Properties

Label 888.2.br.a.569.32
Level $888$
Weight $2$
Character 888.569
Analytic conductor $7.091$
Analytic rank $0$
Dimension $152$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [888,2,Mod(473,888)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("888.473"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(888, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([0, 0, 6, 7])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 888 = 2^{3} \cdot 3 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 888.br (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.09071569949\)
Analytic rank: \(0\)
Dimension: \(152\)
Relative dimension: \(38\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 569.32
Character \(\chi\) \(=\) 888.569
Dual form 888.2.br.a.785.32

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.36692 + 1.06373i) q^{3} +(0.356362 - 1.32996i) q^{5} +(0.659764 + 1.14274i) q^{7} +(0.736949 + 2.90808i) q^{9} -0.353852 q^{11} +(-0.106594 - 0.0285618i) q^{13} +(1.90184 - 1.43888i) q^{15} +(-0.268822 + 0.0720307i) q^{17} +(7.97106 + 2.13584i) q^{19} +(-0.313728 + 2.26385i) q^{21} +(-0.593239 - 0.593239i) q^{23} +(2.68832 + 1.55210i) q^{25} +(-2.08606 + 4.75903i) q^{27} +(-1.88653 + 1.88653i) q^{29} +(3.87869 + 3.87869i) q^{31} +(-0.483688 - 0.376404i) q^{33} +(1.75492 - 0.470230i) q^{35} +(-5.93717 - 1.32288i) q^{37} +(-0.115324 - 0.152430i) q^{39} +(0.379388 + 0.657119i) q^{41} +(4.16777 - 4.16777i) q^{43} +(4.13025 + 0.0562150i) q^{45} -6.18133i q^{47} +(2.62942 - 4.55430i) q^{49} +(-0.444080 - 0.187494i) q^{51} +(-3.52233 - 2.03362i) q^{53} +(-0.126100 + 0.470610i) q^{55} +(8.62385 + 11.3986i) q^{57} +(-5.80978 + 1.55673i) q^{59} +(-1.41803 + 5.29217i) q^{61} +(-2.83697 + 2.76079i) q^{63} +(-0.0759724 + 0.131588i) q^{65} +(4.53482 - 2.61818i) q^{67} +(-0.179864 - 1.44196i) q^{69} +(5.08729 - 2.93715i) q^{71} -1.03868i q^{73} +(2.02370 + 4.98125i) q^{75} +(-0.233459 - 0.404363i) q^{77} +(0.472722 + 0.126665i) q^{79} +(-7.91381 + 4.28620i) q^{81} +(-11.5472 - 6.66677i) q^{83} +0.383192i q^{85} +(-4.58550 + 0.571976i) q^{87} +(4.27017 + 15.9365i) q^{89} +(-0.0376881 - 0.140654i) q^{91} +(1.17598 + 9.42774i) q^{93} +(5.68117 - 9.84008i) q^{95} +(-7.97830 + 7.97830i) q^{97} +(-0.260771 - 1.02903i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 152 q + 4 q^{13} - 12 q^{15} + 4 q^{19} - 44 q^{31} - 12 q^{39} + 28 q^{43} + 20 q^{45} - 80 q^{49} - 12 q^{51} - 8 q^{55} - 40 q^{57} - 28 q^{61} + 48 q^{63} + 56 q^{69} + 64 q^{75} + 20 q^{79} + 16 q^{81}+ \cdots - 20 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/888\mathbb{Z}\right)^\times\).

\(n\) \(223\) \(409\) \(445\) \(593\)
\(\chi(n)\) \(1\) \(e\left(\frac{11}{12}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.36692 + 1.06373i 0.789192 + 0.614146i
\(4\) 0 0
\(5\) 0.356362 1.32996i 0.159370 0.594777i −0.839321 0.543636i \(-0.817047\pi\)
0.998691 0.0511417i \(-0.0162860\pi\)
\(6\) 0 0
\(7\) 0.659764 + 1.14274i 0.249367 + 0.431917i 0.963350 0.268246i \(-0.0864441\pi\)
−0.713983 + 0.700163i \(0.753111\pi\)
\(8\) 0 0
\(9\) 0.736949 + 2.90808i 0.245650 + 0.969359i
\(10\) 0 0
\(11\) −0.353852 −0.106690 −0.0533452 0.998576i \(-0.516988\pi\)
−0.0533452 + 0.998576i \(0.516988\pi\)
\(12\) 0 0
\(13\) −0.106594 0.0285618i −0.0295639 0.00792163i 0.244007 0.969774i \(-0.421538\pi\)
−0.273571 + 0.961852i \(0.588205\pi\)
\(14\) 0 0
\(15\) 1.90184 1.43888i 0.491054 0.371517i
\(16\) 0 0
\(17\) −0.268822 + 0.0720307i −0.0651989 + 0.0174700i −0.291271 0.956641i \(-0.594078\pi\)
0.226072 + 0.974111i \(0.427411\pi\)
\(18\) 0 0
\(19\) 7.97106 + 2.13584i 1.82869 + 0.489995i 0.997791 0.0664333i \(-0.0211620\pi\)
0.830896 + 0.556428i \(0.187829\pi\)
\(20\) 0 0
\(21\) −0.313728 + 2.26385i −0.0684611 + 0.494013i
\(22\) 0 0
\(23\) −0.593239 0.593239i −0.123699 0.123699i 0.642547 0.766246i \(-0.277878\pi\)
−0.766246 + 0.642547i \(0.777878\pi\)
\(24\) 0 0
\(25\) 2.68832 + 1.55210i 0.537664 + 0.310420i
\(26\) 0 0
\(27\) −2.08606 + 4.75903i −0.401463 + 0.915875i
\(28\) 0 0
\(29\) −1.88653 + 1.88653i −0.350320 + 0.350320i −0.860229 0.509909i \(-0.829679\pi\)
0.509909 + 0.860229i \(0.329679\pi\)
\(30\) 0 0
\(31\) 3.87869 + 3.87869i 0.696633 + 0.696633i 0.963683 0.267050i \(-0.0860489\pi\)
−0.267050 + 0.963683i \(0.586049\pi\)
\(32\) 0 0
\(33\) −0.483688 0.376404i −0.0841993 0.0655235i
\(34\) 0 0
\(35\) 1.75492 0.470230i 0.296636 0.0794834i
\(36\) 0 0
\(37\) −5.93717 1.32288i −0.976065 0.217481i
\(38\) 0 0
\(39\) −0.115324 0.152430i −0.0184666 0.0244083i
\(40\) 0 0
\(41\) 0.379388 + 0.657119i 0.0592504 + 0.102625i 0.894129 0.447809i \(-0.147796\pi\)
−0.834879 + 0.550434i \(0.814462\pi\)
\(42\) 0 0
\(43\) 4.16777 4.16777i 0.635579 0.635579i −0.313883 0.949462i \(-0.601630\pi\)
0.949462 + 0.313883i \(0.101630\pi\)
\(44\) 0 0
\(45\) 4.13025 + 0.0562150i 0.615702 + 0.00838004i
\(46\) 0 0
\(47\) 6.18133i 0.901639i −0.892615 0.450820i \(-0.851132\pi\)
0.892615 0.450820i \(-0.148868\pi\)
\(48\) 0 0
\(49\) 2.62942 4.55430i 0.375632 0.650614i
\(50\) 0 0
\(51\) −0.444080 0.187494i −0.0621836 0.0262545i
\(52\) 0 0
\(53\) −3.52233 2.03362i −0.483829 0.279339i 0.238182 0.971221i \(-0.423449\pi\)
−0.722011 + 0.691882i \(0.756782\pi\)
\(54\) 0 0
\(55\) −0.126100 + 0.470610i −0.0170033 + 0.0634571i
\(56\) 0 0
\(57\) 8.62385 + 11.3986i 1.14226 + 1.50978i
\(58\) 0 0
\(59\) −5.80978 + 1.55673i −0.756369 + 0.202669i −0.616341 0.787479i \(-0.711386\pi\)
−0.140028 + 0.990148i \(0.544719\pi\)
\(60\) 0 0
\(61\) −1.41803 + 5.29217i −0.181561 + 0.677593i 0.813780 + 0.581173i \(0.197406\pi\)
−0.995341 + 0.0964204i \(0.969261\pi\)
\(62\) 0 0
\(63\) −2.83697 + 2.76079i −0.357425 + 0.347826i
\(64\) 0 0
\(65\) −0.0759724 + 0.131588i −0.00942321 + 0.0163215i
\(66\) 0 0
\(67\) 4.53482 2.61818i 0.554016 0.319861i −0.196724 0.980459i \(-0.563030\pi\)
0.750740 + 0.660598i \(0.229697\pi\)
\(68\) 0 0
\(69\) −0.179864 1.44196i −0.0216531 0.173592i
\(70\) 0 0
\(71\) 5.08729 2.93715i 0.603750 0.348575i −0.166765 0.985997i \(-0.553332\pi\)
0.770516 + 0.637421i \(0.219999\pi\)
\(72\) 0 0
\(73\) 1.03868i 0.121568i −0.998151 0.0607842i \(-0.980640\pi\)
0.998151 0.0607842i \(-0.0193601\pi\)
\(74\) 0 0
\(75\) 2.02370 + 4.98125i 0.233677 + 0.575186i
\(76\) 0 0
\(77\) −0.233459 0.404363i −0.0266051 0.0460814i
\(78\) 0 0
\(79\) 0.472722 + 0.126665i 0.0531853 + 0.0142510i 0.285314 0.958434i \(-0.407902\pi\)
−0.232128 + 0.972685i \(0.574569\pi\)
\(80\) 0 0
\(81\) −7.91381 + 4.28620i −0.879313 + 0.476245i
\(82\) 0 0
\(83\) −11.5472 6.66677i −1.26747 0.731773i −0.292960 0.956125i \(-0.594640\pi\)
−0.974508 + 0.224351i \(0.927974\pi\)
\(84\) 0 0
\(85\) 0.383192i 0.0415631i
\(86\) 0 0
\(87\) −4.58550 + 0.571976i −0.491617 + 0.0613223i
\(88\) 0 0
\(89\) 4.27017 + 15.9365i 0.452637 + 1.68927i 0.694942 + 0.719065i \(0.255430\pi\)
−0.242305 + 0.970200i \(0.577904\pi\)
\(90\) 0 0
\(91\) −0.0376881 0.140654i −0.00395079 0.0147445i
\(92\) 0 0
\(93\) 1.17598 + 9.42774i 0.121943 + 0.977611i
\(94\) 0 0
\(95\) 5.68117 9.84008i 0.582876 1.00957i
\(96\) 0 0
\(97\) −7.97830 + 7.97830i −0.810074 + 0.810074i −0.984645 0.174571i \(-0.944146\pi\)
0.174571 + 0.984645i \(0.444146\pi\)
\(98\) 0 0
\(99\) −0.260771 1.02903i −0.0262085 0.103421i
\(100\) 0 0
\(101\) −12.2653 −1.22044 −0.610222 0.792230i \(-0.708920\pi\)
−0.610222 + 0.792230i \(0.708920\pi\)
\(102\) 0 0
\(103\) −7.56087 7.56087i −0.744995 0.744995i 0.228540 0.973535i \(-0.426605\pi\)
−0.973535 + 0.228540i \(0.926605\pi\)
\(104\) 0 0
\(105\) 2.89904 + 1.22400i 0.282917 + 0.119450i
\(106\) 0 0
\(107\) 9.71460 5.60873i 0.939146 0.542216i 0.0494537 0.998776i \(-0.484252\pi\)
0.889693 + 0.456560i \(0.150919\pi\)
\(108\) 0 0
\(109\) −0.346478 1.29307i −0.0331866 0.123854i 0.947345 0.320214i \(-0.103755\pi\)
−0.980532 + 0.196360i \(0.937088\pi\)
\(110\) 0 0
\(111\) −6.70845 8.12384i −0.636738 0.771080i
\(112\) 0 0
\(113\) −0.205514 0.766990i −0.0193332 0.0721523i 0.955585 0.294715i \(-0.0952246\pi\)
−0.974918 + 0.222562i \(0.928558\pi\)
\(114\) 0 0
\(115\) −1.00039 + 0.577578i −0.0932873 + 0.0538594i
\(116\) 0 0
\(117\) 0.00450554 0.331033i 0.000416537 0.0306040i
\(118\) 0 0
\(119\) −0.259672 0.259672i −0.0238041 0.0238041i
\(120\) 0 0
\(121\) −10.8748 −0.988617
\(122\) 0 0
\(123\) −0.180405 + 1.30180i −0.0162666 + 0.117379i
\(124\) 0 0
\(125\) 7.89026 7.89026i 0.705726 0.705726i
\(126\) 0 0
\(127\) −0.547971 + 0.949114i −0.0486246 + 0.0842202i −0.889313 0.457298i \(-0.848817\pi\)
0.840689 + 0.541519i \(0.182150\pi\)
\(128\) 0 0
\(129\) 10.1304 1.26362i 0.891933 0.111256i
\(130\) 0 0
\(131\) −0.646234 2.41178i −0.0564617 0.210718i 0.931932 0.362634i \(-0.118122\pi\)
−0.988393 + 0.151916i \(0.951456\pi\)
\(132\) 0 0
\(133\) 2.81830 + 10.5180i 0.244377 + 0.912029i
\(134\) 0 0
\(135\) 5.58593 + 4.47032i 0.480761 + 0.384744i
\(136\) 0 0
\(137\) 1.00031i 0.0854620i 0.999087 + 0.0427310i \(0.0136058\pi\)
−0.999087 + 0.0427310i \(0.986394\pi\)
\(138\) 0 0
\(139\) −2.63719 1.52258i −0.223684 0.129144i 0.383971 0.923345i \(-0.374556\pi\)
−0.607655 + 0.794201i \(0.707890\pi\)
\(140\) 0 0
\(141\) 6.57528 8.44939i 0.553738 0.711567i
\(142\) 0 0
\(143\) 0.0377186 + 0.0101067i 0.00315419 + 0.000845163i
\(144\) 0 0
\(145\) 1.83673 + 3.18130i 0.152532 + 0.264193i
\(146\) 0 0
\(147\) 8.43877 3.42836i 0.696018 0.282767i
\(148\) 0 0
\(149\) 14.9878i 1.22785i −0.789366 0.613923i \(-0.789591\pi\)
0.789366 0.613923i \(-0.210409\pi\)
\(150\) 0 0
\(151\) 0.883659 0.510181i 0.0719111 0.0415179i −0.463613 0.886038i \(-0.653447\pi\)
0.535524 + 0.844520i \(0.320114\pi\)
\(152\) 0 0
\(153\) −0.407579 0.728672i −0.0329508 0.0589097i
\(154\) 0 0
\(155\) 6.54073 3.77629i 0.525364 0.303319i
\(156\) 0 0
\(157\) 1.47706 2.55835i 0.117883 0.204179i −0.801046 0.598603i \(-0.795723\pi\)
0.918928 + 0.394424i \(0.129056\pi\)
\(158\) 0 0
\(159\) −2.65152 6.52660i −0.210279 0.517593i
\(160\) 0 0
\(161\) 0.286523 1.06932i 0.0225812 0.0842741i
\(162\) 0 0
\(163\) 5.78959 1.55132i 0.453476 0.121509i −0.0248494 0.999691i \(-0.507911\pi\)
0.478325 + 0.878183i \(0.341244\pi\)
\(164\) 0 0
\(165\) −0.672972 + 0.509151i −0.0523908 + 0.0396374i
\(166\) 0 0
\(167\) 5.57534 20.8075i 0.431433 1.61013i −0.318029 0.948081i \(-0.603021\pi\)
0.749461 0.662048i \(-0.230313\pi\)
\(168\) 0 0
\(169\) −11.2478 6.49391i −0.865214 0.499532i
\(170\) 0 0
\(171\) −0.336922 + 24.7545i −0.0257650 + 1.89302i
\(172\) 0 0
\(173\) 6.15811 10.6662i 0.468192 0.810933i −0.531147 0.847280i \(-0.678239\pi\)
0.999339 + 0.0363470i \(0.0115721\pi\)
\(174\) 0 0
\(175\) 4.09608i 0.309635i
\(176\) 0 0
\(177\) −9.59746 4.05213i −0.721389 0.304577i
\(178\) 0 0
\(179\) 3.20372 3.20372i 0.239457 0.239457i −0.577168 0.816625i \(-0.695842\pi\)
0.816625 + 0.577168i \(0.195842\pi\)
\(180\) 0 0
\(181\) −5.63591 9.76169i −0.418914 0.725580i 0.576916 0.816803i \(-0.304256\pi\)
−0.995831 + 0.0912228i \(0.970922\pi\)
\(182\) 0 0
\(183\) −7.56779 + 5.72558i −0.559427 + 0.423247i
\(184\) 0 0
\(185\) −3.87517 + 7.42479i −0.284908 + 0.545881i
\(186\) 0 0
\(187\) 0.0951233 0.0254882i 0.00695611 0.00186388i
\(188\) 0 0
\(189\) −6.81466 + 0.755997i −0.495693 + 0.0549907i
\(190\) 0 0
\(191\) −5.79529 5.79529i −0.419333 0.419333i 0.465641 0.884974i \(-0.345824\pi\)
−0.884974 + 0.465641i \(0.845824\pi\)
\(192\) 0 0
\(193\) −10.6254 + 10.6254i −0.764834 + 0.764834i −0.977192 0.212358i \(-0.931886\pi\)
0.212358 + 0.977192i \(0.431886\pi\)
\(194\) 0 0
\(195\) −0.243823 + 0.0990562i −0.0174605 + 0.00709357i
\(196\) 0 0
\(197\) −4.04485 2.33529i −0.288183 0.166383i 0.348939 0.937145i \(-0.386542\pi\)
−0.637122 + 0.770763i \(0.719875\pi\)
\(198\) 0 0
\(199\) −14.1171 14.1171i −1.00074 1.00074i −1.00000 0.000735341i \(-0.999766\pi\)
−0.000735341 1.00000i \(-0.500234\pi\)
\(200\) 0 0
\(201\) 8.98378 + 1.24499i 0.633667 + 0.0878146i
\(202\) 0 0
\(203\) −3.40048 0.911157i −0.238667 0.0639507i
\(204\) 0 0
\(205\) 1.00914 0.270399i 0.0704817 0.0188855i
\(206\) 0 0
\(207\) 1.28800 2.16237i 0.0895221 0.150295i
\(208\) 0 0
\(209\) −2.82058 0.755772i −0.195103 0.0522778i
\(210\) 0 0
\(211\) 21.8962 1.50740 0.753699 0.657220i \(-0.228268\pi\)
0.753699 + 0.657220i \(0.228268\pi\)
\(212\) 0 0
\(213\) 10.0783 + 1.39666i 0.690551 + 0.0956977i
\(214\) 0 0
\(215\) −4.05774 7.02822i −0.276736 0.479321i
\(216\) 0 0
\(217\) −1.87333 + 6.99136i −0.127170 + 0.474605i
\(218\) 0 0
\(219\) 1.10488 1.41979i 0.0746607 0.0959408i
\(220\) 0 0
\(221\) 0.0307122 0.00206593
\(222\) 0 0
\(223\) 3.05720 0.204725 0.102363 0.994747i \(-0.467360\pi\)
0.102363 + 0.994747i \(0.467360\pi\)
\(224\) 0 0
\(225\) −2.53248 + 8.96166i −0.168832 + 0.597444i
\(226\) 0 0
\(227\) −1.06703 + 3.98222i −0.0708214 + 0.264309i −0.992253 0.124231i \(-0.960354\pi\)
0.921432 + 0.388540i \(0.127020\pi\)
\(228\) 0 0
\(229\) −7.28814 12.6234i −0.481614 0.834180i 0.518163 0.855282i \(-0.326616\pi\)
−0.999777 + 0.0211018i \(0.993283\pi\)
\(230\) 0 0
\(231\) 0.111014 0.801070i 0.00730415 0.0527065i
\(232\) 0 0
\(233\) −1.04695 −0.0685879 −0.0342940 0.999412i \(-0.510918\pi\)
−0.0342940 + 0.999412i \(0.510918\pi\)
\(234\) 0 0
\(235\) −8.22094 2.20279i −0.536275 0.143694i
\(236\) 0 0
\(237\) 0.511435 + 0.675991i 0.0332213 + 0.0439103i
\(238\) 0 0
\(239\) −18.4282 + 4.93783i −1.19202 + 0.319401i −0.799685 0.600420i \(-0.795000\pi\)
−0.392338 + 0.919821i \(0.628333\pi\)
\(240\) 0 0
\(241\) −13.1248 3.51678i −0.845443 0.226536i −0.190004 0.981783i \(-0.560850\pi\)
−0.655440 + 0.755247i \(0.727517\pi\)
\(242\) 0 0
\(243\) −15.3769 2.55927i −0.986431 0.164177i
\(244\) 0 0
\(245\) −5.12002 5.12002i −0.327106 0.327106i
\(246\) 0 0
\(247\) −0.788666 0.455336i −0.0501816 0.0289724i
\(248\) 0 0
\(249\) −8.69244 21.3961i −0.550861 1.35592i
\(250\) 0 0
\(251\) −12.8801 + 12.8801i −0.812988 + 0.812988i −0.985081 0.172093i \(-0.944947\pi\)
0.172093 + 0.985081i \(0.444947\pi\)
\(252\) 0 0
\(253\) 0.209919 + 0.209919i 0.0131975 + 0.0131975i
\(254\) 0 0
\(255\) −0.407614 + 0.523794i −0.0255258 + 0.0328012i
\(256\) 0 0
\(257\) 24.7058 6.61991i 1.54111 0.412939i 0.614484 0.788929i \(-0.289364\pi\)
0.926623 + 0.375991i \(0.122698\pi\)
\(258\) 0 0
\(259\) −2.40541 7.65746i −0.149465 0.475811i
\(260\) 0 0
\(261\) −6.87645 4.09590i −0.425641 0.253530i
\(262\) 0 0
\(263\) 11.2712 + 19.5223i 0.695013 + 1.20380i 0.970176 + 0.242401i \(0.0779348\pi\)
−0.275163 + 0.961398i \(0.588732\pi\)
\(264\) 0 0
\(265\) −3.95986 + 3.95986i −0.243252 + 0.243252i
\(266\) 0 0
\(267\) −11.1152 + 26.3263i −0.680238 + 1.61114i
\(268\) 0 0
\(269\) 8.01206i 0.488504i −0.969712 0.244252i \(-0.921458\pi\)
0.969712 0.244252i \(-0.0785424\pi\)
\(270\) 0 0
\(271\) −1.20711 + 2.09078i −0.0733270 + 0.127006i −0.900358 0.435151i \(-0.856695\pi\)
0.827031 + 0.562157i \(0.190028\pi\)
\(272\) 0 0
\(273\) 0.0981015 0.232353i 0.00593737 0.0140626i
\(274\) 0 0
\(275\) −0.951268 0.549215i −0.0573636 0.0331189i
\(276\) 0 0
\(277\) 1.12495 4.19837i 0.0675917 0.252256i −0.923860 0.382731i \(-0.874984\pi\)
0.991452 + 0.130475i \(0.0416503\pi\)
\(278\) 0 0
\(279\) −8.42112 + 14.1379i −0.504159 + 0.846414i
\(280\) 0 0
\(281\) −6.78700 + 1.81857i −0.404879 + 0.108487i −0.455510 0.890230i \(-0.650543\pi\)
0.0506317 + 0.998717i \(0.483877\pi\)
\(282\) 0 0
\(283\) 4.58114 17.0971i 0.272321 1.01631i −0.685295 0.728266i \(-0.740327\pi\)
0.957616 0.288049i \(-0.0930067\pi\)
\(284\) 0 0
\(285\) 18.2329 7.40737i 1.08003 0.438775i
\(286\) 0 0
\(287\) −0.500613 + 0.867087i −0.0295502 + 0.0511825i
\(288\) 0 0
\(289\) −14.6554 + 8.46127i −0.862080 + 0.497722i
\(290\) 0 0
\(291\) −19.3925 + 2.41894i −1.13681 + 0.141801i
\(292\) 0 0
\(293\) −4.52457 + 2.61226i −0.264328 + 0.152610i −0.626307 0.779576i \(-0.715434\pi\)
0.361979 + 0.932186i \(0.382101\pi\)
\(294\) 0 0
\(295\) 8.28155i 0.482171i
\(296\) 0 0
\(297\) 0.738158 1.68399i 0.0428323 0.0977152i
\(298\) 0 0
\(299\) 0.0462919 + 0.0801799i 0.00267713 + 0.00463693i
\(300\) 0 0
\(301\) 7.51244 + 2.01295i 0.433010 + 0.116025i
\(302\) 0 0
\(303\) −16.7657 13.0470i −0.963165 0.749531i
\(304\) 0 0
\(305\) 6.53306 + 3.77186i 0.374082 + 0.215976i
\(306\) 0 0
\(307\) 15.0090i 0.856610i −0.903634 0.428305i \(-0.859111\pi\)
0.903634 0.428305i \(-0.140889\pi\)
\(308\) 0 0
\(309\) −2.29238 18.3779i −0.130409 1.04548i
\(310\) 0 0
\(311\) 7.68506 + 28.6810i 0.435780 + 1.62635i 0.739193 + 0.673494i \(0.235207\pi\)
−0.303413 + 0.952859i \(0.598126\pi\)
\(312\) 0 0
\(313\) −2.12274 7.92219i −0.119985 0.447789i 0.879627 0.475664i \(-0.157792\pi\)
−0.999611 + 0.0278759i \(0.991126\pi\)
\(314\) 0 0
\(315\) 2.66075 + 4.75691i 0.149916 + 0.268022i
\(316\) 0 0
\(317\) 1.50907 2.61378i 0.0847576 0.146804i −0.820530 0.571603i \(-0.806322\pi\)
0.905288 + 0.424799i \(0.139655\pi\)
\(318\) 0 0
\(319\) 0.667553 0.667553i 0.0373758 0.0373758i
\(320\) 0 0
\(321\) 19.2453 + 2.66704i 1.07417 + 0.148860i
\(322\) 0 0
\(323\) −2.29664 −0.127789
\(324\) 0 0
\(325\) −0.242229 0.242229i −0.0134364 0.0134364i
\(326\) 0 0
\(327\) 0.901876 2.13609i 0.0498739 0.118126i
\(328\) 0 0
\(329\) 7.06368 4.07822i 0.389433 0.224839i
\(330\) 0 0
\(331\) 5.35290 + 19.9773i 0.294222 + 1.09805i 0.941833 + 0.336081i \(0.109102\pi\)
−0.647611 + 0.761971i \(0.724232\pi\)
\(332\) 0 0
\(333\) −0.528341 18.2406i −0.0289529 0.999581i
\(334\) 0 0
\(335\) −1.86604 6.96416i −0.101953 0.380493i
\(336\) 0 0
\(337\) −10.8203 + 6.24709i −0.589418 + 0.340301i −0.764867 0.644188i \(-0.777196\pi\)
0.175449 + 0.984488i \(0.443862\pi\)
\(338\) 0 0
\(339\) 0.534949 1.26703i 0.0290545 0.0688154i
\(340\) 0 0
\(341\) −1.37248 1.37248i −0.0743241 0.0743241i
\(342\) 0 0
\(343\) 16.1759 0.873416
\(344\) 0 0
\(345\) −1.98185 0.274648i −0.106699 0.0147865i
\(346\) 0 0
\(347\) −1.03403 + 1.03403i −0.0555098 + 0.0555098i −0.734317 0.678807i \(-0.762497\pi\)
0.678807 + 0.734317i \(0.262497\pi\)
\(348\) 0 0
\(349\) 13.1887 22.8436i 0.705977 1.22279i −0.260361 0.965511i \(-0.583842\pi\)
0.966338 0.257276i \(-0.0828251\pi\)
\(350\) 0 0
\(351\) 0.358289 0.447703i 0.0191240 0.0238966i
\(352\) 0 0
\(353\) 4.72097 + 17.6189i 0.251272 + 0.937759i 0.970127 + 0.242599i \(0.0779999\pi\)
−0.718855 + 0.695160i \(0.755333\pi\)
\(354\) 0 0
\(355\) −2.09338 7.81260i −0.111105 0.414650i
\(356\) 0 0
\(357\) −0.0787297 0.631172i −0.00416682 0.0334052i
\(358\) 0 0
\(359\) 35.0852i 1.85172i 0.377862 + 0.925862i \(0.376659\pi\)
−0.377862 + 0.925862i \(0.623341\pi\)
\(360\) 0 0
\(361\) 42.5215 + 24.5498i 2.23797 + 1.29209i
\(362\) 0 0
\(363\) −14.8650 11.5679i −0.780209 0.607155i
\(364\) 0 0
\(365\) −1.38141 0.370147i −0.0723061 0.0193744i
\(366\) 0 0
\(367\) 13.3791 + 23.1732i 0.698381 + 1.20963i 0.969028 + 0.246952i \(0.0794291\pi\)
−0.270647 + 0.962679i \(0.587238\pi\)
\(368\) 0 0
\(369\) −1.63136 + 1.58755i −0.0849254 + 0.0826447i
\(370\) 0 0
\(371\) 5.36682i 0.278632i
\(372\) 0 0
\(373\) −9.26611 + 5.34979i −0.479781 + 0.277002i −0.720325 0.693637i \(-0.756007\pi\)
0.240544 + 0.970638i \(0.422674\pi\)
\(374\) 0 0
\(375\) 19.1785 2.39224i 0.990372 0.123535i
\(376\) 0 0
\(377\) 0.254976 0.147210i 0.0131319 0.00758173i
\(378\) 0 0
\(379\) 6.24669 10.8196i 0.320871 0.555765i −0.659797 0.751444i \(-0.729358\pi\)
0.980668 + 0.195679i \(0.0626911\pi\)
\(380\) 0 0
\(381\) −1.75864 + 0.714469i −0.0900976 + 0.0366034i
\(382\) 0 0
\(383\) −2.40828 + 8.98784i −0.123058 + 0.459257i −0.999763 0.0217706i \(-0.993070\pi\)
0.876705 + 0.481028i \(0.159736\pi\)
\(384\) 0 0
\(385\) −0.620983 + 0.166392i −0.0316482 + 0.00848012i
\(386\) 0 0
\(387\) 15.1916 + 9.04876i 0.772234 + 0.459975i
\(388\) 0 0
\(389\) 7.70642 28.7608i 0.390731 1.45823i −0.438200 0.898877i \(-0.644384\pi\)
0.828931 0.559351i \(-0.188949\pi\)
\(390\) 0 0
\(391\) 0.202207 + 0.116744i 0.0102261 + 0.00590402i
\(392\) 0 0
\(393\) 1.68213 3.98413i 0.0848524 0.200973i
\(394\) 0 0
\(395\) 0.336920 0.583563i 0.0169523 0.0293623i
\(396\) 0 0
\(397\) 14.7534i 0.740453i −0.928942 0.370226i \(-0.879280\pi\)
0.928942 0.370226i \(-0.120720\pi\)
\(398\) 0 0
\(399\) −7.33597 + 17.3752i −0.367258 + 0.869850i
\(400\) 0 0
\(401\) −5.29030 + 5.29030i −0.264185 + 0.264185i −0.826752 0.562567i \(-0.809814\pi\)
0.562567 + 0.826752i \(0.309814\pi\)
\(402\) 0 0
\(403\) −0.302663 0.524228i −0.0150767 0.0261137i
\(404\) 0 0
\(405\) 2.88031 + 12.0525i 0.143124 + 0.598895i
\(406\) 0 0
\(407\) 2.10088 + 0.468106i 0.104137 + 0.0232031i
\(408\) 0 0
\(409\) 11.5636 3.09845i 0.571781 0.153208i 0.0386678 0.999252i \(-0.487689\pi\)
0.533113 + 0.846044i \(0.321022\pi\)
\(410\) 0 0
\(411\) −1.06406 + 1.36734i −0.0524861 + 0.0674459i
\(412\) 0 0
\(413\) −5.61202 5.61202i −0.276150 0.276150i
\(414\) 0 0
\(415\) −12.9815 + 12.9815i −0.637239 + 0.637239i
\(416\) 0 0
\(417\) −1.98522 4.88652i −0.0972164 0.239294i
\(418\) 0 0
\(419\) −19.5424 11.2828i −0.954709 0.551202i −0.0601686 0.998188i \(-0.519164\pi\)
−0.894541 + 0.446987i \(0.852497\pi\)
\(420\) 0 0
\(421\) 16.6835 + 16.6835i 0.813104 + 0.813104i 0.985098 0.171994i \(-0.0550210\pi\)
−0.171994 + 0.985098i \(0.555021\pi\)
\(422\) 0 0
\(423\) 17.9758 4.55532i 0.874012 0.221487i
\(424\) 0 0
\(425\) −0.834479 0.223598i −0.0404782 0.0108461i
\(426\) 0 0
\(427\) −6.98317 + 1.87113i −0.337939 + 0.0905505i
\(428\) 0 0
\(429\) 0.0408076 + 0.0539375i 0.00197021 + 0.00260413i
\(430\) 0 0
\(431\) 17.0880 + 4.57873i 0.823102 + 0.220550i 0.645702 0.763589i \(-0.276565\pi\)
0.177400 + 0.984139i \(0.443231\pi\)
\(432\) 0 0
\(433\) 10.9188 0.524725 0.262362 0.964969i \(-0.415498\pi\)
0.262362 + 0.964969i \(0.415498\pi\)
\(434\) 0 0
\(435\) −0.873393 + 6.30238i −0.0418760 + 0.302176i
\(436\) 0 0
\(437\) −3.46168 5.99581i −0.165595 0.286819i
\(438\) 0 0
\(439\) −8.93434 + 33.3434i −0.426413 + 1.59139i 0.334406 + 0.942429i \(0.391464\pi\)
−0.760819 + 0.648965i \(0.775202\pi\)
\(440\) 0 0
\(441\) 15.1820 + 4.29028i 0.722952 + 0.204299i
\(442\) 0 0
\(443\) 22.5313 1.07049 0.535246 0.844696i \(-0.320219\pi\)
0.535246 + 0.844696i \(0.320219\pi\)
\(444\) 0 0
\(445\) 22.7167 1.07687
\(446\) 0 0
\(447\) 15.9430 20.4871i 0.754077 0.969007i
\(448\) 0 0
\(449\) 3.95126 14.7463i 0.186472 0.695921i −0.807839 0.589403i \(-0.799363\pi\)
0.994311 0.106518i \(-0.0339703\pi\)
\(450\) 0 0
\(451\) −0.134247 0.232523i −0.00632146 0.0109491i
\(452\) 0 0
\(453\) 1.75059 + 0.242599i 0.0822498 + 0.0113983i
\(454\) 0 0
\(455\) −0.200495 −0.00939936
\(456\) 0 0
\(457\) −15.9508 4.27399i −0.746145 0.199929i −0.134338 0.990936i \(-0.542891\pi\)
−0.611808 + 0.791007i \(0.709557\pi\)
\(458\) 0 0
\(459\) 0.217984 1.42959i 0.0101746 0.0667277i
\(460\) 0 0
\(461\) −21.4125 + 5.73746i −0.997279 + 0.267220i −0.720305 0.693657i \(-0.755998\pi\)
−0.276974 + 0.960877i \(0.589332\pi\)
\(462\) 0 0
\(463\) 12.7671 + 3.42093i 0.593337 + 0.158984i 0.542978 0.839747i \(-0.317297\pi\)
0.0503590 + 0.998731i \(0.483963\pi\)
\(464\) 0 0
\(465\) 12.9576 + 1.79569i 0.600895 + 0.0832730i
\(466\) 0 0
\(467\) 28.7974 + 28.7974i 1.33258 + 1.33258i 0.903052 + 0.429532i \(0.141321\pi\)
0.429532 + 0.903052i \(0.358679\pi\)
\(468\) 0 0
\(469\) 5.98381 + 3.45476i 0.276307 + 0.159526i
\(470\) 0 0
\(471\) 4.74043 1.92586i 0.218427 0.0887391i
\(472\) 0 0
\(473\) −1.47478 + 1.47478i −0.0678103 + 0.0678103i
\(474\) 0 0
\(475\) 18.1137 + 18.1137i 0.831114 + 0.831114i
\(476\) 0 0
\(477\) 3.31814 11.7419i 0.151927 0.537623i
\(478\) 0 0
\(479\) −31.4390 + 8.42405i −1.43648 + 0.384905i −0.891301 0.453412i \(-0.850207\pi\)
−0.545183 + 0.838317i \(0.683540\pi\)
\(480\) 0 0
\(481\) 0.595084 + 0.310588i 0.0271335 + 0.0141616i
\(482\) 0 0
\(483\) 1.52912 1.15689i 0.0695775 0.0526404i
\(484\) 0 0
\(485\) 7.76767 + 13.4540i 0.352712 + 0.610915i
\(486\) 0 0
\(487\) 14.8376 14.8376i 0.672356 0.672356i −0.285903 0.958259i \(-0.592293\pi\)
0.958259 + 0.285903i \(0.0922935\pi\)
\(488\) 0 0
\(489\) 9.56410 + 4.03805i 0.432504 + 0.182607i
\(490\) 0 0
\(491\) 39.3272i 1.77481i 0.460988 + 0.887406i \(0.347495\pi\)
−0.460988 + 0.887406i \(0.652505\pi\)
\(492\) 0 0
\(493\) 0.371253 0.643029i 0.0167204 0.0289606i
\(494\) 0 0
\(495\) −1.46150 0.0198918i −0.0656895 0.000894070i
\(496\) 0 0
\(497\) 6.71282 + 3.87565i 0.301111 + 0.173847i
\(498\) 0 0
\(499\) −2.15680 + 8.04929i −0.0965517 + 0.360336i −0.997250 0.0741090i \(-0.976389\pi\)
0.900698 + 0.434445i \(0.143055\pi\)
\(500\) 0 0
\(501\) 29.7546 22.5115i 1.32934 1.00574i
\(502\) 0 0
\(503\) 34.4722 9.23680i 1.53704 0.411848i 0.611732 0.791065i \(-0.290473\pi\)
0.925308 + 0.379217i \(0.123807\pi\)
\(504\) 0 0
\(505\) −4.37090 + 16.3124i −0.194502 + 0.725893i
\(506\) 0 0
\(507\) −8.46706 20.8413i −0.376035 0.925594i
\(508\) 0 0
\(509\) −0.880811 + 1.52561i −0.0390412 + 0.0676214i −0.884886 0.465808i \(-0.845764\pi\)
0.845845 + 0.533430i \(0.179097\pi\)
\(510\) 0 0
\(511\) 1.18695 0.685284i 0.0525074 0.0303152i
\(512\) 0 0
\(513\) −26.7926 + 33.4790i −1.18292 + 1.47813i
\(514\) 0 0
\(515\) −12.7501 + 7.36127i −0.561836 + 0.324376i
\(516\) 0 0
\(517\) 2.18728i 0.0961964i
\(518\) 0 0
\(519\) 19.7636 8.02922i 0.867525 0.352444i
\(520\) 0 0
\(521\) 16.2122 + 28.0803i 0.710268 + 1.23022i 0.964757 + 0.263144i \(0.0847594\pi\)
−0.254489 + 0.967076i \(0.581907\pi\)
\(522\) 0 0
\(523\) 1.12456 + 0.301324i 0.0491734 + 0.0131760i 0.283322 0.959025i \(-0.408564\pi\)
−0.234149 + 0.972201i \(0.575230\pi\)
\(524\) 0 0
\(525\) −4.35713 + 5.59902i −0.190161 + 0.244361i
\(526\) 0 0
\(527\) −1.32206 0.763292i −0.0575899 0.0332495i
\(528\) 0 0
\(529\) 22.2961i 0.969397i
\(530\) 0 0
\(531\) −8.80859 15.7481i −0.382260 0.683408i
\(532\) 0 0
\(533\) −0.0216720 0.0808812i −0.000938720 0.00350335i
\(534\) 0 0
\(535\) −3.99748 14.9188i −0.172826 0.644996i
\(536\) 0 0
\(537\) 7.78712 0.971333i 0.336039 0.0419161i
\(538\) 0 0
\(539\) −0.930428 + 1.61155i −0.0400764 + 0.0694143i
\(540\) 0 0
\(541\) −31.4789 + 31.4789i −1.35338 + 1.35338i −0.471538 + 0.881846i \(0.656301\pi\)
−0.881846 + 0.471538i \(0.843699\pi\)
\(542\) 0 0
\(543\) 2.67997 19.3386i 0.115008 0.829897i
\(544\) 0 0
\(545\) −1.84321 −0.0789546
\(546\) 0 0
\(547\) −26.3554 26.3554i −1.12687 1.12687i −0.990682 0.136193i \(-0.956513\pi\)
−0.136193 0.990682i \(-0.543487\pi\)
\(548\) 0 0
\(549\) −16.4351 0.223690i −0.701431 0.00954686i
\(550\) 0 0
\(551\) −19.0670 + 11.0083i −0.812280 + 0.468970i
\(552\) 0 0
\(553\) 0.167138 + 0.623769i 0.00710745 + 0.0265254i
\(554\) 0 0
\(555\) −13.1950 + 6.02696i −0.560098 + 0.255830i
\(556\) 0 0
\(557\) 7.46768 + 27.8698i 0.316416 + 1.18088i 0.922664 + 0.385604i \(0.126007\pi\)
−0.606248 + 0.795275i \(0.707326\pi\)
\(558\) 0 0
\(559\) −0.563300 + 0.325221i −0.0238250 + 0.0137554i
\(560\) 0 0
\(561\) 0.157139 + 0.0663453i 0.00663440 + 0.00280110i
\(562\) 0 0
\(563\) −9.50686 9.50686i −0.400666 0.400666i 0.477801 0.878468i \(-0.341434\pi\)
−0.878468 + 0.477801i \(0.841434\pi\)
\(564\) 0 0
\(565\) −1.09331 −0.0459957
\(566\) 0 0
\(567\) −10.1193 6.21558i −0.424970 0.261030i
\(568\) 0 0
\(569\) −8.56472 + 8.56472i −0.359052 + 0.359052i −0.863463 0.504412i \(-0.831709\pi\)
0.504412 + 0.863463i \(0.331709\pi\)
\(570\) 0 0
\(571\) 10.7544 18.6271i 0.450057 0.779521i −0.548332 0.836261i \(-0.684737\pi\)
0.998389 + 0.0567394i \(0.0180704\pi\)
\(572\) 0 0
\(573\) −1.75707 14.0864i −0.0734027 0.588466i
\(574\) 0 0
\(575\) −0.674049 2.51559i −0.0281098 0.104907i
\(576\) 0 0
\(577\) 2.86567 + 10.6948i 0.119300 + 0.445232i 0.999573 0.0292356i \(-0.00930732\pi\)
−0.880273 + 0.474467i \(0.842641\pi\)
\(578\) 0 0
\(579\) −25.8267 + 3.22151i −1.07332 + 0.133882i
\(580\) 0 0
\(581\) 17.5940i 0.729921i
\(582\) 0 0
\(583\) 1.24638 + 0.719600i 0.0516199 + 0.0298028i
\(584\) 0 0
\(585\) −0.438656 0.123960i −0.0181362 0.00512511i
\(586\) 0 0
\(587\) 1.34730 + 0.361008i 0.0556091 + 0.0149004i 0.286516 0.958075i \(-0.407503\pi\)
−0.230907 + 0.972976i \(0.574169\pi\)
\(588\) 0 0
\(589\) 22.6330 + 39.2015i 0.932576 + 1.61527i
\(590\) 0 0
\(591\) −3.04486 7.49479i −0.125249 0.308295i
\(592\) 0 0
\(593\) 18.2476i 0.749339i 0.927158 + 0.374670i \(0.122244\pi\)
−0.927158 + 0.374670i \(0.877756\pi\)
\(594\) 0 0
\(595\) −0.437891 + 0.252816i −0.0179518 + 0.0103645i
\(596\) 0 0
\(597\) −4.28016 34.3138i −0.175175 1.40437i
\(598\) 0 0
\(599\) −15.0264 + 8.67547i −0.613960 + 0.354470i −0.774514 0.632557i \(-0.782005\pi\)
0.160554 + 0.987027i \(0.448672\pi\)
\(600\) 0 0
\(601\) 17.3013 29.9667i 0.705734 1.22237i −0.260692 0.965422i \(-0.583951\pi\)
0.966426 0.256946i \(-0.0827161\pi\)
\(602\) 0 0
\(603\) 10.9558 + 11.2581i 0.446154 + 0.458466i
\(604\) 0 0
\(605\) −3.87537 + 14.4631i −0.157556 + 0.588007i
\(606\) 0 0
\(607\) 10.6773 2.86098i 0.433380 0.116124i −0.0355325 0.999369i \(-0.511313\pi\)
0.468912 + 0.883245i \(0.344646\pi\)
\(608\) 0 0
\(609\) −3.67897 4.86268i −0.149079 0.197046i
\(610\) 0 0
\(611\) −0.176550 + 0.658894i −0.00714246 + 0.0266560i
\(612\) 0 0
\(613\) −7.63602 4.40866i −0.308416 0.178064i 0.337801 0.941217i \(-0.390317\pi\)
−0.646217 + 0.763153i \(0.723650\pi\)
\(614\) 0 0
\(615\) 1.66705 + 0.703844i 0.0672220 + 0.0283817i
\(616\) 0 0
\(617\) −14.4287 + 24.9912i −0.580876 + 1.00611i 0.414500 + 0.910049i \(0.363957\pi\)
−0.995376 + 0.0960575i \(0.969377\pi\)
\(618\) 0 0
\(619\) 6.28062i 0.252439i −0.992002 0.126220i \(-0.959716\pi\)
0.992002 0.126220i \(-0.0402844\pi\)
\(620\) 0 0
\(621\) 4.06078 1.58571i 0.162953 0.0636323i
\(622\) 0 0
\(623\) −15.3940 + 15.3940i −0.616749 + 0.616749i
\(624\) 0 0
\(625\) 0.0785562 + 0.136063i 0.00314225 + 0.00544253i
\(626\) 0 0
\(627\) −3.05157 4.03342i −0.121868 0.161079i
\(628\) 0 0
\(629\) 1.69133 0.0720378i 0.0674378 0.00287234i
\(630\) 0 0
\(631\) 3.56689 0.955745i 0.141996 0.0380476i −0.187121 0.982337i \(-0.559916\pi\)
0.329117 + 0.944289i \(0.393249\pi\)
\(632\) 0 0
\(633\) 29.9304 + 23.2917i 1.18963 + 0.925762i
\(634\) 0 0
\(635\) 1.06701 + 1.06701i 0.0423430 + 0.0423430i
\(636\) 0 0
\(637\) −0.410361 + 0.410361i −0.0162591 + 0.0162591i
\(638\) 0 0
\(639\) 12.2905 + 12.6297i 0.486206 + 0.499623i
\(640\) 0 0
\(641\) −30.5896 17.6609i −1.20822 0.697565i −0.245848 0.969308i \(-0.579066\pi\)
−0.962370 + 0.271744i \(0.912400\pi\)
\(642\) 0 0
\(643\) −21.1770 21.1770i −0.835141 0.835141i 0.153074 0.988215i \(-0.451083\pi\)
−0.988215 + 0.153074i \(0.951083\pi\)
\(644\) 0 0
\(645\) 1.92952 13.9234i 0.0759749 0.548232i
\(646\) 0 0
\(647\) 38.5461 + 10.3284i 1.51540 + 0.406051i 0.918226 0.396057i \(-0.129622\pi\)
0.597178 + 0.802109i \(0.296289\pi\)
\(648\) 0 0
\(649\) 2.05581 0.550851i 0.0806974 0.0216228i
\(650\) 0 0
\(651\) −9.99763 + 7.56392i −0.391838 + 0.296453i
\(652\) 0 0
\(653\) −14.5652 3.90274i −0.569981 0.152726i −0.0376934 0.999289i \(-0.512001\pi\)
−0.532288 + 0.846563i \(0.678668\pi\)
\(654\) 0 0
\(655\) −3.43787 −0.134329
\(656\) 0 0
\(657\) 3.02056 0.765454i 0.117843 0.0298632i
\(658\) 0 0
\(659\) −17.4986 30.3085i −0.681649 1.18065i −0.974477 0.224486i \(-0.927930\pi\)
0.292828 0.956165i \(-0.405404\pi\)
\(660\) 0 0
\(661\) −5.18024 + 19.3329i −0.201488 + 0.751963i 0.789003 + 0.614389i \(0.210597\pi\)
−0.990491 + 0.137575i \(0.956069\pi\)
\(662\) 0 0
\(663\) 0.0419812 + 0.0326696i 0.00163041 + 0.00126878i
\(664\) 0 0
\(665\) 14.9929 0.581401
\(666\) 0 0
\(667\) 2.23833 0.0866684
\(668\) 0 0
\(669\) 4.17895 + 3.25204i 0.161567 + 0.125731i
\(670\) 0 0
\(671\) 0.501774 1.87265i 0.0193708 0.0722928i
\(672\) 0 0
\(673\) −14.6165 25.3164i −0.563423 0.975877i −0.997194 0.0748542i \(-0.976151\pi\)
0.433772 0.901023i \(-0.357182\pi\)
\(674\) 0 0
\(675\) −12.9945 + 9.55601i −0.500159 + 0.367811i
\(676\) 0 0
\(677\) −40.0961 −1.54102 −0.770508 0.637430i \(-0.779998\pi\)
−0.770508 + 0.637430i \(0.779998\pi\)
\(678\) 0 0
\(679\) −14.3809 3.85336i −0.551890 0.147878i
\(680\) 0 0
\(681\) −5.69456 + 4.30834i −0.218216 + 0.165096i
\(682\) 0 0
\(683\) 35.4427 9.49685i 1.35618 0.363387i 0.493767 0.869595i \(-0.335620\pi\)
0.862412 + 0.506208i \(0.168953\pi\)
\(684\) 0 0
\(685\) 1.33037 + 0.356472i 0.0508309 + 0.0136201i
\(686\) 0 0
\(687\) 3.46563 25.0079i 0.132222 0.954110i
\(688\) 0 0
\(689\) 0.317376 + 0.317376i 0.0120911 + 0.0120911i
\(690\) 0 0
\(691\) 20.2063 + 11.6661i 0.768684 + 0.443800i 0.832405 0.554168i \(-0.186964\pi\)
−0.0637212 + 0.997968i \(0.520297\pi\)
\(692\) 0 0
\(693\) 1.00387 0.976911i 0.0381339 0.0371098i
\(694\) 0 0
\(695\) −2.96478 + 2.96478i −0.112460 + 0.112460i
\(696\) 0 0
\(697\) −0.149321 0.149321i −0.00565592 0.00565592i
\(698\) 0 0
\(699\) −1.43110 1.11367i −0.0541291 0.0421230i
\(700\) 0 0
\(701\) 47.2764 12.6677i 1.78561 0.478452i 0.794020 0.607892i \(-0.207985\pi\)
0.991587 + 0.129440i \(0.0413180\pi\)
\(702\) 0 0
\(703\) −44.5001 23.2256i −1.67835 0.875971i
\(704\) 0 0
\(705\) −8.89419 11.7559i −0.334975 0.442754i
\(706\) 0 0
\(707\) −8.09221 14.0161i −0.304339 0.527130i
\(708\) 0 0
\(709\) −2.43280 + 2.43280i −0.0913657 + 0.0913657i −0.751312 0.659947i \(-0.770579\pi\)
0.659947 + 0.751312i \(0.270579\pi\)
\(710\) 0 0
\(711\) −0.0199810 + 1.46806i −0.000749348 + 0.0550564i
\(712\) 0 0
\(713\) 4.60198i 0.172345i
\(714\) 0 0
\(715\) 0.0268830 0.0465627i 0.00100537 0.00174135i
\(716\) 0 0
\(717\) −30.4425 12.8531i −1.13689 0.480007i
\(718\) 0 0
\(719\) 28.5477 + 16.4820i 1.06465 + 0.614676i 0.926715 0.375765i \(-0.122620\pi\)
0.137935 + 0.990441i \(0.455953\pi\)
\(720\) 0 0
\(721\) 3.65175 13.6285i 0.135998 0.507553i
\(722\) 0 0
\(723\) −14.1997 18.7684i −0.528092 0.698006i
\(724\) 0 0
\(725\) −7.99968 + 2.14351i −0.297101 + 0.0796079i
\(726\) 0 0
\(727\) −11.8100 + 44.0754i −0.438007 + 1.63467i 0.295758 + 0.955263i \(0.404428\pi\)
−0.733765 + 0.679403i \(0.762239\pi\)
\(728\) 0 0
\(729\) −18.2967 19.8553i −0.677655 0.735380i
\(730\) 0 0
\(731\) −0.820182 + 1.42060i −0.0303355 + 0.0525427i
\(732\) 0 0
\(733\) −1.48991 + 0.860199i −0.0550310 + 0.0317722i −0.527263 0.849702i \(-0.676782\pi\)
0.472232 + 0.881474i \(0.343448\pi\)
\(734\) 0 0
\(735\) −1.55233 12.4450i −0.0572587 0.459040i
\(736\) 0 0
\(737\) −1.60466 + 0.926448i −0.0591082 + 0.0341262i
\(738\) 0 0
\(739\) 33.1098i 1.21796i −0.793185 0.608981i \(-0.791579\pi\)
0.793185 0.608981i \(-0.208421\pi\)
\(740\) 0 0
\(741\) −0.593688 1.46134i −0.0218097 0.0536836i
\(742\) 0 0
\(743\) −14.5143 25.1395i −0.532477 0.922278i −0.999281 0.0379168i \(-0.987928\pi\)
0.466804 0.884361i \(-0.345406\pi\)
\(744\) 0 0
\(745\) −19.9332 5.34108i −0.730295 0.195682i
\(746\) 0 0
\(747\) 10.8778 38.4932i 0.397998 1.40839i
\(748\) 0 0
\(749\) 12.8187 + 7.40087i 0.468385 + 0.270422i
\(750\) 0 0
\(751\) 12.5828i 0.459151i 0.973291 + 0.229576i \(0.0737339\pi\)
−0.973291 + 0.229576i \(0.926266\pi\)
\(752\) 0 0
\(753\) −31.3072 + 3.90512i −1.14090 + 0.142311i
\(754\) 0 0
\(755\) −0.363618 1.35704i −0.0132334 0.0493878i
\(756\) 0 0
\(757\) −9.30044 34.7097i −0.338030 1.26155i −0.900546 0.434760i \(-0.856833\pi\)
0.562516 0.826786i \(-0.309833\pi\)
\(758\) 0 0
\(759\) 0.0636453 + 0.510241i 0.00231018 + 0.0185206i
\(760\) 0 0
\(761\) −0.843001 + 1.46012i −0.0305588 + 0.0529293i −0.880900 0.473302i \(-0.843062\pi\)
0.850342 + 0.526231i \(0.176395\pi\)
\(762\) 0 0
\(763\) 1.24906 1.24906i 0.0452190 0.0452190i
\(764\) 0 0
\(765\) −1.11435 + 0.282393i −0.0402895 + 0.0102099i
\(766\) 0 0
\(767\) 0.663752 0.0239667
\(768\) 0 0
\(769\) −21.9973 21.9973i −0.793243 0.793243i 0.188777 0.982020i \(-0.439548\pi\)
−0.982020 + 0.188777i \(0.939548\pi\)
\(770\) 0 0
\(771\) 40.8127 + 17.2315i 1.46984 + 0.620577i
\(772\) 0 0
\(773\) 27.8188 16.0612i 1.00057 0.577682i 0.0921561 0.995745i \(-0.470624\pi\)
0.908418 + 0.418063i \(0.137291\pi\)
\(774\) 0 0
\(775\) 4.40703 + 16.4473i 0.158305 + 0.590803i
\(776\) 0 0
\(777\) 4.85747 13.0259i 0.174261 0.467300i
\(778\) 0 0
\(779\) 1.62062 + 6.04825i 0.0580649 + 0.216701i
\(780\) 0 0
\(781\) −1.80015 + 1.03932i −0.0644144 + 0.0371897i
\(782\) 0 0
\(783\) −5.04263 12.9135i −0.180209 0.461490i
\(784\) 0 0
\(785\) −2.87614 2.87614i −0.102654 0.102654i
\(786\) 0 0
\(787\) 12.4988 0.445533 0.222766 0.974872i \(-0.428491\pi\)
0.222766 + 0.974872i \(0.428491\pi\)
\(788\) 0 0
\(789\) −5.35965 + 38.6750i −0.190809 + 1.37687i
\(790\) 0 0
\(791\) 0.740882 0.740882i 0.0263427 0.0263427i
\(792\) 0 0
\(793\) 0.302308 0.523614i 0.0107353 0.0185941i
\(794\) 0 0
\(795\) −9.62504 + 1.20059i −0.341365 + 0.0425804i
\(796\) 0 0
\(797\) 8.92787 + 33.3193i 0.316241 + 1.18023i 0.922828 + 0.385211i \(0.125871\pi\)
−0.606587 + 0.795017i \(0.707462\pi\)
\(798\) 0 0
\(799\) 0.445245 + 1.66168i 0.0157516 + 0.0587859i
\(800\) 0 0
\(801\) −43.1977 + 24.1624i −1.52631 + 0.853735i
\(802\) 0 0
\(803\) 0.367540i 0.0129702i
\(804\) 0 0
\(805\) −1.32005 0.762130i −0.0465256 0.0268616i
\(806\) 0 0
\(807\) 8.52269 10.9519i 0.300013 0.385524i
\(808\) 0 0
\(809\) 21.6388 + 5.79811i 0.760781 + 0.203851i 0.618295 0.785946i \(-0.287824\pi\)
0.142486 + 0.989797i \(0.454490\pi\)
\(810\) 0 0
\(811\) 15.7540 + 27.2867i 0.553196 + 0.958164i 0.998041 + 0.0625566i \(0.0199254\pi\)
−0.444845 + 0.895608i \(0.646741\pi\)
\(812\) 0 0
\(813\) −3.87406 + 1.57389i −0.135869 + 0.0551987i
\(814\) 0 0
\(815\) 8.25277i 0.289082i
\(816\) 0 0
\(817\) 42.1232 24.3199i 1.47371 0.850844i
\(818\) 0 0
\(819\) 0.381258 0.213255i 0.0133222 0.00745172i
\(820\) 0 0
\(821\) −31.9875 + 18.4680i −1.11637 + 0.644537i −0.940472 0.339872i \(-0.889616\pi\)
−0.175898 + 0.984408i \(0.556283\pi\)
\(822\) 0 0
\(823\) −20.7728 + 35.9796i −0.724095 + 1.25417i 0.235251 + 0.971935i \(0.424409\pi\)
−0.959345 + 0.282234i \(0.908924\pi\)
\(824\) 0 0
\(825\) −0.716092 1.76263i −0.0249311 0.0613668i
\(826\) 0 0
\(827\) 7.59493 28.3447i 0.264102 0.985641i −0.698696 0.715418i \(-0.746236\pi\)
0.962798 0.270222i \(-0.0870972\pi\)
\(828\) 0 0
\(829\) 13.9771 3.74516i 0.485446 0.130075i −0.00779119 0.999970i \(-0.502480\pi\)
0.493237 + 0.869895i \(0.335813\pi\)
\(830\) 0 0
\(831\) 6.00366 4.54220i 0.208265 0.157567i
\(832\) 0 0
\(833\) −0.378798 + 1.41369i −0.0131246 + 0.0489816i
\(834\) 0 0
\(835\) −25.6863 14.8300i −0.888911 0.513213i
\(836\) 0 0
\(837\) −26.5500 + 10.3676i −0.917701 + 0.358356i
\(838\) 0 0
\(839\) 7.80837 13.5245i 0.269575 0.466918i −0.699177 0.714948i \(-0.746450\pi\)
0.968752 + 0.248031i \(0.0797835\pi\)
\(840\) 0 0
\(841\) 21.8820i 0.754552i
\(842\) 0 0
\(843\) −11.2118 4.73371i −0.386154 0.163038i
\(844\) 0 0
\(845\) −12.6449 + 12.6449i −0.434999 + 0.434999i
\(846\) 0 0
\(847\) −7.17479 12.4271i −0.246529 0.427000i
\(848\) 0 0
\(849\) 24.4488 18.4972i 0.839079 0.634823i
\(850\) 0 0
\(851\) 2.73738 + 4.30695i 0.0938360 + 0.147640i
\(852\) 0 0
\(853\) 6.26475 1.67863i 0.214501 0.0574753i −0.149968 0.988691i \(-0.547917\pi\)
0.364469 + 0.931215i \(0.381250\pi\)
\(854\) 0 0
\(855\) 32.8024 + 9.26965i 1.12182 + 0.317015i
\(856\) 0 0
\(857\) 25.1123 + 25.1123i 0.857820 + 0.857820i 0.991081 0.133261i \(-0.0425447\pi\)
−0.133261 + 0.991081i \(0.542545\pi\)
\(858\) 0 0
\(859\) −15.0815 + 15.0815i −0.514573 + 0.514573i −0.915924 0.401351i \(-0.868541\pi\)
0.401351 + 0.915924i \(0.368541\pi\)
\(860\) 0 0
\(861\) −1.60665 + 0.652722i −0.0547544 + 0.0222447i
\(862\) 0 0
\(863\) −19.6968 11.3720i −0.670488 0.387106i 0.125773 0.992059i \(-0.459859\pi\)
−0.796262 + 0.604953i \(0.793192\pi\)
\(864\) 0 0
\(865\) −11.9911 11.9911i −0.407709 0.407709i
\(866\) 0 0
\(867\) −29.0332 4.02347i −0.986021 0.136644i
\(868\) 0 0
\(869\) −0.167274 0.0448208i −0.00567437 0.00152044i
\(870\) 0 0
\(871\) −0.558165 + 0.149560i −0.0189127 + 0.00506765i
\(872\) 0 0
\(873\) −29.0811 17.3219i −0.984246 0.586258i
\(874\) 0 0
\(875\) 14.2222 + 3.81084i 0.480800 + 0.128830i
\(876\) 0 0
\(877\) −16.7425 −0.565355 −0.282677 0.959215i \(-0.591223\pi\)
−0.282677 + 0.959215i \(0.591223\pi\)
\(878\) 0 0
\(879\) −8.96347 1.24217i −0.302330 0.0418974i
\(880\) 0 0
\(881\) 19.1733 + 33.2092i 0.645966 + 1.11885i 0.984077 + 0.177740i \(0.0568786\pi\)
−0.338111 + 0.941106i \(0.609788\pi\)
\(882\) 0 0
\(883\) −2.82950 + 10.5598i −0.0952202 + 0.355367i −0.997053 0.0767190i \(-0.975556\pi\)
0.901833 + 0.432086i \(0.142222\pi\)
\(884\) 0 0
\(885\) −8.80935 + 11.3202i −0.296123 + 0.380525i
\(886\) 0 0
\(887\) 8.12593 0.272842 0.136421 0.990651i \(-0.456440\pi\)
0.136421 + 0.990651i \(0.456440\pi\)
\(888\) 0 0
\(889\) −1.44613 −0.0485015
\(890\) 0 0
\(891\) 2.80032 1.51668i 0.0938143 0.0508108i
\(892\) 0 0
\(893\) 13.2023 49.2717i 0.441799 1.64882i
\(894\) 0 0
\(895\) −3.11914 5.40251i −0.104261 0.180586i
\(896\) 0 0
\(897\) −0.0220126 + 0.158842i −0.000734978 + 0.00530358i
\(898\) 0 0
\(899\) −14.6345 −0.488088
\(900\) 0 0
\(901\) 1.09336 + 0.292965i 0.0364252 + 0.00976009i
\(902\) 0 0
\(903\) 8.12767 + 10.7428i 0.270472 + 0.357497i
\(904\) 0 0
\(905\) −14.9911 + 4.01685i −0.498321 + 0.133525i
\(906\) 0 0
\(907\) 0.865810 + 0.231993i 0.0287488 + 0.00770321i 0.273165 0.961967i \(-0.411930\pi\)
−0.244416 + 0.969670i \(0.578596\pi\)
\(908\) 0 0
\(909\) −9.03890 35.6685i −0.299802 1.18305i
\(910\) 0 0
\(911\) −27.9706 27.9706i −0.926708 0.926708i 0.0707840 0.997492i \(-0.477450\pi\)
−0.997492 + 0.0707840i \(0.977450\pi\)
\(912\) 0 0
\(913\) 4.08600 + 2.35905i 0.135227 + 0.0780733i
\(914\) 0 0
\(915\) 4.91793 + 12.1053i 0.162582 + 0.400188i
\(916\) 0 0
\(917\) 2.32968 2.32968i 0.0769329 0.0769329i
\(918\) 0 0
\(919\) 5.88949 + 5.88949i 0.194276 + 0.194276i 0.797541 0.603265i \(-0.206134\pi\)
−0.603265 + 0.797541i \(0.706134\pi\)
\(920\) 0 0
\(921\) 15.9656 20.5162i 0.526084 0.676030i
\(922\) 0 0
\(923\) −0.626166 + 0.167781i −0.0206105 + 0.00552257i
\(924\) 0 0
\(925\) −13.9078 12.7714i −0.457284 0.419922i
\(926\) 0 0
\(927\) 16.4156 27.5596i 0.539160 0.905175i
\(928\) 0 0
\(929\) −16.6994 28.9243i −0.547891 0.948975i −0.998419 0.0562128i \(-0.982097\pi\)
0.450528 0.892762i \(-0.351236\pi\)
\(930\) 0 0
\(931\) 30.6865 30.6865i 1.00571 1.00571i
\(932\) 0 0
\(933\) −20.0041 + 47.3796i −0.654904 + 1.55114i
\(934\) 0 0
\(935\) 0.135594i 0.00443438i
\(936\) 0 0
\(937\) −12.9027 + 22.3481i −0.421512 + 0.730080i −0.996088 0.0883712i \(-0.971834\pi\)
0.574576 + 0.818452i \(0.305167\pi\)
\(938\) 0 0
\(939\) 5.52546 13.0870i 0.180317 0.427079i
\(940\) 0 0
\(941\) 26.3820 + 15.2317i 0.860029 + 0.496538i 0.864022 0.503454i \(-0.167938\pi\)
−0.00399314 + 0.999992i \(0.501271\pi\)
\(942\) 0 0
\(943\) 0.164761 0.614897i 0.00536536 0.0200238i
\(944\) 0 0
\(945\) −1.42304 + 9.33265i −0.0462915 + 0.303591i
\(946\) 0 0
\(947\) 14.0237 3.75764i 0.455709 0.122107i −0.0236604 0.999720i \(-0.507532\pi\)
0.479369 + 0.877613i \(0.340865\pi\)
\(948\) 0 0
\(949\) −0.0296666 + 0.110717i −0.000963020 + 0.00359404i
\(950\) 0 0
\(951\) 4.84314 1.96759i 0.157049 0.0638034i
\(952\) 0 0
\(953\) 18.6963 32.3830i 0.605634 1.04899i −0.386317 0.922366i \(-0.626253\pi\)
0.991951 0.126623i \(-0.0404137\pi\)
\(954\) 0 0
\(955\) −9.77275 + 5.64230i −0.316239 + 0.182581i
\(956\) 0 0
\(957\) 1.62259 0.202395i 0.0524509 0.00654250i
\(958\) 0 0
\(959\) −1.14309 + 0.659966i −0.0369125 + 0.0213114i
\(960\) 0 0
\(961\) 0.911590i 0.0294061i
\(962\) 0 0
\(963\) 23.4698 + 24.1175i 0.756303 + 0.777174i
\(964\) 0 0
\(965\) 10.3449 + 17.9179i 0.333014 + 0.576798i
\(966\) 0 0
\(967\) −52.6273 14.1015i −1.69238 0.453472i −0.721378 0.692541i \(-0.756491\pi\)
−0.971003 + 0.239069i \(0.923158\pi\)
\(968\) 0 0
\(969\) −3.13933 2.44301i −0.100850 0.0784809i
\(970\) 0 0
\(971\) 40.9589 + 23.6476i 1.31443 + 0.758889i 0.982827 0.184529i \(-0.0590759\pi\)
0.331607 + 0.943418i \(0.392409\pi\)
\(972\) 0 0
\(973\) 4.01818i 0.128817i
\(974\) 0 0
\(975\) −0.0734412 0.588774i −0.00235200 0.0188559i
\(976\) 0 0
\(977\) −0.203767 0.760470i −0.00651909 0.0243296i 0.962590 0.270963i \(-0.0873422\pi\)
−0.969109 + 0.246634i \(0.920676\pi\)
\(978\) 0 0
\(979\) −1.51101 5.63917i −0.0482921 0.180229i
\(980\) 0 0
\(981\) 3.50502 1.96052i 0.111907 0.0625944i
\(982\) 0 0
\(983\) 7.03602 12.1868i 0.224414 0.388697i −0.731729 0.681595i \(-0.761286\pi\)
0.956144 + 0.292898i \(0.0946198\pi\)
\(984\) 0 0
\(985\) −4.54728 + 4.54728i −0.144889 + 0.144889i
\(986\) 0 0
\(987\) 13.9936 + 1.93926i 0.445422 + 0.0617273i
\(988\) 0 0
\(989\) −4.94497 −0.157241
\(990\) 0 0
\(991\) 11.2483 + 11.2483i 0.357315 + 0.357315i 0.862822 0.505507i \(-0.168695\pi\)
−0.505507 + 0.862822i \(0.668695\pi\)
\(992\) 0 0
\(993\) −13.9335 + 33.0015i −0.442166 + 1.04727i
\(994\) 0 0
\(995\) −23.8060 + 13.7444i −0.754702 + 0.435727i
\(996\) 0 0
\(997\) −14.4003 53.7428i −0.456063 1.70205i −0.684943 0.728597i \(-0.740173\pi\)
0.228880 0.973455i \(-0.426494\pi\)
\(998\) 0 0
\(999\) 18.6809 25.4955i 0.591039 0.806643i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 888.2.br.a.569.32 yes 152
3.2 odd 2 inner 888.2.br.a.569.19 152
37.8 odd 12 inner 888.2.br.a.785.19 yes 152
111.8 even 12 inner 888.2.br.a.785.32 yes 152
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
888.2.br.a.569.19 152 3.2 odd 2 inner
888.2.br.a.569.32 yes 152 1.1 even 1 trivial
888.2.br.a.785.19 yes 152 37.8 odd 12 inner
888.2.br.a.785.32 yes 152 111.8 even 12 inner