i 0.0941299 + 0.393006i
\(424\) 0 0
\(425\) 9.34978 + 2.50527i 0.453531 + 0.121523i
\(426\) 0 0
\(427\) 3.76344 1.00841i 0.182126 0.0488004i
\(428\) 0 0
\(429\) −42.1104 6.11723i −2.03311 0.295343i
\(430\) 0 0
\(431\) 39.4346 + 10.5665i 1.89950 + 0.508968i 0.996919 + 0.0784403i \(0.0249940\pi\)
0.902577 + 0.430528i \(0.141673\pi\)
\(432\) 0 0
\(433\) 20.7222 0.995845 0.497923 0.867221i \(-0.334096\pi\)
0.497923 + 0.867221i \(0.334096\pi\)
\(434\) 0 0
\(435\) 7.17792 + 9.61777i 0.344155 + 0.461137i
\(436\) 0 0
\(437\) −0.0399196 0.0691428i −0.00190961 0.00330755i
\(438\) 0 0
\(439\) 5.50156 20.5321i 0.262575 0.979943i −0.701143 0.713021i \(-0.747327\pi\)
0.963718 0.266923i \(-0.0860068\pi\)
\(440\) 0 0
\(441\) 5.58420 18.8149i 0.265914 0.895950i
\(442\) 0 0
\(443\) 19.4221 0.922770 0.461385 0.887200i \(-0.347353\pi\)
0.461385 + 0.887200i \(0.347353\pi\)
\(444\) 0 0
\(445\) −6.07501 −0.287983
\(446\) 0 0
\(447\) 4.69420 + 39.7523i 0.222028 + 1.88022i
\(448\) 0 0
\(449\) 2.44638 9.13000i 0.115452 0.430871i −0.883869 0.467735i \(-0.845070\pi\)
0.999320 + 0.0368638i \(0.0117368\pi\)
\(450\) 0 0
\(451\) −15.1187 26.1863i −0.711910 1.23307i
\(452\) 0 0
\(453\) 8.00926 5.97746i 0.376308 0.280846i
\(454\) 0 0
\(455\) 2.76786 0.129759
\(456\) 0 0
\(457\) 14.2379 + 3.81504i 0.666021 + 0.178460i 0.575962 0.817477i \(-0.304628\pi\)
0.0900593 + 0.995936i \(0.471294\pi\)
\(458\) 0 0
\(459\) 10.5660 7.45456i 0.493177 0.347949i
\(460\) 0 0
\(461\) 23.9417 6.41516i 1.11508 0.298784i 0.346187 0.938165i \(-0.387476\pi\)
0.768890 + 0.639381i \(0.220809\pi\)
\(462\) 0 0
\(463\) 27.1649 + 7.27882i 1.26246 + 0.338276i 0.827138 0.561999i \(-0.189967\pi\)
0.435323 + 0.900274i \(0.356634\pi\)
\(464\) 0 0
\(465\) −3.60130 + 2.68772i −0.167006 + 0.124640i
\(466\) 0 0
\(467\) −16.0372 16.0372i −0.742111 0.742111i 0.230873 0.972984i \(-0.425842\pi\)
−0.972984 + 0.230873i \(0.925842\pi\)
\(468\) 0 0
\(469\) 5.21499 + 3.01088i 0.240806 + 0.139029i
\(470\) 0 0
\(471\) 3.23098 7.51475i 0.148876 0.346262i
\(472\) 0 0
\(473\) 29.4165 29.4165i 1.35257 1.35257i
\(474\) 0 0
\(475\) −15.3563 15.3563i −0.704597 0.704597i
\(476\) 0 0
\(477\) 29.9347 + 8.88450i 1.37062 + 0.406793i
\(478\) 0 0
\(479\) −18.7274 + 5.01798i −0.855675 + 0.229277i −0.659883 0.751368i \(-0.729394\pi\)
−0.195792 + 0.980645i \(0.562728\pi\)
\(480\) 0 0
\(481\) −21.1794 + 10.4345i −0.965698 + 0.475772i
\(482\) 0 0
\(483\) 0.00240948 0.0165866i 0.000109635 0.000754718i
\(484\) 0 0
\(485\) 3.61686 + 6.26458i 0.164233 + 0.284460i
\(486\) 0 0
\(487\) 25.5679 25.5679i 1.15859 1.15859i 0.173812 0.984779i \(-0.444392\pi\)
0.984779 0.173812i \(-0.0556084\pi\)
\(488\) 0 0
\(489\) −30.3522 + 12.0999i −1.37257 + 0.547176i
\(490\) 0 0
\(491\) 30.3318i 1.36885i 0.729081 + 0.684427i \(0.239948\pi\)
−0.729081 + 0.684427i \(0.760052\pi\)
\(492\) 0 0
\(493\) −8.18168 + 14.1711i −0.368485 + 0.638234i
\(494\) 0 0
\(495\) 0.534477 20.0015i 0.0240230 0.899001i
\(496\) 0 0
\(497\) 2.92955 + 1.69138i 0.131408 + 0.0758686i
\(498\) 0 0
\(499\) −4.85357 + 18.1138i −0.217276 + 0.810883i 0.768078 + 0.640357i \(0.221214\pi\)
−0.985353 + 0.170527i \(0.945453\pi\)
\(500\) 0 0
\(501\) −0.895359 + 6.16356i −0.0400017 + 0.275368i
\(502\) 0 0
\(503\) 7.25712 1.94454i 0.323579 0.0867027i −0.0933732 0.995631i \(-0.529765\pi\)
0.416952 + 0.908928i \(0.363098\pi\)
\(504\) 0 0
\(505\) 1.69774 6.33604i 0.0755483 0.281950i
\(506\) 0 0
\(507\) 3.28759 + 1.41350i 0.146007 + 0.0627759i
\(508\) 0 0
\(509\) −5.88287 + 10.1894i −0.260754 + 0.451639i −0.966442 0.256883i \(-0.917304\pi\)
0.705689 + 0.708522i \(0.250638\pi\)
\(510\) 0 0
\(511\) 9.55070 5.51410i 0.422498 0.243929i
\(512\) 0 0
\(513\) −28.8923 + 2.63143i −1.27563 + 0.116180i
\(514\) 0 0
\(515\) −16.5183 + 9.53684i −0.727883 + 0.420243i
\(516\) 0 0
\(517\) 17.5357i 0.771221i
\(518\) 0 0
\(519\) −8.26901 + 19.2324i −0.362969 + 0.844210i
\(520\) 0 0
\(521\) 9.16727 + 15.8782i 0.401625 + 0.695635i 0.993922 0.110084i \(-0.0351121\pi\)
−0.592297 + 0.805720i \(0.701779\pi\)
\(522\) 0 0
\(523\) −3.95846 1.06066i −0.173091 0.0463796i 0.171232 0.985231i \(-0.445225\pi\)
−0.344324 + 0.938851i \(0.611892\pi\)
\(524\) 0 0
\(525\) −0.534653 4.52764i −0.0233342 0.197603i
\(526\) 0 0
\(527\) −5.30626 3.06357i −0.231144 0.133451i
\(528\) 0 0
\(529\) 22.9998i 0.999991i
\(530\) 0 0
\(531\) −0.836349 + 0.453521i −0.0362945 + 0.0196811i
\(532\) 0 0
\(533\) 4.79929 + 17.9112i 0.207880 + 0.775820i
\(534\) 0 0
\(535\) 4.48817 + 16.7501i 0.194041 + 0.724169i
\(536\) 0 0
\(537\) −6.40105 + 8.11523i −0.276226 + 0.350198i
\(538\) 0 0
\(539\) 20.7036 35.8598i 0.891769 1.54459i
\(540\) 0 0
\(541\) 21.7995 21.7995i 0.937234 0.937234i −0.0609093 0.998143i \(-0.519400\pi\)
0.998143 + 0.0609093i \(0.0194000\pi\)
\(542\) 0 0
\(543\) −17.1835 23.0244i −0.737415 0.988070i
\(544\) 0 0
\(545\) 17.3322 0.742429
\(546\) 0 0
\(547\) −24.2405 24.2405i −1.03645 1.03645i −0.999310 0.0371406i \(-0.988175\pi\)
−0.0371406 0.999310i \(-0.511825\pi\)
\(548\) 0 0
\(549\) −0.461385 + 17.2662i −0.0196914 + 0.736904i
\(550\) 0 0
\(551\) 31.7942 18.3564i 1.35448 0.782009i
\(552\) 0 0
\(553\) 0.445509 + 1.66266i 0.0189450 + 0.0707036i
\(554\) 0 0
\(555\) −6.04045 9.31471i −0.256403 0.395387i
\(556\) 0 0
\(557\) −3.12090 11.6473i −0.132237 0.493514i 0.867757 0.496988i \(-0.165561\pi\)
−0.999994 + 0.00347431i \(0.998894\pi\)
\(558\) 0 0
\(559\) −22.0939 + 12.7559i −0.934474 + 0.539519i
\(560\) 0 0
\(561\) 25.3423 10.1027i 1.06995 0.426536i
\(562\) 0 0
\(563\) −22.4940 22.4940i −0.948011 0.948011i 0.0507028 0.998714i \(-0.483854\pi\)
−0.998714 + 0.0507028i \(0.983854\pi\)
\(564\) 0 0
\(565\) 3.41299 0.143585
\(566\) 0 0
\(567\) −5.10436 3.32259i −0.214363 0.139536i
\(568\) 0 0
\(569\) 2.83892 2.83892i 0.119014 0.119014i −0.645092 0.764105i \(-0.723181\pi\)
0.764105 + 0.645092i \(0.223181\pi\)
\(570\) 0 0
\(571\) 9.71471 16.8264i 0.406548 0.704162i −0.587952 0.808896i \(-0.700066\pi\)
0.994500 + 0.104734i \(0.0333991\pi\)
\(572\) 0 0
\(573\) 27.0696 + 21.3517i 1.13085 + 0.891979i
\(574\) 0 0
\(575\) 0.0143955 + 0.0537248i 0.000600334 + 0.00224048i
\(576\) 0 0
\(577\) 2.79471 + 10.4300i 0.116345 + 0.434207i 0.999384 0.0350934i \(-0.0111729\pi\)
−0.883039 + 0.469300i \(0.844506\pi\)
\(578\) 0 0
\(579\) −15.4322 + 19.5649i −0.641341 + 0.813090i
\(580\) 0 0
\(581\) 2.43863i 0.101171i
\(582\) 0 0
\(583\) 57.0531 + 32.9396i 2.36290 + 1.36422i
\(584\) 0 0
\(585\) −3.49125 + 11.7631i −0.144346 + 0.486346i
\(586\) 0 0
\(587\) −32.9659 8.83319i −1.36065 0.364585i −0.496595 0.867983i \(-0.665416\pi\)
−0.864055 + 0.503398i \(0.832083\pi\)
\(588\) 0 0
\(589\) 6.87342 + 11.9051i 0.283214 + 0.490541i
\(590\) 0 0
\(591\) −12.9889 5.58457i −0.534290 0.229719i
\(592\) 0 0
\(593\) 15.9280i 0.654084i −0.945010 0.327042i \(-0.893948\pi\)
0.945010 0.327042i \(-0.106052\pi\)
\(594\) 0 0
\(595\) −1.53682 + 0.887285i −0.0630036 + 0.0363751i
\(596\) 0 0
\(597\) 22.1084 + 17.4384i 0.904835 + 0.713707i
\(598\) 0 0
\(599\) 29.4343 16.9939i 1.20265 0.694352i 0.241509 0.970399i \(-0.422358\pi\)
0.961144 + 0.276046i \(0.0890243\pi\)
\(600\) 0 0
\(601\) −7.04148 + 12.1962i −0.287228 + 0.497493i −0.973147 0.230184i \(-0.926067\pi\)
0.685919 + 0.727678i \(0.259400\pi\)
\(602\) 0 0
\(603\) −19.3739 + 18.3654i −0.788966 + 0.747898i
\(604\) 0 0
\(605\) 7.92586 29.5797i 0.322232 1.20259i
\(606\) 0 0
\(607\) 29.7139 7.96182i 1.20605 0.323160i 0.400840 0.916148i \(-0.368718\pi\)
0.805211 + 0.592988i \(0.202052\pi\)
\(608\) 0 0
\(609\) 7.62710 + 1.10796i 0.309066 + 0.0448969i
\(610\) 0 0
\(611\) 2.78329 10.3874i 0.112600 0.420228i
\(612\) 0 0
\(613\) −39.0127 22.5240i −1.57571 0.909734i −0.995448 0.0953016i \(-0.969618\pi\)
−0.580258 0.814433i \(-0.697048\pi\)
\(614\) 0 0
\(615\) −8.09931 + 3.22878i −0.326596 + 0.130197i
\(616\) 0 0
\(617\) −8.84886 + 15.3267i −0.356242 + 0.617029i −0.987330 0.158683i \(-0.949275\pi\)
0.631088 + 0.775711i \(0.282609\pi\)
\(618\) 0 0
\(619\) 24.0819i 0.967935i 0.875086 + 0.483968i \(0.160805\pi\)
−0.875086 + 0.483968i \(0.839195\pi\)
\(620\) 0 0
\(621\) 0.0674524 + 0.0311617i 0.00270677 + 0.00125048i
\(622\) 0 0
\(623\) −2.75873 + 2.75873i −0.110526 + 0.110526i
\(624\) 0 0
\(625\) 4.78869 + 8.29426i 0.191548 + 0.331770i
\(626\) 0 0
\(627\) −60.5736 8.79931i −2.41908 0.351411i
\(628\) 0 0
\(629\) 8.41467 12.5830i 0.335515 0.501719i
\(630\) 0 0
\(631\) 5.62001 1.50588i 0.223729 0.0599480i −0.145213 0.989400i \(-0.546387\pi\)
0.368942 + 0.929452i \(0.379720\pi\)
\(632\) 0 0
\(633\) −7.67936 + 0.906827i −0.305227 + 0.0360431i
\(634\) 0 0
\(635\) −5.87056 5.87056i −0.232966 0.232966i
\(636\) 0 0
\(637\) −17.9556 + 17.9556i −0.711425 + 0.711425i
\(638\) 0 0
\(639\) −10.8834 + 10.3169i −0.430540 + 0.408129i
\(640\) 0 0
\(641\) 10.1966 + 5.88701i 0.402742 + 0.232523i 0.687666 0.726027i \(-0.258635\pi\)
−0.284925 + 0.958550i \(0.591969\pi\)
\(642\) 0 0
\(643\) −19.7367 19.7367i −0.778341 0.778341i 0.201207 0.979549i \(-0.435513\pi\)
−0.979549 + 0.201207i \(0.935513\pi\)
\(644\) 0 0
\(645\) −7.17493 9.61376i −0.282512 0.378542i
\(646\) 0 0
\(647\) −1.12927 0.302586i −0.0443960 0.0118959i 0.236553 0.971619i \(-0.423982\pi\)
−0.280949 + 0.959723i \(0.590649\pi\)
\(648\) 0 0
\(649\) −1.93887 + 0.519518i −0.0761073 + 0.0203929i
\(650\) 0 0
\(651\) −0.414868 + 2.85591i −0.0162600 + 0.111932i
\(652\) 0 0
\(653\) −13.3675 3.58182i −0.523113 0.140168i −0.0124066 0.999923i \(-0.503949\pi\)
−0.510706 + 0.859755i \(0.670616\pi\)
\(654\) 0 0
\(655\) −2.31045 −0.0902769
\(656\) 0 0
\(657\) 11.3876 + 47.5448i 0.444271 + 1.85490i
\(658\) 0 0
\(659\) −0.260848 0.451802i −0.0101612 0.0175997i 0.860900 0.508774i \(-0.169901\pi\)
−0.871061 + 0.491174i \(0.836568\pi\)
\(660\) 0 0
\(661\) −9.88587 + 36.8946i −0.384516 + 1.43503i 0.454413 + 0.890791i \(0.349849\pi\)
−0.838929 + 0.544241i \(0.816818\pi\)
\(662\) 0 0
\(663\) −16.6151 + 1.96202i −0.645277 + 0.0761984i
\(664\) 0 0
\(665\) 3.98142 0.154393
\(666\) 0 0
\(667\) −0.0940255 −0.00364068
\(668\) 0 0
\(669\) −12.0036 + 1.41747i −0.464088 + 0.0548024i
\(670\) 0 0
\(671\) −9.43170 + 35.1996i −0.364107 + 1.35887i
\(672\) 0 0
\(673\) −15.7794 27.3306i −0.608249 1.05352i −0.991529 0.129886i \(-0.958539\pi\)
0.383279 0.923632i \(-0.374795\pi\)
\(674\) 0 0
\(675\) 19.9164 + 3.43874i 0.766584 + 0.132357i
\(676\) 0 0
\(677\) −8.95857 −0.344306 −0.172153 0.985070i \(-0.555072\pi\)
−0.172153 + 0.985070i \(0.555072\pi\)
\(678\) 0 0
\(679\) 4.48727 + 1.20236i 0.172206 + 0.0461423i
\(680\) 0 0
\(681\) −4.24226 + 29.2033i −0.162564 + 1.11907i
\(682\) 0 0
\(683\) 3.73186 0.999949i 0.142796 0.0382620i −0.186713 0.982414i \(-0.559784\pi\)
0.329509 + 0.944152i \(0.393117\pi\)
\(684\) 0 0
\(685\) 12.8432 + 3.44132i 0.490713 + 0.131486i
\(686\) 0 0
\(687\) −7.59704 10.1794i −0.289845 0.388366i
\(688\) 0 0
\(689\) −28.5674 28.5674i −1.08833 1.08833i
\(690\) 0 0
\(691\) −4.62569 2.67064i −0.175969 0.101596i 0.409428 0.912342i \(-0.365728\pi\)
−0.585398 + 0.810746i \(0.699062\pi\)
\(692\) 0 0
\(693\) −8.84019 9.32561i −0.335811 0.354251i
\(694\) 0 0
\(695\) −9.96993 + 9.96993i −0.378181 + 0.378181i
\(696\) 0 0
\(697\) −8.40649 8.40649i −0.318419 0.318419i
\(698\) 0 0
\(699\) −27.0082 + 3.18930i −1.02155 + 0.120631i
\(700\) 0 0
\(701\) 9.32708 2.49918i 0.352279 0.0943929i −0.0783399 0.996927i \(-0.524962\pi\)
0.430619 + 0.902534i \(0.358295\pi\)
\(702\) 0 0
\(703\) −30.4654 + 15.0095i −1.14903 + 0.566092i
\(704\) 0 0
\(705\) 5.00404 + 0.726919i 0.188463 + 0.0273774i
\(706\) 0 0
\(707\) −2.10630 3.64822i −0.0792157 0.137206i
\(708\) 0 0
\(709\) −14.0024 + 14.0024i −0.525873 + 0.525873i −0.919339 0.393466i \(-0.871276\pi\)
0.393466 + 0.919339i \(0.371276\pi\)
\(710\) 0 0
\(711\) −7.62810 0.203837i −0.286076 0.00764448i
\(712\) 0 0
\(713\) 0.0352071i 0.00131852i
\(714\) 0 0
\(715\) −12.9440 + 22.4196i −0.484077 + 0.838445i
\(716\) 0 0
\(717\) −15.5872 + 6.21381i −0.582113 + 0.232059i
\(718\) 0 0
\(719\) 3.78714 + 2.18651i 0.141236 + 0.0815429i 0.568953 0.822370i \(-0.307349\pi\)
−0.427717 + 0.903913i \(0.640682\pi\)
\(720\) 0 0
\(721\) −3.17035 + 11.8319i −0.118070 + 0.440643i
\(722\) 0 0
\(723\) 34.9838 + 5.08198i 1.30106 + 0.189001i
\(724\) 0 0
\(725\) −24.7045 + 6.61954i −0.917501 + 0.245844i
\(726\) 0 0
\(727\) −9.48763 + 35.4083i −0.351877 + 1.31322i 0.532493 + 0.846434i \(0.321255\pi\)
−0.884370 + 0.466787i \(0.845411\pi\)
\(728\) 0 0
\(729\) 20.5591 17.5021i 0.761448 0.648226i
\(730\) 0 0
\(731\) 8.17827 14.1652i 0.302484 0.523918i
\(732\) 0 0
\(733\) 26.8999 15.5307i 0.993572 0.573639i 0.0872321 0.996188i \(-0.472198\pi\)
0.906340 + 0.422549i \(0.138864\pi\)
\(734\) 0 0
\(735\) −9.37478 7.39455i −0.345794 0.272752i
\(736\) 0 0
\(737\) −48.7761 + 28.1609i −1.79669 + 1.03732i
\(738\) 0 0
\(739\) 3.04296i 0.111937i −0.998433 0.0559686i \(-0.982175\pi\)
0.998433 0.0559686i \(-0.0178247\pi\)
\(740\) 0 0
\(741\) 34.4843 + 14.8266i 1.26681 + 0.544668i
\(742\) 0 0
\(743\) −3.20824 5.55684i −0.117699 0.203861i 0.801156 0.598455i \(-0.204218\pi\)
−0.918855 + 0.394594i \(0.870885\pi\)
\(744\) 0 0
\(745\) 23.5226 + 6.30287i 0.861802 + 0.230919i
\(746\) 0 0
\(747\) −10.3639 3.07598i −0.379197 0.112544i
\(748\) 0 0
\(749\) 9.64452 + 5.56827i 0.352403 + 0.203460i
\(750\) 0 0
\(751\) 44.2837i 1.61593i −0.589227 0.807967i \(-0.700568\pi\)
0.589227 0.807967i \(-0.299432\pi\)
\(752\) 0 0
\(753\) 23.0911 29.2747i 0.841485 1.06683i
\(754\) 0 0
\(755\) −1.57364 5.87290i −0.0572705 0.213737i
\(756\) 0 0
\(757\) 2.02860 + 7.57083i 0.0737306 + 0.275166i 0.992942 0.118597i \(-0.0378396\pi\)
−0.919212 + 0.393763i \(0.871173\pi\)
\(758\) 0 0
\(759\) 0.123083 + 0.0970845i 0.00446764 + 0.00352395i
\(760\) 0 0
\(761\) 18.8901 32.7186i 0.684765 1.18605i −0.288746 0.957406i \(-0.593238\pi\)
0.973511 0.228641i \(-0.0734283\pi\)
\(762\) 0 0
\(763\) 7.87072 7.87072i 0.284939 0.284939i
\(764\) 0 0
\(765\) −1.83240 7.65053i −0.0662504 0.276605i
\(766\) 0 0
\(767\) 1.23095 0.0444472
\(768\) 0 0
\(769\) 15.1774 + 15.1774i 0.547312 + 0.547312i 0.925662 0.378350i \(-0.123509\pi\)
−0.378350 + 0.925662i \(0.623509\pi\)
\(770\) 0 0
\(771\) 19.2433 7.67134i 0.693032 0.276277i
\(772\) 0 0
\(773\) 11.7282 6.77125i 0.421832 0.243545i −0.274029 0.961722i \(-0.588356\pi\)
0.695861 + 0.718176i \(0.255023\pi\)
\(774\) 0 0
\(775\) −2.47864 9.25040i −0.0890353 0.332284i
\(776\) 0 0
\(777\) −6.97294 1.48688i −0.250153 0.0533414i
\(778\) 0 0
\(779\) 6.90352 + 25.7643i 0.247344 + 0.923102i
\(780\) 0 0
\(781\) −27.4002 + 15.8195i −0.980456 + 0.566067i
\(782\) 0 0
\(783\) −14.3292 + 31.0169i −0.512084 + 1.10845i
\(784\) 0 0
\(785\) −3.51889 3.51889i −0.125595 0.125595i
\(786\) 0 0
\(787\) −37.1667 −1.32485 −0.662426 0.749128i \(-0.730473\pi\)
−0.662426 + 0.749128i \(0.730473\pi\)
\(788\) 0 0
\(789\) −16.2168 21.7291i −0.577335 0.773577i
\(790\) 0 0
\(791\) 1.54987 1.54987i 0.0551072 0.0551072i
\(792\) 0 0
\(793\) 11.1738 19.3536i 0.396794 0.687267i
\(794\) 0 0
\(795\) 11.7648 14.9153i 0.417254 0.528992i
\(796\) 0 0
\(797\) 8.94231 + 33.3732i 0.316753 + 1.18214i 0.922346 + 0.386364i \(0.126269\pi\)
−0.605594 + 0.795774i \(0.707064\pi\)
\(798\) 0 0
\(799\) 1.78446 + 6.65969i 0.0631296 + 0.235603i
\(800\) 0 0
\(801\) −8.24458 15.2040i −0.291308 0.537209i
\(802\) 0 0
\(803\) 103.147i 3.63999i
\(804\) 0 0
\(805\) −0.00883073 0.00509843i −0.000311242 0.000179696i
\(806\) 0 0
\(807\) −5.20196 44.0522i −0.183118 1.55071i
\(808\) 0 0
\(809\) −45.0624 12.0744i −1.58431 0.424514i −0.644053 0.764981i \(-0.722748\pi\)
−0.940257 + 0.340467i \(0.889415\pi\)
\(810\) 0 0
\(811\) 13.9797 + 24.2135i 0.490893 + 0.850252i 0.999945 0.0104836i \(-0.00333710\pi\)
−0.509052 + 0.860736i \(0.670004\pi\)
\(812\) 0 0
\(813\) 2.04631 4.75941i 0.0717674 0.166920i
\(814\) 0 0
\(815\) 19.8788i 0.696324i
\(816\) 0 0
\(817\) −31.7810 + 18.3487i −1.11187 + 0.641941i
\(818\) 0 0
\(819\) 3.75635 + 6.92718i 0.131258 + 0.242055i
\(820\) 0 0
\(821\) 8.18074 4.72315i 0.285510 0.164839i −0.350405 0.936598i \(-0.613956\pi\)
0.635915 + 0.771759i \(0.280623\pi\)
\(822\) 0 0
\(823\) 23.0116 39.8573i 0.802134 1.38934i −0.116075 0.993240i \(-0.537031\pi\)
0.918209 0.396097i \(-0.129635\pi\)
\(824\) 0 0
\(825\) 39.1741 + 16.8429i 1.36387 + 0.586396i
\(826\) 0 0
\(827\) 10.4453 38.9825i 0.363220 1.35555i −0.506599 0.862182i \(-0.669097\pi\)
0.869818 0.493372i \(-0.164236\pi\)
\(828\) 0 0
\(829\) −7.99208 + 2.14147i −0.277576 + 0.0743764i −0.394922 0.918715i \(-0.629228\pi\)
0.117345 + 0.993091i \(0.462562\pi\)
\(830\) 0 0
\(831\) −1.41304 + 9.72723i −0.0490178 + 0.337434i
\(832\) 0 0
\(833\) 4.21366 15.7256i 0.145995 0.544859i
\(834\) 0 0
\(835\) 3.28148 + 1.89456i 0.113560 + 0.0655641i
\(836\) 0 0
\(837\) −11.6141 5.36547i −0.401440 0.185458i
\(838\) 0 0
\(839\) −12.6738 + 21.9517i −0.437549 + 0.757857i −0.997500 0.0706685i \(-0.977487\pi\)
0.559951 + 0.828526i \(0.310820\pi\)
\(840\) 0 0
\(841\) 14.2361i 0.490901i
\(842\) 0 0
\(843\) 43.9296 17.5125i 1.51301 0.603162i
\(844\) 0 0
\(845\) 1.53946 1.53946i 0.0529591 0.0529591i
\(846\) 0 0
\(847\) −9.83324 17.0317i −0.337874 0.585215i
\(848\) 0 0
\(849\) −2.61023 + 17.9686i −0.0895829 + 0.616680i
\(850\) 0 0
\(851\) 0.0867923 + 0.00572191i 0.00297520 + 0.000196144i
\(852\) 0 0
\(853\) −7.21927 + 1.93440i −0.247183 + 0.0662325i −0.380283 0.924870i \(-0.624173\pi\)
0.133100 + 0.991103i \(0.457507\pi\)
\(854\) 0 0
\(855\) −5.02198 + 16.9206i −0.171748 + 0.578674i
\(856\) 0 0
\(857\) −4.01165 4.01165i −0.137035 0.137035i 0.635262 0.772297i \(-0.280892\pi\)
−0.772297 + 0.635262i \(0.780892\pi\)
\(858\) 0 0
\(859\) −5.07986 + 5.07986i −0.173322 + 0.173322i −0.788437 0.615115i \(-0.789110\pi\)
0.615115 + 0.788437i \(0.289110\pi\)
\(860\) 0 0
\(861\) −2.21176 + 5.14421i −0.0753765 + 0.175314i
\(862\) 0 0
\(863\) −34.7787 20.0795i −1.18388 0.683514i −0.226972 0.973901i \(-0.572883\pi\)
−0.956909 + 0.290387i \(0.906216\pi\)
\(864\) 0 0
\(865\) 9.00587 + 9.00587i 0.306209 + 0.306209i
\(866\) 0 0
\(867\) −15.0011 + 11.1956i −0.509465 + 0.380223i
\(868\) 0 0
\(869\) −15.5510 4.16687i −0.527530 0.141351i
\(870\) 0 0
\(871\) 33.3624 8.93943i 1.13044 0.302901i
\(872\) 0 0
\(873\) −10.7699 + 17.5538i −0.364507 + 0.594108i
\(874\) 0 0
\(875\) −6.12310 1.64068i −0.206999 0.0554651i
\(876\) 0 0
\(877\) 41.2247 1.39206 0.696029 0.718013i \(-0.254948\pi\)
0.696029 + 0.718013i \(0.254948\pi\)
\(878\) 0 0
\(879\) −47.1785 + 35.2102i −1.59129 + 1.18761i
\(880\) 0 0
\(881\) −11.6640 20.2027i −0.392971 0.680646i 0.599869 0.800099i \(-0.295220\pi\)
−0.992840 + 0.119452i \(0.961886\pi\)
\(882\) 0 0
\(883\) −0.678293 + 2.53142i −0.0228264 + 0.0851891i −0.976399 0.215973i \(-0.930708\pi\)
0.953573 + 0.301162i \(0.0973744\pi\)
\(884\) 0 0
\(885\) 0.0678779 + 0.574816i 0.00228169 + 0.0193222i
\(886\) 0 0
\(887\) −19.1168 −0.641880 −0.320940 0.947100i \(-0.603999\pi\)
−0.320940 + 0.947100i \(0.603999\pi\)
\(888\) 0 0
\(889\) −5.33176 −0.178822
\(890\) 0 0
\(891\) 50.7836 25.8070i 1.70131 0.864568i
\(892\) 0 0
\(893\) 4.00361 14.9417i 0.133976 0.500004i
\(894\) 0 0
\(895\) 3.14406 + 5.44567i 0.105094 + 0.182029i
\(896\) 0 0
\(897\) −0.0574995 0.0770443i −0.00191985 0.00257243i
\(898\) 0 0
\(899\) 16.1894 0.539948
\(900\) 0 0
\(901\) 25.0195 + 6.70396i 0.833520 + 0.223341i
\(902\) 0 0
\(903\) −7.62392 1.10750i −0.253708 0.0368553i
\(904\) 0 0
\(905\) −16.8829 + 4.52377i −0.561207 + 0.150375i
\(906\) 0 0
\(907\) 6.53083 + 1.74993i 0.216852 + 0.0581054i 0.365610 0.930768i \(-0.380861\pi\)
−0.148757 + 0.988874i \(0.547527\pi\)
\(908\) 0 0
\(909\) 18.1614 4.34988i 0.602375 0.144276i
\(910\) 0 0
\(911\) 18.8036 + 18.8036i 0.622991 + 0.622991i 0.946295 0.323304i \(-0.104794\pi\)
−0.323304 + 0.946295i \(0.604794\pi\)
\(912\) 0 0
\(913\) −19.7528 11.4043i −0.653723 0.377427i
\(914\) 0 0
\(915\) 9.65366 + 4.15060i 0.319140 + 0.137215i
\(916\) 0 0
\(917\) −1.04920 + 1.04920i −0.0346477 + 0.0346477i
\(918\) 0 0
\(919\) 33.1411 + 33.1411i 1.09322 + 1.09322i 0.995182 + 0.0980403i \(0.0312574\pi\)
0.0980403 + 0.995182i \(0.468743\pi\)
\(920\) 0 0
\(921\) −0.433151 3.66809i −0.0142728 0.120868i
\(922\) 0 0
\(923\) 18.7415 5.02177i 0.616884 0.165293i
\(924\) 0 0
\(925\) 23.2068 4.60693i 0.763036 0.151475i
\(926\) 0 0
\(927\) −46.2855 28.3979i −1.52022 0.932710i
\(928\) 0 0
\(929\) 11.7383 + 20.3313i 0.385121 + 0.667050i 0.991786 0.127908i \(-0.0408263\pi\)
−0.606665 + 0.794958i \(0.707493\pi\)
\(930\) 0 0
\(931\) −25.8281 + 25.8281i −0.846482 + 0.846482i
\(932\) 0 0
\(933\) 12.9060 + 32.3744i 0.422524 + 1.05989i
\(934\) 0 0
\(935\) 16.5976i 0.542800i
\(936\) 0 0
\(937\) 4.38323 7.59198i 0.143194 0.248019i −0.785504 0.618857i \(-0.787596\pi\)
0.928698 + 0.370838i \(0.120929\pi\)
\(938\) 0 0
\(939\) −7.08610 17.7753i −0.231246 0.580074i
\(940\) 0 0
\(941\) 46.0643 + 26.5952i 1.50165 + 0.866980i 0.999998 + 0.00191282i \(0.000608870\pi\)
0.501656 + 0.865067i \(0.332724\pi\)
\(942\) 0 0
\(943\) 0.0176807 0.0659852i 0.000575762 0.00214877i
\(944\) 0 0
\(945\) −3.02764 + 2.13608i −0.0984890 + 0.0694866i
\(946\) 0 0
\(947\) −30.2958 + 8.11774i −0.984481 + 0.263791i −0.714931 0.699195i \(-0.753542\pi\)
−0.269551 + 0.962986i \(0.586875\pi\)
\(948\) 0 0
\(949\) 16.3716 61.0996i 0.531444 1.98338i
\(950\) 0 0
\(951\) −7.51611 + 17.4813i −0.243727 + 0.566871i
\(952\) 0 0
\(953\) −13.9829 + 24.2191i −0.452951 + 0.784534i −0.998568 0.0535008i \(-0.982962\pi\)
0.545617 + 0.838035i \(0.316295\pi\)
\(954\) 0 0
\(955\) 18.1648 10.4875i 0.587800 0.339367i
\(956\) 0 0
\(957\) −44.6428 + 56.5979i −1.44310 + 1.82955i
\(958\) 0 0
\(959\) 7.39496 4.26948i 0.238796 0.137869i
\(960\) 0 0
\(961\) 24.9380i 0.804451i
\(962\) 0 0
\(963\) −35.8298 + 33.9647i −1.15460 + 1.09450i
\(964\) 0 0
\(965\) 7.57997 + 13.1289i 0.244008 + 0.422634i
\(966\) 0 0
\(967\) −41.1436 11.0244i −1.32309 0.354520i −0.472954 0.881087i \(-0.656812\pi\)
−0.850134 + 0.526567i \(0.823479\pi\)
\(968\) 0 0
\(969\) −23.8999 + 2.82226i −0.767777 + 0.0906639i
\(970\) 0 0
\(971\) −23.2319 13.4129i −0.745547 0.430442i 0.0785358 0.996911i \(-0.474976\pi\)
−0.824083 + 0.566470i \(0.808309\pi\)
\(972\) 0 0
\(973\) 9.05490i 0.290287i
\(974\) 0 0
\(975\) −20.5316 16.1947i −0.657537 0.518646i
\(976\) 0 0
\(977\) 4.98452 + 18.6025i 0.159469 + 0.595146i 0.998681 + 0.0513422i \(0.0163499\pi\)
−0.839212 + 0.543804i \(0.816983\pi\)
\(978\) 0 0
\(979\) −9.44436 35.2468i −0.301843 1.12649i
\(980\) 0 0
\(981\) 23.5220 + 43.3776i 0.751001 + 1.38494i
\(982\) 0 0
\(983\) −21.2380 + 36.7854i −0.677388 + 1.17327i 0.298377 + 0.954448i \(0.403555\pi\)
−0.975765 + 0.218822i \(0.929778\pi\)
\(984\) 0 0
\(985\) −6.08222 + 6.08222i −0.193796 + 0.193796i
\(986\) 0 0
\(987\) 2.60249 1.94229i 0.0828382 0.0618236i
\(988\) 0 0
\(989\) 0.0939863 0.00298859
\(990\) 0 0
\(991\) −13.0352 13.0352i −0.414078 0.414078i 0.469078 0.883157i \(-0.344586\pi\)
−0.883157 + 0.469078i \(0.844586\pi\)
\(992\) 0 0
\(993\) −5.36246 13.4516i −0.170172 0.426873i
\(994\) 0 0
\(995\) 14.8357 8.56537i 0.470322 0.271541i
\(996\) 0 0
\(997\) 13.8261 + 51.5997i 0.437877 + 1.63418i 0.734087 + 0.679055i \(0.237610\pi\)
−0.296211 + 0.955123i \(0.595723\pi\)
\(998\) 0 0
\(999\) 15.1144 27.7589i 0.478199 0.878251i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 888.2.br.a.569.37 yes 152
3.2 odd 2 inner 888.2.br.a.569.28 152
37.8 odd 12 inner 888.2.br.a.785.28 yes 152
111.8 even 12 inner 888.2.br.a.785.37 yes 152
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
888.2.br.a.569.28 152 3.2 odd 2 inner
888.2.br.a.569.37 yes 152 1.1 even 1 trivial
888.2.br.a.785.28 yes 152 37.8 odd 12 inner
888.2.br.a.785.37 yes 152 111.8 even 12 inner