Properties

Label 888.2.br.a.569.17
Level $888$
Weight $2$
Character 888.569
Analytic conductor $7.091$
Analytic rank $0$
Dimension $152$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [888,2,Mod(473,888)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("888.473"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(888, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([0, 0, 6, 7])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 888 = 2^{3} \cdot 3 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 888.br (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.09071569949\)
Analytic rank: \(0\)
Dimension: \(152\)
Relative dimension: \(38\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 569.17
Character \(\chi\) \(=\) 888.569
Dual form 888.2.br.a.785.17

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.350286 + 1.69626i) q^{3} +(0.557275 - 2.07978i) q^{5} +(1.90625 + 3.30173i) q^{7} +(-2.75460 - 1.18835i) q^{9} +2.70521 q^{11} +(0.737048 + 0.197491i) q^{13} +(3.33264 + 1.67380i) q^{15} +(0.554152 - 0.148484i) q^{17} +(-2.06065 - 0.552149i) q^{19} +(-6.26832 + 2.07695i) q^{21} +(4.13412 + 4.13412i) q^{23} +(0.315207 + 0.181985i) q^{25} +(2.98065 - 4.25625i) q^{27} +(1.48612 - 1.48612i) q^{29} +(0.369408 + 0.369408i) q^{31} +(-0.947598 + 4.58874i) q^{33} +(7.92916 - 2.12461i) q^{35} +(-1.29198 + 5.94397i) q^{37} +(-0.593175 + 1.18105i) q^{39} +(1.11956 + 1.93913i) q^{41} +(-5.18129 + 5.18129i) q^{43} +(-4.00658 + 5.06671i) q^{45} +1.34429i q^{47} +(-3.76760 + 6.52568i) q^{49} +(0.0577567 + 0.991997i) q^{51} +(0.415147 + 0.239685i) q^{53} +(1.50755 - 5.62624i) q^{55} +(1.65840 - 3.30198i) q^{57} +(12.4806 - 3.34417i) q^{59} +(0.788533 - 2.94285i) q^{61} +(-1.32735 - 11.3602i) q^{63} +(0.821477 - 1.42284i) q^{65} +(-2.47617 + 1.42962i) q^{67} +(-8.46067 + 5.56442i) q^{69} +(-5.44141 + 3.14160i) q^{71} +14.3331i q^{73} +(-0.419107 + 0.470927i) q^{75} +(5.15682 + 8.93187i) q^{77} +(-10.2736 - 2.75281i) q^{79} +(6.17563 + 6.54687i) q^{81} +(4.79474 + 2.76824i) q^{83} -1.23526i q^{85} +(2.00028 + 3.04141i) q^{87} +(-3.12906 - 11.6778i) q^{89} +(0.752937 + 2.81000i) q^{91} +(-0.756010 + 0.497213i) q^{93} +(-2.29669 + 3.97799i) q^{95} +(0.215187 - 0.215187i) q^{97} +(-7.45177 - 3.21475i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 152 q + 4 q^{13} - 12 q^{15} + 4 q^{19} - 44 q^{31} - 12 q^{39} + 28 q^{43} + 20 q^{45} - 80 q^{49} - 12 q^{51} - 8 q^{55} - 40 q^{57} - 28 q^{61} + 48 q^{63} + 56 q^{69} + 64 q^{75} + 20 q^{79} + 16 q^{81}+ \cdots - 20 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/888\mathbb{Z}\right)^\times\).

\(n\) \(223\) \(409\) \(445\) \(593\)
\(\chi(n)\) \(1\) \(e\left(\frac{11}{12}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.350286 + 1.69626i −0.202238 + 0.979336i
\(4\) 0 0
\(5\) 0.557275 2.07978i 0.249221 0.930105i −0.721994 0.691899i \(-0.756774\pi\)
0.971215 0.238205i \(-0.0765592\pi\)
\(6\) 0 0
\(7\) 1.90625 + 3.30173i 0.720496 + 1.24794i 0.960801 + 0.277238i \(0.0894191\pi\)
−0.240305 + 0.970697i \(0.577248\pi\)
\(8\) 0 0
\(9\) −2.75460 1.18835i −0.918200 0.396118i
\(10\) 0 0
\(11\) 2.70521 0.815652 0.407826 0.913060i \(-0.366287\pi\)
0.407826 + 0.913060i \(0.366287\pi\)
\(12\) 0 0
\(13\) 0.737048 + 0.197491i 0.204420 + 0.0547743i 0.359576 0.933116i \(-0.382921\pi\)
−0.155156 + 0.987890i \(0.549588\pi\)
\(14\) 0 0
\(15\) 3.33264 + 1.67380i 0.860484 + 0.432173i
\(16\) 0 0
\(17\) 0.554152 0.148484i 0.134401 0.0360128i −0.190991 0.981592i \(-0.561170\pi\)
0.325393 + 0.945579i \(0.394504\pi\)
\(18\) 0 0
\(19\) −2.06065 0.552149i −0.472745 0.126672i 0.0145776 0.999894i \(-0.495360\pi\)
−0.487322 + 0.873222i \(0.662026\pi\)
\(20\) 0 0
\(21\) −6.26832 + 2.07695i −1.36786 + 0.453228i
\(22\) 0 0
\(23\) 4.13412 + 4.13412i 0.862023 + 0.862023i 0.991573 0.129550i \(-0.0413532\pi\)
−0.129550 + 0.991573i \(0.541353\pi\)
\(24\) 0 0
\(25\) 0.315207 + 0.181985i 0.0630415 + 0.0363970i
\(26\) 0 0
\(27\) 2.98065 4.25625i 0.573627 0.819116i
\(28\) 0 0
\(29\) 1.48612 1.48612i 0.275965 0.275965i −0.555531 0.831496i \(-0.687485\pi\)
0.831496 + 0.555531i \(0.187485\pi\)
\(30\) 0 0
\(31\) 0.369408 + 0.369408i 0.0663476 + 0.0663476i 0.739502 0.673154i \(-0.235061\pi\)
−0.673154 + 0.739502i \(0.735061\pi\)
\(32\) 0 0
\(33\) −0.947598 + 4.58874i −0.164956 + 0.798798i
\(34\) 0 0
\(35\) 7.92916 2.12461i 1.34027 0.359125i
\(36\) 0 0
\(37\) −1.29198 + 5.94397i −0.212400 + 0.977183i
\(38\) 0 0
\(39\) −0.593175 + 1.18105i −0.0949840 + 0.189119i
\(40\) 0 0
\(41\) 1.11956 + 1.93913i 0.174845 + 0.302841i 0.940108 0.340877i \(-0.110724\pi\)
−0.765262 + 0.643719i \(0.777391\pi\)
\(42\) 0 0
\(43\) −5.18129 + 5.18129i −0.790140 + 0.790140i −0.981517 0.191377i \(-0.938705\pi\)
0.191377 + 0.981517i \(0.438705\pi\)
\(44\) 0 0
\(45\) −4.00658 + 5.06671i −0.597265 + 0.755301i
\(46\) 0 0
\(47\) 1.34429i 0.196084i 0.995182 + 0.0980421i \(0.0312580\pi\)
−0.995182 + 0.0980421i \(0.968742\pi\)
\(48\) 0 0
\(49\) −3.76760 + 6.52568i −0.538229 + 0.932239i
\(50\) 0 0
\(51\) 0.0577567 + 0.991997i 0.00808756 + 0.138907i
\(52\) 0 0
\(53\) 0.415147 + 0.239685i 0.0570248 + 0.0329233i 0.528241 0.849094i \(-0.322852\pi\)
−0.471217 + 0.882018i \(0.656185\pi\)
\(54\) 0 0
\(55\) 1.50755 5.62624i 0.203277 0.758642i
\(56\) 0 0
\(57\) 1.65840 3.30198i 0.219661 0.437358i
\(58\) 0 0
\(59\) 12.4806 3.34417i 1.62484 0.435374i 0.672419 0.740171i \(-0.265255\pi\)
0.952417 + 0.304797i \(0.0985887\pi\)
\(60\) 0 0
\(61\) 0.788533 2.94285i 0.100961 0.376793i −0.896894 0.442245i \(-0.854182\pi\)
0.997856 + 0.0654520i \(0.0208489\pi\)
\(62\) 0 0
\(63\) −1.32735 11.3602i −0.167230 1.43126i
\(64\) 0 0
\(65\) 0.821477 1.42284i 0.101892 0.176481i
\(66\) 0 0
\(67\) −2.47617 + 1.42962i −0.302512 + 0.174655i −0.643571 0.765387i \(-0.722548\pi\)
0.341059 + 0.940042i \(0.389214\pi\)
\(68\) 0 0
\(69\) −8.46067 + 5.56442i −1.01854 + 0.669877i
\(70\) 0 0
\(71\) −5.44141 + 3.14160i −0.645777 + 0.372839i −0.786836 0.617162i \(-0.788282\pi\)
0.141060 + 0.990001i \(0.454949\pi\)
\(72\) 0 0
\(73\) 14.3331i 1.67756i 0.544469 + 0.838781i \(0.316731\pi\)
−0.544469 + 0.838781i \(0.683269\pi\)
\(74\) 0 0
\(75\) −0.419107 + 0.470927i −0.0483943 + 0.0543780i
\(76\) 0 0
\(77\) 5.15682 + 8.93187i 0.587674 + 1.01788i
\(78\) 0 0
\(79\) −10.2736 2.75281i −1.15587 0.309716i −0.370557 0.928810i \(-0.620833\pi\)
−0.785317 + 0.619094i \(0.787500\pi\)
\(80\) 0 0
\(81\) 6.17563 + 6.54687i 0.686181 + 0.727430i
\(82\) 0 0
\(83\) 4.79474 + 2.76824i 0.526291 + 0.303854i 0.739505 0.673151i \(-0.235060\pi\)
−0.213214 + 0.977006i \(0.568393\pi\)
\(84\) 0 0
\(85\) 1.23526i 0.133983i
\(86\) 0 0
\(87\) 2.00028 + 3.04141i 0.214452 + 0.326074i
\(88\) 0 0
\(89\) −3.12906 11.6778i −0.331680 1.23785i −0.907424 0.420217i \(-0.861954\pi\)
0.575744 0.817630i \(-0.304713\pi\)
\(90\) 0 0
\(91\) 0.752937 + 2.81000i 0.0789293 + 0.294568i
\(92\) 0 0
\(93\) −0.756010 + 0.497213i −0.0783946 + 0.0515586i
\(94\) 0 0
\(95\) −2.29669 + 3.97799i −0.235636 + 0.408133i
\(96\) 0 0
\(97\) 0.215187 0.215187i 0.0218489 0.0218489i −0.696098 0.717947i \(-0.745082\pi\)
0.717947 + 0.696098i \(0.245082\pi\)
\(98\) 0 0
\(99\) −7.45177 3.21475i −0.748931 0.323094i
\(100\) 0 0
\(101\) −2.38449 −0.237266 −0.118633 0.992938i \(-0.537851\pi\)
−0.118633 + 0.992938i \(0.537851\pi\)
\(102\) 0 0
\(103\) 5.73644 + 5.73644i 0.565228 + 0.565228i 0.930788 0.365560i \(-0.119122\pi\)
−0.365560 + 0.930788i \(0.619122\pi\)
\(104\) 0 0
\(105\) 0.826421 + 14.1942i 0.0806504 + 1.38521i
\(106\) 0 0
\(107\) −7.24666 + 4.18386i −0.700561 + 0.404469i −0.807556 0.589790i \(-0.799210\pi\)
0.106995 + 0.994260i \(0.465877\pi\)
\(108\) 0 0
\(109\) −4.47610 16.7050i −0.428732 1.60005i −0.755635 0.654993i \(-0.772672\pi\)
0.326903 0.945058i \(-0.393995\pi\)
\(110\) 0 0
\(111\) −9.62996 4.27362i −0.914035 0.405634i
\(112\) 0 0
\(113\) 3.60146 + 13.4408i 0.338796 + 1.26441i 0.899694 + 0.436521i \(0.143789\pi\)
−0.560898 + 0.827885i \(0.689544\pi\)
\(114\) 0 0
\(115\) 10.9019 6.29421i 1.01661 0.586938i
\(116\) 0 0
\(117\) −1.79558 1.41988i −0.166002 0.131268i
\(118\) 0 0
\(119\) 1.54661 + 1.54661i 0.141777 + 0.141777i
\(120\) 0 0
\(121\) −3.68183 −0.334712
\(122\) 0 0
\(123\) −3.68144 + 1.21981i −0.331944 + 0.109987i
\(124\) 0 0
\(125\) 8.16666 8.16666i 0.730448 0.730448i
\(126\) 0 0
\(127\) 9.83451 17.0339i 0.872672 1.51151i 0.0134499 0.999910i \(-0.495719\pi\)
0.859222 0.511603i \(-0.170948\pi\)
\(128\) 0 0
\(129\) −6.97389 10.6038i −0.614017 0.933609i
\(130\) 0 0
\(131\) −1.34334 5.01341i −0.117368 0.438023i 0.882085 0.471090i \(-0.156139\pi\)
−0.999453 + 0.0330667i \(0.989473\pi\)
\(132\) 0 0
\(133\) −2.10507 7.85623i −0.182533 0.681221i
\(134\) 0 0
\(135\) −7.19102 8.57100i −0.618904 0.737674i
\(136\) 0 0
\(137\) 12.7696i 1.09098i −0.838118 0.545488i \(-0.816344\pi\)
0.838118 0.545488i \(-0.183656\pi\)
\(138\) 0 0
\(139\) 5.25005 + 3.03112i 0.445303 + 0.257096i 0.705845 0.708367i \(-0.250568\pi\)
−0.260541 + 0.965463i \(0.583901\pi\)
\(140\) 0 0
\(141\) −2.28026 0.470885i −0.192032 0.0396556i
\(142\) 0 0
\(143\) 1.99387 + 0.534256i 0.166736 + 0.0446767i
\(144\) 0 0
\(145\) −2.26262 3.91898i −0.187900 0.325453i
\(146\) 0 0
\(147\) −9.74951 8.67669i −0.804126 0.715641i
\(148\) 0 0
\(149\) 4.38215i 0.359000i −0.983758 0.179500i \(-0.942552\pi\)
0.983758 0.179500i \(-0.0574480\pi\)
\(150\) 0 0
\(151\) −7.35098 + 4.24409i −0.598215 + 0.345379i −0.768339 0.640043i \(-0.778916\pi\)
0.170124 + 0.985423i \(0.445583\pi\)
\(152\) 0 0
\(153\) −1.70292 0.249513i −0.137673 0.0201719i
\(154\) 0 0
\(155\) 0.974147 0.562424i 0.0782454 0.0451750i
\(156\) 0 0
\(157\) 8.04292 13.9307i 0.641895 1.11179i −0.343115 0.939293i \(-0.611482\pi\)
0.985009 0.172500i \(-0.0551846\pi\)
\(158\) 0 0
\(159\) −0.551989 + 0.620239i −0.0437755 + 0.0491881i
\(160\) 0 0
\(161\) −5.76905 + 21.5304i −0.454665 + 1.69683i
\(162\) 0 0
\(163\) 20.8950 5.59881i 1.63663 0.438533i 0.680801 0.732468i \(-0.261632\pi\)
0.955825 + 0.293936i \(0.0949651\pi\)
\(164\) 0 0
\(165\) 9.01549 + 4.52798i 0.701855 + 0.352503i
\(166\) 0 0
\(167\) 4.70514 17.5598i 0.364095 1.35882i −0.504549 0.863383i \(-0.668341\pi\)
0.868644 0.495437i \(-0.164992\pi\)
\(168\) 0 0
\(169\) −10.7541 6.20888i −0.827238 0.477606i
\(170\) 0 0
\(171\) 5.02011 + 3.96972i 0.383897 + 0.303572i
\(172\) 0 0
\(173\) 6.08785 10.5445i 0.462851 0.801681i −0.536251 0.844059i \(-0.680160\pi\)
0.999102 + 0.0423775i \(0.0134932\pi\)
\(174\) 0 0
\(175\) 1.38764i 0.104896i
\(176\) 0 0
\(177\) 1.30080 + 22.3418i 0.0977739 + 1.67931i
\(178\) 0 0
\(179\) 15.4730 15.4730i 1.15651 1.15651i 0.171289 0.985221i \(-0.445207\pi\)
0.985221 0.171289i \(-0.0547931\pi\)
\(180\) 0 0
\(181\) −10.1627 17.6022i −0.755384 1.30836i −0.945183 0.326541i \(-0.894117\pi\)
0.189799 0.981823i \(-0.439216\pi\)
\(182\) 0 0
\(183\) 4.71562 + 2.36840i 0.348589 + 0.175077i
\(184\) 0 0
\(185\) 11.6422 + 5.99945i 0.855948 + 0.441088i
\(186\) 0 0
\(187\) 1.49910 0.401682i 0.109625 0.0293739i
\(188\) 0 0
\(189\) 19.7349 + 1.72781i 1.43550 + 0.125680i
\(190\) 0 0
\(191\) −8.15152 8.15152i −0.589823 0.589823i 0.347760 0.937584i \(-0.386942\pi\)
−0.937584 + 0.347760i \(0.886942\pi\)
\(192\) 0 0
\(193\) 5.27878 5.27878i 0.379975 0.379975i −0.491118 0.871093i \(-0.663412\pi\)
0.871093 + 0.491118i \(0.163412\pi\)
\(194\) 0 0
\(195\) 2.12575 + 1.89184i 0.152228 + 0.135477i
\(196\) 0 0
\(197\) −15.1620 8.75378i −1.08025 0.623681i −0.149284 0.988794i \(-0.547697\pi\)
−0.930963 + 0.365113i \(0.881030\pi\)
\(198\) 0 0
\(199\) 14.8274 + 14.8274i 1.05109 + 1.05109i 0.998623 + 0.0524668i \(0.0167084\pi\)
0.0524668 + 0.998623i \(0.483292\pi\)
\(200\) 0 0
\(201\) −1.55763 4.70100i −0.109867 0.331583i
\(202\) 0 0
\(203\) 7.73968 + 2.07384i 0.543219 + 0.145555i
\(204\) 0 0
\(205\) 4.65686 1.24780i 0.325249 0.0871503i
\(206\) 0 0
\(207\) −6.47505 16.3006i −0.450047 1.13297i
\(208\) 0 0
\(209\) −5.57449 1.49368i −0.385595 0.103320i
\(210\) 0 0
\(211\) 17.8600 1.22953 0.614765 0.788710i \(-0.289251\pi\)
0.614765 + 0.788710i \(0.289251\pi\)
\(212\) 0 0
\(213\) −3.42292 10.3305i −0.234535 0.707835i
\(214\) 0 0
\(215\) 7.88853 + 13.6633i 0.537994 + 0.931832i
\(216\) 0 0
\(217\) −0.515499 + 1.92387i −0.0349943 + 0.130601i
\(218\) 0 0
\(219\) −24.3127 5.02068i −1.64290 0.339266i
\(220\) 0 0
\(221\) 0.437761 0.0294470
\(222\) 0 0
\(223\) −25.8852 −1.73340 −0.866702 0.498827i \(-0.833764\pi\)
−0.866702 + 0.498827i \(0.833764\pi\)
\(224\) 0 0
\(225\) −0.652008 0.875874i −0.0434672 0.0583916i
\(226\) 0 0
\(227\) 4.32519 16.1418i 0.287073 1.07137i −0.660239 0.751056i \(-0.729545\pi\)
0.947311 0.320314i \(-0.103788\pi\)
\(228\) 0 0
\(229\) 5.30968 + 9.19664i 0.350874 + 0.607731i 0.986403 0.164346i \(-0.0525513\pi\)
−0.635529 + 0.772077i \(0.719218\pi\)
\(230\) 0 0
\(231\) −16.9571 + 5.61860i −1.11570 + 0.369676i
\(232\) 0 0
\(233\) −26.3676 −1.72740 −0.863701 0.504005i \(-0.831859\pi\)
−0.863701 + 0.504005i \(0.831859\pi\)
\(234\) 0 0
\(235\) 2.79582 + 0.749136i 0.182379 + 0.0488683i
\(236\) 0 0
\(237\) 8.26820 16.4625i 0.537077 1.06935i
\(238\) 0 0
\(239\) −3.62256 + 0.970662i −0.234324 + 0.0627869i −0.374070 0.927400i \(-0.622038\pi\)
0.139746 + 0.990187i \(0.455371\pi\)
\(240\) 0 0
\(241\) −3.84948 1.03147i −0.247967 0.0664425i 0.132695 0.991157i \(-0.457637\pi\)
−0.380662 + 0.924714i \(0.624304\pi\)
\(242\) 0 0
\(243\) −13.2684 + 8.18220i −0.851171 + 0.524889i
\(244\) 0 0
\(245\) 11.4724 + 11.4724i 0.732943 + 0.732943i
\(246\) 0 0
\(247\) −1.40975 0.813920i −0.0897003 0.0517885i
\(248\) 0 0
\(249\) −6.37519 + 7.16345i −0.404011 + 0.453965i
\(250\) 0 0
\(251\) −17.9014 + 17.9014i −1.12993 + 1.12993i −0.139739 + 0.990188i \(0.544627\pi\)
−0.990188 + 0.139739i \(0.955373\pi\)
\(252\) 0 0
\(253\) 11.1837 + 11.1837i 0.703111 + 0.703111i
\(254\) 0 0
\(255\) 2.09532 + 0.432694i 0.131214 + 0.0270963i
\(256\) 0 0
\(257\) −18.5669 + 4.97498i −1.15817 + 0.310331i −0.786235 0.617928i \(-0.787972\pi\)
−0.371935 + 0.928259i \(0.621306\pi\)
\(258\) 0 0
\(259\) −22.0882 + 7.06495i −1.37249 + 0.438995i
\(260\) 0 0
\(261\) −5.85970 + 2.32763i −0.362706 + 0.144077i
\(262\) 0 0
\(263\) −13.0462 22.5967i −0.804464 1.39337i −0.916652 0.399685i \(-0.869119\pi\)
0.112188 0.993687i \(-0.464214\pi\)
\(264\) 0 0
\(265\) 0.729843 0.729843i 0.0448339 0.0448339i
\(266\) 0 0
\(267\) 20.9047 1.21713i 1.27935 0.0744869i
\(268\) 0 0
\(269\) 4.22158i 0.257395i −0.991684 0.128697i \(-0.958920\pi\)
0.991684 0.128697i \(-0.0410795\pi\)
\(270\) 0 0
\(271\) −12.7510 + 22.0854i −0.774568 + 1.34159i 0.160468 + 0.987041i \(0.448700\pi\)
−0.935037 + 0.354551i \(0.884634\pi\)
\(272\) 0 0
\(273\) −5.03024 + 0.292874i −0.304444 + 0.0177255i
\(274\) 0 0
\(275\) 0.852703 + 0.492308i 0.0514199 + 0.0296873i
\(276\) 0 0
\(277\) 2.88639 10.7722i 0.173426 0.647236i −0.823388 0.567479i \(-0.807919\pi\)
0.996814 0.0797573i \(-0.0254145\pi\)
\(278\) 0 0
\(279\) −0.578583 1.45656i −0.0346389 0.0872018i
\(280\) 0 0
\(281\) 15.6420 4.19125i 0.933122 0.250029i 0.239936 0.970789i \(-0.422873\pi\)
0.693185 + 0.720759i \(0.256207\pi\)
\(282\) 0 0
\(283\) −5.79096 + 21.6121i −0.344237 + 1.28471i 0.549265 + 0.835648i \(0.314908\pi\)
−0.893501 + 0.449060i \(0.851759\pi\)
\(284\) 0 0
\(285\) −5.94320 5.28922i −0.352045 0.313307i
\(286\) 0 0
\(287\) −4.26832 + 7.39295i −0.251951 + 0.436392i
\(288\) 0 0
\(289\) −14.4374 + 8.33543i −0.849259 + 0.490320i
\(290\) 0 0
\(291\) 0.289636 + 0.440390i 0.0169788 + 0.0258161i
\(292\) 0 0
\(293\) 14.9950 8.65737i 0.876018 0.505769i 0.00667446 0.999978i \(-0.497875\pi\)
0.869343 + 0.494209i \(0.164542\pi\)
\(294\) 0 0
\(295\) 27.8205i 1.61977i
\(296\) 0 0
\(297\) 8.06330 11.5141i 0.467880 0.668114i
\(298\) 0 0
\(299\) 2.23059 + 3.86350i 0.128998 + 0.223432i
\(300\) 0 0
\(301\) −26.9841 7.23036i −1.55534 0.416751i
\(302\) 0 0
\(303\) 0.835254 4.04472i 0.0479841 0.232363i
\(304\) 0 0
\(305\) −5.68103 3.27995i −0.325295 0.187809i
\(306\) 0 0
\(307\) 2.82163i 0.161039i −0.996753 0.0805196i \(-0.974342\pi\)
0.996753 0.0805196i \(-0.0256579\pi\)
\(308\) 0 0
\(309\) −11.7399 + 7.72110i −0.667859 + 0.439238i
\(310\) 0 0
\(311\) 0.0473655 + 0.176770i 0.00268585 + 0.0100237i 0.967256 0.253804i \(-0.0816817\pi\)
−0.964570 + 0.263827i \(0.915015\pi\)
\(312\) 0 0
\(313\) 3.12831 + 11.6750i 0.176823 + 0.659911i 0.996234 + 0.0867049i \(0.0276337\pi\)
−0.819412 + 0.573206i \(0.805700\pi\)
\(314\) 0 0
\(315\) −24.3665 3.57019i −1.37289 0.201157i
\(316\) 0 0
\(317\) −6.21877 + 10.7712i −0.349281 + 0.604973i −0.986122 0.166023i \(-0.946908\pi\)
0.636841 + 0.770995i \(0.280241\pi\)
\(318\) 0 0
\(319\) 4.02027 4.02027i 0.225092 0.225092i
\(320\) 0 0
\(321\) −4.55851 13.7578i −0.254431 0.767884i
\(322\) 0 0
\(323\) −1.22390 −0.0680994
\(324\) 0 0
\(325\) 0.196383 + 0.196383i 0.0108933 + 0.0108933i
\(326\) 0 0
\(327\) 29.9040 1.74109i 1.65369 0.0962824i
\(328\) 0 0
\(329\) −4.43846 + 2.56255i −0.244700 + 0.141278i
\(330\) 0 0
\(331\) 8.61140 + 32.1382i 0.473325 + 1.76647i 0.627693 + 0.778461i \(0.283999\pi\)
−0.154368 + 0.988013i \(0.549334\pi\)
\(332\) 0 0
\(333\) 10.6224 14.8379i 0.582105 0.813114i
\(334\) 0 0
\(335\) 1.59338 + 5.94657i 0.0870556 + 0.324896i
\(336\) 0 0
\(337\) 27.9700 16.1485i 1.52362 0.879665i 0.524014 0.851709i \(-0.324434\pi\)
0.999609 0.0279552i \(-0.00889957\pi\)
\(338\) 0 0
\(339\) −24.0607 + 1.40088i −1.30680 + 0.0760851i
\(340\) 0 0
\(341\) 0.999326 + 0.999326i 0.0541165 + 0.0541165i
\(342\) 0 0
\(343\) −2.04046 −0.110175
\(344\) 0 0
\(345\) 6.85783 + 20.6972i 0.369213 + 1.11430i
\(346\) 0 0
\(347\) −6.82848 + 6.82848i −0.366572 + 0.366572i −0.866225 0.499653i \(-0.833461\pi\)
0.499653 + 0.866225i \(0.333461\pi\)
\(348\) 0 0
\(349\) 9.81677 17.0031i 0.525480 0.910157i −0.474080 0.880482i \(-0.657219\pi\)
0.999560 0.0296755i \(-0.00944739\pi\)
\(350\) 0 0
\(351\) 3.03746 2.54841i 0.162128 0.136024i
\(352\) 0 0
\(353\) −0.682597 2.54749i −0.0363310 0.135589i 0.945378 0.325975i \(-0.105693\pi\)
−0.981709 + 0.190386i \(0.939026\pi\)
\(354\) 0 0
\(355\) 3.50147 + 13.0677i 0.185839 + 0.693559i
\(356\) 0 0
\(357\) −3.16521 + 2.08169i −0.167520 + 0.110175i
\(358\) 0 0
\(359\) 10.3090i 0.544089i 0.962285 + 0.272045i \(0.0876999\pi\)
−0.962285 + 0.272045i \(0.912300\pi\)
\(360\) 0 0
\(361\) −12.5131 7.22443i −0.658583 0.380233i
\(362\) 0 0
\(363\) 1.28969 6.24534i 0.0676914 0.327795i
\(364\) 0 0
\(365\) 29.8096 + 7.98747i 1.56031 + 0.418083i
\(366\) 0 0
\(367\) 9.04410 + 15.6648i 0.472098 + 0.817698i 0.999490 0.0319241i \(-0.0101635\pi\)
−0.527392 + 0.849622i \(0.676830\pi\)
\(368\) 0 0
\(369\) −0.779560 6.67196i −0.0405823 0.347328i
\(370\) 0 0
\(371\) 1.82760i 0.0948844i
\(372\) 0 0
\(373\) 10.0643 5.81064i 0.521111 0.300863i −0.216278 0.976332i \(-0.569392\pi\)
0.737389 + 0.675468i \(0.236059\pi\)
\(374\) 0 0
\(375\) 10.9921 + 16.7135i 0.567630 + 0.863079i
\(376\) 0 0
\(377\) 1.38884 0.801846i 0.0715288 0.0412972i
\(378\) 0 0
\(379\) −3.05369 + 5.28914i −0.156857 + 0.271685i −0.933734 0.357968i \(-0.883470\pi\)
0.776876 + 0.629653i \(0.216803\pi\)
\(380\) 0 0
\(381\) 25.4490 + 22.6486i 1.30379 + 1.16032i
\(382\) 0 0
\(383\) −1.13067 + 4.21971i −0.0577745 + 0.215617i −0.988778 0.149393i \(-0.952268\pi\)
0.931003 + 0.365011i \(0.118935\pi\)
\(384\) 0 0
\(385\) 21.4501 5.74753i 1.09320 0.292921i
\(386\) 0 0
\(387\) 20.4296 8.11518i 1.03849 0.412518i
\(388\) 0 0
\(389\) 6.88906 25.7103i 0.349289 1.30357i −0.538231 0.842797i \(-0.680907\pi\)
0.887520 0.460769i \(-0.152426\pi\)
\(390\) 0 0
\(391\) 2.90478 + 1.67708i 0.146901 + 0.0848134i
\(392\) 0 0
\(393\) 8.97459 0.522524i 0.452708 0.0263579i
\(394\) 0 0
\(395\) −11.4505 + 19.8328i −0.576136 + 0.997897i
\(396\) 0 0
\(397\) 25.1748i 1.26349i 0.775178 + 0.631743i \(0.217660\pi\)
−0.775178 + 0.631743i \(0.782340\pi\)
\(398\) 0 0
\(399\) 14.0636 0.818819i 0.704060 0.0409922i
\(400\) 0 0
\(401\) 2.57603 2.57603i 0.128641 0.128641i −0.639855 0.768496i \(-0.721006\pi\)
0.768496 + 0.639855i \(0.221006\pi\)
\(402\) 0 0
\(403\) 0.199316 + 0.345226i 0.00992865 + 0.0171969i
\(404\) 0 0
\(405\) 17.0576 9.19554i 0.847597 0.456930i
\(406\) 0 0
\(407\) −3.49507 + 16.0797i −0.173244 + 0.797041i
\(408\) 0 0
\(409\) 7.21772 1.93398i 0.356893 0.0956293i −0.0759173 0.997114i \(-0.524189\pi\)
0.432811 + 0.901485i \(0.357522\pi\)
\(410\) 0 0
\(411\) 21.6605 + 4.47300i 1.06843 + 0.220637i
\(412\) 0 0
\(413\) 34.8327 + 34.8327i 1.71401 + 1.71401i
\(414\) 0 0
\(415\) 8.42932 8.42932i 0.413779 0.413779i
\(416\) 0 0
\(417\) −6.98058 + 7.84369i −0.341841 + 0.384107i
\(418\) 0 0
\(419\) −22.6734 13.0905i −1.10767 0.639514i −0.169445 0.985540i \(-0.554198\pi\)
−0.938225 + 0.346026i \(0.887531\pi\)
\(420\) 0 0
\(421\) −15.5296 15.5296i −0.756868 0.756868i 0.218883 0.975751i \(-0.429759\pi\)
−0.975751 + 0.218883i \(0.929759\pi\)
\(422\) 0 0
\(423\) 1.59749 3.70297i 0.0776724 0.180044i
\(424\) 0 0
\(425\) 0.201695 + 0.0540439i 0.00978363 + 0.00262152i
\(426\) 0 0
\(427\) 11.2196 3.00629i 0.542955 0.145484i
\(428\) 0 0
\(429\) −1.60466 + 3.19498i −0.0774739 + 0.154255i
\(430\) 0 0
\(431\) 30.1733 + 8.08490i 1.45339 + 0.389436i 0.897203 0.441618i \(-0.145595\pi\)
0.556191 + 0.831054i \(0.312262\pi\)
\(432\) 0 0
\(433\) 4.32635 0.207911 0.103955 0.994582i \(-0.466850\pi\)
0.103955 + 0.994582i \(0.466850\pi\)
\(434\) 0 0
\(435\) 7.44017 2.46523i 0.356729 0.118199i
\(436\) 0 0
\(437\) −6.23631 10.8016i −0.298323 0.516711i
\(438\) 0 0
\(439\) −2.84602 + 10.6215i −0.135833 + 0.506936i 0.864160 + 0.503217i \(0.167850\pi\)
−0.999993 + 0.00371867i \(0.998816\pi\)
\(440\) 0 0
\(441\) 18.1330 13.4984i 0.863478 0.642780i
\(442\) 0 0
\(443\) −38.1169 −1.81099 −0.905493 0.424361i \(-0.860499\pi\)
−0.905493 + 0.424361i \(0.860499\pi\)
\(444\) 0 0
\(445\) −26.0310 −1.23399
\(446\) 0 0
\(447\) 7.43327 + 1.53501i 0.351582 + 0.0726034i
\(448\) 0 0
\(449\) −8.03325 + 29.9805i −0.379113 + 1.41487i 0.468129 + 0.883660i \(0.344928\pi\)
−0.847242 + 0.531207i \(0.821739\pi\)
\(450\) 0 0
\(451\) 3.02864 + 5.24576i 0.142613 + 0.247013i
\(452\) 0 0
\(453\) −4.62414 13.9558i −0.217261 0.655702i
\(454\) 0 0
\(455\) 6.26377 0.293650
\(456\) 0 0
\(457\) −0.367921 0.0985842i −0.0172106 0.00461157i 0.250203 0.968193i \(-0.419502\pi\)
−0.267414 + 0.963582i \(0.586169\pi\)
\(458\) 0 0
\(459\) 1.01975 2.80119i 0.0475977 0.130748i
\(460\) 0 0
\(461\) 4.95511 1.32772i 0.230782 0.0618379i −0.141574 0.989928i \(-0.545216\pi\)
0.372357 + 0.928090i \(0.378550\pi\)
\(462\) 0 0
\(463\) −34.6268 9.27823i −1.60925 0.431196i −0.661428 0.750009i \(-0.730049\pi\)
−0.947818 + 0.318813i \(0.896716\pi\)
\(464\) 0 0
\(465\) 0.612787 + 1.84942i 0.0284173 + 0.0857646i
\(466\) 0 0
\(467\) −4.14129 4.14129i −0.191636 0.191636i 0.604767 0.796403i \(-0.293266\pi\)
−0.796403 + 0.604767i \(0.793266\pi\)
\(468\) 0 0
\(469\) −9.44041 5.45042i −0.435918 0.251677i
\(470\) 0 0
\(471\) 20.8128 + 18.5226i 0.959005 + 0.853477i
\(472\) 0 0
\(473\) −14.0165 + 14.0165i −0.644479 + 0.644479i
\(474\) 0 0
\(475\) −0.549048 0.549048i −0.0251921 0.0251921i
\(476\) 0 0
\(477\) −0.858733 1.15358i −0.0393187 0.0528187i
\(478\) 0 0
\(479\) 8.47115 2.26984i 0.387057 0.103712i −0.0600427 0.998196i \(-0.519124\pi\)
0.447099 + 0.894484i \(0.352457\pi\)
\(480\) 0 0
\(481\) −2.12613 + 4.12584i −0.0969433 + 0.188122i
\(482\) 0 0
\(483\) −34.5004 17.3276i −1.56982 0.788434i
\(484\) 0 0
\(485\) −0.327623 0.567459i −0.0148766 0.0257670i
\(486\) 0 0
\(487\) 16.9721 16.9721i 0.769081 0.769081i −0.208864 0.977945i \(-0.566977\pi\)
0.977945 + 0.208864i \(0.0669766\pi\)
\(488\) 0 0
\(489\) 2.17780 + 37.4046i 0.0984833 + 1.69150i
\(490\) 0 0
\(491\) 38.2408i 1.72578i −0.505391 0.862891i \(-0.668652\pi\)
0.505391 0.862891i \(-0.331348\pi\)
\(492\) 0 0
\(493\) 0.602870 1.04420i 0.0271519 0.0470285i
\(494\) 0 0
\(495\) −10.8386 + 13.7065i −0.487161 + 0.616063i
\(496\) 0 0
\(497\) −20.7454 11.9774i −0.930559 0.537259i
\(498\) 0 0
\(499\) 1.26453 4.71928i 0.0566080 0.211264i −0.931829 0.362899i \(-0.881787\pi\)
0.988437 + 0.151635i \(0.0484538\pi\)
\(500\) 0 0
\(501\) 28.1379 + 14.1321i 1.25711 + 0.631376i
\(502\) 0 0
\(503\) −24.0280 + 6.43830i −1.07136 + 0.287069i −0.751051 0.660244i \(-0.770453\pi\)
−0.320307 + 0.947314i \(0.603786\pi\)
\(504\) 0 0
\(505\) −1.32882 + 4.95921i −0.0591316 + 0.220682i
\(506\) 0 0
\(507\) 14.2989 16.0669i 0.635036 0.713554i
\(508\) 0 0
\(509\) 16.5803 28.7179i 0.734909 1.27290i −0.219854 0.975533i \(-0.570558\pi\)
0.954763 0.297367i \(-0.0961085\pi\)
\(510\) 0 0
\(511\) −47.3240 + 27.3225i −2.09349 + 1.20868i
\(512\) 0 0
\(513\) −8.49216 + 7.12487i −0.374938 + 0.314571i
\(514\) 0 0
\(515\) 15.1273 8.73374i 0.666588 0.384855i
\(516\) 0 0
\(517\) 3.63658i 0.159936i
\(518\) 0 0
\(519\) 15.7537 + 14.0202i 0.691510 + 0.615417i
\(520\) 0 0
\(521\) 2.27342 + 3.93768i 0.0996004 + 0.172513i 0.911519 0.411257i \(-0.134910\pi\)
−0.811919 + 0.583770i \(0.801577\pi\)
\(522\) 0 0
\(523\) −21.5556 5.77580i −0.942559 0.252558i −0.245357 0.969433i \(-0.578905\pi\)
−0.697202 + 0.716875i \(0.745572\pi\)
\(524\) 0 0
\(525\) −2.35380 0.486071i −0.102728 0.0212139i
\(526\) 0 0
\(527\) 0.259559 + 0.149856i 0.0113066 + 0.00652785i
\(528\) 0 0
\(529\) 11.1819i 0.486168i
\(530\) 0 0
\(531\) −38.3531 5.61952i −1.66438 0.243867i
\(532\) 0 0
\(533\) 0.442206 + 1.65034i 0.0191541 + 0.0714840i
\(534\) 0 0
\(535\) 4.66312 + 17.4030i 0.201604 + 0.752397i
\(536\) 0 0
\(537\) 20.8263 + 31.6663i 0.898722 + 1.36650i
\(538\) 0 0
\(539\) −10.1922 + 17.6533i −0.439007 + 0.760383i
\(540\) 0 0
\(541\) 2.88877 2.88877i 0.124198 0.124198i −0.642276 0.766474i \(-0.722010\pi\)
0.766474 + 0.642276i \(0.222010\pi\)
\(542\) 0 0
\(543\) 33.4178 11.0727i 1.43410 0.475175i
\(544\) 0 0
\(545\) −37.2371 −1.59506
\(546\) 0 0
\(547\) 8.95410 + 8.95410i 0.382850 + 0.382850i 0.872128 0.489278i \(-0.162740\pi\)
−0.489278 + 0.872128i \(0.662740\pi\)
\(548\) 0 0
\(549\) −5.66923 + 7.16930i −0.241957 + 0.305978i
\(550\) 0 0
\(551\) −3.88293 + 2.24181i −0.165418 + 0.0955043i
\(552\) 0 0
\(553\) −10.4951 39.1683i −0.446298 1.66561i
\(554\) 0 0
\(555\) −14.2547 + 17.6466i −0.605079 + 0.749056i
\(556\) 0 0
\(557\) −0.625587 2.33472i −0.0265070 0.0989254i 0.951405 0.307942i \(-0.0996403\pi\)
−0.977912 + 0.209017i \(0.932974\pi\)
\(558\) 0 0
\(559\) −4.84212 + 2.79560i −0.204800 + 0.118241i
\(560\) 0 0
\(561\) 0.156244 + 2.68356i 0.00659663 + 0.113300i
\(562\) 0 0
\(563\) 2.76272 + 2.76272i 0.116435 + 0.116435i 0.762924 0.646489i \(-0.223763\pi\)
−0.646489 + 0.762924i \(0.723763\pi\)
\(564\) 0 0
\(565\) 29.9609 1.26046
\(566\) 0 0
\(567\) −9.84367 + 32.8703i −0.413395 + 1.38042i
\(568\) 0 0
\(569\) 22.4734 22.4734i 0.942135 0.942135i −0.0562797 0.998415i \(-0.517924\pi\)
0.998415 + 0.0562797i \(0.0179238\pi\)
\(570\) 0 0
\(571\) 1.85572 3.21420i 0.0776595 0.134510i −0.824580 0.565745i \(-0.808589\pi\)
0.902240 + 0.431235i \(0.141922\pi\)
\(572\) 0 0
\(573\) 16.6825 10.9717i 0.696920 0.458351i
\(574\) 0 0
\(575\) 0.550757 + 2.05545i 0.0229682 + 0.0857183i
\(576\) 0 0
\(577\) 9.48223 + 35.3882i 0.394750 + 1.47323i 0.822205 + 0.569192i \(0.192744\pi\)
−0.427454 + 0.904037i \(0.640590\pi\)
\(578\) 0 0
\(579\) 7.10510 + 10.8033i 0.295278 + 0.448969i
\(580\) 0 0
\(581\) 21.1079i 0.875703i
\(582\) 0 0
\(583\) 1.12306 + 0.648399i 0.0465124 + 0.0268539i
\(584\) 0 0
\(585\) −3.95367 + 2.94315i −0.163464 + 0.121684i
\(586\) 0 0
\(587\) 11.0572 + 2.96278i 0.456381 + 0.122287i 0.479684 0.877442i \(-0.340751\pi\)
−0.0233027 + 0.999728i \(0.507418\pi\)
\(588\) 0 0
\(589\) −0.557251 0.965186i −0.0229611 0.0397698i
\(590\) 0 0
\(591\) 20.1597 22.6524i 0.829260 0.931793i
\(592\) 0 0
\(593\) 7.80685i 0.320589i −0.987069 0.160294i \(-0.948756\pi\)
0.987069 0.160294i \(-0.0512444\pi\)
\(594\) 0 0
\(595\) 4.07849 2.35472i 0.167202 0.0965339i
\(596\) 0 0
\(597\) −30.3450 + 19.9574i −1.24194 + 0.816800i
\(598\) 0 0
\(599\) −37.8861 + 21.8735i −1.54798 + 0.893728i −0.549687 + 0.835371i \(0.685253\pi\)
−0.998296 + 0.0583578i \(0.981414\pi\)
\(600\) 0 0
\(601\) −6.72804 + 11.6533i −0.274443 + 0.475348i −0.969994 0.243128i \(-0.921827\pi\)
0.695552 + 0.718476i \(0.255160\pi\)
\(602\) 0 0
\(603\) 8.51974 0.995458i 0.346951 0.0405382i
\(604\) 0 0
\(605\) −2.05179 + 7.65739i −0.0834171 + 0.311317i
\(606\) 0 0
\(607\) 22.2333 5.95740i 0.902422 0.241803i 0.222366 0.974963i \(-0.428622\pi\)
0.680056 + 0.733160i \(0.261955\pi\)
\(608\) 0 0
\(609\) −6.22888 + 12.4021i −0.252407 + 0.502558i
\(610\) 0 0
\(611\) −0.265485 + 0.990803i −0.0107404 + 0.0400836i
\(612\) 0 0
\(613\) −26.3900 15.2363i −1.06588 0.615388i −0.138829 0.990316i \(-0.544334\pi\)
−0.927054 + 0.374928i \(0.877667\pi\)
\(614\) 0 0
\(615\) 0.485363 + 8.33634i 0.0195717 + 0.336153i
\(616\) 0 0
\(617\) 8.51897 14.7553i 0.342961 0.594026i −0.642020 0.766688i \(-0.721904\pi\)
0.984981 + 0.172662i \(0.0552368\pi\)
\(618\) 0 0
\(619\) 21.1165i 0.848744i 0.905488 + 0.424372i \(0.139505\pi\)
−0.905488 + 0.424372i \(0.860495\pi\)
\(620\) 0 0
\(621\) 29.9182 5.27348i 1.20058 0.211617i
\(622\) 0 0
\(623\) 32.5922 32.5922i 1.30578 1.30578i
\(624\) 0 0
\(625\) −11.5238 19.9599i −0.460953 0.798395i
\(626\) 0 0
\(627\) 4.48633 8.93257i 0.179167 0.356732i
\(628\) 0 0
\(629\) 0.166636 + 3.48570i 0.00664421 + 0.138984i
\(630\) 0 0
\(631\) −4.08463 + 1.09447i −0.162606 + 0.0435703i −0.339204 0.940713i \(-0.610158\pi\)
0.176597 + 0.984283i \(0.443491\pi\)
\(632\) 0 0
\(633\) −6.25610 + 30.2951i −0.248658 + 1.20412i
\(634\) 0 0
\(635\) −29.9462 29.9462i −1.18838 1.18838i
\(636\) 0 0
\(637\) −4.06567 + 4.06567i −0.161088 + 0.161088i
\(638\) 0 0
\(639\) 18.7222 2.18753i 0.740640 0.0865374i
\(640\) 0 0
\(641\) 37.6527 + 21.7388i 1.48719 + 0.858630i 0.999893 0.0146055i \(-0.00464923\pi\)
0.487298 + 0.873236i \(0.337983\pi\)
\(642\) 0 0
\(643\) −0.0304529 0.0304529i −0.00120094 0.00120094i 0.706506 0.707707i \(-0.250270\pi\)
−0.707707 + 0.706506i \(0.750270\pi\)
\(644\) 0 0
\(645\) −25.9398 + 8.59493i −1.02138 + 0.338425i
\(646\) 0 0
\(647\) −5.14937 1.37977i −0.202443 0.0542444i 0.156173 0.987730i \(-0.450084\pi\)
−0.358615 + 0.933485i \(0.616751\pi\)
\(648\) 0 0
\(649\) 33.7627 9.04668i 1.32530 0.355113i
\(650\) 0 0
\(651\) −3.08281 1.54832i −0.120825 0.0606836i
\(652\) 0 0
\(653\) 12.0727 + 3.23487i 0.472441 + 0.126590i 0.487181 0.873301i \(-0.338025\pi\)
−0.0147396 + 0.999891i \(0.504692\pi\)
\(654\) 0 0
\(655\) −11.1754 −0.436658
\(656\) 0 0
\(657\) 17.0328 39.4819i 0.664512 1.54034i
\(658\) 0 0
\(659\) 4.98746 + 8.63853i 0.194284 + 0.336509i 0.946665 0.322218i \(-0.104428\pi\)
−0.752382 + 0.658727i \(0.771095\pi\)
\(660\) 0 0
\(661\) −5.70231 + 21.2813i −0.221794 + 0.827747i 0.761869 + 0.647731i \(0.224282\pi\)
−0.983664 + 0.180016i \(0.942385\pi\)
\(662\) 0 0
\(663\) −0.153342 + 0.742556i −0.00595529 + 0.0288385i
\(664\) 0 0
\(665\) −17.5123 −0.679098
\(666\) 0 0
\(667\) 12.2876 0.475777
\(668\) 0 0
\(669\) 9.06724 43.9081i 0.350560 1.69758i
\(670\) 0 0
\(671\) 2.13315 7.96102i 0.0823493 0.307332i
\(672\) 0 0
\(673\) 20.0857 + 34.7894i 0.774245 + 1.34103i 0.935218 + 0.354073i \(0.115204\pi\)
−0.160972 + 0.986959i \(0.551463\pi\)
\(674\) 0 0
\(675\) 1.71410 0.799168i 0.0659757 0.0307600i
\(676\) 0 0
\(677\) −26.0209 −1.00006 −0.500032 0.866007i \(-0.666678\pi\)
−0.500032 + 0.866007i \(0.666678\pi\)
\(678\) 0 0
\(679\) 1.12069 + 0.300288i 0.0430081 + 0.0115240i
\(680\) 0 0
\(681\) 25.8657 + 12.9909i 0.991175 + 0.497812i
\(682\) 0 0
\(683\) −37.3180 + 9.99932i −1.42793 + 0.382613i −0.888291 0.459281i \(-0.848107\pi\)
−0.539642 + 0.841895i \(0.681440\pi\)
\(684\) 0 0
\(685\) −26.5578 7.11615i −1.01472 0.271894i
\(686\) 0 0
\(687\) −17.4598 + 5.78515i −0.666133 + 0.220717i
\(688\) 0 0
\(689\) 0.258647 + 0.258647i 0.00985368 + 0.00985368i
\(690\) 0 0
\(691\) −9.90110 5.71640i −0.376656 0.217462i 0.299707 0.954031i \(-0.403111\pi\)
−0.676362 + 0.736569i \(0.736445\pi\)
\(692\) 0 0
\(693\) −3.59075 30.7318i −0.136401 1.16741i
\(694\) 0 0
\(695\) 9.22977 9.22977i 0.350105 0.350105i
\(696\) 0 0
\(697\) 0.908335 + 0.908335i 0.0344056 + 0.0344056i
\(698\) 0 0
\(699\) 9.23622 44.7264i 0.349346 1.69171i
\(700\) 0 0
\(701\) −16.8314 + 4.50995i −0.635712 + 0.170338i −0.562260 0.826960i \(-0.690068\pi\)
−0.0734516 + 0.997299i \(0.523401\pi\)
\(702\) 0 0
\(703\) 5.94427 11.5351i 0.224192 0.435053i
\(704\) 0 0
\(705\) −2.25007 + 4.48002i −0.0847424 + 0.168727i
\(706\) 0 0
\(707\) −4.54544 7.87294i −0.170949 0.296092i
\(708\) 0 0
\(709\) −9.66349 + 9.66349i −0.362920 + 0.362920i −0.864887 0.501967i \(-0.832610\pi\)
0.501967 + 0.864887i \(0.332610\pi\)
\(710\) 0 0
\(711\) 25.0284 + 19.7916i 0.938640 + 0.742243i
\(712\) 0 0
\(713\) 3.05435i 0.114386i
\(714\) 0 0
\(715\) 2.22227 3.84908i 0.0831081 0.143947i
\(716\) 0 0
\(717\) −0.377563 6.48481i −0.0141003 0.242180i
\(718\) 0 0
\(719\) 0.428771 + 0.247551i 0.0159905 + 0.00923210i 0.507974 0.861372i \(-0.330395\pi\)
−0.491983 + 0.870605i \(0.663728\pi\)
\(720\) 0 0
\(721\) −8.00505 + 29.8753i −0.298124 + 1.11261i
\(722\) 0 0
\(723\) 3.09805 6.16841i 0.115218 0.229406i
\(724\) 0 0
\(725\) 0.738888 0.197984i 0.0274416 0.00735296i
\(726\) 0 0
\(727\) 13.5199 50.4571i 0.501427 1.87135i 0.0108727 0.999941i \(-0.496539\pi\)
0.490554 0.871411i \(-0.336794\pi\)
\(728\) 0 0
\(729\) −9.23140 25.3728i −0.341904 0.939735i
\(730\) 0 0
\(731\) −2.10188 + 3.64056i −0.0777409 + 0.134651i
\(732\) 0 0
\(733\) −31.0179 + 17.9082i −1.14567 + 0.661453i −0.947829 0.318781i \(-0.896727\pi\)
−0.197842 + 0.980234i \(0.563393\pi\)
\(734\) 0 0
\(735\) −23.4787 + 15.4415i −0.866026 + 0.569569i
\(736\) 0 0
\(737\) −6.69856 + 3.86742i −0.246745 + 0.142458i
\(738\) 0 0
\(739\) 21.7053i 0.798444i −0.916854 0.399222i \(-0.869280\pi\)
0.916854 0.399222i \(-0.130720\pi\)
\(740\) 0 0
\(741\) 1.87444 2.10620i 0.0688592 0.0773732i
\(742\) 0 0
\(743\) −9.08901 15.7426i −0.333443 0.577541i 0.649741 0.760155i \(-0.274877\pi\)
−0.983185 + 0.182615i \(0.941544\pi\)
\(744\) 0 0
\(745\) −9.11391 2.44206i −0.333908 0.0894703i
\(746\) 0 0
\(747\) −9.91793 13.3232i −0.362878 0.487472i
\(748\) 0 0
\(749\) −27.6279 15.9510i −1.00950 0.582837i
\(750\) 0 0
\(751\) 13.1087i 0.478342i −0.970977 0.239171i \(-0.923124\pi\)
0.970977 0.239171i \(-0.0768757\pi\)
\(752\) 0 0
\(753\) −24.0949 36.6361i −0.878065 1.33509i
\(754\) 0 0
\(755\) 4.73025 + 17.6535i 0.172151 + 0.642478i
\(756\) 0 0
\(757\) −7.75169 28.9297i −0.281740 1.05147i −0.951189 0.308610i \(-0.900136\pi\)
0.669449 0.742858i \(-0.266530\pi\)
\(758\) 0 0
\(759\) −22.8879 + 15.0529i −0.830778 + 0.546387i
\(760\) 0 0
\(761\) 9.51049 16.4727i 0.344755 0.597133i −0.640554 0.767913i \(-0.721295\pi\)
0.985309 + 0.170780i \(0.0546287\pi\)
\(762\) 0 0
\(763\) 46.6228 46.6228i 1.68786 1.68786i
\(764\) 0 0
\(765\) −1.46792 + 3.40264i −0.0530729 + 0.123023i
\(766\) 0 0
\(767\) 9.85925 0.355997
\(768\) 0 0
\(769\) −14.7047 14.7047i −0.530267 0.530267i 0.390385 0.920652i \(-0.372342\pi\)
−0.920652 + 0.390385i \(0.872342\pi\)
\(770\) 0 0
\(771\) −1.93514 33.2369i −0.0696924 1.19700i
\(772\) 0 0
\(773\) −44.2120 + 25.5258i −1.59019 + 0.918099i −0.596921 + 0.802300i \(0.703610\pi\)
−0.993273 + 0.115799i \(0.963057\pi\)
\(774\) 0 0
\(775\) 0.0492133 + 0.183667i 0.00176780 + 0.00659750i
\(776\) 0 0
\(777\) −4.24681 39.9421i −0.152353 1.43292i
\(778\) 0 0
\(779\) −1.23632 4.61402i −0.0442959 0.165315i
\(780\) 0 0
\(781\) −14.7202 + 8.49870i −0.526729 + 0.304107i
\(782\) 0 0
\(783\) −1.89569 10.7549i −0.0677466 0.384349i
\(784\) 0 0
\(785\) −24.4907 24.4907i −0.874111 0.874111i
\(786\) 0 0
\(787\) 38.2063 1.36191 0.680953 0.732327i \(-0.261566\pi\)
0.680953 + 0.732327i \(0.261566\pi\)
\(788\) 0 0
\(789\) 42.8998 14.2145i 1.52727 0.506048i
\(790\) 0 0
\(791\) −37.5126 + 37.5126i −1.33380 + 1.33380i
\(792\) 0 0
\(793\) 1.16237 2.01329i 0.0412771 0.0714940i
\(794\) 0 0
\(795\) 0.982349 + 1.49366i 0.0348403 + 0.0529746i
\(796\) 0 0
\(797\) −5.38267 20.0884i −0.190664 0.711567i −0.993347 0.115161i \(-0.963262\pi\)
0.802683 0.596406i \(-0.203405\pi\)
\(798\) 0 0
\(799\) 0.199606 + 0.744938i 0.00706154 + 0.0263540i
\(800\) 0 0
\(801\) −5.25806 + 35.8862i −0.185785 + 1.26798i
\(802\) 0 0
\(803\) 38.7740i 1.36831i
\(804\) 0 0
\(805\) 41.5635 + 23.9967i 1.46492 + 0.845773i
\(806\) 0 0
\(807\) 7.16091 + 1.47876i 0.252076 + 0.0520549i
\(808\) 0 0
\(809\) 43.1204 + 11.5541i 1.51603 + 0.406219i 0.918433 0.395576i \(-0.129455\pi\)
0.597598 + 0.801796i \(0.296122\pi\)
\(810\) 0 0
\(811\) 19.6567 + 34.0464i 0.690241 + 1.19553i 0.971759 + 0.235976i \(0.0758286\pi\)
−0.281518 + 0.959556i \(0.590838\pi\)
\(812\) 0 0
\(813\) −32.9961 29.3652i −1.15722 1.02988i
\(814\) 0 0
\(815\) 46.5771i 1.63153i
\(816\) 0 0
\(817\) 13.5377 7.81597i 0.473623 0.273446i
\(818\) 0 0
\(819\) 1.26523 8.63518i 0.0442108 0.301738i
\(820\) 0 0
\(821\) −26.8684 + 15.5125i −0.937713 + 0.541389i −0.889243 0.457436i \(-0.848768\pi\)
−0.0484704 + 0.998825i \(0.515435\pi\)
\(822\) 0 0
\(823\) 7.08841 12.2775i 0.247086 0.427966i −0.715630 0.698480i \(-0.753860\pi\)
0.962716 + 0.270514i \(0.0871935\pi\)
\(824\) 0 0
\(825\) −1.13377 + 1.27396i −0.0394729 + 0.0443535i
\(826\) 0 0
\(827\) −4.39269 + 16.3937i −0.152749 + 0.570066i 0.846539 + 0.532327i \(0.178682\pi\)
−0.999288 + 0.0377390i \(0.987984\pi\)
\(828\) 0 0
\(829\) 31.8785 8.54182i 1.10719 0.296670i 0.341499 0.939882i \(-0.389065\pi\)
0.765688 + 0.643212i \(0.222399\pi\)
\(830\) 0 0
\(831\) 17.2613 + 8.66941i 0.598789 + 0.300738i
\(832\) 0 0
\(833\) −1.11886 + 4.17564i −0.0387662 + 0.144677i
\(834\) 0 0
\(835\) −33.8985 19.5713i −1.17311 0.677293i
\(836\) 0 0
\(837\) 2.67337 0.471216i 0.0924051 0.0162876i
\(838\) 0 0
\(839\) −11.0490 + 19.1374i −0.381452 + 0.660695i −0.991270 0.131847i \(-0.957909\pi\)
0.609818 + 0.792542i \(0.291243\pi\)
\(840\) 0 0
\(841\) 24.5829i 0.847686i
\(842\) 0 0
\(843\) 1.63029 + 28.0010i 0.0561502 + 0.964405i
\(844\) 0 0
\(845\) −18.9061 + 18.9061i −0.650389 + 0.650389i
\(846\) 0 0
\(847\) −7.01850 12.1564i −0.241158 0.417699i
\(848\) 0 0
\(849\) −34.6313 17.3934i −1.18854 0.596940i
\(850\) 0 0
\(851\) −29.9143 + 19.2319i −1.02545 + 0.659261i
\(852\) 0 0
\(853\) 52.1734 13.9798i 1.78638 0.478660i 0.794660 0.607055i \(-0.207649\pi\)
0.991723 + 0.128396i \(0.0409827\pi\)
\(854\) 0 0
\(855\) 11.0537 8.22848i 0.378029 0.281408i
\(856\) 0 0
\(857\) −20.7919 20.7919i −0.710237 0.710237i 0.256347 0.966585i \(-0.417481\pi\)
−0.966585 + 0.256347i \(0.917481\pi\)
\(858\) 0 0
\(859\) −6.23621 + 6.23621i −0.212777 + 0.212777i −0.805446 0.592669i \(-0.798074\pi\)
0.592669 + 0.805446i \(0.298074\pi\)
\(860\) 0 0
\(861\) −11.0452 9.82983i −0.376420 0.335000i
\(862\) 0 0
\(863\) 32.4080 + 18.7108i 1.10318 + 0.636922i 0.937055 0.349182i \(-0.113541\pi\)
0.166127 + 0.986104i \(0.446874\pi\)
\(864\) 0 0
\(865\) −18.5375 18.5375i −0.630295 0.630295i
\(866\) 0 0
\(867\) −9.08185 27.4094i −0.308436 0.930871i
\(868\) 0 0
\(869\) −27.7924 7.44694i −0.942791 0.252620i
\(870\) 0 0
\(871\) −2.10739 + 0.564674i −0.0714063 + 0.0191333i
\(872\) 0 0
\(873\) −0.848472 + 0.337036i −0.0287164 + 0.0114069i
\(874\) 0 0
\(875\) 42.5318 + 11.3964i 1.43784 + 0.385267i
\(876\) 0 0
\(877\) −25.6171 −0.865027 −0.432513 0.901628i \(-0.642373\pi\)
−0.432513 + 0.901628i \(0.642373\pi\)
\(878\) 0 0
\(879\) 9.43261 + 28.4680i 0.318154 + 0.960202i
\(880\) 0 0
\(881\) 20.2599 + 35.0911i 0.682572 + 1.18225i 0.974193 + 0.225716i \(0.0724720\pi\)
−0.291621 + 0.956534i \(0.594195\pi\)
\(882\) 0 0
\(883\) −3.29281 + 12.2889i −0.110812 + 0.413556i −0.998940 0.0460410i \(-0.985339\pi\)
0.888128 + 0.459597i \(0.152006\pi\)
\(884\) 0 0
\(885\) 47.1908 + 9.74514i 1.58630 + 0.327579i
\(886\) 0 0
\(887\) 35.6590 1.19731 0.598655 0.801007i \(-0.295702\pi\)
0.598655 + 0.801007i \(0.295702\pi\)
\(888\) 0 0
\(889\) 74.9883 2.51503
\(890\) 0 0
\(891\) 16.7064 + 17.7107i 0.559685 + 0.593330i
\(892\) 0 0
\(893\) 0.742245 2.77010i 0.0248383 0.0926978i
\(894\) 0 0
\(895\) −23.5578 40.8032i −0.787449 1.36390i
\(896\) 0 0
\(897\) −7.33484 + 2.43033i −0.244903 + 0.0811465i
\(898\) 0 0
\(899\) 1.09797 0.0366193
\(900\) 0 0
\(901\) 0.265644 + 0.0711790i 0.00884988 + 0.00237132i
\(902\) 0 0
\(903\) 21.7167 43.2393i 0.722687 1.43891i
\(904\) 0 0
\(905\) −42.2721 + 11.3268i −1.40517 + 0.376515i
\(906\) 0 0
\(907\) 43.3896 + 11.6262i 1.44073 + 0.386042i 0.892789 0.450475i \(-0.148745\pi\)
0.547940 + 0.836517i \(0.315412\pi\)
\(908\) 0 0
\(909\) 6.56832 + 2.83362i 0.217857 + 0.0939851i
\(910\) 0 0
\(911\) −33.8502 33.8502i −1.12151 1.12151i −0.991515 0.129992i \(-0.958505\pi\)
−0.129992 0.991515i \(-0.541495\pi\)
\(912\) 0 0
\(913\) 12.9708 + 7.48868i 0.429270 + 0.247839i
\(914\) 0 0
\(915\) 7.55363 8.48759i 0.249715 0.280591i
\(916\) 0 0
\(917\) 13.9922 13.9922i 0.462062 0.462062i
\(918\) 0 0
\(919\) −29.1574 29.1574i −0.961812 0.961812i 0.0374849 0.999297i \(-0.488065\pi\)
−0.999297 + 0.0374849i \(0.988065\pi\)
\(920\) 0 0
\(921\) 4.78622 + 0.988379i 0.157711 + 0.0325682i
\(922\) 0 0
\(923\) −4.63102 + 1.24088i −0.152432 + 0.0408440i
\(924\) 0 0
\(925\) −1.48896 + 1.63846i −0.0489566 + 0.0538723i
\(926\) 0 0
\(927\) −8.98468 22.6185i −0.295095 0.742889i
\(928\) 0 0
\(929\) −12.1939 21.1204i −0.400069 0.692939i 0.593665 0.804712i \(-0.297680\pi\)
−0.993734 + 0.111773i \(0.964347\pi\)
\(930\) 0 0
\(931\) 11.3668 11.3668i 0.372533 0.372533i
\(932\) 0 0
\(933\) −0.316440 + 0.0184240i −0.0103598 + 0.000603174i
\(934\) 0 0
\(935\) 3.34164i 0.109283i
\(936\) 0 0
\(937\) −12.5493 + 21.7360i −0.409967 + 0.710084i −0.994886 0.101008i \(-0.967793\pi\)
0.584918 + 0.811092i \(0.301127\pi\)
\(938\) 0 0
\(939\) −20.8997 + 1.21683i −0.682035 + 0.0397099i
\(940\) 0 0
\(941\) −41.2185 23.7975i −1.34369 0.775777i −0.356339 0.934357i \(-0.615975\pi\)
−0.987346 + 0.158580i \(0.949309\pi\)
\(942\) 0 0
\(943\) −3.38821 + 12.6450i −0.110335 + 0.411777i
\(944\) 0 0
\(945\) 14.5912 40.0813i 0.474652 1.30384i
\(946\) 0 0
\(947\) 20.4547 5.48081i 0.664687 0.178102i 0.0893269 0.996002i \(-0.471528\pi\)
0.575361 + 0.817900i \(0.304862\pi\)
\(948\) 0 0
\(949\) −2.83066 + 10.5642i −0.0918872 + 0.342928i
\(950\) 0 0
\(951\) −16.0925 14.3217i −0.521834 0.464412i
\(952\) 0 0
\(953\) −1.26786 + 2.19600i −0.0410701 + 0.0711355i −0.885830 0.464010i \(-0.846410\pi\)
0.844760 + 0.535146i \(0.179743\pi\)
\(954\) 0 0
\(955\) −21.4960 + 12.4107i −0.695594 + 0.401601i
\(956\) 0 0
\(957\) 5.41118 + 8.22767i 0.174919 + 0.265963i
\(958\) 0 0
\(959\) 42.1616 24.3420i 1.36147 0.786044i
\(960\) 0 0
\(961\) 30.7271i 0.991196i
\(962\) 0 0
\(963\) 24.9336 2.91327i 0.803473 0.0938788i
\(964\) 0 0
\(965\) −8.03696 13.9204i −0.258719 0.448114i
\(966\) 0 0
\(967\) −14.2720 3.82418i −0.458958 0.122977i 0.0219301 0.999760i \(-0.493019\pi\)
−0.480888 + 0.876782i \(0.659686\pi\)
\(968\) 0 0
\(969\) 0.428714 2.07605i 0.0137723 0.0666922i
\(970\) 0 0
\(971\) 45.4278 + 26.2278i 1.45785 + 0.841689i 0.998905 0.0467766i \(-0.0148949\pi\)
0.458943 + 0.888466i \(0.348228\pi\)
\(972\) 0 0
\(973\) 23.1123i 0.740947i
\(974\) 0 0
\(975\) −0.401906 + 0.264326i −0.0128713 + 0.00846520i
\(976\) 0 0
\(977\) −4.88999 18.2497i −0.156445 0.583859i −0.998977 0.0452140i \(-0.985603\pi\)
0.842533 0.538645i \(-0.181064\pi\)
\(978\) 0 0
\(979\) −8.46478 31.5910i −0.270536 1.00965i
\(980\) 0 0
\(981\) −7.52161 + 51.3348i −0.240147 + 1.63899i
\(982\) 0 0
\(983\) 13.9935 24.2375i 0.446324 0.773056i −0.551819 0.833964i \(-0.686066\pi\)
0.998143 + 0.0609077i \(0.0193995\pi\)
\(984\) 0 0
\(985\) −26.6553 + 26.6553i −0.849309 + 0.849309i
\(986\) 0 0
\(987\) −2.79202 8.42642i −0.0888709 0.268216i
\(988\) 0 0
\(989\) −42.8402 −1.36224
\(990\) 0 0
\(991\) −2.82365 2.82365i −0.0896962 0.0896962i 0.660835 0.750531i \(-0.270202\pi\)
−0.750531 + 0.660835i \(0.770202\pi\)
\(992\) 0 0
\(993\) −57.5312 + 3.34962i −1.82570 + 0.106297i
\(994\) 0 0
\(995\) 39.1007 22.5748i 1.23958 0.715670i
\(996\) 0 0
\(997\) 0.191959 + 0.716402i 0.00607941 + 0.0226887i 0.968899 0.247457i \(-0.0795949\pi\)
−0.962820 + 0.270146i \(0.912928\pi\)
\(998\) 0 0
\(999\) 21.4481 + 23.2159i 0.678588 + 0.734519i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 888.2.br.a.569.17 yes 152
3.2 odd 2 inner 888.2.br.a.569.4 152
37.8 odd 12 inner 888.2.br.a.785.4 yes 152
111.8 even 12 inner 888.2.br.a.785.17 yes 152
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
888.2.br.a.569.4 152 3.2 odd 2 inner
888.2.br.a.569.17 yes 152 1.1 even 1 trivial
888.2.br.a.785.4 yes 152 37.8 odd 12 inner
888.2.br.a.785.17 yes 152 111.8 even 12 inner