Properties

Label 888.2.br.a.569.31
Level $888$
Weight $2$
Character 888.569
Analytic conductor $7.091$
Analytic rank $0$
Dimension $152$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [888,2,Mod(473,888)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(888, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([0, 0, 6, 7])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("888.473"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 888 = 2^{3} \cdot 3 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 888.br (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.09071569949\)
Analytic rank: \(0\)
Dimension: \(152\)
Relative dimension: \(38\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 569.31
Character \(\chi\) \(=\) 888.569
Dual form 888.2.br.a.785.31

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.31619 + 1.12590i) q^{3} +(0.299949 - 1.11942i) q^{5} +(0.728081 + 1.26107i) q^{7} +(0.464686 + 2.96379i) q^{9} +2.75595 q^{11} +(5.87134 + 1.57322i) q^{13} +(1.65515 - 1.13566i) q^{15} +(-4.20756 + 1.12741i) q^{17} +(-5.86193 - 1.57070i) q^{19} +(-0.461557 + 2.47956i) q^{21} +(-4.77233 - 4.77233i) q^{23} +(3.16699 + 1.82846i) q^{25} +(-2.72533 + 4.42409i) q^{27} +(3.63333 - 3.63333i) q^{29} +(4.56339 + 4.56339i) q^{31} +(3.62734 + 3.10293i) q^{33} +(1.63006 - 0.436774i) q^{35} +(6.04893 + 0.640631i) q^{37} +(5.95647 + 8.68120i) q^{39} +(1.37162 + 2.37572i) q^{41} +(2.55190 - 2.55190i) q^{43} +(3.45712 + 0.368805i) q^{45} +9.51426i q^{47} +(2.43980 - 4.22585i) q^{49} +(-6.80729 - 3.25342i) q^{51} +(-7.21838 - 4.16753i) q^{53} +(0.826644 - 3.08508i) q^{55} +(-5.94693 - 8.66730i) q^{57} +(3.55732 - 0.953181i) q^{59} +(-3.66715 + 13.6860i) q^{61} +(-3.39923 + 2.74389i) q^{63} +(3.52220 - 6.10063i) q^{65} +(4.17797 - 2.41215i) q^{67} +(-0.908090 - 11.6544i) q^{69} +(-8.53196 + 4.92593i) q^{71} -4.05969i q^{73} +(2.10967 + 5.97231i) q^{75} +(2.00656 + 3.47546i) q^{77} +(-12.9500 - 3.46994i) q^{79} +(-8.56813 + 2.75447i) q^{81} +(-3.62264 - 2.09153i) q^{83} +5.04822i q^{85} +(8.87291 - 0.691359i) q^{87} +(-2.69541 - 10.0594i) q^{89} +(2.29086 + 8.54962i) q^{91} +(0.868332 + 11.1442i) q^{93} +(-3.51656 + 6.09086i) q^{95} +(1.19949 - 1.19949i) q^{97} +(1.28065 + 8.16807i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 152 q + 4 q^{13} - 12 q^{15} + 4 q^{19} - 44 q^{31} - 12 q^{39} + 28 q^{43} + 20 q^{45} - 80 q^{49} - 12 q^{51} - 8 q^{55} - 40 q^{57} - 28 q^{61} + 48 q^{63} + 56 q^{69} + 64 q^{75} + 20 q^{79} + 16 q^{81}+ \cdots - 20 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/888\mathbb{Z}\right)^\times\).

\(n\) \(223\) \(409\) \(445\) \(593\)
\(\chi(n)\) \(1\) \(e\left(\frac{11}{12}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.31619 + 1.12590i 0.759900 + 0.650040i
\(4\) 0 0
\(5\) 0.299949 1.11942i 0.134141 0.500622i −0.865859 0.500289i \(-0.833227\pi\)
1.00000 0.000333270i \(-0.000106083\pi\)
\(6\) 0 0
\(7\) 0.728081 + 1.26107i 0.275189 + 0.476641i 0.970183 0.242375i \(-0.0779263\pi\)
−0.694994 + 0.719016i \(0.744593\pi\)
\(8\) 0 0
\(9\) 0.464686 + 2.96379i 0.154895 + 0.987931i
\(10\) 0 0
\(11\) 2.75595 0.830950 0.415475 0.909604i \(-0.363615\pi\)
0.415475 + 0.909604i \(0.363615\pi\)
\(12\) 0 0
\(13\) 5.87134 + 1.57322i 1.62842 + 0.436333i 0.953459 0.301524i \(-0.0974953\pi\)
0.674957 + 0.737857i \(0.264162\pi\)
\(14\) 0 0
\(15\) 1.65515 1.13566i 0.427358 0.293225i
\(16\) 0 0
\(17\) −4.20756 + 1.12741i −1.02048 + 0.273438i −0.730004 0.683443i \(-0.760482\pi\)
−0.290480 + 0.956881i \(0.593815\pi\)
\(18\) 0 0
\(19\) −5.86193 1.57070i −1.34482 0.360343i −0.486600 0.873625i \(-0.661763\pi\)
−0.858220 + 0.513282i \(0.828430\pi\)
\(20\) 0 0
\(21\) −0.461557 + 2.47956i −0.100720 + 0.541083i
\(22\) 0 0
\(23\) −4.77233 4.77233i −0.995099 0.995099i 0.00488889 0.999988i \(-0.498444\pi\)
−0.999988 + 0.00488889i \(0.998444\pi\)
\(24\) 0 0
\(25\) 3.16699 + 1.82846i 0.633397 + 0.365692i
\(26\) 0 0
\(27\) −2.72533 + 4.42409i −0.524490 + 0.851417i
\(28\) 0 0
\(29\) 3.63333 3.63333i 0.674693 0.674693i −0.284101 0.958794i \(-0.591695\pi\)
0.958794 + 0.284101i \(0.0916953\pi\)
\(30\) 0 0
\(31\) 4.56339 + 4.56339i 0.819608 + 0.819608i 0.986051 0.166443i \(-0.0532281\pi\)
−0.166443 + 0.986051i \(0.553228\pi\)
\(32\) 0 0
\(33\) 3.62734 + 3.10293i 0.631439 + 0.540151i
\(34\) 0 0
\(35\) 1.63006 0.436774i 0.275531 0.0738283i
\(36\) 0 0
\(37\) 6.04893 + 0.640631i 0.994438 + 0.105319i
\(38\) 0 0
\(39\) 5.95647 + 8.68120i 0.953799 + 1.39011i
\(40\) 0 0
\(41\) 1.37162 + 2.37572i 0.214212 + 0.371025i 0.953028 0.302881i \(-0.0979484\pi\)
−0.738817 + 0.673906i \(0.764615\pi\)
\(42\) 0 0
\(43\) 2.55190 2.55190i 0.389161 0.389161i −0.485227 0.874388i \(-0.661263\pi\)
0.874388 + 0.485227i \(0.161263\pi\)
\(44\) 0 0
\(45\) 3.45712 + 0.368805i 0.515358 + 0.0549782i
\(46\) 0 0
\(47\) 9.51426i 1.38780i 0.720072 + 0.693899i \(0.244109\pi\)
−0.720072 + 0.693899i \(0.755891\pi\)
\(48\) 0 0
\(49\) 2.43980 4.22585i 0.348542 0.603693i
\(50\) 0 0
\(51\) −6.80729 3.25342i −0.953211 0.455570i
\(52\) 0 0
\(53\) −7.21838 4.16753i −0.991521 0.572455i −0.0857922 0.996313i \(-0.527342\pi\)
−0.905728 + 0.423858i \(0.860675\pi\)
\(54\) 0 0
\(55\) 0.826644 3.08508i 0.111465 0.415992i
\(56\) 0 0
\(57\) −5.94693 8.66730i −0.787691 1.14801i
\(58\) 0 0
\(59\) 3.55732 0.953181i 0.463123 0.124094i −0.0197100 0.999806i \(-0.506274\pi\)
0.482833 + 0.875712i \(0.339608\pi\)
\(60\) 0 0
\(61\) −3.66715 + 13.6860i −0.469531 + 1.75231i 0.171883 + 0.985117i \(0.445015\pi\)
−0.641414 + 0.767195i \(0.721652\pi\)
\(62\) 0 0
\(63\) −3.39923 + 2.74389i −0.428263 + 0.345697i
\(64\) 0 0
\(65\) 3.52220 6.10063i 0.436875 0.756690i
\(66\) 0 0
\(67\) 4.17797 2.41215i 0.510420 0.294691i −0.222586 0.974913i \(-0.571450\pi\)
0.733006 + 0.680222i \(0.238116\pi\)
\(68\) 0 0
\(69\) −0.908090 11.6544i −0.109321 1.40303i
\(70\) 0 0
\(71\) −8.53196 + 4.92593i −1.01256 + 0.584600i −0.911939 0.410325i \(-0.865415\pi\)
−0.100618 + 0.994925i \(0.532082\pi\)
\(72\) 0 0
\(73\) 4.05969i 0.475151i −0.971369 0.237576i \(-0.923647\pi\)
0.971369 0.237576i \(-0.0763527\pi\)
\(74\) 0 0
\(75\) 2.10967 + 5.97231i 0.243604 + 0.689623i
\(76\) 0 0
\(77\) 2.00656 + 3.47546i 0.228668 + 0.396065i
\(78\) 0 0
\(79\) −12.9500 3.46994i −1.45699 0.390398i −0.558539 0.829478i \(-0.688638\pi\)
−0.898448 + 0.439080i \(0.855304\pi\)
\(80\) 0 0
\(81\) −8.56813 + 2.75447i −0.952015 + 0.306052i
\(82\) 0 0
\(83\) −3.62264 2.09153i −0.397636 0.229575i 0.287827 0.957682i \(-0.407067\pi\)
−0.685463 + 0.728107i \(0.740400\pi\)
\(84\) 0 0
\(85\) 5.04822i 0.547556i
\(86\) 0 0
\(87\) 8.87291 0.691359i 0.951276 0.0741215i
\(88\) 0 0
\(89\) −2.69541 10.0594i −0.285713 1.06630i −0.948317 0.317326i \(-0.897215\pi\)
0.662604 0.748970i \(-0.269451\pi\)
\(90\) 0 0
\(91\) 2.29086 + 8.54962i 0.240148 + 0.896244i
\(92\) 0 0
\(93\) 0.868332 + 11.1442i 0.0900419 + 1.15560i
\(94\) 0 0
\(95\) −3.51656 + 6.09086i −0.360792 + 0.624909i
\(96\) 0 0
\(97\) 1.19949 1.19949i 0.121790 0.121790i −0.643585 0.765375i \(-0.722554\pi\)
0.765375 + 0.643585i \(0.222554\pi\)
\(98\) 0 0
\(99\) 1.28065 + 8.16807i 0.128710 + 0.820922i
\(100\) 0 0
\(101\) 13.8035 1.37350 0.686749 0.726895i \(-0.259037\pi\)
0.686749 + 0.726895i \(0.259037\pi\)
\(102\) 0 0
\(103\) 5.19197 + 5.19197i 0.511580 + 0.511580i 0.915010 0.403431i \(-0.132182\pi\)
−0.403431 + 0.915010i \(0.632182\pi\)
\(104\) 0 0
\(105\) 2.63723 + 1.26042i 0.257367 + 0.123004i
\(106\) 0 0
\(107\) −2.13166 + 1.23072i −0.206076 + 0.118978i −0.599486 0.800385i \(-0.704628\pi\)
0.393411 + 0.919363i \(0.371295\pi\)
\(108\) 0 0
\(109\) −4.63156 17.2852i −0.443623 1.65562i −0.719547 0.694444i \(-0.755650\pi\)
0.275923 0.961180i \(-0.411016\pi\)
\(110\) 0 0
\(111\) 7.24023 + 7.65370i 0.687212 + 0.726457i
\(112\) 0 0
\(113\) −3.61208 13.4805i −0.339796 1.26813i −0.898576 0.438818i \(-0.855397\pi\)
0.558780 0.829316i \(-0.311270\pi\)
\(114\) 0 0
\(115\) −6.77372 + 3.91081i −0.631652 + 0.364685i
\(116\) 0 0
\(117\) −1.93437 + 18.1325i −0.178832 + 1.67635i
\(118\) 0 0
\(119\) −4.48520 4.48520i −0.411158 0.411158i
\(120\) 0 0
\(121\) −3.40473 −0.309521
\(122\) 0 0
\(123\) −0.869521 + 4.67121i −0.0784021 + 0.421188i
\(124\) 0 0
\(125\) 7.09413 7.09413i 0.634519 0.634519i
\(126\) 0 0
\(127\) −1.67594 + 2.90282i −0.148716 + 0.257583i −0.930753 0.365648i \(-0.880847\pi\)
0.782037 + 0.623232i \(0.214181\pi\)
\(128\) 0 0
\(129\) 6.23196 0.485581i 0.548693 0.0427530i
\(130\) 0 0
\(131\) −4.51073 16.8343i −0.394104 1.47082i −0.823301 0.567605i \(-0.807870\pi\)
0.429197 0.903211i \(-0.358797\pi\)
\(132\) 0 0
\(133\) −2.28720 8.53593i −0.198325 0.740159i
\(134\) 0 0
\(135\) 4.13498 + 4.37780i 0.355882 + 0.376781i
\(136\) 0 0
\(137\) 16.6140i 1.41943i −0.704488 0.709716i \(-0.748823\pi\)
0.704488 0.709716i \(-0.251177\pi\)
\(138\) 0 0
\(139\) −14.1171 8.15051i −1.19740 0.691317i −0.237423 0.971406i \(-0.576303\pi\)
−0.959974 + 0.280089i \(0.909636\pi\)
\(140\) 0 0
\(141\) −10.7121 + 12.5225i −0.902124 + 1.05459i
\(142\) 0 0
\(143\) 16.1811 + 4.33572i 1.35313 + 0.362571i
\(144\) 0 0
\(145\) −2.97743 5.15705i −0.247262 0.428270i
\(146\) 0 0
\(147\) 7.96912 2.81503i 0.657282 0.232180i
\(148\) 0 0
\(149\) 0.655054i 0.0536641i 0.999640 + 0.0268321i \(0.00854193\pi\)
−0.999640 + 0.0268321i \(0.991458\pi\)
\(150\) 0 0
\(151\) 7.85567 4.53547i 0.639285 0.369091i −0.145054 0.989424i \(-0.546336\pi\)
0.784339 + 0.620332i \(0.213002\pi\)
\(152\) 0 0
\(153\) −5.29662 11.9465i −0.428206 0.965814i
\(154\) 0 0
\(155\) 6.47715 3.73958i 0.520257 0.300371i
\(156\) 0 0
\(157\) 0.639227 1.10717i 0.0510158 0.0883620i −0.839390 0.543530i \(-0.817087\pi\)
0.890406 + 0.455168i \(0.150421\pi\)
\(158\) 0 0
\(159\) −4.80849 13.6124i −0.381338 1.07954i
\(160\) 0 0
\(161\) 2.54361 9.49290i 0.200465 0.748145i
\(162\) 0 0
\(163\) −19.4378 + 5.20834i −1.52248 + 0.407948i −0.920559 0.390604i \(-0.872266\pi\)
−0.601925 + 0.798552i \(0.705600\pi\)
\(164\) 0 0
\(165\) 4.56152 3.12981i 0.355114 0.243656i
\(166\) 0 0
\(167\) 4.04336 15.0900i 0.312884 1.16770i −0.613059 0.790038i \(-0.710061\pi\)
0.925943 0.377663i \(-0.123272\pi\)
\(168\) 0 0
\(169\) 20.7393 + 11.9738i 1.59533 + 0.921063i
\(170\) 0 0
\(171\) 1.93127 18.1034i 0.147688 1.38440i
\(172\) 0 0
\(173\) −7.04460 + 12.2016i −0.535591 + 0.927670i 0.463544 + 0.886074i \(0.346578\pi\)
−0.999135 + 0.0415962i \(0.986756\pi\)
\(174\) 0 0
\(175\) 5.32507i 0.402537i
\(176\) 0 0
\(177\) 5.75528 + 2.75063i 0.432593 + 0.206750i
\(178\) 0 0
\(179\) −8.65000 + 8.65000i −0.646531 + 0.646531i −0.952153 0.305622i \(-0.901136\pi\)
0.305622 + 0.952153i \(0.401136\pi\)
\(180\) 0 0
\(181\) −2.96839 5.14140i −0.220639 0.382157i 0.734363 0.678757i \(-0.237481\pi\)
−0.955002 + 0.296599i \(0.904147\pi\)
\(182\) 0 0
\(183\) −20.2358 + 13.8845i −1.49587 + 1.02637i
\(184\) 0 0
\(185\) 2.53151 6.57917i 0.186120 0.483710i
\(186\) 0 0
\(187\) −11.5958 + 3.10710i −0.847972 + 0.227213i
\(188\) 0 0
\(189\) −7.56337 0.215742i −0.550154 0.0156930i
\(190\) 0 0
\(191\) 0.204551 + 0.204551i 0.0148008 + 0.0148008i 0.714468 0.699668i \(-0.246669\pi\)
−0.699668 + 0.714468i \(0.746669\pi\)
\(192\) 0 0
\(193\) 14.2178 14.2178i 1.02342 1.02342i 0.0236988 0.999719i \(-0.492456\pi\)
0.999719 0.0236988i \(-0.00754428\pi\)
\(194\) 0 0
\(195\) 11.5046 4.06391i 0.823861 0.291022i
\(196\) 0 0
\(197\) 21.0553 + 12.1563i 1.50013 + 0.866100i 1.00000 0.000148355i \(4.72228e-5\pi\)
0.500128 + 0.865951i \(0.333286\pi\)
\(198\) 0 0
\(199\) 3.82586 + 3.82586i 0.271208 + 0.271208i 0.829586 0.558378i \(-0.188576\pi\)
−0.558378 + 0.829586i \(0.688576\pi\)
\(200\) 0 0
\(201\) 8.21483 + 1.52915i 0.579430 + 0.107858i
\(202\) 0 0
\(203\) 7.22726 + 1.93654i 0.507254 + 0.135918i
\(204\) 0 0
\(205\) 3.07086 0.822834i 0.214478 0.0574692i
\(206\) 0 0
\(207\) 11.9266 16.3618i 0.828953 1.13723i
\(208\) 0 0
\(209\) −16.1552 4.32877i −1.11748 0.299428i
\(210\) 0 0
\(211\) −19.1417 −1.31777 −0.658884 0.752245i \(-0.728971\pi\)
−0.658884 + 0.752245i \(0.728971\pi\)
\(212\) 0 0
\(213\) −16.7758 3.12272i −1.14946 0.213965i
\(214\) 0 0
\(215\) −2.09122 3.62210i −0.142620 0.247025i
\(216\) 0 0
\(217\) −2.43225 + 9.07728i −0.165112 + 0.616206i
\(218\) 0 0
\(219\) 4.57082 5.34331i 0.308867 0.361067i
\(220\) 0 0
\(221\) −26.4777 −1.78108
\(222\) 0 0
\(223\) −0.0487611 −0.00326528 −0.00163264 0.999999i \(-0.500520\pi\)
−0.00163264 + 0.999999i \(0.500520\pi\)
\(224\) 0 0
\(225\) −3.94752 + 10.2359i −0.263168 + 0.682396i
\(226\) 0 0
\(227\) −5.82975 + 21.7569i −0.386934 + 1.44406i 0.448161 + 0.893953i \(0.352079\pi\)
−0.835095 + 0.550106i \(0.814587\pi\)
\(228\) 0 0
\(229\) 2.91902 + 5.05588i 0.192894 + 0.334102i 0.946208 0.323559i \(-0.104879\pi\)
−0.753314 + 0.657661i \(0.771546\pi\)
\(230\) 0 0
\(231\) −1.27203 + 6.83353i −0.0836933 + 0.449613i
\(232\) 0 0
\(233\) 6.67585 0.437350 0.218675 0.975798i \(-0.429827\pi\)
0.218675 + 0.975798i \(0.429827\pi\)
\(234\) 0 0
\(235\) 10.6505 + 2.85379i 0.694762 + 0.186161i
\(236\) 0 0
\(237\) −13.1378 19.1475i −0.853389 1.24376i
\(238\) 0 0
\(239\) 15.4713 4.14553i 1.00076 0.268152i 0.278994 0.960293i \(-0.409999\pi\)
0.721762 + 0.692141i \(0.243332\pi\)
\(240\) 0 0
\(241\) −11.1211 2.97989i −0.716373 0.191952i −0.117820 0.993035i \(-0.537591\pi\)
−0.598553 + 0.801083i \(0.704257\pi\)
\(242\) 0 0
\(243\) −14.3785 6.02149i −0.922382 0.386279i
\(244\) 0 0
\(245\) −3.99871 3.99871i −0.255468 0.255468i
\(246\) 0 0
\(247\) −31.9463 18.4442i −2.03270 1.17358i
\(248\) 0 0
\(249\) −2.41320 6.83158i −0.152930 0.432934i
\(250\) 0 0
\(251\) 8.54565 8.54565i 0.539396 0.539396i −0.383955 0.923352i \(-0.625438\pi\)
0.923352 + 0.383955i \(0.125438\pi\)
\(252\) 0 0
\(253\) −13.1523 13.1523i −0.826878 0.826878i
\(254\) 0 0
\(255\) −5.68380 + 6.64439i −0.355933 + 0.416088i
\(256\) 0 0
\(257\) 9.67555 2.59256i 0.603544 0.161719i 0.0559083 0.998436i \(-0.482195\pi\)
0.547636 + 0.836717i \(0.315528\pi\)
\(258\) 0 0
\(259\) 3.59623 + 8.09458i 0.223459 + 0.502973i
\(260\) 0 0
\(261\) 12.4568 + 9.08008i 0.771057 + 0.562043i
\(262\) 0 0
\(263\) −10.7533 18.6253i −0.663078 1.14848i −0.979803 0.199967i \(-0.935917\pi\)
0.316725 0.948517i \(-0.397417\pi\)
\(264\) 0 0
\(265\) −6.83038 + 6.83038i −0.419587 + 0.419587i
\(266\) 0 0
\(267\) 7.77826 16.2748i 0.476022 0.996003i
\(268\) 0 0
\(269\) 16.0152i 0.976461i 0.872715 + 0.488231i \(0.162358\pi\)
−0.872715 + 0.488231i \(0.837642\pi\)
\(270\) 0 0
\(271\) 0.434608 0.752762i 0.0264005 0.0457271i −0.852523 0.522689i \(-0.824929\pi\)
0.878924 + 0.476962i \(0.158262\pi\)
\(272\) 0 0
\(273\) −6.61084 + 13.8322i −0.400106 + 0.837161i
\(274\) 0 0
\(275\) 8.72806 + 5.03915i 0.526322 + 0.303872i
\(276\) 0 0
\(277\) 0.0637437 0.237895i 0.00382999 0.0142937i −0.963984 0.265959i \(-0.914311\pi\)
0.967814 + 0.251665i \(0.0809781\pi\)
\(278\) 0 0
\(279\) −11.4044 + 15.6455i −0.682763 + 0.936670i
\(280\) 0 0
\(281\) −30.8486 + 8.26585i −1.84027 + 0.493099i −0.998880 0.0473251i \(-0.984930\pi\)
−0.841392 + 0.540425i \(0.818264\pi\)
\(282\) 0 0
\(283\) 6.14133 22.9198i 0.365064 1.36244i −0.502269 0.864711i \(-0.667501\pi\)
0.867334 0.497727i \(-0.165832\pi\)
\(284\) 0 0
\(285\) −11.4862 + 4.05740i −0.680382 + 0.240339i
\(286\) 0 0
\(287\) −1.99731 + 3.45944i −0.117897 + 0.204204i
\(288\) 0 0
\(289\) 1.71010 0.987329i 0.100594 0.0580782i
\(290\) 0 0
\(291\) 2.92926 0.228242i 0.171716 0.0133798i
\(292\) 0 0
\(293\) −7.97345 + 4.60348i −0.465814 + 0.268938i −0.714486 0.699650i \(-0.753339\pi\)
0.248672 + 0.968588i \(0.420006\pi\)
\(294\) 0 0
\(295\) 4.26806i 0.248496i
\(296\) 0 0
\(297\) −7.51087 + 12.1926i −0.435825 + 0.707485i
\(298\) 0 0
\(299\) −20.5120 35.5279i −1.18624 2.05463i
\(300\) 0 0
\(301\) 5.07612 + 1.36014i 0.292583 + 0.0783973i
\(302\) 0 0
\(303\) 18.1679 + 15.5414i 1.04372 + 0.892829i
\(304\) 0 0
\(305\) 14.2205 + 8.21020i 0.814263 + 0.470115i
\(306\) 0 0
\(307\) 15.7611i 0.899534i 0.893146 + 0.449767i \(0.148493\pi\)
−0.893146 + 0.449767i \(0.851507\pi\)
\(308\) 0 0
\(309\) 0.987940 + 12.6792i 0.0562019 + 0.721297i
\(310\) 0 0
\(311\) −1.68494 6.28828i −0.0955441 0.356576i 0.901557 0.432660i \(-0.142425\pi\)
−0.997101 + 0.0760842i \(0.975758\pi\)
\(312\) 0 0
\(313\) −4.99393 18.6376i −0.282274 1.05346i −0.950809 0.309779i \(-0.899745\pi\)
0.668535 0.743681i \(-0.266922\pi\)
\(314\) 0 0
\(315\) 2.05198 + 4.62821i 0.115616 + 0.260770i
\(316\) 0 0
\(317\) −0.743066 + 1.28703i −0.0417348 + 0.0722867i −0.886138 0.463421i \(-0.846622\pi\)
0.844403 + 0.535708i \(0.179955\pi\)
\(318\) 0 0
\(319\) 10.0133 10.0133i 0.560636 0.560636i
\(320\) 0 0
\(321\) −4.19133 0.780194i −0.233937 0.0435462i
\(322\) 0 0
\(323\) 26.4353 1.47090
\(324\) 0 0
\(325\) 15.7179 + 15.7179i 0.871871 + 0.871871i
\(326\) 0 0
\(327\) 13.3655 27.9652i 0.739113 1.54648i
\(328\) 0 0
\(329\) −11.9982 + 6.92716i −0.661481 + 0.381907i
\(330\) 0 0
\(331\) −0.00920539 0.0343550i −0.000505974 0.00188832i 0.965672 0.259763i \(-0.0836445\pi\)
−0.966178 + 0.257875i \(0.916978\pi\)
\(332\) 0 0
\(333\) 0.912159 + 18.2255i 0.0499860 + 0.998750i
\(334\) 0 0
\(335\) −1.44705 5.40045i −0.0790605 0.295058i
\(336\) 0 0
\(337\) 17.4353 10.0663i 0.949763 0.548346i 0.0567558 0.998388i \(-0.481924\pi\)
0.893007 + 0.450042i \(0.148591\pi\)
\(338\) 0 0
\(339\) 10.4235 21.8096i 0.566128 1.18454i
\(340\) 0 0
\(341\) 12.5765 + 12.5765i 0.681054 + 0.681054i
\(342\) 0 0
\(343\) 17.2986 0.934037
\(344\) 0 0
\(345\) −13.3187 2.47920i −0.717052 0.133476i
\(346\) 0 0
\(347\) −11.9532 + 11.9532i −0.641680 + 0.641680i −0.950968 0.309289i \(-0.899909\pi\)
0.309289 + 0.950968i \(0.399909\pi\)
\(348\) 0 0
\(349\) −3.67961 + 6.37327i −0.196965 + 0.341154i −0.947543 0.319628i \(-0.896442\pi\)
0.750578 + 0.660782i \(0.229775\pi\)
\(350\) 0 0
\(351\) −22.9614 + 21.6878i −1.22559 + 1.15761i
\(352\) 0 0
\(353\) 2.51375 + 9.38143i 0.133793 + 0.499323i 1.00000 0.000362611i \(-0.000115423\pi\)
−0.866207 + 0.499686i \(0.833449\pi\)
\(354\) 0 0
\(355\) 2.95505 + 11.0284i 0.156838 + 0.585327i
\(356\) 0 0
\(357\) −0.853455 10.9533i −0.0451696 0.579708i
\(358\) 0 0
\(359\) 0.471933i 0.0249077i 0.999922 + 0.0124538i \(0.00396428\pi\)
−0.999922 + 0.0124538i \(0.996036\pi\)
\(360\) 0 0
\(361\) 15.4407 + 8.91469i 0.812668 + 0.469194i
\(362\) 0 0
\(363\) −4.48126 3.83340i −0.235205 0.201201i
\(364\) 0 0
\(365\) −4.54452 1.21770i −0.237871 0.0637374i
\(366\) 0 0
\(367\) −10.8147 18.7317i −0.564525 0.977785i −0.997094 0.0761845i \(-0.975726\pi\)
0.432569 0.901601i \(-0.357607\pi\)
\(368\) 0 0
\(369\) −6.40377 + 5.16917i −0.333367 + 0.269096i
\(370\) 0 0
\(371\) 12.1372i 0.630133i
\(372\) 0 0
\(373\) −10.0864 + 5.82336i −0.522252 + 0.301522i −0.737856 0.674959i \(-0.764161\pi\)
0.215604 + 0.976481i \(0.430828\pi\)
\(374\) 0 0
\(375\) 17.3245 1.34989i 0.894633 0.0697080i
\(376\) 0 0
\(377\) 27.0485 15.6165i 1.39307 0.804290i
\(378\) 0 0
\(379\) 1.84124 3.18912i 0.0945781 0.163814i −0.814854 0.579666i \(-0.803183\pi\)
0.909432 + 0.415852i \(0.136516\pi\)
\(380\) 0 0
\(381\) −5.47414 + 1.93370i −0.280449 + 0.0990662i
\(382\) 0 0
\(383\) −5.02898 + 18.7684i −0.256969 + 0.959022i 0.710015 + 0.704186i \(0.248688\pi\)
−0.966984 + 0.254835i \(0.917979\pi\)
\(384\) 0 0
\(385\) 4.49238 1.20373i 0.228953 0.0613477i
\(386\) 0 0
\(387\) 8.74913 + 6.37746i 0.444743 + 0.324185i
\(388\) 0 0
\(389\) −5.17085 + 19.2979i −0.262173 + 0.978442i 0.701785 + 0.712388i \(0.252386\pi\)
−0.963958 + 0.266054i \(0.914280\pi\)
\(390\) 0 0
\(391\) 25.4603 + 14.6995i 1.28758 + 0.743385i
\(392\) 0 0
\(393\) 13.0168 27.2356i 0.656610 1.37386i
\(394\) 0 0
\(395\) −7.76866 + 13.4557i −0.390884 + 0.677031i
\(396\) 0 0
\(397\) 12.0231i 0.603421i −0.953400 0.301711i \(-0.902442\pi\)
0.953400 0.301711i \(-0.0975576\pi\)
\(398\) 0 0
\(399\) 6.60025 13.8100i 0.330426 0.691366i
\(400\) 0 0
\(401\) 2.14231 2.14231i 0.106982 0.106982i −0.651590 0.758572i \(-0.725898\pi\)
0.758572 + 0.651590i \(0.225898\pi\)
\(402\) 0 0
\(403\) 19.6140 + 33.9724i 0.977041 + 1.69229i
\(404\) 0 0
\(405\) 0.513417 + 10.4176i 0.0255119 + 0.517654i
\(406\) 0 0
\(407\) 16.6706 + 1.76555i 0.826329 + 0.0875150i
\(408\) 0 0
\(409\) −19.8672 + 5.32340i −0.982370 + 0.263225i −0.714043 0.700102i \(-0.753138\pi\)
−0.268328 + 0.963328i \(0.586471\pi\)
\(410\) 0 0
\(411\) 18.7058 21.8671i 0.922687 1.07863i
\(412\) 0 0
\(413\) 3.79205 + 3.79205i 0.186594 + 0.186594i
\(414\) 0 0
\(415\) −3.42792 + 3.42792i −0.168270 + 0.168270i
\(416\) 0 0
\(417\) −9.40404 26.6221i −0.460518 1.30369i
\(418\) 0 0
\(419\) 11.0727 + 6.39284i 0.540938 + 0.312311i 0.745459 0.666552i \(-0.232230\pi\)
−0.204521 + 0.978862i \(0.565564\pi\)
\(420\) 0 0
\(421\) 24.4715 + 24.4715i 1.19267 + 1.19267i 0.976315 + 0.216352i \(0.0694160\pi\)
0.216352 + 0.976315i \(0.430584\pi\)
\(422\) 0 0
\(423\) −28.1983 + 4.42115i −1.37105 + 0.214964i
\(424\) 0 0
\(425\) −15.3867 4.12286i −0.746366 0.199988i
\(426\) 0 0
\(427\) −19.9290 + 5.33997i −0.964434 + 0.258419i
\(428\) 0 0
\(429\) 16.4158 + 23.9250i 0.792560 + 1.15511i
\(430\) 0 0
\(431\) 1.05875 + 0.283691i 0.0509982 + 0.0136649i 0.284228 0.958757i \(-0.408263\pi\)
−0.233230 + 0.972422i \(0.574929\pi\)
\(432\) 0 0
\(433\) 14.8597 0.714110 0.357055 0.934083i \(-0.383781\pi\)
0.357055 + 0.934083i \(0.383781\pi\)
\(434\) 0 0
\(435\) 1.88750 10.1399i 0.0904985 0.486172i
\(436\) 0 0
\(437\) 20.4792 + 35.4710i 0.979652 + 1.69681i
\(438\) 0 0
\(439\) 6.43004 23.9972i 0.306889 1.14533i −0.624418 0.781091i \(-0.714664\pi\)
0.931307 0.364235i \(-0.118670\pi\)
\(440\) 0 0
\(441\) 13.6583 + 5.26735i 0.650394 + 0.250826i
\(442\) 0 0
\(443\) −15.8643 −0.753736 −0.376868 0.926267i \(-0.622999\pi\)
−0.376868 + 0.926267i \(0.622999\pi\)
\(444\) 0 0
\(445\) −12.0692 −0.572137
\(446\) 0 0
\(447\) −0.737527 + 0.862172i −0.0348838 + 0.0407793i
\(448\) 0 0
\(449\) −7.66110 + 28.5916i −0.361550 + 1.34932i 0.510489 + 0.859884i \(0.329464\pi\)
−0.872039 + 0.489437i \(0.837202\pi\)
\(450\) 0 0
\(451\) 3.78013 + 6.54737i 0.177999 + 0.308304i
\(452\) 0 0
\(453\) 15.4460 + 2.87520i 0.725717 + 0.135088i
\(454\) 0 0
\(455\) 10.2578 0.480893
\(456\) 0 0
\(457\) −13.3240 3.57015i −0.623270 0.167005i −0.0666562 0.997776i \(-0.521233\pi\)
−0.556614 + 0.830771i \(0.687900\pi\)
\(458\) 0 0
\(459\) 6.47922 21.6872i 0.302424 1.01227i
\(460\) 0 0
\(461\) 5.11343 1.37014i 0.238156 0.0638138i −0.137767 0.990465i \(-0.543992\pi\)
0.375923 + 0.926651i \(0.377326\pi\)
\(462\) 0 0
\(463\) 8.95268 + 2.39886i 0.416066 + 0.111485i 0.460778 0.887515i \(-0.347570\pi\)
−0.0447120 + 0.999000i \(0.514237\pi\)
\(464\) 0 0
\(465\) 12.7355 + 2.37065i 0.590596 + 0.109936i
\(466\) 0 0
\(467\) 22.1447 + 22.1447i 1.02473 + 1.02473i 0.999686 + 0.0250480i \(0.00797385\pi\)
0.0250480 + 0.999686i \(0.492026\pi\)
\(468\) 0 0
\(469\) 6.08380 + 3.51249i 0.280924 + 0.162192i
\(470\) 0 0
\(471\) 2.08791 0.737538i 0.0962058 0.0339839i
\(472\) 0 0
\(473\) 7.03290 7.03290i 0.323373 0.323373i
\(474\) 0 0
\(475\) −15.6927 15.6927i −0.720030 0.720030i
\(476\) 0 0
\(477\) 8.99742 23.3304i 0.411964 1.06822i
\(478\) 0 0
\(479\) −8.13565 + 2.17994i −0.371727 + 0.0996040i −0.439846 0.898073i \(-0.644967\pi\)
0.0681187 + 0.997677i \(0.478300\pi\)
\(480\) 0 0
\(481\) 34.5075 + 13.2777i 1.57341 + 0.605409i
\(482\) 0 0
\(483\) 14.0359 9.63055i 0.638658 0.438205i
\(484\) 0 0
\(485\) −0.982954 1.70253i −0.0446336 0.0773077i
\(486\) 0 0
\(487\) −10.3305 + 10.3305i −0.468121 + 0.468121i −0.901305 0.433184i \(-0.857390\pi\)
0.433184 + 0.901305i \(0.357390\pi\)
\(488\) 0 0
\(489\) −31.4478 15.0299i −1.42212 0.679676i
\(490\) 0 0
\(491\) 2.87456i 0.129727i −0.997894 0.0648635i \(-0.979339\pi\)
0.997894 0.0648635i \(-0.0206612\pi\)
\(492\) 0 0
\(493\) −11.1912 + 19.3837i −0.504027 + 0.873000i
\(494\) 0 0
\(495\) 9.52767 + 1.01641i 0.428237 + 0.0456842i
\(496\) 0 0
\(497\) −12.4239 7.17295i −0.557289 0.321751i
\(498\) 0 0
\(499\) −1.80413 + 6.73310i −0.0807639 + 0.301415i −0.994478 0.104942i \(-0.966534\pi\)
0.913714 + 0.406357i \(0.133201\pi\)
\(500\) 0 0
\(501\) 22.3117 15.3088i 0.996813 0.683948i
\(502\) 0 0
\(503\) 8.50208 2.27813i 0.379089 0.101577i −0.0642425 0.997934i \(-0.520463\pi\)
0.443332 + 0.896358i \(0.353796\pi\)
\(504\) 0 0
\(505\) 4.14034 15.4520i 0.184243 0.687603i
\(506\) 0 0
\(507\) 13.8153 + 39.1101i 0.613561 + 1.73694i
\(508\) 0 0
\(509\) −8.91630 + 15.4435i −0.395208 + 0.684520i −0.993128 0.117036i \(-0.962661\pi\)
0.597920 + 0.801556i \(0.295994\pi\)
\(510\) 0 0
\(511\) 5.11957 2.95579i 0.226477 0.130756i
\(512\) 0 0
\(513\) 22.9246 21.6531i 1.01215 0.956006i
\(514\) 0 0
\(515\) 7.36934 4.25469i 0.324732 0.187484i
\(516\) 0 0
\(517\) 26.2208i 1.15319i
\(518\) 0 0
\(519\) −23.0098 + 8.12803i −1.01002 + 0.356781i
\(520\) 0 0
\(521\) 8.33125 + 14.4302i 0.364999 + 0.632196i 0.988776 0.149406i \(-0.0477361\pi\)
−0.623777 + 0.781602i \(0.714403\pi\)
\(522\) 0 0
\(523\) 32.7428 + 8.77340i 1.43174 + 0.383634i 0.889633 0.456675i \(-0.150960\pi\)
0.542107 + 0.840309i \(0.317627\pi\)
\(524\) 0 0
\(525\) −5.99551 + 7.00878i −0.261665 + 0.305888i
\(526\) 0 0
\(527\) −24.3456 14.0559i −1.06051 0.612285i
\(528\) 0 0
\(529\) 22.5502i 0.980445i
\(530\) 0 0
\(531\) 4.47807 + 10.1002i 0.194332 + 0.438312i
\(532\) 0 0
\(533\) 4.31573 + 16.1065i 0.186935 + 0.697651i
\(534\) 0 0
\(535\) 0.738304 + 2.75539i 0.0319197 + 0.119126i
\(536\) 0 0
\(537\) −21.1241 + 1.64594i −0.911570 + 0.0710277i
\(538\) 0 0
\(539\) 6.72396 11.6462i 0.289621 0.501639i
\(540\) 0 0
\(541\) 5.59188 5.59188i 0.240414 0.240414i −0.576607 0.817021i \(-0.695624\pi\)
0.817021 + 0.576607i \(0.195624\pi\)
\(542\) 0 0
\(543\) 1.88177 10.1092i 0.0807544 0.433825i
\(544\) 0 0
\(545\) −20.7387 −0.888350
\(546\) 0 0
\(547\) 20.0312 + 20.0312i 0.856471 + 0.856471i 0.990921 0.134449i \(-0.0429265\pi\)
−0.134449 + 0.990921i \(0.542926\pi\)
\(548\) 0 0
\(549\) −42.2665 4.50898i −1.80389 0.192439i
\(550\) 0 0
\(551\) −27.0052 + 15.5915i −1.15046 + 0.664219i
\(552\) 0 0
\(553\) −5.05279 18.8573i −0.214867 0.801893i
\(554\) 0 0
\(555\) 10.7394 5.80917i 0.455864 0.246585i
\(556\) 0 0
\(557\) 0.574982 + 2.14586i 0.0243628 + 0.0909231i 0.977037 0.213071i \(-0.0683465\pi\)
−0.952674 + 0.303994i \(0.901680\pi\)
\(558\) 0 0
\(559\) 18.9977 10.9684i 0.803519 0.463912i
\(560\) 0 0
\(561\) −18.7606 8.96627i −0.792072 0.378556i
\(562\) 0 0
\(563\) 0.564925 + 0.564925i 0.0238087 + 0.0238087i 0.718911 0.695102i \(-0.244641\pi\)
−0.695102 + 0.718911i \(0.744641\pi\)
\(564\) 0 0
\(565\) −16.1738 −0.680436
\(566\) 0 0
\(567\) −9.71188 8.79957i −0.407861 0.369547i
\(568\) 0 0
\(569\) −3.02257 + 3.02257i −0.126713 + 0.126713i −0.767619 0.640906i \(-0.778559\pi\)
0.640906 + 0.767619i \(0.278559\pi\)
\(570\) 0 0
\(571\) −18.8036 + 32.5688i −0.786907 + 1.36296i 0.140946 + 0.990017i \(0.454986\pi\)
−0.927853 + 0.372946i \(0.878348\pi\)
\(572\) 0 0
\(573\) 0.0389225 + 0.499531i 0.00162601 + 0.0208682i
\(574\) 0 0
\(575\) −6.38788 23.8399i −0.266393 0.994193i
\(576\) 0 0
\(577\) −5.36446 20.0204i −0.223325 0.833461i −0.983069 0.183238i \(-0.941342\pi\)
0.759743 0.650223i \(-0.225325\pi\)
\(578\) 0 0
\(579\) 34.7211 2.70539i 1.44296 0.112432i
\(580\) 0 0
\(581\) 6.09122i 0.252706i
\(582\) 0 0
\(583\) −19.8935 11.4855i −0.823905 0.475682i
\(584\) 0 0
\(585\) 19.7177 + 7.60420i 0.815228 + 0.314395i
\(586\) 0 0
\(587\) −30.9958 8.30530i −1.27933 0.342796i −0.445734 0.895165i \(-0.647057\pi\)
−0.833600 + 0.552369i \(0.813724\pi\)
\(588\) 0 0
\(589\) −19.5826 33.9180i −0.806885 1.39757i
\(590\) 0 0
\(591\) 14.0259 + 39.7061i 0.576948 + 1.63329i
\(592\) 0 0
\(593\) 27.0051i 1.10897i 0.832195 + 0.554483i \(0.187084\pi\)
−0.832195 + 0.554483i \(0.812916\pi\)
\(594\) 0 0
\(595\) −6.36617 + 3.67551i −0.260988 + 0.150681i
\(596\) 0 0
\(597\) 0.727994 + 9.34308i 0.0297948 + 0.382387i
\(598\) 0 0
\(599\) 12.6022 7.27587i 0.514911 0.297284i −0.219939 0.975514i \(-0.570586\pi\)
0.734850 + 0.678230i \(0.237252\pi\)
\(600\) 0 0
\(601\) −1.23429 + 2.13786i −0.0503479 + 0.0872052i −0.890101 0.455763i \(-0.849366\pi\)
0.839753 + 0.542968i \(0.182700\pi\)
\(602\) 0 0
\(603\) 9.09057 + 11.2617i 0.370196 + 0.458614i
\(604\) 0 0
\(605\) −1.02125 + 3.81134i −0.0415196 + 0.154953i
\(606\) 0 0
\(607\) 29.9723 8.03106i 1.21654 0.325971i 0.407214 0.913333i \(-0.366500\pi\)
0.809324 + 0.587362i \(0.199834\pi\)
\(608\) 0 0
\(609\) 7.33206 + 10.6860i 0.297110 + 0.433020i
\(610\) 0 0
\(611\) −14.9680 + 55.8615i −0.605542 + 2.25991i
\(612\) 0 0
\(613\) −24.4057 14.0907i −0.985738 0.569116i −0.0817406 0.996654i \(-0.526048\pi\)
−0.903998 + 0.427537i \(0.859381\pi\)
\(614\) 0 0
\(615\) 4.96825 + 2.37449i 0.200339 + 0.0957485i
\(616\) 0 0
\(617\) 19.9279 34.5162i 0.802269 1.38957i −0.115850 0.993267i \(-0.536959\pi\)
0.918119 0.396304i \(-0.129707\pi\)
\(618\) 0 0
\(619\) 19.9060i 0.800090i 0.916495 + 0.400045i \(0.131006\pi\)
−0.916495 + 0.400045i \(0.868994\pi\)
\(620\) 0 0
\(621\) 34.1194 8.10705i 1.36916 0.325325i
\(622\) 0 0
\(623\) 10.7232 10.7232i 0.429615 0.429615i
\(624\) 0 0
\(625\) 3.32883 + 5.76570i 0.133153 + 0.230628i
\(626\) 0 0
\(627\) −16.3895 23.8867i −0.654532 0.953941i
\(628\) 0 0
\(629\) −26.1735 + 4.12415i −1.04361 + 0.164441i
\(630\) 0 0
\(631\) −2.62266 + 0.702739i −0.104406 + 0.0279756i −0.310644 0.950526i \(-0.600545\pi\)
0.206238 + 0.978502i \(0.433878\pi\)
\(632\) 0 0
\(633\) −25.1940 21.5517i −1.00137 0.856602i
\(634\) 0 0
\(635\) 2.74679 + 2.74679i 0.109003 + 0.109003i
\(636\) 0 0
\(637\) 20.9731 20.9731i 0.830983 0.830983i
\(638\) 0 0
\(639\) −18.5641 22.9979i −0.734385 0.909785i
\(640\) 0 0
\(641\) 26.6897 + 15.4093i 1.05418 + 0.608631i 0.923817 0.382835i \(-0.125052\pi\)
0.130363 + 0.991466i \(0.458386\pi\)
\(642\) 0 0
\(643\) −0.162574 0.162574i −0.00641130 0.00641130i 0.703894 0.710305i \(-0.251443\pi\)
−0.710305 + 0.703894i \(0.751443\pi\)
\(644\) 0 0
\(645\) 1.32570 7.12186i 0.0521993 0.280423i
\(646\) 0 0
\(647\) −14.5541 3.89976i −0.572181 0.153315i −0.0388844 0.999244i \(-0.512380\pi\)
−0.533297 + 0.845928i \(0.679047\pi\)
\(648\) 0 0
\(649\) 9.80380 2.62692i 0.384833 0.103116i
\(650\) 0 0
\(651\) −13.4214 + 9.20891i −0.526027 + 0.360925i
\(652\) 0 0
\(653\) −0.616720 0.165250i −0.0241341 0.00646672i 0.246732 0.969084i \(-0.420643\pi\)
−0.270866 + 0.962617i \(0.587310\pi\)
\(654\) 0 0
\(655\) −20.1977 −0.789188
\(656\) 0 0
\(657\) 12.0321 1.88648i 0.469417 0.0735988i
\(658\) 0 0
\(659\) 13.2733 + 22.9901i 0.517056 + 0.895567i 0.999804 + 0.0198077i \(0.00630539\pi\)
−0.482748 + 0.875759i \(0.660361\pi\)
\(660\) 0 0
\(661\) 12.1071 45.1842i 0.470911 1.75746i −0.165598 0.986193i \(-0.552955\pi\)
0.636509 0.771269i \(-0.280378\pi\)
\(662\) 0 0
\(663\) −34.8496 29.8113i −1.35344 1.15778i
\(664\) 0 0
\(665\) −10.2414 −0.397143
\(666\) 0 0
\(667\) −34.6789 −1.34277
\(668\) 0 0
\(669\) −0.0641786 0.0549002i −0.00248129 0.00212256i
\(670\) 0 0
\(671\) −10.1065 + 37.7179i −0.390157 + 1.45609i
\(672\) 0 0
\(673\) 11.5103 + 19.9363i 0.443688 + 0.768490i 0.997960 0.0638458i \(-0.0203366\pi\)
−0.554272 + 0.832336i \(0.687003\pi\)
\(674\) 0 0
\(675\) −16.7203 + 9.02788i −0.643566 + 0.347483i
\(676\) 0 0
\(677\) 9.09136 0.349409 0.174705 0.984621i \(-0.444103\pi\)
0.174705 + 0.984621i \(0.444103\pi\)
\(678\) 0 0
\(679\) 2.38597 + 0.639320i 0.0915653 + 0.0245348i
\(680\) 0 0
\(681\) −32.1692 + 22.0724i −1.23273 + 0.845817i
\(682\) 0 0
\(683\) −4.60343 + 1.23348i −0.176145 + 0.0471980i −0.345814 0.938303i \(-0.612397\pi\)
0.169668 + 0.985501i \(0.445730\pi\)
\(684\) 0 0
\(685\) −18.5981 4.98336i −0.710598 0.190404i
\(686\) 0 0
\(687\) −1.85047 + 9.94101i −0.0705998 + 0.379273i
\(688\) 0 0
\(689\) −35.8251 35.8251i −1.36483 1.36483i
\(690\) 0 0
\(691\) 8.20631 + 4.73792i 0.312183 + 0.180239i 0.647903 0.761723i \(-0.275646\pi\)
−0.335720 + 0.941962i \(0.608980\pi\)
\(692\) 0 0
\(693\) −9.36812 + 7.56201i −0.355865 + 0.287257i
\(694\) 0 0
\(695\) −13.3583 + 13.3583i −0.506709 + 0.506709i
\(696\) 0 0
\(697\) −8.44962 8.44962i −0.320052 0.320052i
\(698\) 0 0
\(699\) 8.78666 + 7.51636i 0.332342 + 0.284295i
\(700\) 0 0
\(701\) 19.1267 5.12497i 0.722404 0.193568i 0.121160 0.992633i \(-0.461339\pi\)
0.601244 + 0.799065i \(0.294672\pi\)
\(702\) 0 0
\(703\) −34.4522 13.2564i −1.29939 0.499975i
\(704\) 0 0
\(705\) 10.8049 + 15.7475i 0.406937 + 0.593087i
\(706\) 0 0
\(707\) 10.0501 + 17.4072i 0.377971 + 0.654665i
\(708\) 0 0
\(709\) 3.62196 3.62196i 0.136026 0.136026i −0.635816 0.771841i \(-0.719336\pi\)
0.771841 + 0.635816i \(0.219336\pi\)
\(710\) 0 0
\(711\) 4.26649 39.9935i 0.160006 1.49987i
\(712\) 0 0
\(713\) 43.5559i 1.63118i
\(714\) 0 0
\(715\) 9.70702 16.8130i 0.363022 0.628772i
\(716\) 0 0
\(717\) 25.0306 + 11.9629i 0.934784 + 0.446763i
\(718\) 0 0
\(719\) 19.7388 + 11.3962i 0.736133 + 0.425007i 0.820662 0.571414i \(-0.193605\pi\)
−0.0845286 + 0.996421i \(0.526938\pi\)
\(720\) 0 0
\(721\) −2.76728 + 10.3276i −0.103059 + 0.384621i
\(722\) 0 0
\(723\) −11.2824 16.4434i −0.419595 0.611535i
\(724\) 0 0
\(725\) 18.1501 4.86331i 0.674078 0.180619i
\(726\) 0 0
\(727\) 10.6984 39.9269i 0.396781 1.48081i −0.421945 0.906622i \(-0.638652\pi\)
0.818726 0.574185i \(-0.194681\pi\)
\(728\) 0 0
\(729\) −12.1452 24.1142i −0.449821 0.893119i
\(730\) 0 0
\(731\) −7.86023 + 13.6143i −0.290721 + 0.503544i
\(732\) 0 0
\(733\) 31.9467 18.4445i 1.17998 0.681262i 0.223970 0.974596i \(-0.428098\pi\)
0.956010 + 0.293334i \(0.0947649\pi\)
\(734\) 0 0
\(735\) −0.760883 9.76519i −0.0280656 0.360194i
\(736\) 0 0
\(737\) 11.5143 6.64777i 0.424134 0.244874i
\(738\) 0 0
\(739\) 36.3141i 1.33584i −0.744235 0.667918i \(-0.767186\pi\)
0.744235 0.667918i \(-0.232814\pi\)
\(740\) 0 0
\(741\) −21.2809 60.2445i −0.781773 2.21314i
\(742\) 0 0
\(743\) 10.4342 + 18.0726i 0.382795 + 0.663021i 0.991461 0.130406i \(-0.0416281\pi\)
−0.608665 + 0.793427i \(0.708295\pi\)
\(744\) 0 0
\(745\) 0.733283 + 0.196483i 0.0268654 + 0.00719857i
\(746\) 0 0
\(747\) 4.51547 11.7086i 0.165212 0.428397i
\(748\) 0 0
\(749\) −3.10405 1.79212i −0.113419 0.0654827i
\(750\) 0 0
\(751\) 23.1736i 0.845618i 0.906219 + 0.422809i \(0.138956\pi\)
−0.906219 + 0.422809i \(0.861044\pi\)
\(752\) 0 0
\(753\) 20.8692 1.62609i 0.760517 0.0592579i
\(754\) 0 0
\(755\) −2.72082 10.1542i −0.0990207 0.369550i
\(756\) 0 0
\(757\) 8.33389 + 31.1025i 0.302900 + 1.13044i 0.934738 + 0.355338i \(0.115634\pi\)
−0.631837 + 0.775101i \(0.717699\pi\)
\(758\) 0 0
\(759\) −2.50265 32.1191i −0.0908405 1.16585i
\(760\) 0 0
\(761\) −13.7558 + 23.8257i −0.498646 + 0.863680i −0.999999 0.00156274i \(-0.999503\pi\)
0.501353 + 0.865243i \(0.332836\pi\)
\(762\) 0 0
\(763\) 18.4258 18.4258i 0.667058 0.667058i
\(764\) 0 0
\(765\) −14.9619 + 2.34584i −0.540947 + 0.0848139i
\(766\) 0 0
\(767\) 22.3858 0.808304
\(768\) 0 0
\(769\) −21.6007 21.6007i −0.778942 0.778942i 0.200709 0.979651i \(-0.435675\pi\)
−0.979651 + 0.200709i \(0.935675\pi\)
\(770\) 0 0
\(771\) 15.6538 + 7.48145i 0.563757 + 0.269438i
\(772\) 0 0
\(773\) 14.1200 8.15219i 0.507862 0.293214i −0.224093 0.974568i \(-0.571942\pi\)
0.731954 + 0.681354i \(0.238608\pi\)
\(774\) 0 0
\(775\) 6.10821 + 22.7961i 0.219413 + 0.818862i
\(776\) 0 0
\(777\) −4.38041 + 14.7030i −0.157146 + 0.527466i
\(778\) 0 0
\(779\) −4.30882 16.0807i −0.154380 0.576152i
\(780\) 0 0
\(781\) −23.5137 + 13.5756i −0.841385 + 0.485774i
\(782\) 0 0
\(783\) 6.17217 + 25.9762i 0.220575 + 0.928314i
\(784\) 0 0
\(785\) −1.04766 1.04766i −0.0373926 0.0373926i
\(786\) 0 0
\(787\) −6.40828 −0.228431 −0.114215 0.993456i \(-0.536435\pi\)
−0.114215 + 0.993456i \(0.536435\pi\)
\(788\) 0 0
\(789\) 6.81691 36.6215i 0.242688 1.30376i
\(790\) 0 0
\(791\) 14.3700 14.3700i 0.510937 0.510937i
\(792\) 0 0
\(793\) −43.0622 + 74.5859i −1.52918 + 2.64862i
\(794\) 0 0
\(795\) −16.6804 + 1.29970i −0.591593 + 0.0460957i
\(796\) 0 0
\(797\) 8.38483 + 31.2926i 0.297006 + 1.10844i 0.939611 + 0.342244i \(0.111187\pi\)
−0.642605 + 0.766197i \(0.722147\pi\)
\(798\) 0 0
\(799\) −10.7265 40.0319i −0.379477 1.41623i
\(800\) 0 0
\(801\) 28.5615 12.6631i 1.00917 0.447429i
\(802\) 0 0
\(803\) 11.1883i 0.394827i
\(804\) 0 0
\(805\) −9.86363 5.69477i −0.347647 0.200714i
\(806\) 0 0
\(807\) −18.0315 + 21.0789i −0.634739 + 0.742013i
\(808\) 0 0
\(809\) 48.9886 + 13.1264i 1.72235 + 0.461501i 0.978397 0.206735i \(-0.0662838\pi\)
0.743949 + 0.668236i \(0.232950\pi\)
\(810\) 0 0
\(811\) −11.4450 19.8233i −0.401887 0.696089i 0.592066 0.805889i \(-0.298312\pi\)
−0.993954 + 0.109800i \(0.964979\pi\)
\(812\) 0 0
\(813\) 1.41956 0.501449i 0.0497862 0.0175866i
\(814\) 0 0
\(815\) 23.3214i 0.816912i
\(816\) 0 0
\(817\) −18.9673 + 10.9508i −0.663583 + 0.383120i
\(818\) 0 0
\(819\) −24.2748 + 10.7625i −0.848229 + 0.376074i
\(820\) 0 0
\(821\) −42.8282 + 24.7269i −1.49471 + 0.862973i −0.999982 0.00607199i \(-0.998067\pi\)
−0.494732 + 0.869045i \(0.664734\pi\)
\(822\) 0 0
\(823\) −22.2288 + 38.5014i −0.774846 + 1.34207i 0.160034 + 0.987111i \(0.448839\pi\)
−0.934881 + 0.354962i \(0.884494\pi\)
\(824\) 0 0
\(825\) 5.81415 + 16.4594i 0.202423 + 0.573042i
\(826\) 0 0
\(827\) 8.23934 30.7496i 0.286510 1.06927i −0.661219 0.750193i \(-0.729961\pi\)
0.947729 0.319077i \(-0.103373\pi\)
\(828\) 0 0
\(829\) −20.5414 + 5.50404i −0.713431 + 0.191163i −0.597239 0.802063i \(-0.703736\pi\)
−0.116192 + 0.993227i \(0.537069\pi\)
\(830\) 0 0
\(831\) 0.351745 0.241344i 0.0122019 0.00837214i
\(832\) 0 0
\(833\) −5.50132 + 20.5312i −0.190609 + 0.711364i
\(834\) 0 0
\(835\) −15.6793 9.05247i −0.542606 0.313274i
\(836\) 0 0
\(837\) −32.6256 + 7.75211i −1.12770 + 0.267952i
\(838\) 0 0
\(839\) 12.2733 21.2581i 0.423723 0.733910i −0.572577 0.819851i \(-0.694056\pi\)
0.996300 + 0.0859412i \(0.0273897\pi\)
\(840\) 0 0
\(841\) 2.59780i 0.0895794i
\(842\) 0 0
\(843\) −49.9090 23.8531i −1.71896 0.821545i
\(844\) 0 0
\(845\) 19.6245 19.6245i 0.675103 0.675103i
\(846\) 0 0
\(847\) −2.47892 4.29362i −0.0851768 0.147531i
\(848\) 0 0
\(849\) 33.8885 23.2521i 1.16305 0.798010i
\(850\) 0 0
\(851\) −25.8102 31.9248i −0.884762 1.09437i
\(852\) 0 0
\(853\) −1.56522 + 0.419400i −0.0535922 + 0.0143600i −0.285516 0.958374i \(-0.592165\pi\)
0.231923 + 0.972734i \(0.425498\pi\)
\(854\) 0 0
\(855\) −19.6862 7.59202i −0.673252 0.259642i
\(856\) 0 0
\(857\) 14.3353 + 14.3353i 0.489683 + 0.489683i 0.908206 0.418523i \(-0.137452\pi\)
−0.418523 + 0.908206i \(0.637452\pi\)
\(858\) 0 0
\(859\) −14.2311 + 14.2311i −0.485560 + 0.485560i −0.906902 0.421342i \(-0.861559\pi\)
0.421342 + 0.906902i \(0.361559\pi\)
\(860\) 0 0
\(861\) −6.52382 + 2.30449i −0.222331 + 0.0785367i
\(862\) 0 0
\(863\) 21.6342 + 12.4905i 0.736438 + 0.425183i 0.820773 0.571255i \(-0.193543\pi\)
−0.0843346 + 0.996437i \(0.526876\pi\)
\(864\) 0 0
\(865\) 11.5457 + 11.5457i 0.392567 + 0.392567i
\(866\) 0 0
\(867\) 3.36245 + 0.625903i 0.114195 + 0.0212568i
\(868\) 0 0
\(869\) −35.6895 9.56298i −1.21068 0.324402i
\(870\) 0 0
\(871\) 28.3251 7.58969i 0.959760 0.257167i
\(872\) 0 0
\(873\) 4.11243 + 2.99766i 0.139185 + 0.101455i
\(874\) 0 0
\(875\) 14.1113 + 3.78112i 0.477050 + 0.127825i
\(876\) 0 0
\(877\) −24.1599 −0.815821 −0.407911 0.913022i \(-0.633742\pi\)
−0.407911 + 0.913022i \(0.633742\pi\)
\(878\) 0 0
\(879\) −15.6776 2.91831i −0.528793 0.0984321i
\(880\) 0 0
\(881\) 7.49794 + 12.9868i 0.252612 + 0.437537i 0.964244 0.265015i \(-0.0853770\pi\)
−0.711632 + 0.702552i \(0.752044\pi\)
\(882\) 0 0
\(883\) 11.6471 43.4675i 0.391956 1.46280i −0.434948 0.900456i \(-0.643233\pi\)
0.826904 0.562343i \(-0.190100\pi\)
\(884\) 0 0
\(885\) 4.80541 5.61755i 0.161532 0.188832i
\(886\) 0 0
\(887\) −20.6820 −0.694435 −0.347217 0.937785i \(-0.612873\pi\)
−0.347217 + 0.937785i \(0.612873\pi\)
\(888\) 0 0
\(889\) −4.88089 −0.163700
\(890\) 0 0
\(891\) −23.6134 + 7.59118i −0.791077 + 0.254314i
\(892\) 0 0
\(893\) 14.9441 55.7720i 0.500084 1.86634i
\(894\) 0 0
\(895\) 7.08846 + 12.2776i 0.236941 + 0.410394i
\(896\) 0 0
\(897\) 13.0033 69.8558i 0.434168 2.33242i
\(898\) 0 0
\(899\) 33.1606 1.10597
\(900\) 0 0
\(901\) 35.0703 + 9.39707i 1.16836 + 0.313062i
\(902\) 0 0
\(903\) 5.14973 + 7.50542i 0.171372 + 0.249765i
\(904\) 0 0
\(905\) −6.64578 + 1.78073i −0.220913 + 0.0591935i
\(906\) 0 0
\(907\) 47.4379 + 12.7109i 1.57515 + 0.422060i 0.937420 0.348200i \(-0.113207\pi\)
0.637729 + 0.770260i \(0.279874\pi\)
\(908\) 0 0
\(909\) 6.41429 + 40.9107i 0.212749 + 1.35692i
\(910\) 0 0
\(911\) 21.8406 + 21.8406i 0.723612 + 0.723612i 0.969339 0.245727i \(-0.0790267\pi\)
−0.245727 + 0.969339i \(0.579027\pi\)
\(912\) 0 0
\(913\) −9.98381 5.76416i −0.330416 0.190766i
\(914\) 0 0
\(915\) 9.47290 + 26.8170i 0.313165 + 0.886544i
\(916\) 0 0
\(917\) 17.9451 17.9451i 0.592598 0.592598i
\(918\) 0 0
\(919\) 22.0408 + 22.0408i 0.727060 + 0.727060i 0.970033 0.242973i \(-0.0781227\pi\)
−0.242973 + 0.970033i \(0.578123\pi\)
\(920\) 0 0
\(921\) −17.7455 + 20.7445i −0.584733 + 0.683556i
\(922\) 0 0
\(923\) −57.8436 + 15.4991i −1.90395 + 0.510161i
\(924\) 0 0
\(925\) 17.9855 + 13.0891i 0.591360 + 0.430367i
\(926\) 0 0
\(927\) −12.9753 + 17.8005i −0.426164 + 0.584647i
\(928\) 0 0
\(929\) −11.4551 19.8408i −0.375830 0.650957i 0.614621 0.788823i \(-0.289309\pi\)
−0.990451 + 0.137866i \(0.955976\pi\)
\(930\) 0 0
\(931\) −20.9395 + 20.9395i −0.686263 + 0.686263i
\(932\) 0 0
\(933\) 4.86230 10.1736i 0.159184 0.333069i
\(934\) 0 0
\(935\) 13.9126i 0.454992i
\(936\) 0 0
\(937\) 19.6435 34.0235i 0.641724 1.11150i −0.343323 0.939217i \(-0.611553\pi\)
0.985048 0.172282i \(-0.0551140\pi\)
\(938\) 0 0
\(939\) 14.4112 30.1532i 0.470292 0.984013i
\(940\) 0 0
\(941\) −28.8358 16.6483i −0.940020 0.542721i −0.0500532 0.998747i \(-0.515939\pi\)
−0.889967 + 0.456026i \(0.849272\pi\)
\(942\) 0 0
\(943\) 4.79189 17.8836i 0.156045 0.582369i
\(944\) 0 0
\(945\) −2.51013 + 8.40191i −0.0816546 + 0.273314i
\(946\) 0 0
\(947\) −11.8152 + 3.16587i −0.383943 + 0.102877i −0.445627 0.895219i \(-0.647019\pi\)
0.0616847 + 0.998096i \(0.480353\pi\)
\(948\) 0 0
\(949\) 6.38679 23.8358i 0.207324 0.773744i
\(950\) 0 0
\(951\) −2.42708 + 0.857348i −0.0787035 + 0.0278014i
\(952\) 0 0
\(953\) 6.10941 10.5818i 0.197903 0.342779i −0.749945 0.661500i \(-0.769920\pi\)
0.947848 + 0.318721i \(0.103253\pi\)
\(954\) 0 0
\(955\) 0.290334 0.167625i 0.00939499 0.00542420i
\(956\) 0 0
\(957\) 24.4533 1.90535i 0.790464 0.0615913i
\(958\) 0 0
\(959\) 20.9515 12.0964i 0.676559 0.390612i
\(960\) 0 0
\(961\) 10.6490i 0.343516i
\(962\) 0 0
\(963\) −4.63814 5.74591i −0.149462 0.185159i
\(964\) 0 0
\(965\) −11.6511 20.1803i −0.375063 0.649628i
\(966\) 0 0
\(967\) −1.02433 0.274467i −0.0329401 0.00882627i 0.242311 0.970199i \(-0.422094\pi\)
−0.275251 + 0.961372i \(0.588761\pi\)
\(968\) 0 0
\(969\) 34.7937 + 29.7636i 1.11774 + 0.956144i
\(970\) 0 0
\(971\) 41.0340 + 23.6910i 1.31685 + 0.760281i 0.983220 0.182425i \(-0.0583946\pi\)
0.333625 + 0.942706i \(0.391728\pi\)
\(972\) 0 0
\(973\) 23.7369i 0.760971i
\(974\) 0 0
\(975\) 2.99083 + 38.3844i 0.0957834 + 1.22929i
\(976\) 0 0
\(977\) −9.57052 35.7177i −0.306188 1.14271i −0.931918 0.362669i \(-0.881865\pi\)
0.625730 0.780040i \(-0.284801\pi\)
\(978\) 0 0
\(979\) −7.42842 27.7233i −0.237413 0.886039i
\(980\) 0 0
\(981\) 49.0776 21.7592i 1.56693 0.694718i
\(982\) 0 0
\(983\) −3.80100 + 6.58353i −0.121233 + 0.209982i −0.920254 0.391321i \(-0.872018\pi\)
0.799021 + 0.601303i \(0.205352\pi\)
\(984\) 0 0
\(985\) 19.9236 19.9236i 0.634817 0.634817i
\(986\) 0 0
\(987\) −23.5911 4.39137i −0.750914 0.139779i
\(988\) 0 0
\(989\) −24.3570 −0.774507
\(990\) 0 0
\(991\) 13.9848 + 13.9848i 0.444241 + 0.444241i 0.893434 0.449193i \(-0.148289\pi\)
−0.449193 + 0.893434i \(0.648289\pi\)
\(992\) 0 0
\(993\) 0.0265644 0.0555819i 0.000842995 0.00176384i
\(994\) 0 0
\(995\) 5.43032 3.13520i 0.172153 0.0993924i
\(996\) 0 0
\(997\) 3.94065 + 14.7067i 0.124802 + 0.465766i 0.999833 0.0183010i \(-0.00582572\pi\)
−0.875031 + 0.484067i \(0.839159\pi\)
\(998\) 0 0
\(999\) −19.3195 + 25.0151i −0.611243 + 0.791443i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 888.2.br.a.569.31 yes 152
3.2 odd 2 inner 888.2.br.a.569.18 152
37.8 odd 12 inner 888.2.br.a.785.18 yes 152
111.8 even 12 inner 888.2.br.a.785.31 yes 152
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
888.2.br.a.569.18 152 3.2 odd 2 inner
888.2.br.a.569.31 yes 152 1.1 even 1 trivial
888.2.br.a.785.18 yes 152 37.8 odd 12 inner
888.2.br.a.785.31 yes 152 111.8 even 12 inner