Properties

Label 888.2.br.a.569.36
Level $888$
Weight $2$
Character 888.569
Analytic conductor $7.091$
Analytic rank $0$
Dimension $152$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [888,2,Mod(473,888)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(888, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([0, 0, 6, 7])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("888.473"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 888 = 2^{3} \cdot 3 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 888.br (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.09071569949\)
Analytic rank: \(0\)
Dimension: \(152\)
Relative dimension: \(38\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 569.36
Character \(\chi\) \(=\) 888.569
Dual form 888.2.br.a.785.36

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.70811 - 0.287007i) q^{3} +(-0.721322 + 2.69201i) q^{5} +(2.47898 + 4.29371i) q^{7} +(2.83525 - 0.980478i) q^{9} -1.92072 q^{11} +(1.17839 + 0.315747i) q^{13} +(-0.459467 + 4.80526i) q^{15} +(-5.26023 + 1.40947i) q^{17} +(-4.56995 - 1.22452i) q^{19} +(5.46668 + 6.62264i) q^{21} +(-2.41576 - 2.41576i) q^{23} +(-2.39648 - 1.38361i) q^{25} +(4.56151 - 2.48850i) q^{27} +(3.35285 - 3.35285i) q^{29} +(2.96309 + 2.96309i) q^{31} +(-3.28079 + 0.551260i) q^{33} +(-13.3469 + 3.57628i) q^{35} +(-5.71600 - 2.08022i) q^{37} +(2.10343 + 0.201125i) q^{39} +(2.27871 + 3.94685i) q^{41} +(3.86120 - 3.86120i) q^{43} +(0.594327 + 8.33977i) q^{45} -1.47732i q^{47} +(-8.79066 + 15.2259i) q^{49} +(-8.58050 + 3.91726i) q^{51} +(11.0443 + 6.37642i) q^{53} +(1.38545 - 5.17059i) q^{55} +(-8.15741 - 0.779992i) q^{57} +(10.7362 - 2.87675i) q^{59} +(2.65045 - 9.89160i) q^{61} +(11.2384 + 9.74319i) q^{63} +(-1.69999 + 2.94447i) q^{65} +(8.89621 - 5.13623i) q^{67} +(-4.81971 - 3.43303i) q^{69} +(1.72584 - 0.996416i) q^{71} -0.224313i q^{73} +(-4.49054 - 1.67554i) q^{75} +(-4.76141 - 8.24701i) q^{77} +(7.22868 + 1.93692i) q^{79} +(7.07732 - 5.55981i) q^{81} +(13.1112 + 7.56973i) q^{83} -15.1773i q^{85} +(4.76473 - 6.68931i) q^{87} +(-1.85313 - 6.91598i) q^{89} +(1.56546 + 5.84238i) q^{91} +(5.91169 + 4.21084i) q^{93} +(6.59281 - 11.4191i) q^{95} +(-10.0950 + 10.0950i) q^{97} +(-5.44572 + 1.88322i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 152 q + 4 q^{13} - 12 q^{15} + 4 q^{19} - 44 q^{31} - 12 q^{39} + 28 q^{43} + 20 q^{45} - 80 q^{49} - 12 q^{51} - 8 q^{55} - 40 q^{57} - 28 q^{61} + 48 q^{63} + 56 q^{69} + 64 q^{75} + 20 q^{79} + 16 q^{81}+ \cdots - 20 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/888\mathbb{Z}\right)^\times\).

\(n\) \(223\) \(409\) \(445\) \(593\)
\(\chi(n)\) \(1\) \(e\left(\frac{11}{12}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.70811 0.287007i 0.986176 0.165704i
\(4\) 0 0
\(5\) −0.721322 + 2.69201i −0.322585 + 1.20390i 0.594133 + 0.804367i \(0.297495\pi\)
−0.916718 + 0.399536i \(0.869171\pi\)
\(6\) 0 0
\(7\) 2.47898 + 4.29371i 0.936965 + 1.62287i 0.771091 + 0.636725i \(0.219711\pi\)
0.165874 + 0.986147i \(0.446955\pi\)
\(8\) 0 0
\(9\) 2.83525 0.980478i 0.945084 0.326826i
\(10\) 0 0
\(11\) −1.92072 −0.579118 −0.289559 0.957160i \(-0.593509\pi\)
−0.289559 + 0.957160i \(0.593509\pi\)
\(12\) 0 0
\(13\) 1.17839 + 0.315747i 0.326825 + 0.0875726i 0.418501 0.908216i \(-0.362556\pi\)
−0.0916757 + 0.995789i \(0.529222\pi\)
\(14\) 0 0
\(15\) −0.459467 + 4.80526i −0.118634 + 1.24071i
\(16\) 0 0
\(17\) −5.26023 + 1.40947i −1.27579 + 0.341848i −0.832247 0.554404i \(-0.812946\pi\)
−0.443545 + 0.896252i \(0.646279\pi\)
\(18\) 0 0
\(19\) −4.56995 1.22452i −1.04842 0.280923i −0.306821 0.951767i \(-0.599265\pi\)
−0.741598 + 0.670844i \(0.765932\pi\)
\(20\) 0 0
\(21\) 5.46668 + 6.62264i 1.19293 + 1.44518i
\(22\) 0 0
\(23\) −2.41576 2.41576i −0.503720 0.503720i 0.408872 0.912592i \(-0.365922\pi\)
−0.912592 + 0.408872i \(0.865922\pi\)
\(24\) 0 0
\(25\) −2.39648 1.38361i −0.479296 0.276721i
\(26\) 0 0
\(27\) 4.56151 2.48850i 0.877863 0.478912i
\(28\) 0 0
\(29\) 3.35285 3.35285i 0.622608 0.622608i −0.323589 0.946198i \(-0.604890\pi\)
0.946198 + 0.323589i \(0.104890\pi\)
\(30\) 0 0
\(31\) 2.96309 + 2.96309i 0.532186 + 0.532186i 0.921222 0.389037i \(-0.127192\pi\)
−0.389037 + 0.921222i \(0.627192\pi\)
\(32\) 0 0
\(33\) −3.28079 + 0.551260i −0.571112 + 0.0959621i
\(34\) 0 0
\(35\) −13.3469 + 3.57628i −2.25603 + 0.604502i
\(36\) 0 0
\(37\) −5.71600 2.08022i −0.939705 0.341986i
\(38\) 0 0
\(39\) 2.10343 + 0.201125i 0.336818 + 0.0322057i
\(40\) 0 0
\(41\) 2.27871 + 3.94685i 0.355875 + 0.616394i 0.987267 0.159070i \(-0.0508494\pi\)
−0.631392 + 0.775464i \(0.717516\pi\)
\(42\) 0 0
\(43\) 3.86120 3.86120i 0.588827 0.588827i −0.348486 0.937314i \(-0.613304\pi\)
0.937314 + 0.348486i \(0.113304\pi\)
\(44\) 0 0
\(45\) 0.594327 + 8.33977i 0.0885971 + 1.24322i
\(46\) 0 0
\(47\) 1.47732i 0.215489i −0.994179 0.107745i \(-0.965637\pi\)
0.994179 0.107745i \(-0.0343629\pi\)
\(48\) 0 0
\(49\) −8.79066 + 15.2259i −1.25581 + 2.17512i
\(50\) 0 0
\(51\) −8.58050 + 3.91726i −1.20151 + 0.548525i
\(52\) 0 0
\(53\) 11.0443 + 6.37642i 1.51705 + 0.875869i 0.999799 + 0.0200345i \(0.00637760\pi\)
0.517250 + 0.855834i \(0.326956\pi\)
\(54\) 0 0
\(55\) 1.38545 5.17059i 0.186815 0.697202i
\(56\) 0 0
\(57\) −8.15741 0.779992i −1.08048 0.103312i
\(58\) 0 0
\(59\) 10.7362 2.87675i 1.39773 0.374521i 0.520201 0.854044i \(-0.325857\pi\)
0.877529 + 0.479523i \(0.159190\pi\)
\(60\) 0 0
\(61\) 2.65045 9.89160i 0.339355 1.26649i −0.559715 0.828685i \(-0.689090\pi\)
0.899070 0.437804i \(-0.144244\pi\)
\(62\) 0 0
\(63\) 11.2384 + 9.74319i 1.41591 + 1.22753i
\(64\) 0 0
\(65\) −1.69999 + 2.94447i −0.210858 + 0.365216i
\(66\) 0 0
\(67\) 8.89621 5.13623i 1.08684 0.627490i 0.154110 0.988054i \(-0.450749\pi\)
0.932735 + 0.360564i \(0.117416\pi\)
\(68\) 0 0
\(69\) −4.81971 3.43303i −0.580224 0.413288i
\(70\) 0 0
\(71\) 1.72584 0.996416i 0.204820 0.118253i −0.394082 0.919075i \(-0.628937\pi\)
0.598902 + 0.800823i \(0.295604\pi\)
\(72\) 0 0
\(73\) 0.224313i 0.0262539i −0.999914 0.0131269i \(-0.995821\pi\)
0.999914 0.0131269i \(-0.00417855\pi\)
\(74\) 0 0
\(75\) −4.49054 1.67554i −0.518523 0.193475i
\(76\) 0 0
\(77\) −4.76141 8.24701i −0.542614 0.939834i
\(78\) 0 0
\(79\) 7.22868 + 1.93692i 0.813290 + 0.217921i 0.641411 0.767197i \(-0.278349\pi\)
0.171879 + 0.985118i \(0.445016\pi\)
\(80\) 0 0
\(81\) 7.07732 5.55981i 0.786369 0.617757i
\(82\) 0 0
\(83\) 13.1112 + 7.56973i 1.43914 + 0.830886i 0.997790 0.0664499i \(-0.0211673\pi\)
0.441348 + 0.897336i \(0.354501\pi\)
\(84\) 0 0
\(85\) 15.1773i 1.64621i
\(86\) 0 0
\(87\) 4.76473 6.68931i 0.510832 0.717170i
\(88\) 0 0
\(89\) −1.85313 6.91598i −0.196432 0.733093i −0.991892 0.127087i \(-0.959437\pi\)
0.795460 0.606006i \(-0.207229\pi\)
\(90\) 0 0
\(91\) 1.56546 + 5.84238i 0.164105 + 0.612448i
\(92\) 0 0
\(93\) 5.91169 + 4.21084i 0.613014 + 0.436643i
\(94\) 0 0
\(95\) 6.59281 11.4191i 0.676408 1.17157i
\(96\) 0 0
\(97\) −10.0950 + 10.0950i −1.02499 + 1.02499i −0.0253127 + 0.999680i \(0.508058\pi\)
−0.999680 + 0.0253127i \(0.991942\pi\)
\(98\) 0 0
\(99\) −5.44572 + 1.88322i −0.547315 + 0.189271i
\(100\) 0 0
\(101\) −4.21631 −0.419538 −0.209769 0.977751i \(-0.567271\pi\)
−0.209769 + 0.977751i \(0.567271\pi\)
\(102\) 0 0
\(103\) 9.01132 + 9.01132i 0.887912 + 0.887912i 0.994322 0.106411i \(-0.0339358\pi\)
−0.106411 + 0.994322i \(0.533936\pi\)
\(104\) 0 0
\(105\) −21.7714 + 9.93931i −2.12467 + 0.969978i
\(106\) 0 0
\(107\) 1.97635 1.14104i 0.191061 0.110309i −0.401418 0.915895i \(-0.631483\pi\)
0.592479 + 0.805586i \(0.298149\pi\)
\(108\) 0 0
\(109\) 3.10557 + 11.5901i 0.297459 + 1.11013i 0.939244 + 0.343249i \(0.111527\pi\)
−0.641785 + 0.766885i \(0.721806\pi\)
\(110\) 0 0
\(111\) −10.3606 1.91270i −0.983383 0.181545i
\(112\) 0 0
\(113\) −2.88305 10.7597i −0.271214 1.01218i −0.958336 0.285643i \(-0.907793\pi\)
0.687122 0.726542i \(-0.258874\pi\)
\(114\) 0 0
\(115\) 8.24577 4.76070i 0.768922 0.443937i
\(116\) 0 0
\(117\) 3.65061 0.260158i 0.337499 0.0240516i
\(118\) 0 0
\(119\) −19.0919 19.0919i −1.75015 1.75015i
\(120\) 0 0
\(121\) −7.31085 −0.664622
\(122\) 0 0
\(123\) 5.02506 + 6.08763i 0.453095 + 0.548903i
\(124\) 0 0
\(125\) −4.40012 + 4.40012i −0.393559 + 0.393559i
\(126\) 0 0
\(127\) 6.59143 11.4167i 0.584895 1.01307i −0.409994 0.912088i \(-0.634469\pi\)
0.994889 0.100979i \(-0.0321976\pi\)
\(128\) 0 0
\(129\) 5.48715 7.70353i 0.483116 0.678258i
\(130\) 0 0
\(131\) −4.07459 15.2066i −0.355999 1.32861i −0.879223 0.476410i \(-0.841938\pi\)
0.523224 0.852195i \(-0.324729\pi\)
\(132\) 0 0
\(133\) −6.07109 22.6576i −0.526431 1.96467i
\(134\) 0 0
\(135\) 3.40875 + 14.0746i 0.293378 + 1.21135i
\(136\) 0 0
\(137\) 17.3055i 1.47851i 0.673428 + 0.739253i \(0.264821\pi\)
−0.673428 + 0.739253i \(0.735179\pi\)
\(138\) 0 0
\(139\) −0.856960 0.494766i −0.0726864 0.0419655i 0.463216 0.886245i \(-0.346695\pi\)
−0.535903 + 0.844280i \(0.680029\pi\)
\(140\) 0 0
\(141\) −0.424002 2.52342i −0.0357074 0.212510i
\(142\) 0 0
\(143\) −2.26335 0.606462i −0.189270 0.0507149i
\(144\) 0 0
\(145\) 6.60741 + 11.4444i 0.548716 + 0.950404i
\(146\) 0 0
\(147\) −10.6454 + 28.5304i −0.878021 + 2.35315i
\(148\) 0 0
\(149\) 16.0092i 1.31153i −0.754966 0.655764i \(-0.772346\pi\)
0.754966 0.655764i \(-0.227654\pi\)
\(150\) 0 0
\(151\) −1.88466 + 1.08811i −0.153371 + 0.0885488i −0.574721 0.818349i \(-0.694890\pi\)
0.421350 + 0.906898i \(0.361556\pi\)
\(152\) 0 0
\(153\) −13.5321 + 9.15375i −1.09401 + 0.740037i
\(154\) 0 0
\(155\) −10.1140 + 5.83931i −0.812375 + 0.469025i
\(156\) 0 0
\(157\) −10.4581 + 18.1139i −0.834647 + 1.44565i 0.0596710 + 0.998218i \(0.480995\pi\)
−0.894318 + 0.447432i \(0.852338\pi\)
\(158\) 0 0
\(159\) 20.6949 + 7.72181i 1.64121 + 0.612380i
\(160\) 0 0
\(161\) 4.38396 16.3612i 0.345505 1.28944i
\(162\) 0 0
\(163\) −1.03808 + 0.278154i −0.0813091 + 0.0217867i −0.299244 0.954177i \(-0.596735\pi\)
0.217935 + 0.975963i \(0.430068\pi\)
\(164\) 0 0
\(165\) 0.882507 9.22955i 0.0687030 0.718519i
\(166\) 0 0
\(167\) 0.724622 2.70432i 0.0560729 0.209267i −0.932205 0.361930i \(-0.882118\pi\)
0.988278 + 0.152663i \(0.0487848\pi\)
\(168\) 0 0
\(169\) −9.96943 5.75586i −0.766880 0.442758i
\(170\) 0 0
\(171\) −14.1576 + 1.00893i −1.08266 + 0.0771548i
\(172\) 0 0
\(173\) −6.83093 + 11.8315i −0.519346 + 0.899534i 0.480401 + 0.877049i \(0.340491\pi\)
−0.999747 + 0.0224848i \(0.992842\pi\)
\(174\) 0 0
\(175\) 13.7197i 1.03711i
\(176\) 0 0
\(177\) 17.5129 7.99515i 1.31635 0.600953i
\(178\) 0 0
\(179\) −6.71510 + 6.71510i −0.501910 + 0.501910i −0.912031 0.410121i \(-0.865487\pi\)
0.410121 + 0.912031i \(0.365487\pi\)
\(180\) 0 0
\(181\) 7.39113 + 12.8018i 0.549378 + 0.951551i 0.998317 + 0.0579889i \(0.0184688\pi\)
−0.448939 + 0.893563i \(0.648198\pi\)
\(182\) 0 0
\(183\) 1.68828 17.6566i 0.124801 1.30521i
\(184\) 0 0
\(185\) 9.72304 13.8870i 0.714852 1.02099i
\(186\) 0 0
\(187\) 10.1034 2.70720i 0.738834 0.197970i
\(188\) 0 0
\(189\) 21.9928 + 13.4169i 1.59974 + 0.975935i
\(190\) 0 0
\(191\) −9.13195 9.13195i −0.660765 0.660765i 0.294796 0.955560i \(-0.404748\pi\)
−0.955560 + 0.294796i \(0.904748\pi\)
\(192\) 0 0
\(193\) 8.05716 8.05716i 0.579967 0.579967i −0.354927 0.934894i \(-0.615494\pi\)
0.934894 + 0.354927i \(0.115494\pi\)
\(194\) 0 0
\(195\) −2.05868 + 5.51737i −0.147425 + 0.395107i
\(196\) 0 0
\(197\) 4.50413 + 2.60046i 0.320906 + 0.185275i 0.651796 0.758394i \(-0.274016\pi\)
−0.330890 + 0.943669i \(0.607349\pi\)
\(198\) 0 0
\(199\) −5.87203 5.87203i −0.416257 0.416257i 0.467654 0.883911i \(-0.345099\pi\)
−0.883911 + 0.467654i \(0.845099\pi\)
\(200\) 0 0
\(201\) 13.7215 11.3265i 0.967842 0.798910i
\(202\) 0 0
\(203\) 22.7078 + 6.08454i 1.59378 + 0.427051i
\(204\) 0 0
\(205\) −12.2686 + 3.28737i −0.856879 + 0.229600i
\(206\) 0 0
\(207\) −9.21787 4.48068i −0.640686 0.311429i
\(208\) 0 0
\(209\) 8.77759 + 2.35195i 0.607159 + 0.162688i
\(210\) 0 0
\(211\) −21.9236 −1.50928 −0.754642 0.656137i \(-0.772189\pi\)
−0.754642 + 0.656137i \(0.772189\pi\)
\(212\) 0 0
\(213\) 2.66194 2.19731i 0.182393 0.150557i
\(214\) 0 0
\(215\) 7.60922 + 13.1795i 0.518944 + 0.898838i
\(216\) 0 0
\(217\) −5.37722 + 20.0681i −0.365030 + 1.36231i
\(218\) 0 0
\(219\) −0.0643795 0.383151i −0.00435037 0.0258909i
\(220\) 0 0
\(221\) −6.64361 −0.446898
\(222\) 0 0
\(223\) 3.91097 0.261898 0.130949 0.991389i \(-0.458198\pi\)
0.130949 + 0.991389i \(0.458198\pi\)
\(224\) 0 0
\(225\) −8.15122 1.57318i −0.543415 0.104879i
\(226\) 0 0
\(227\) 6.76248 25.2379i 0.448841 1.67510i −0.256749 0.966478i \(-0.582651\pi\)
0.705590 0.708620i \(-0.250682\pi\)
\(228\) 0 0
\(229\) −3.10369 5.37576i −0.205098 0.355240i 0.745066 0.666991i \(-0.232418\pi\)
−0.950164 + 0.311751i \(0.899085\pi\)
\(230\) 0 0
\(231\) −10.5000 12.7202i −0.690846 0.836928i
\(232\) 0 0
\(233\) 1.67385 0.109658 0.0548288 0.998496i \(-0.482539\pi\)
0.0548288 + 0.998496i \(0.482539\pi\)
\(234\) 0 0
\(235\) 3.97696 + 1.06562i 0.259428 + 0.0695135i
\(236\) 0 0
\(237\) 12.9033 + 1.23378i 0.838157 + 0.0801425i
\(238\) 0 0
\(239\) −4.06296 + 1.08867i −0.262811 + 0.0704199i −0.387818 0.921736i \(-0.626771\pi\)
0.125007 + 0.992156i \(0.460105\pi\)
\(240\) 0 0
\(241\) −2.89541 0.775822i −0.186510 0.0499751i 0.164355 0.986401i \(-0.447446\pi\)
−0.350865 + 0.936426i \(0.614112\pi\)
\(242\) 0 0
\(243\) 10.4931 11.5280i 0.673134 0.739521i
\(244\) 0 0
\(245\) −34.6473 34.6473i −2.21353 2.21353i
\(246\) 0 0
\(247\) −4.99853 2.88590i −0.318049 0.183626i
\(248\) 0 0
\(249\) 24.5678 + 9.16691i 1.55692 + 0.580929i
\(250\) 0 0
\(251\) 13.3139 13.3139i 0.840366 0.840366i −0.148541 0.988906i \(-0.547458\pi\)
0.988906 + 0.148541i \(0.0474575\pi\)
\(252\) 0 0
\(253\) 4.63998 + 4.63998i 0.291713 + 0.291713i
\(254\) 0 0
\(255\) −4.35599 25.9244i −0.272782 1.62345i
\(256\) 0 0
\(257\) −16.8305 + 4.50971i −1.04985 + 0.281308i −0.742192 0.670188i \(-0.766214\pi\)
−0.307663 + 0.951495i \(0.599547\pi\)
\(258\) 0 0
\(259\) −5.23799 29.6997i −0.325473 1.84545i
\(260\) 0 0
\(261\) 6.21878 12.7936i 0.384933 0.791902i
\(262\) 0 0
\(263\) −13.9576 24.1753i −0.860662 1.49071i −0.871291 0.490766i \(-0.836717\pi\)
0.0106295 0.999944i \(-0.496616\pi\)
\(264\) 0 0
\(265\) −25.1319 + 25.1319i −1.54384 + 1.54384i
\(266\) 0 0
\(267\) −5.15028 11.2814i −0.315192 0.690409i
\(268\) 0 0
\(269\) 19.4076i 1.18330i −0.806194 0.591651i \(-0.798476\pi\)
0.806194 0.591651i \(-0.201524\pi\)
\(270\) 0 0
\(271\) 10.0772 17.4542i 0.612147 1.06027i −0.378731 0.925507i \(-0.623639\pi\)
0.990878 0.134763i \(-0.0430273\pi\)
\(272\) 0 0
\(273\) 4.35078 + 9.53011i 0.263321 + 0.576788i
\(274\) 0 0
\(275\) 4.60296 + 2.65752i 0.277569 + 0.160254i
\(276\) 0 0
\(277\) 5.55031 20.7140i 0.333486 1.24458i −0.572016 0.820242i \(-0.693839\pi\)
0.905502 0.424343i \(-0.139495\pi\)
\(278\) 0 0
\(279\) 11.3063 + 5.49586i 0.676893 + 0.329028i
\(280\) 0 0
\(281\) −7.00447 + 1.87684i −0.417852 + 0.111963i −0.461618 0.887079i \(-0.652731\pi\)
0.0437663 + 0.999042i \(0.486064\pi\)
\(282\) 0 0
\(283\) −5.82300 + 21.7317i −0.346141 + 1.29182i 0.545132 + 0.838350i \(0.316480\pi\)
−0.891273 + 0.453467i \(0.850187\pi\)
\(284\) 0 0
\(285\) 7.98386 21.3972i 0.472923 1.26746i
\(286\) 0 0
\(287\) −11.2978 + 19.5683i −0.666886 + 1.15508i
\(288\) 0 0
\(289\) 10.9609 6.32830i 0.644761 0.372253i
\(290\) 0 0
\(291\) −14.3460 + 20.1407i −0.840977 + 1.18067i
\(292\) 0 0
\(293\) 9.51177 5.49162i 0.555684 0.320824i −0.195728 0.980658i \(-0.562707\pi\)
0.751411 + 0.659834i \(0.229373\pi\)
\(294\) 0 0
\(295\) 30.9769i 1.80355i
\(296\) 0 0
\(297\) −8.76137 + 4.77971i −0.508386 + 0.277347i
\(298\) 0 0
\(299\) −2.08392 3.60946i −0.120516 0.208740i
\(300\) 0 0
\(301\) 26.1507 + 7.00706i 1.50730 + 0.403880i
\(302\) 0 0
\(303\) −7.20190 + 1.21011i −0.413738 + 0.0695191i
\(304\) 0 0
\(305\) 24.7164 + 14.2700i 1.41526 + 0.817100i
\(306\) 0 0
\(307\) 3.91476i 0.223427i 0.993740 + 0.111714i \(0.0356339\pi\)
−0.993740 + 0.111714i \(0.964366\pi\)
\(308\) 0 0
\(309\) 17.9786 + 12.8060i 1.02277 + 0.728506i
\(310\) 0 0
\(311\) 5.82053 + 21.7225i 0.330052 + 1.23177i 0.909135 + 0.416502i \(0.136744\pi\)
−0.579083 + 0.815268i \(0.696589\pi\)
\(312\) 0 0
\(313\) −3.53236 13.1829i −0.199661 0.745144i −0.991011 0.133781i \(-0.957288\pi\)
0.791350 0.611363i \(-0.209379\pi\)
\(314\) 0 0
\(315\) −34.3353 + 23.2260i −1.93457 + 1.30863i
\(316\) 0 0
\(317\) 13.5652 23.4957i 0.761899 1.31965i −0.179972 0.983672i \(-0.557601\pi\)
0.941871 0.335976i \(-0.109066\pi\)
\(318\) 0 0
\(319\) −6.43987 + 6.43987i −0.360564 + 0.360564i
\(320\) 0 0
\(321\) 3.04832 2.51625i 0.170141 0.140443i
\(322\) 0 0
\(323\) 25.7649 1.43360
\(324\) 0 0
\(325\) −2.38710 2.38710i −0.132413 0.132413i
\(326\) 0 0
\(327\) 8.63109 + 18.9059i 0.477301 + 1.04550i
\(328\) 0 0
\(329\) 6.34319 3.66224i 0.349711 0.201906i
\(330\) 0 0
\(331\) −1.23512 4.60953i −0.0678883 0.253362i 0.923639 0.383265i \(-0.125200\pi\)
−0.991527 + 0.129902i \(0.958534\pi\)
\(332\) 0 0
\(333\) −18.2459 0.293523i −0.999871 0.0160850i
\(334\) 0 0
\(335\) 7.40974 + 27.6535i 0.404838 + 1.51087i
\(336\) 0 0
\(337\) −3.98358 + 2.29992i −0.216999 + 0.125285i −0.604560 0.796560i \(-0.706651\pi\)
0.387561 + 0.921844i \(0.373318\pi\)
\(338\) 0 0
\(339\) −8.01265 17.5512i −0.435188 0.953251i
\(340\) 0 0
\(341\) −5.69125 5.69125i −0.308198 0.308198i
\(342\) 0 0
\(343\) −52.4617 −2.83266
\(344\) 0 0
\(345\) 12.7183 10.4984i 0.684730 0.565213i
\(346\) 0 0
\(347\) 11.2615 11.2615i 0.604549 0.604549i −0.336967 0.941516i \(-0.609401\pi\)
0.941516 + 0.336967i \(0.109401\pi\)
\(348\) 0 0
\(349\) 0.445357 0.771380i 0.0238394 0.0412910i −0.853860 0.520503i \(-0.825744\pi\)
0.877699 + 0.479212i \(0.159078\pi\)
\(350\) 0 0
\(351\) 6.16095 1.49213i 0.328847 0.0796439i
\(352\) 0 0
\(353\) 4.73922 + 17.6870i 0.252243 + 0.941385i 0.969603 + 0.244682i \(0.0786837\pi\)
−0.717360 + 0.696703i \(0.754650\pi\)
\(354\) 0 0
\(355\) 1.43747 + 5.36472i 0.0762931 + 0.284730i
\(356\) 0 0
\(357\) −38.0904 27.1314i −2.01596 1.43595i
\(358\) 0 0
\(359\) 17.9479i 0.947253i 0.880726 + 0.473626i \(0.157055\pi\)
−0.880726 + 0.473626i \(0.842945\pi\)
\(360\) 0 0
\(361\) 2.93057 + 1.69196i 0.154240 + 0.0890507i
\(362\) 0 0
\(363\) −12.4877 + 2.09827i −0.655434 + 0.110130i
\(364\) 0 0
\(365\) 0.603853 + 0.161802i 0.0316071 + 0.00846910i
\(366\) 0 0
\(367\) −2.58182 4.47184i −0.134770 0.233428i 0.790740 0.612152i \(-0.209696\pi\)
−0.925509 + 0.378725i \(0.876363\pi\)
\(368\) 0 0
\(369\) 10.3305 + 8.95609i 0.537786 + 0.466235i
\(370\) 0 0
\(371\) 63.2280i 3.28264i
\(372\) 0 0
\(373\) 18.9668 10.9505i 0.982064 0.566995i 0.0791714 0.996861i \(-0.474773\pi\)
0.902893 + 0.429866i \(0.141439\pi\)
\(374\) 0 0
\(375\) −6.25301 + 8.77874i −0.322904 + 0.453332i
\(376\) 0 0
\(377\) 5.00960 2.89229i 0.258008 0.148961i
\(378\) 0 0
\(379\) 7.76446 13.4484i 0.398834 0.690800i −0.594749 0.803912i \(-0.702748\pi\)
0.993582 + 0.113112i \(0.0360818\pi\)
\(380\) 0 0
\(381\) 7.98219 21.3927i 0.408940 1.09598i
\(382\) 0 0
\(383\) −0.679403 + 2.53557i −0.0347159 + 0.129561i −0.981109 0.193456i \(-0.938030\pi\)
0.946393 + 0.323017i \(0.104697\pi\)
\(384\) 0 0
\(385\) 25.6355 6.86902i 1.30651 0.350078i
\(386\) 0 0
\(387\) 7.16166 14.7333i 0.364047 0.748936i
\(388\) 0 0
\(389\) −3.54108 + 13.2155i −0.179540 + 0.670052i 0.816194 + 0.577778i \(0.196080\pi\)
−0.995734 + 0.0922739i \(0.970586\pi\)
\(390\) 0 0
\(391\) 16.1124 + 9.30248i 0.814837 + 0.470447i
\(392\) 0 0
\(393\) −11.3242 24.8050i −0.571232 1.25125i
\(394\) 0 0
\(395\) −10.4284 + 18.0625i −0.524710 + 0.908825i
\(396\) 0 0
\(397\) 7.72923i 0.387919i −0.981010 0.193959i \(-0.937867\pi\)
0.981010 0.193959i \(-0.0621330\pi\)
\(398\) 0 0
\(399\) −16.8730 36.9592i −0.844706 1.85027i
\(400\) 0 0
\(401\) −27.9698 + 27.9698i −1.39675 + 1.39675i −0.587579 + 0.809167i \(0.699919\pi\)
−0.809167 + 0.587579i \(0.800081\pi\)
\(402\) 0 0
\(403\) 2.55607 + 4.42724i 0.127327 + 0.220537i
\(404\) 0 0
\(405\) 9.86203 + 23.0626i 0.490048 + 1.14599i
\(406\) 0 0
\(407\) 10.9788 + 3.99551i 0.544200 + 0.198050i
\(408\) 0 0
\(409\) −21.1464 + 5.66616i −1.04562 + 0.280174i −0.740441 0.672121i \(-0.765384\pi\)
−0.305181 + 0.952294i \(0.598717\pi\)
\(410\) 0 0
\(411\) 4.96680 + 29.5596i 0.244994 + 1.45807i
\(412\) 0 0
\(413\) 38.9667 + 38.9667i 1.91742 + 1.91742i
\(414\) 0 0
\(415\) −29.8352 + 29.8352i −1.46455 + 1.46455i
\(416\) 0 0
\(417\) −1.60578 0.599159i −0.0786354 0.0293410i
\(418\) 0 0
\(419\) −22.0009 12.7022i −1.07482 0.620545i −0.145323 0.989384i \(-0.546422\pi\)
−0.929493 + 0.368839i \(0.879755\pi\)
\(420\) 0 0
\(421\) −9.68216 9.68216i −0.471880 0.471880i 0.430643 0.902522i \(-0.358287\pi\)
−0.902522 + 0.430643i \(0.858287\pi\)
\(422\) 0 0
\(423\) −1.44848 4.18857i −0.0704275 0.203655i
\(424\) 0 0
\(425\) 14.5562 + 3.90032i 0.706078 + 0.189193i
\(426\) 0 0
\(427\) 49.0421 13.1408i 2.37331 0.635927i
\(428\) 0 0
\(429\) −4.04009 0.386304i −0.195058 0.0186509i
\(430\) 0 0
\(431\) 17.7983 + 4.76904i 0.857313 + 0.229716i 0.660594 0.750743i \(-0.270305\pi\)
0.196719 + 0.980460i \(0.436971\pi\)
\(432\) 0 0
\(433\) 6.48199 0.311504 0.155752 0.987796i \(-0.450220\pi\)
0.155752 + 0.987796i \(0.450220\pi\)
\(434\) 0 0
\(435\) 14.5708 + 17.6518i 0.698616 + 0.846341i
\(436\) 0 0
\(437\) 8.08176 + 13.9980i 0.386603 + 0.669616i
\(438\) 0 0
\(439\) −2.19803 + 8.20317i −0.104906 + 0.391516i −0.998335 0.0576903i \(-0.981626\pi\)
0.893428 + 0.449206i \(0.148293\pi\)
\(440\) 0 0
\(441\) −9.99511 + 51.7882i −0.475958 + 2.46611i
\(442\) 0 0
\(443\) −28.3775 −1.34826 −0.674128 0.738614i \(-0.735480\pi\)
−0.674128 + 0.738614i \(0.735480\pi\)
\(444\) 0 0
\(445\) 19.9546 0.945938
\(446\) 0 0
\(447\) −4.59477 27.3455i −0.217325 1.29340i
\(448\) 0 0
\(449\) 0.210024 0.783819i 0.00991163 0.0369907i −0.960793 0.277267i \(-0.910571\pi\)
0.970705 + 0.240276i \(0.0772380\pi\)
\(450\) 0 0
\(451\) −4.37677 7.58078i −0.206094 0.356965i
\(452\) 0 0
\(453\) −2.90690 + 2.39951i −0.136578 + 0.112739i
\(454\) 0 0
\(455\) −16.8569 −0.790266
\(456\) 0 0
\(457\) −10.8225 2.89987i −0.506254 0.135650i −0.00335304 0.999994i \(-0.501067\pi\)
−0.502901 + 0.864344i \(0.667734\pi\)
\(458\) 0 0
\(459\) −20.4871 + 19.5194i −0.956256 + 0.911088i
\(460\) 0 0
\(461\) −22.8495 + 6.12250i −1.06421 + 0.285153i −0.748111 0.663574i \(-0.769039\pi\)
−0.316096 + 0.948727i \(0.602372\pi\)
\(462\) 0 0
\(463\) 31.0582 + 8.32201i 1.44340 + 0.386757i 0.893721 0.448623i \(-0.148085\pi\)
0.549674 + 0.835379i \(0.314752\pi\)
\(464\) 0 0
\(465\) −15.5998 + 12.8770i −0.723425 + 0.597155i
\(466\) 0 0
\(467\) −8.15245 8.15245i −0.377250 0.377250i 0.492859 0.870109i \(-0.335952\pi\)
−0.870109 + 0.492859i \(0.835952\pi\)
\(468\) 0 0
\(469\) 44.1070 + 25.4652i 2.03667 + 1.17587i
\(470\) 0 0
\(471\) −12.6647 + 33.9421i −0.583558 + 1.56397i
\(472\) 0 0
\(473\) −7.41627 + 7.41627i −0.341001 + 0.341001i
\(474\) 0 0
\(475\) 9.25755 + 9.25755i 0.424765 + 0.424765i
\(476\) 0 0
\(477\) 37.5653 + 7.25009i 1.72000 + 0.331959i
\(478\) 0 0
\(479\) 9.95114 2.66640i 0.454679 0.121831i −0.0242087 0.999707i \(-0.507707\pi\)
0.478888 + 0.877876i \(0.341040\pi\)
\(480\) 0 0
\(481\) −6.07883 4.25611i −0.277171 0.194062i
\(482\) 0 0
\(483\) 2.79249 29.2048i 0.127063 1.32887i
\(484\) 0 0
\(485\) −19.8941 34.4576i −0.903344 1.56464i
\(486\) 0 0
\(487\) −21.5256 + 21.5256i −0.975417 + 0.975417i −0.999705 0.0242876i \(-0.992268\pi\)
0.0242876 + 0.999705i \(0.492268\pi\)
\(488\) 0 0
\(489\) −1.69333 + 0.773054i −0.0765749 + 0.0349587i
\(490\) 0 0
\(491\) 20.8288i 0.939991i 0.882669 + 0.469996i \(0.155745\pi\)
−0.882669 + 0.469996i \(0.844255\pi\)
\(492\) 0 0
\(493\) −12.9110 + 22.3625i −0.581482 + 1.00716i
\(494\) 0 0
\(495\) −1.14153 16.0183i −0.0513082 0.719971i
\(496\) 0 0
\(497\) 8.55665 + 4.94018i 0.383818 + 0.221598i
\(498\) 0 0
\(499\) 11.4490 42.7281i 0.512526 1.91277i 0.120851 0.992671i \(-0.461438\pi\)
0.391676 0.920103i \(-0.371896\pi\)
\(500\) 0 0
\(501\) 0.461569 4.82725i 0.0206214 0.215665i
\(502\) 0 0
\(503\) 6.23253 1.67000i 0.277895 0.0744617i −0.117180 0.993111i \(-0.537385\pi\)
0.395075 + 0.918649i \(0.370719\pi\)
\(504\) 0 0
\(505\) 3.04131 11.3503i 0.135337 0.505083i
\(506\) 0 0
\(507\) −18.6808 6.97031i −0.829645 0.309562i
\(508\) 0 0
\(509\) −8.31526 + 14.4025i −0.368568 + 0.638378i −0.989342 0.145612i \(-0.953485\pi\)
0.620774 + 0.783989i \(0.286818\pi\)
\(510\) 0 0
\(511\) 0.963136 0.556067i 0.0426066 0.0245990i
\(512\) 0 0
\(513\) −23.8931 + 5.78669i −1.05491 + 0.255489i
\(514\) 0 0
\(515\) −30.7586 + 17.7585i −1.35539 + 0.782532i
\(516\) 0 0
\(517\) 2.83751i 0.124794i
\(518\) 0 0
\(519\) −8.27222 + 22.1700i −0.363110 + 0.973156i
\(520\) 0 0
\(521\) 16.0261 + 27.7580i 0.702116 + 1.21610i 0.967722 + 0.252020i \(0.0810947\pi\)
−0.265606 + 0.964082i \(0.585572\pi\)
\(522\) 0 0
\(523\) −13.7697 3.68958i −0.602107 0.161334i −0.0551262 0.998479i \(-0.517556\pi\)
−0.546980 + 0.837145i \(0.684223\pi\)
\(524\) 0 0
\(525\) −3.93766 23.4347i −0.171854 1.02278i
\(526\) 0 0
\(527\) −19.7629 11.4101i −0.860885 0.497032i
\(528\) 0 0
\(529\) 11.3283i 0.492533i
\(530\) 0 0
\(531\) 27.6192 18.6829i 1.19857 0.810769i
\(532\) 0 0
\(533\) 1.43900 + 5.37041i 0.0623299 + 0.232618i
\(534\) 0 0
\(535\) 1.64612 + 6.14340i 0.0711679 + 0.265602i
\(536\) 0 0
\(537\) −9.54282 + 13.3974i −0.411803 + 0.578140i
\(538\) 0 0
\(539\) 16.8844 29.2446i 0.727261 1.25965i
\(540\) 0 0
\(541\) 21.3040 21.3040i 0.915930 0.915930i −0.0808004 0.996730i \(-0.525748\pi\)
0.996730 + 0.0808004i \(0.0257476\pi\)
\(542\) 0 0
\(543\) 16.2991 + 19.7455i 0.699459 + 0.847363i
\(544\) 0 0
\(545\) −33.4409 −1.43245
\(546\) 0 0
\(547\) 3.39928 + 3.39928i 0.145343 + 0.145343i 0.776034 0.630691i \(-0.217229\pi\)
−0.630691 + 0.776034i \(0.717229\pi\)
\(548\) 0 0
\(549\) −2.18381 30.6439i −0.0932029 1.30785i
\(550\) 0 0
\(551\) −19.4280 + 11.2167i −0.827660 + 0.477850i
\(552\) 0 0
\(553\) 9.60316 + 35.8395i 0.408368 + 1.52405i
\(554\) 0 0
\(555\) 12.6223 26.5111i 0.535787 1.12533i
\(556\) 0 0
\(557\) 9.75975 + 36.4239i 0.413534 + 1.54333i 0.787754 + 0.615990i \(0.211244\pi\)
−0.374220 + 0.927340i \(0.622089\pi\)
\(558\) 0 0
\(559\) 5.76915 3.33082i 0.244009 0.140879i
\(560\) 0 0
\(561\) 16.4807 7.52394i 0.695816 0.317661i
\(562\) 0 0
\(563\) −18.6142 18.6142i −0.784496 0.784496i 0.196090 0.980586i \(-0.437175\pi\)
−0.980586 + 0.196090i \(0.937175\pi\)
\(564\) 0 0
\(565\) 31.0447 1.30606
\(566\) 0 0
\(567\) 41.4168 + 16.6054i 1.73934 + 0.697360i
\(568\) 0 0
\(569\) 19.4214 19.4214i 0.814189 0.814189i −0.171070 0.985259i \(-0.554722\pi\)
0.985259 + 0.171070i \(0.0547224\pi\)
\(570\) 0 0
\(571\) −1.66614 + 2.88583i −0.0697256 + 0.120768i −0.898780 0.438399i \(-0.855546\pi\)
0.829055 + 0.559167i \(0.188879\pi\)
\(572\) 0 0
\(573\) −18.2193 12.9774i −0.761121 0.542139i
\(574\) 0 0
\(575\) 2.44685 + 9.13176i 0.102041 + 0.380821i
\(576\) 0 0
\(577\) −7.79900 29.1063i −0.324677 1.21171i −0.914637 0.404277i \(-0.867523\pi\)
0.589960 0.807432i \(-0.299143\pi\)
\(578\) 0 0
\(579\) 11.4500 16.0750i 0.475847 0.668052i
\(580\) 0 0
\(581\) 75.0608i 3.11405i
\(582\) 0 0
\(583\) −21.2129 12.2473i −0.878551 0.507231i
\(584\) 0 0
\(585\) −1.93291 + 10.0151i −0.0799161 + 0.414074i
\(586\) 0 0
\(587\) 5.28887 + 1.41715i 0.218295 + 0.0584919i 0.366309 0.930493i \(-0.380621\pi\)
−0.148014 + 0.988985i \(0.547288\pi\)
\(588\) 0 0
\(589\) −9.91282 17.1695i −0.408451 0.707457i
\(590\) 0 0
\(591\) 8.43988 + 3.14914i 0.347170 + 0.129538i
\(592\) 0 0
\(593\) 20.3806i 0.836931i −0.908233 0.418465i \(-0.862568\pi\)
0.908233 0.418465i \(-0.137432\pi\)
\(594\) 0 0
\(595\) 65.1668 37.6241i 2.67158 1.54244i
\(596\) 0 0
\(597\) −11.7154 8.34473i −0.479478 0.341527i
\(598\) 0 0
\(599\) 17.5372 10.1251i 0.716551 0.413701i −0.0969307 0.995291i \(-0.530903\pi\)
0.813482 + 0.581590i \(0.197569\pi\)
\(600\) 0 0
\(601\) −14.6260 + 25.3330i −0.596607 + 1.03335i 0.396711 + 0.917943i \(0.370151\pi\)
−0.993318 + 0.115410i \(0.963182\pi\)
\(602\) 0 0
\(603\) 20.1870 23.2850i 0.822080 0.948240i
\(604\) 0 0
\(605\) 5.27347 19.6809i 0.214397 0.800141i
\(606\) 0 0
\(607\) −13.3809 + 3.58539i −0.543112 + 0.145527i −0.519937 0.854205i \(-0.674044\pi\)
−0.0231758 + 0.999731i \(0.507378\pi\)
\(608\) 0 0
\(609\) 40.5336 + 3.87573i 1.64251 + 0.157052i
\(610\) 0 0
\(611\) 0.466460 1.74085i 0.0188709 0.0704273i
\(612\) 0 0
\(613\) 2.69388 + 1.55531i 0.108805 + 0.0628184i 0.553415 0.832906i \(-0.313324\pi\)
−0.444610 + 0.895724i \(0.646658\pi\)
\(614\) 0 0
\(615\) −20.0126 + 9.13637i −0.806987 + 0.368414i
\(616\) 0 0
\(617\) −0.533514 + 0.924073i −0.0214785 + 0.0372018i −0.876565 0.481284i \(-0.840171\pi\)
0.855086 + 0.518486i \(0.173504\pi\)
\(618\) 0 0
\(619\) 17.7026i 0.711528i 0.934576 + 0.355764i \(0.115779\pi\)
−0.934576 + 0.355764i \(0.884221\pi\)
\(620\) 0 0
\(621\) −17.0311 5.00788i −0.683434 0.200959i
\(622\) 0 0
\(623\) 25.1014 25.1014i 1.00567 1.00567i
\(624\) 0 0
\(625\) −15.5893 27.0015i −0.623572 1.08006i
\(626\) 0 0
\(627\) 15.6681 + 1.49814i 0.625723 + 0.0598301i
\(628\) 0 0
\(629\) 32.9995 + 2.88586i 1.31578 + 0.115067i
\(630\) 0 0
\(631\) 14.8571 3.98096i 0.591453 0.158479i 0.0493357 0.998782i \(-0.484290\pi\)
0.542117 + 0.840303i \(0.317623\pi\)
\(632\) 0 0
\(633\) −37.4479 + 6.29224i −1.48842 + 0.250094i
\(634\) 0 0
\(635\) 25.9793 + 25.9793i 1.03096 + 1.03096i
\(636\) 0 0
\(637\) −15.1663 + 15.1663i −0.600911 + 0.600911i
\(638\) 0 0
\(639\) 3.91624 4.51724i 0.154924 0.178699i
\(640\) 0 0
\(641\) −18.8919 10.9072i −0.746184 0.430809i 0.0781297 0.996943i \(-0.475105\pi\)
−0.824313 + 0.566134i \(0.808439\pi\)
\(642\) 0 0
\(643\) −15.0996 15.0996i −0.595471 0.595471i 0.343633 0.939104i \(-0.388342\pi\)
−0.939104 + 0.343633i \(0.888342\pi\)
\(644\) 0 0
\(645\) 16.7800 + 20.3282i 0.660711 + 0.800421i
\(646\) 0 0
\(647\) −6.67640 1.78894i −0.262476 0.0703303i 0.125181 0.992134i \(-0.460049\pi\)
−0.387657 + 0.921804i \(0.626716\pi\)
\(648\) 0 0
\(649\) −20.6212 + 5.52542i −0.809451 + 0.216892i
\(650\) 0 0
\(651\) −3.42518 + 35.8217i −0.134243 + 1.40396i
\(652\) 0 0
\(653\) −39.5401 10.5947i −1.54732 0.414604i −0.618699 0.785628i \(-0.712340\pi\)
−0.928623 + 0.371024i \(0.879007\pi\)
\(654\) 0 0
\(655\) 43.8753 1.71435
\(656\) 0 0
\(657\) −0.219934 0.635984i −0.00858045 0.0248121i
\(658\) 0 0
\(659\) −17.4226 30.1768i −0.678687 1.17552i −0.975377 0.220546i \(-0.929216\pi\)
0.296690 0.954974i \(-0.404117\pi\)
\(660\) 0 0
\(661\) −2.52526 + 9.42439i −0.0982212 + 0.366566i −0.997488 0.0708338i \(-0.977434\pi\)
0.899267 + 0.437400i \(0.144101\pi\)
\(662\) 0 0
\(663\) −11.3480 + 1.90677i −0.440720 + 0.0740527i
\(664\) 0 0
\(665\) 65.3737 2.53508
\(666\) 0 0
\(667\) −16.1993 −0.627240
\(668\) 0 0
\(669\) 6.68036 1.12248i 0.258278 0.0433975i
\(670\) 0 0
\(671\) −5.09076 + 18.9990i −0.196526 + 0.733447i
\(672\) 0 0
\(673\) −19.6955 34.1137i −0.759207 1.31499i −0.943255 0.332068i \(-0.892254\pi\)
0.184048 0.982917i \(-0.441080\pi\)
\(674\) 0 0
\(675\) −14.3747 0.347701i −0.553281 0.0133830i
\(676\) 0 0
\(677\) 3.38167 0.129968 0.0649841 0.997886i \(-0.479300\pi\)
0.0649841 + 0.997886i \(0.479300\pi\)
\(678\) 0 0
\(679\) −68.3703 18.3198i −2.62381 0.703049i
\(680\) 0 0
\(681\) 4.30756 45.0499i 0.165066 1.72632i
\(682\) 0 0
\(683\) 24.3154 6.51529i 0.930402 0.249301i 0.238376 0.971173i \(-0.423385\pi\)
0.692026 + 0.721872i \(0.256718\pi\)
\(684\) 0 0
\(685\) −46.5865 12.4828i −1.77998 0.476944i
\(686\) 0 0
\(687\) −6.84432 8.29158i −0.261127 0.316343i
\(688\) 0 0
\(689\) 11.0011 + 11.0011i 0.419108 + 0.419108i
\(690\) 0 0
\(691\) −34.4374 19.8824i −1.31006 0.756364i −0.327954 0.944694i \(-0.606359\pi\)
−0.982106 + 0.188330i \(0.939693\pi\)
\(692\) 0 0
\(693\) −21.5858 18.7139i −0.819978 0.710882i
\(694\) 0 0
\(695\) 1.95006 1.95006i 0.0739699 0.0739699i
\(696\) 0 0
\(697\) −17.5495 17.5495i −0.664736 0.664736i
\(698\) 0 0
\(699\) 2.85911 0.480407i 0.108142 0.0181707i
\(700\) 0 0
\(701\) −23.5982 + 6.32311i −0.891290 + 0.238821i −0.675272 0.737569i \(-0.735974\pi\)
−0.216018 + 0.976389i \(0.569307\pi\)
\(702\) 0 0
\(703\) 23.5746 + 16.5058i 0.889134 + 0.622529i
\(704\) 0 0
\(705\) 7.09890 + 0.678780i 0.267360 + 0.0255643i
\(706\) 0 0
\(707\) −10.4521 18.1036i −0.393093 0.680857i
\(708\) 0 0
\(709\) 8.52427 8.52427i 0.320135 0.320135i −0.528684 0.848819i \(-0.677314\pi\)
0.848819 + 0.528684i \(0.177314\pi\)
\(710\) 0 0
\(711\) 22.3943 1.59591i 0.839850 0.0598513i
\(712\) 0 0
\(713\) 14.3162i 0.536145i
\(714\) 0 0
\(715\) 3.26520 5.65549i 0.122112 0.211503i
\(716\) 0 0
\(717\) −6.62751 + 3.02566i −0.247509 + 0.112995i
\(718\) 0 0
\(719\) 33.6559 + 19.4313i 1.25515 + 0.724664i 0.972129 0.234448i \(-0.0753283\pi\)
0.283026 + 0.959112i \(0.408662\pi\)
\(720\) 0 0
\(721\) −16.3532 + 61.0309i −0.609024 + 2.27291i
\(722\) 0 0
\(723\) −5.16833 0.494183i −0.192212 0.0183789i
\(724\) 0 0
\(725\) −12.6741 + 3.39600i −0.470702 + 0.126124i
\(726\) 0 0
\(727\) −11.5281 + 43.0234i −0.427553 + 1.59565i 0.330732 + 0.943725i \(0.392704\pi\)
−0.758285 + 0.651923i \(0.773962\pi\)
\(728\) 0 0
\(729\) 14.6147 22.7026i 0.541286 0.840838i
\(730\) 0 0
\(731\) −14.8685 + 25.7530i −0.549932 + 0.952511i
\(732\) 0 0
\(733\) 12.0889 6.97954i 0.446514 0.257795i −0.259843 0.965651i \(-0.583671\pi\)
0.706357 + 0.707856i \(0.250337\pi\)
\(734\) 0 0
\(735\) −69.1252 49.2372i −2.54972 1.81614i
\(736\) 0 0
\(737\) −17.0871 + 9.86524i −0.629411 + 0.363391i
\(738\) 0 0
\(739\) 29.7117i 1.09296i −0.837471 0.546482i \(-0.815967\pi\)
0.837471 0.546482i \(-0.184033\pi\)
\(740\) 0 0
\(741\) −9.36630 3.49481i −0.344080 0.128385i
\(742\) 0 0
\(743\) 18.0722 + 31.3020i 0.663005 + 1.14836i 0.979822 + 0.199872i \(0.0640526\pi\)
−0.316817 + 0.948487i \(0.602614\pi\)
\(744\) 0 0
\(745\) 43.0970 + 11.5478i 1.57895 + 0.423079i
\(746\) 0 0
\(747\) 44.5954 + 8.60690i 1.63166 + 0.314910i
\(748\) 0 0
\(749\) 9.79863 + 5.65724i 0.358034 + 0.206711i
\(750\) 0 0
\(751\) 42.5201i 1.55158i 0.630992 + 0.775789i \(0.282648\pi\)
−0.630992 + 0.775789i \(0.717352\pi\)
\(752\) 0 0
\(753\) 18.9204 26.5627i 0.689496 0.968000i
\(754\) 0 0
\(755\) −1.56975 5.85838i −0.0571290 0.213208i
\(756\) 0 0
\(757\) 9.47819 + 35.3731i 0.344491 + 1.28566i 0.893206 + 0.449648i \(0.148451\pi\)
−0.548715 + 0.836009i \(0.684883\pi\)
\(758\) 0 0
\(759\) 9.25729 + 6.59387i 0.336018 + 0.239342i
\(760\) 0 0
\(761\) −24.7152 + 42.8080i −0.895926 + 1.55179i −0.0632720 + 0.997996i \(0.520154\pi\)
−0.832654 + 0.553793i \(0.813180\pi\)
\(762\) 0 0
\(763\) −42.0661 + 42.0661i −1.52290 + 1.52290i
\(764\) 0 0
\(765\) −14.8810 43.0314i −0.538023 1.55580i
\(766\) 0 0
\(767\) 13.5597 0.489612
\(768\) 0 0
\(769\) 8.24607 + 8.24607i 0.297361 + 0.297361i 0.839979 0.542619i \(-0.182567\pi\)
−0.542619 + 0.839979i \(0.682567\pi\)
\(770\) 0 0
\(771\) −27.4539 + 12.5335i −0.988727 + 0.451384i
\(772\) 0 0
\(773\) 16.8847 9.74840i 0.607301 0.350626i −0.164607 0.986359i \(-0.552636\pi\)
0.771908 + 0.635734i \(0.219302\pi\)
\(774\) 0 0
\(775\) −3.00122 11.2007i −0.107807 0.402342i
\(776\) 0 0
\(777\) −17.4711 49.2269i −0.626771 1.76601i
\(778\) 0 0
\(779\) −5.58064 20.8272i −0.199947 0.746214i
\(780\) 0 0
\(781\) −3.31486 + 1.91383i −0.118615 + 0.0684823i
\(782\) 0 0
\(783\) 6.95048 23.6376i 0.248390 0.844739i
\(784\) 0 0
\(785\) −41.2193 41.2193i −1.47118 1.47118i
\(786\) 0 0
\(787\) −16.6388 −0.593109 −0.296555 0.955016i \(-0.595838\pi\)
−0.296555 + 0.955016i \(0.595838\pi\)
\(788\) 0 0
\(789\) −30.7795 37.2880i −1.09578 1.32749i
\(790\) 0 0
\(791\) 39.0520 39.0520i 1.38853 1.38853i
\(792\) 0 0
\(793\) 6.24649 10.8192i 0.221819 0.384203i
\(794\) 0 0
\(795\) −35.7149 + 50.1409i −1.26668 + 1.77832i
\(796\) 0 0
\(797\) −0.986720 3.68249i −0.0349514 0.130440i 0.946246 0.323449i \(-0.104842\pi\)
−0.981197 + 0.193008i \(0.938176\pi\)
\(798\) 0 0
\(799\) 2.08224 + 7.77104i 0.0736644 + 0.274919i
\(800\) 0 0
\(801\) −12.0351 17.7916i −0.425238 0.628636i
\(802\) 0 0
\(803\) 0.430842i 0.0152041i
\(804\) 0 0
\(805\) 40.8822 + 23.6033i 1.44091 + 0.831908i
\(806\) 0 0
\(807\) −5.57013 33.1502i −0.196078 1.16694i
\(808\) 0 0
\(809\) 4.24758 + 1.13813i 0.149337 + 0.0400147i 0.332713 0.943028i \(-0.392036\pi\)
−0.183376 + 0.983043i \(0.558703\pi\)
\(810\) 0 0
\(811\) 13.0119 + 22.5373i 0.456910 + 0.791392i 0.998796 0.0490605i \(-0.0156227\pi\)
−0.541886 + 0.840452i \(0.682289\pi\)
\(812\) 0 0
\(813\) 12.2034 32.7059i 0.427994 1.14705i
\(814\) 0 0
\(815\) 2.99517i 0.104916i
\(816\) 0 0
\(817\) −22.3736 + 12.9174i −0.782753 + 0.451923i
\(818\) 0 0
\(819\) 10.1668 + 15.0297i 0.355257 + 0.525181i
\(820\) 0 0
\(821\) 44.2394 25.5416i 1.54397 0.891409i 0.545383 0.838187i \(-0.316384\pi\)
0.998583 0.0532217i \(-0.0169490\pi\)
\(822\) 0 0
\(823\) 16.0862 27.8622i 0.560731 0.971214i −0.436702 0.899606i \(-0.643854\pi\)
0.997433 0.0716080i \(-0.0228131\pi\)
\(824\) 0 0
\(825\) 8.62507 + 3.21824i 0.300286 + 0.112045i
\(826\) 0 0
\(827\) −1.96110 + 7.31892i −0.0681941 + 0.254504i −0.991604 0.129311i \(-0.958723\pi\)
0.923410 + 0.383815i \(0.125390\pi\)
\(828\) 0 0
\(829\) −24.4831 + 6.56022i −0.850332 + 0.227846i −0.657564 0.753399i \(-0.728413\pi\)
−0.192768 + 0.981244i \(0.561746\pi\)
\(830\) 0 0
\(831\) 3.53543 36.9747i 0.122643 1.28264i
\(832\) 0 0
\(833\) 24.7804 92.4817i 0.858590 3.20430i
\(834\) 0 0
\(835\) 6.75738 + 3.90137i 0.233849 + 0.135013i
\(836\) 0 0
\(837\) 20.8898 + 6.14250i 0.722056 + 0.212316i
\(838\) 0 0
\(839\) −8.54351 + 14.7978i −0.294955 + 0.510877i −0.974974 0.222317i \(-0.928638\pi\)
0.680020 + 0.733194i \(0.261971\pi\)
\(840\) 0 0
\(841\) 6.51683i 0.224718i
\(842\) 0 0
\(843\) −11.4257 + 5.21618i −0.393523 + 0.179655i
\(844\) 0 0
\(845\) 22.6860 22.6860i 0.780421 0.780421i
\(846\) 0 0
\(847\) −18.1234 31.3907i −0.622728 1.07860i
\(848\) 0 0
\(849\) −3.70913 + 38.7913i −0.127297 + 1.33132i
\(850\) 0 0
\(851\) 8.78317 + 18.8338i 0.301083 + 0.645613i
\(852\) 0 0
\(853\) −24.2153 + 6.48848i −0.829118 + 0.222161i −0.648329 0.761361i \(-0.724532\pi\)
−0.180789 + 0.983522i \(0.557865\pi\)
\(854\) 0 0
\(855\) 7.49613 38.8401i 0.256362 1.32830i
\(856\) 0 0
\(857\) −21.6253 21.6253i −0.738705 0.738705i 0.233622 0.972327i \(-0.424942\pi\)
−0.972327 + 0.233622i \(0.924942\pi\)
\(858\) 0 0
\(859\) 15.2693 15.2693i 0.520982 0.520982i −0.396886 0.917868i \(-0.629909\pi\)
0.917868 + 0.396886i \(0.129909\pi\)
\(860\) 0 0
\(861\) −13.6815 + 36.6673i −0.466265 + 1.24962i
\(862\) 0 0
\(863\) −42.2340 24.3838i −1.43766 0.830034i −0.439974 0.898010i \(-0.645012\pi\)
−0.997687 + 0.0679763i \(0.978346\pi\)
\(864\) 0 0
\(865\) −26.9233 26.9233i −0.915418 0.915418i
\(866\) 0 0
\(867\) 16.9062 13.9553i 0.574164 0.473946i
\(868\) 0 0
\(869\) −13.8843 3.72028i −0.470991 0.126202i
\(870\) 0 0
\(871\) 12.1049 3.24350i 0.410159 0.109902i
\(872\) 0 0
\(873\) −18.7240 + 38.5198i −0.633710 + 1.30370i
\(874\) 0 0
\(875\) −29.8007 7.98506i −1.00745 0.269944i
\(876\) 0 0
\(877\) 11.9504 0.403536 0.201768 0.979433i \(-0.435331\pi\)
0.201768 + 0.979433i \(0.435331\pi\)
\(878\) 0 0
\(879\) 14.6710 12.1102i 0.494840 0.408468i
\(880\) 0 0
\(881\) 25.0140 + 43.3255i 0.842743 + 1.45967i 0.887567 + 0.460679i \(0.152394\pi\)
−0.0448240 + 0.998995i \(0.514273\pi\)
\(882\) 0 0
\(883\) −12.4342 + 46.4051i −0.418444 + 1.56166i 0.359391 + 0.933187i \(0.382984\pi\)
−0.777835 + 0.628468i \(0.783682\pi\)
\(884\) 0 0
\(885\) 8.89061 + 52.9119i 0.298855 + 1.77861i
\(886\) 0 0
\(887\) 51.3182 1.72310 0.861548 0.507677i \(-0.169496\pi\)
0.861548 + 0.507677i \(0.169496\pi\)
\(888\) 0 0
\(889\) 65.3600 2.19211
\(890\) 0 0
\(891\) −13.5935 + 10.6788i −0.455401 + 0.357754i
\(892\) 0 0
\(893\) −1.80900 + 6.75128i −0.0605359 + 0.225923i
\(894\) 0 0
\(895\) −13.2334 22.9209i −0.442343 0.766160i
\(896\) 0 0
\(897\) −4.59550 5.56724i −0.153439 0.185885i
\(898\) 0 0
\(899\) 19.8695 0.662686
\(900\) 0 0
\(901\) −67.0829 17.9748i −2.23485 0.598827i
\(902\) 0 0
\(903\) 46.6793 + 4.46336i 1.55339 + 0.148531i
\(904\) 0 0
\(905\) −39.7940 + 10.6628i −1.32280 + 0.354442i
\(906\) 0 0
\(907\) 46.1179 + 12.3573i 1.53132 + 0.410316i 0.923449 0.383720i \(-0.125357\pi\)
0.607870 + 0.794036i \(0.292024\pi\)
\(908\) 0 0
\(909\) −11.9543 + 4.13400i −0.396499 + 0.137116i
\(910\) 0 0
\(911\) 10.4296 + 10.4296i 0.345549 + 0.345549i 0.858448 0.512900i \(-0.171429\pi\)
−0.512900 + 0.858448i \(0.671429\pi\)
\(912\) 0 0
\(913\) −25.1828 14.5393i −0.833430 0.481181i
\(914\) 0 0
\(915\) 46.3139 + 17.2809i 1.53109 + 0.571290i
\(916\) 0 0
\(917\) 55.1919 55.1919i 1.82260 1.82260i
\(918\) 0 0
\(919\) −11.9016 11.9016i −0.392599 0.392599i 0.483014 0.875613i \(-0.339542\pi\)
−0.875613 + 0.483014i \(0.839542\pi\)
\(920\) 0 0
\(921\) 1.12357 + 6.68683i 0.0370227 + 0.220338i
\(922\) 0 0
\(923\) 2.34832 0.629231i 0.0772960 0.0207114i
\(924\) 0 0
\(925\) 10.8201 + 12.8939i 0.355762 + 0.423949i
\(926\) 0 0
\(927\) 34.3848 + 16.7140i 1.12934 + 0.548959i
\(928\) 0 0
\(929\) −1.89260 3.27808i −0.0620943 0.107550i 0.833307 0.552810i \(-0.186445\pi\)
−0.895401 + 0.445260i \(0.853111\pi\)
\(930\) 0 0
\(931\) 58.8172 58.8172i 1.92766 1.92766i
\(932\) 0 0
\(933\) 16.1766 + 35.4338i 0.529598 + 1.16005i
\(934\) 0 0
\(935\) 29.1512i 0.953347i
\(936\) 0 0
\(937\) 19.1831 33.2261i 0.626685 1.08545i −0.361528 0.932361i \(-0.617745\pi\)
0.988213 0.153088i \(-0.0489219\pi\)
\(938\) 0 0
\(939\) −9.81725 21.5041i −0.320374 0.701758i
\(940\) 0 0
\(941\) 9.57980 + 5.53090i 0.312293 + 0.180302i 0.647952 0.761681i \(-0.275626\pi\)
−0.335659 + 0.941983i \(0.608959\pi\)
\(942\) 0 0
\(943\) 4.02981 15.0394i 0.131229 0.489752i
\(944\) 0 0
\(945\) −51.9822 + 49.5269i −1.69098 + 1.61111i
\(946\) 0 0
\(947\) −8.43525 + 2.26022i −0.274109 + 0.0734473i −0.393255 0.919429i \(-0.628651\pi\)
0.119146 + 0.992877i \(0.461984\pi\)
\(948\) 0 0
\(949\) 0.0708263 0.264327i 0.00229912 0.00858043i
\(950\) 0 0
\(951\) 16.4274 44.0264i 0.532695 1.42765i
\(952\) 0 0
\(953\) −17.7007 + 30.6586i −0.573383 + 0.993129i 0.422832 + 0.906208i \(0.361036\pi\)
−0.996215 + 0.0869208i \(0.972297\pi\)
\(954\) 0 0
\(955\) 31.1704 17.9962i 1.00865 0.582344i
\(956\) 0 0
\(957\) −9.15169 + 12.8483i −0.295832 + 0.415326i
\(958\) 0 0
\(959\) −74.3048 + 42.8999i −2.39943 + 1.38531i
\(960\) 0 0
\(961\) 13.4403i 0.433557i
\(962\) 0 0
\(963\) 4.48467 5.17291i 0.144517 0.166695i
\(964\) 0 0
\(965\) 15.8781 + 27.5017i 0.511135 + 0.885313i
\(966\) 0 0
\(967\) 4.20839 + 1.12764i 0.135333 + 0.0362623i 0.325850 0.945422i \(-0.394350\pi\)
−0.190517 + 0.981684i \(0.561016\pi\)
\(968\) 0 0
\(969\) 44.0092 7.39473i 1.41378 0.237553i
\(970\) 0 0
\(971\) −4.37165 2.52398i −0.140293 0.0809982i 0.428211 0.903679i \(-0.359144\pi\)
−0.568504 + 0.822681i \(0.692477\pi\)
\(972\) 0 0
\(973\) 4.90606i 0.157281i
\(974\) 0 0
\(975\) −4.76254 3.39231i −0.152524 0.108641i
\(976\) 0 0
\(977\) 13.4778 + 50.3000i 0.431195 + 1.60924i 0.750012 + 0.661424i \(0.230048\pi\)
−0.318818 + 0.947816i \(0.603286\pi\)
\(978\) 0 0
\(979\) 3.55934 + 13.2836i 0.113757 + 0.424547i
\(980\) 0 0
\(981\) 20.1689 + 29.8160i 0.643945 + 0.951952i
\(982\) 0 0
\(983\) 12.1562 21.0551i 0.387721 0.671553i −0.604422 0.796665i \(-0.706596\pi\)
0.992143 + 0.125112i \(0.0399290\pi\)
\(984\) 0 0
\(985\) −10.2494 + 10.2494i −0.326572 + 0.326572i
\(986\) 0 0
\(987\) 9.78375 8.07604i 0.311420 0.257063i
\(988\) 0 0
\(989\) −18.6554 −0.593208
\(990\) 0 0
\(991\) −3.71444 3.71444i −0.117993 0.117993i 0.645645 0.763638i \(-0.276589\pi\)
−0.763638 + 0.645645i \(0.776589\pi\)
\(992\) 0 0
\(993\) −3.43268 7.51907i −0.108933 0.238611i
\(994\) 0 0
\(995\) 20.0432 11.5719i 0.635411 0.366855i
\(996\) 0 0
\(997\) −6.98549 26.0702i −0.221233 0.825652i −0.983879 0.178836i \(-0.942767\pi\)
0.762646 0.646816i \(-0.223900\pi\)
\(998\) 0 0
\(999\) −31.2502 + 4.73535i −0.988713 + 0.149820i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 888.2.br.a.569.36 yes 152
3.2 odd 2 inner 888.2.br.a.569.29 152
37.8 odd 12 inner 888.2.br.a.785.29 yes 152
111.8 even 12 inner 888.2.br.a.785.36 yes 152
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
888.2.br.a.569.29 152 3.2 odd 2 inner
888.2.br.a.569.36 yes 152 1.1 even 1 trivial
888.2.br.a.785.29 yes 152 37.8 odd 12 inner
888.2.br.a.785.36 yes 152 111.8 even 12 inner