Properties

Label 882.2.bl.a.719.18
Level $882$
Weight $2$
Character 882.719
Analytic conductor $7.043$
Analytic rank $0$
Dimension $240$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [882,2,Mod(17,882)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("882.17"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(882, base_ring=CyclotomicField(42)) chi = DirichletCharacter(H, H._module([21, 25])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 882 = 2 \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 882.bl (of order \(42\), degree \(12\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.04280545828\)
Analytic rank: \(0\)
Dimension: \(240\)
Relative dimension: \(20\) over \(\Q(\zeta_{42})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{42}]$

Embedding invariants

Embedding label 719.18
Character \(\chi\) \(=\) 882.719
Dual form 882.2.bl.a.395.18

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.930874 - 0.365341i) q^{2} +(0.733052 - 0.680173i) q^{4} +(2.63004 - 1.79313i) q^{5} +(-2.53890 - 0.744299i) q^{7} +(0.433884 - 0.900969i) q^{8} +(1.79313 - 2.63004i) q^{10} +(0.571086 - 3.78891i) q^{11} +(-5.36836 - 4.28112i) q^{13} +(-2.63532 + 0.234717i) q^{14} +(0.0747301 - 0.997204i) q^{16} +(-4.39823 + 1.35668i) q^{17} +(4.57611 + 2.64202i) q^{19} +(0.708317 - 3.10334i) q^{20} +(-0.852634 - 3.73564i) q^{22} +(-1.21969 + 3.95414i) q^{23} +(1.87509 - 4.77764i) q^{25} +(-6.56133 - 2.02390i) q^{26} +(-2.36740 + 1.18128i) q^{28} +(2.11497 + 0.482729i) q^{29} +(4.71405 - 2.72166i) q^{31} +(-0.294755 - 0.955573i) q^{32} +(-3.59855 + 2.86975i) q^{34} +(-8.01204 + 2.59505i) q^{35} +(2.28232 + 2.11768i) q^{37} +(5.22502 + 0.787544i) q^{38} +(-0.474424 - 3.14759i) q^{40} +(2.26412 + 1.09034i) q^{41} +(7.68742 - 3.70206i) q^{43} +(-2.15848 - 3.16590i) q^{44} +(0.309232 + 4.12641i) q^{46} +(1.92561 + 4.90638i) q^{47} +(5.89204 + 3.77940i) q^{49} -5.13243i q^{50} +(-6.84718 + 0.513126i) q^{52} +(-2.73142 - 2.94378i) q^{53} +(-5.29203 - 10.9890i) q^{55} +(-1.77218 + 1.96453i) q^{56} +(2.14513 - 0.323327i) q^{58} +(5.23837 + 3.57146i) q^{59} +(4.87224 - 5.25102i) q^{61} +(3.39385 - 4.25576i) q^{62} +(-0.623490 - 0.781831i) q^{64} +(-21.7956 - 1.63335i) q^{65} +(1.99581 + 3.45685i) q^{67} +(-2.30136 + 3.98607i) q^{68} +(-6.51012 + 5.34279i) q^{70} +(9.06789 - 2.06969i) q^{71} +(-10.9744 - 4.30713i) q^{73} +(2.89823 + 1.13747i) q^{74} +(5.15155 - 1.17581i) q^{76} +(-4.27001 + 9.19460i) q^{77} +(3.29241 - 5.70262i) q^{79} +(-1.59157 - 2.75669i) q^{80} +(2.50596 + 0.187796i) q^{82} +(3.93879 + 4.93909i) q^{83} +(-9.13483 + 11.4547i) q^{85} +(5.80350 - 6.25468i) q^{86} +(-3.16590 - 2.15848i) q^{88} +(-17.0448 + 2.56910i) q^{89} +(10.4433 + 14.8650i) q^{91} +(1.79540 + 3.72819i) q^{92} +(3.58501 + 3.86372i) q^{94} +(16.7728 - 1.25695i) q^{95} -10.9117i q^{97} +(6.86551 + 1.36554i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 240 q - 20 q^{4} - 4 q^{7} - 12 q^{10} + 20 q^{16} + 24 q^{19} - 20 q^{22} + 24 q^{25} + 4 q^{28} + 12 q^{31} - 32 q^{37} + 44 q^{40} - 48 q^{43} + 204 q^{49} + 140 q^{55} + 136 q^{58} + 88 q^{61} + 40 q^{64}+ \cdots + 80 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/882\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(785\)
\(\chi(n)\) \(e\left(\frac{41}{42}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.930874 0.365341i 0.658227 0.258335i
\(3\) 0 0
\(4\) 0.733052 0.680173i 0.366526 0.340086i
\(5\) 2.63004 1.79313i 1.17619 0.801912i 0.192414 0.981314i \(-0.438368\pi\)
0.983776 + 0.179401i \(0.0574161\pi\)
\(6\) 0 0
\(7\) −2.53890 0.744299i −0.959614 0.281318i
\(8\) 0.433884 0.900969i 0.153401 0.318541i
\(9\) 0 0
\(10\) 1.79313 2.63004i 0.567038 0.831692i
\(11\) 0.571086 3.78891i 0.172189 1.14240i −0.721072 0.692860i \(-0.756350\pi\)
0.893261 0.449538i \(-0.148412\pi\)
\(12\) 0 0
\(13\) −5.36836 4.28112i −1.48891 1.18737i −0.934925 0.354845i \(-0.884534\pi\)
−0.553989 0.832524i \(-0.686895\pi\)
\(14\) −2.63532 + 0.234717i −0.704319 + 0.0627307i
\(15\) 0 0
\(16\) 0.0747301 0.997204i 0.0186825 0.249301i
\(17\) −4.39823 + 1.35668i −1.06673 + 0.329042i −0.777932 0.628349i \(-0.783731\pi\)
−0.288796 + 0.957391i \(0.593255\pi\)
\(18\) 0 0
\(19\) 4.57611 + 2.64202i 1.04983 + 0.606120i 0.922602 0.385753i \(-0.126058\pi\)
0.127229 + 0.991873i \(0.459392\pi\)
\(20\) 0.708317 3.10334i 0.158384 0.693928i
\(21\) 0 0
\(22\) −0.852634 3.73564i −0.181782 0.796440i
\(23\) −1.21969 + 3.95414i −0.254323 + 0.824496i 0.734912 + 0.678162i \(0.237223\pi\)
−0.989235 + 0.146333i \(0.953253\pi\)
\(24\) 0 0
\(25\) 1.87509 4.77764i 0.375017 0.955529i
\(26\) −6.56133 2.02390i −1.28678 0.396920i
\(27\) 0 0
\(28\) −2.36740 + 1.18128i −0.447396 + 0.223241i
\(29\) 2.11497 + 0.482729i 0.392741 + 0.0896405i 0.414331 0.910126i \(-0.364016\pi\)
−0.0215900 + 0.999767i \(0.506873\pi\)
\(30\) 0 0
\(31\) 4.71405 2.72166i 0.846669 0.488824i −0.0128568 0.999917i \(-0.504093\pi\)
0.859525 + 0.511093i \(0.170759\pi\)
\(32\) −0.294755 0.955573i −0.0521058 0.168923i
\(33\) 0 0
\(34\) −3.59855 + 2.86975i −0.617146 + 0.492158i
\(35\) −8.01204 + 2.59505i −1.35428 + 0.438643i
\(36\) 0 0
\(37\) 2.28232 + 2.11768i 0.375211 + 0.348145i 0.845126 0.534566i \(-0.179525\pi\)
−0.469915 + 0.882712i \(0.655716\pi\)
\(38\) 5.22502 + 0.787544i 0.847610 + 0.127757i
\(39\) 0 0
\(40\) −0.474424 3.14759i −0.0750129 0.497678i
\(41\) 2.26412 + 1.09034i 0.353596 + 0.170283i 0.602246 0.798310i \(-0.294273\pi\)
−0.248650 + 0.968593i \(0.579987\pi\)
\(42\) 0 0
\(43\) 7.68742 3.70206i 1.17232 0.564560i 0.256656 0.966503i \(-0.417379\pi\)
0.915665 + 0.401943i \(0.131665\pi\)
\(44\) −2.15848 3.16590i −0.325402 0.477278i
\(45\) 0 0
\(46\) 0.309232 + 4.12641i 0.0455937 + 0.608406i
\(47\) 1.92561 + 4.90638i 0.280880 + 0.715670i 0.999789 + 0.0205654i \(0.00654663\pi\)
−0.718909 + 0.695104i \(0.755358\pi\)
\(48\) 0 0
\(49\) 5.89204 + 3.77940i 0.841720 + 0.539915i
\(50\) 5.13243i 0.725835i
\(51\) 0 0
\(52\) −6.84718 + 0.513126i −0.949534 + 0.0711577i
\(53\) −2.73142 2.94378i −0.375190 0.404359i 0.517024 0.855971i \(-0.327040\pi\)
−0.892214 + 0.451612i \(0.850849\pi\)
\(54\) 0 0
\(55\) −5.29203 10.9890i −0.713577 1.48176i
\(56\) −1.77218 + 1.96453i −0.236817 + 0.262522i
\(57\) 0 0
\(58\) 2.14513 0.323327i 0.281670 0.0424549i
\(59\) 5.23837 + 3.57146i 0.681978 + 0.464965i 0.854098 0.520111i \(-0.174110\pi\)
−0.172121 + 0.985076i \(0.555062\pi\)
\(60\) 0 0
\(61\) 4.87224 5.25102i 0.623826 0.672324i −0.339516 0.940600i \(-0.610263\pi\)
0.963342 + 0.268276i \(0.0864538\pi\)
\(62\) 3.39385 4.25576i 0.431020 0.540482i
\(63\) 0 0
\(64\) −0.623490 0.781831i −0.0779362 0.0977289i
\(65\) −21.7956 1.63335i −2.70341 0.202593i
\(66\) 0 0
\(67\) 1.99581 + 3.45685i 0.243827 + 0.422321i 0.961801 0.273749i \(-0.0882637\pi\)
−0.717974 + 0.696070i \(0.754930\pi\)
\(68\) −2.30136 + 3.98607i −0.279081 + 0.483382i
\(69\) 0 0
\(70\) −6.51012 + 5.34279i −0.778108 + 0.638585i
\(71\) 9.06789 2.06969i 1.07616 0.245627i 0.352520 0.935804i \(-0.385325\pi\)
0.723640 + 0.690178i \(0.242468\pi\)
\(72\) 0 0
\(73\) −10.9744 4.30713i −1.28445 0.504111i −0.377762 0.925903i \(-0.623306\pi\)
−0.906693 + 0.421791i \(0.861401\pi\)
\(74\) 2.89823 + 1.13747i 0.336912 + 0.132228i
\(75\) 0 0
\(76\) 5.15155 1.17581i 0.590924 0.134874i
\(77\) −4.27001 + 9.19460i −0.486613 + 1.04782i
\(78\) 0 0
\(79\) 3.29241 5.70262i 0.370425 0.641595i −0.619206 0.785229i \(-0.712545\pi\)
0.989631 + 0.143634i \(0.0458787\pi\)
\(80\) −1.59157 2.75669i −0.177943 0.308207i
\(81\) 0 0
\(82\) 2.50596 + 0.187796i 0.276737 + 0.0207385i
\(83\) 3.93879 + 4.93909i 0.432338 + 0.542135i 0.949506 0.313749i \(-0.101585\pi\)
−0.517168 + 0.855884i \(0.673014\pi\)
\(84\) 0 0
\(85\) −9.13483 + 11.4547i −0.990812 + 1.24244i
\(86\) 5.80350 6.25468i 0.625807 0.674460i
\(87\) 0 0
\(88\) −3.16590 2.15848i −0.337486 0.230094i
\(89\) −17.0448 + 2.56910i −1.80675 + 0.272324i −0.963984 0.265959i \(-0.914311\pi\)
−0.842764 + 0.538283i \(0.819073\pi\)
\(90\) 0 0
\(91\) 10.4433 + 14.8650i 1.09475 + 1.55828i
\(92\) 1.79540 + 3.72819i 0.187184 + 0.388691i
\(93\) 0 0
\(94\) 3.58501 + 3.86372i 0.369765 + 0.398512i
\(95\) 16.7728 1.25695i 1.72086 0.128960i
\(96\) 0 0
\(97\) 10.9117i 1.10791i −0.832546 0.553956i \(-0.813118\pi\)
0.832546 0.553956i \(-0.186882\pi\)
\(98\) 6.86551 + 1.36554i 0.693522 + 0.137941i
\(99\) 0 0
\(100\) −1.87509 4.77764i −0.187509 0.477764i
\(101\) −0.541771 7.22943i −0.0539082 0.719355i −0.957033 0.289978i \(-0.906352\pi\)
0.903125 0.429377i \(-0.141267\pi\)
\(102\) 0 0
\(103\) −0.626622 0.919085i −0.0617429 0.0905602i 0.794126 0.607754i \(-0.207929\pi\)
−0.855869 + 0.517193i \(0.826977\pi\)
\(104\) −6.18640 + 2.97921i −0.606626 + 0.292136i
\(105\) 0 0
\(106\) −3.61809 1.74238i −0.351420 0.169235i
\(107\) 0.308353 + 2.04579i 0.0298096 + 0.197774i 0.998779 0.0494083i \(-0.0157335\pi\)
−0.968969 + 0.247182i \(0.920495\pi\)
\(108\) 0 0
\(109\) 19.0485 + 2.87110i 1.82451 + 0.275001i 0.969765 0.244042i \(-0.0784734\pi\)
0.854748 + 0.519043i \(0.173712\pi\)
\(110\) −8.94095 8.29598i −0.852486 0.790991i
\(111\) 0 0
\(112\) −0.931950 + 2.47618i −0.0880610 + 0.233977i
\(113\) 3.59218 2.86467i 0.337924 0.269485i −0.439794 0.898099i \(-0.644949\pi\)
0.777718 + 0.628613i \(0.216377\pi\)
\(114\) 0 0
\(115\) 3.88246 + 12.5866i 0.362041 + 1.17371i
\(116\) 1.87872 1.08468i 0.174435 0.100710i
\(117\) 0 0
\(118\) 6.18106 + 1.41079i 0.569013 + 0.129873i
\(119\) 12.1764 0.170865i 1.11621 0.0156632i
\(120\) 0 0
\(121\) −3.51838 1.08528i −0.319852 0.0986614i
\(122\) 2.61702 6.66807i 0.236934 0.603698i
\(123\) 0 0
\(124\) 1.60445 5.20149i 0.144084 0.467107i
\(125\) −0.0938011 0.410970i −0.00838983 0.0367582i
\(126\) 0 0
\(127\) 2.07225 9.07913i 0.183883 0.805643i −0.795876 0.605460i \(-0.792989\pi\)
0.979759 0.200183i \(-0.0641536\pi\)
\(128\) −0.866025 0.500000i −0.0765466 0.0441942i
\(129\) 0 0
\(130\) −20.8857 + 6.44238i −1.83180 + 0.565034i
\(131\) −0.0780458 + 1.04145i −0.00681889 + 0.0909918i −0.999575 0.0291564i \(-0.990718\pi\)
0.992756 + 0.120148i \(0.0383370\pi\)
\(132\) 0 0
\(133\) −9.65184 10.1138i −0.836920 0.876979i
\(134\) 3.12078 + 2.48874i 0.269594 + 0.214994i
\(135\) 0 0
\(136\) −0.686000 + 4.55131i −0.0588240 + 0.390272i
\(137\) −8.90119 + 13.0556i −0.760480 + 1.11542i 0.229375 + 0.973338i \(0.426332\pi\)
−0.989855 + 0.142081i \(0.954621\pi\)
\(138\) 0 0
\(139\) 6.89784 14.3235i 0.585067 1.21490i −0.372859 0.927888i \(-0.621623\pi\)
0.957926 0.287016i \(-0.0926632\pi\)
\(140\) −4.10816 + 7.35187i −0.347203 + 0.621347i
\(141\) 0 0
\(142\) 7.68492 5.23949i 0.644904 0.439688i
\(143\) −19.2866 + 17.8953i −1.61282 + 1.49648i
\(144\) 0 0
\(145\) 6.42806 2.52283i 0.533821 0.209509i
\(146\) −11.7893 −0.975693
\(147\) 0 0
\(148\) 3.11345 0.255924
\(149\) 11.3275 4.44571i 0.927985 0.364207i 0.147271 0.989096i \(-0.452951\pi\)
0.780714 + 0.624889i \(0.214856\pi\)
\(150\) 0 0
\(151\) −7.20545 + 6.68568i −0.586371 + 0.544073i −0.916589 0.399832i \(-0.869069\pi\)
0.330217 + 0.943905i \(0.392878\pi\)
\(152\) 4.36587 2.97660i 0.354119 0.241434i
\(153\) 0 0
\(154\) −0.615674 + 10.1190i −0.0496124 + 0.815414i
\(155\) 7.51785 15.6110i 0.603848 1.25390i
\(156\) 0 0
\(157\) −1.29765 + 1.90331i −0.103564 + 0.151900i −0.874523 0.484985i \(-0.838825\pi\)
0.770959 + 0.636885i \(0.219778\pi\)
\(158\) 0.981417 6.51128i 0.0780773 0.518009i
\(159\) 0 0
\(160\) −2.48868 1.98466i −0.196748 0.156901i
\(161\) 6.03974 9.13136i 0.475998 0.719652i
\(162\) 0 0
\(163\) −0.972051 + 12.9711i −0.0761369 + 1.01598i 0.820048 + 0.572295i \(0.193947\pi\)
−0.896185 + 0.443681i \(0.853672\pi\)
\(164\) 2.40134 0.740715i 0.187513 0.0578401i
\(165\) 0 0
\(166\) 5.47097 + 3.15866i 0.424629 + 0.245160i
\(167\) −4.00265 + 17.5368i −0.309734 + 1.35703i 0.545203 + 0.838304i \(0.316452\pi\)
−0.854938 + 0.518731i \(0.826405\pi\)
\(168\) 0 0
\(169\) 7.59847 + 33.2911i 0.584498 + 2.56085i
\(170\) −4.31850 + 14.0002i −0.331214 + 1.07377i
\(171\) 0 0
\(172\) 3.11723 7.94258i 0.237687 0.605616i
\(173\) −8.84653 2.72879i −0.672590 0.207466i −0.0603962 0.998174i \(-0.519236\pi\)
−0.612193 + 0.790708i \(0.709713\pi\)
\(174\) 0 0
\(175\) −8.31665 + 10.7343i −0.628680 + 0.811440i
\(176\) −3.73564 0.852634i −0.281584 0.0642697i
\(177\) 0 0
\(178\) −14.9280 + 8.61868i −1.11890 + 0.645997i
\(179\) 4.86002 + 15.7558i 0.363255 + 1.17764i 0.934229 + 0.356675i \(0.116090\pi\)
−0.570974 + 0.820968i \(0.693434\pi\)
\(180\) 0 0
\(181\) −19.7498 + 15.7499i −1.46799 + 1.17068i −0.519254 + 0.854620i \(0.673790\pi\)
−0.948738 + 0.316065i \(0.897638\pi\)
\(182\) 15.1522 + 10.0221i 1.12315 + 0.742886i
\(183\) 0 0
\(184\) 3.03335 + 2.81454i 0.223622 + 0.207491i
\(185\) 9.79988 + 1.47709i 0.720501 + 0.108598i
\(186\) 0 0
\(187\) 2.62855 + 17.4393i 0.192218 + 1.27529i
\(188\) 4.74876 + 2.28688i 0.346339 + 0.166788i
\(189\) 0 0
\(190\) 15.1542 7.29786i 1.09940 0.529443i
\(191\) 15.3734 + 22.5486i 1.11238 + 1.63156i 0.687234 + 0.726436i \(0.258825\pi\)
0.425145 + 0.905125i \(0.360223\pi\)
\(192\) 0 0
\(193\) 1.60543 + 21.4230i 0.115562 + 1.54206i 0.690177 + 0.723641i \(0.257533\pi\)
−0.574615 + 0.818424i \(0.694848\pi\)
\(194\) −3.98648 10.1574i −0.286213 0.729258i
\(195\) 0 0
\(196\) 6.88982 1.23711i 0.492130 0.0883648i
\(197\) 19.9875i 1.42405i −0.702153 0.712026i \(-0.747778\pi\)
0.702153 0.712026i \(-0.252222\pi\)
\(198\) 0 0
\(199\) −23.1959 + 1.73829i −1.64432 + 0.123224i −0.864448 0.502721i \(-0.832332\pi\)
−0.779867 + 0.625946i \(0.784713\pi\)
\(200\) −3.49094 3.76234i −0.246847 0.266037i
\(201\) 0 0
\(202\) −3.14553 6.53176i −0.221319 0.459573i
\(203\) −5.01041 2.79977i −0.351662 0.196506i
\(204\) 0 0
\(205\) 7.90985 1.19222i 0.552448 0.0832682i
\(206\) −0.919085 0.626622i −0.0640357 0.0436588i
\(207\) 0 0
\(208\) −4.67033 + 5.03342i −0.323829 + 0.349005i
\(209\) 12.6237 15.8296i 0.873200 1.09496i
\(210\) 0 0
\(211\) −7.89761 9.90329i −0.543694 0.681771i 0.431756 0.901990i \(-0.357894\pi\)
−0.975450 + 0.220220i \(0.929323\pi\)
\(212\) −4.00455 0.300100i −0.275034 0.0206109i
\(213\) 0 0
\(214\) 1.03445 + 1.79172i 0.0707134 + 0.122479i
\(215\) 13.5799 23.5211i 0.926143 1.60413i
\(216\) 0 0
\(217\) −13.9942 + 3.40136i −0.949991 + 0.230899i
\(218\) 18.7807 4.28656i 1.27199 0.290323i
\(219\) 0 0
\(220\) −11.3538 4.45602i −0.765470 0.300425i
\(221\) 29.4194 + 11.5462i 1.97896 + 0.776685i
\(222\) 0 0
\(223\) −4.57894 + 1.04511i −0.306628 + 0.0699859i −0.373066 0.927805i \(-0.621694\pi\)
0.0664382 + 0.997791i \(0.478836\pi\)
\(224\) 0.0371227 + 2.64549i 0.00248036 + 0.176759i
\(225\) 0 0
\(226\) 2.29728 3.97901i 0.152813 0.264680i
\(227\) 4.95719 + 8.58610i 0.329020 + 0.569880i 0.982318 0.187222i \(-0.0599483\pi\)
−0.653298 + 0.757101i \(0.726615\pi\)
\(228\) 0 0
\(229\) −10.3910 0.778697i −0.686656 0.0514577i −0.273167 0.961967i \(-0.588071\pi\)
−0.413489 + 0.910509i \(0.635690\pi\)
\(230\) 8.21248 + 10.2981i 0.541515 + 0.679039i
\(231\) 0 0
\(232\) 1.35258 1.69608i 0.0888010 0.111353i
\(233\) −10.5243 + 11.3426i −0.689473 + 0.743075i −0.976658 0.214800i \(-0.931090\pi\)
0.287185 + 0.957875i \(0.407281\pi\)
\(234\) 0 0
\(235\) 13.8622 + 9.45111i 0.904272 + 0.616522i
\(236\) 6.26921 0.944931i 0.408091 0.0615098i
\(237\) 0 0
\(238\) 11.2723 4.60761i 0.730675 0.298667i
\(239\) −11.6595 24.2112i −0.754189 1.56609i −0.822724 0.568441i \(-0.807547\pi\)
0.0685348 0.997649i \(-0.478168\pi\)
\(240\) 0 0
\(241\) −16.7810 18.0857i −1.08096 1.16500i −0.985519 0.169564i \(-0.945764\pi\)
−0.0954423 0.995435i \(-0.530427\pi\)
\(242\) −3.67166 + 0.275153i −0.236023 + 0.0176875i
\(243\) 0 0
\(244\) 7.16323i 0.458579i
\(245\) 22.2733 0.625219i 1.42299 0.0399438i
\(246\) 0 0
\(247\) −13.2554 33.7742i −0.843420 2.14900i
\(248\) −0.406780 5.42810i −0.0258305 0.344685i
\(249\) 0 0
\(250\) −0.237461 0.348291i −0.0150184 0.0220279i
\(251\) −18.7423 + 9.02580i −1.18300 + 0.569703i −0.918784 0.394760i \(-0.870828\pi\)
−0.264217 + 0.964463i \(0.585114\pi\)
\(252\) 0 0
\(253\) 14.2853 + 6.87945i 0.898111 + 0.432507i
\(254\) −1.38797 9.20860i −0.0870892 0.577799i
\(255\) 0 0
\(256\) −0.988831 0.149042i −0.0618019 0.00931514i
\(257\) 6.09062 + 5.65127i 0.379922 + 0.352517i 0.846900 0.531753i \(-0.178466\pi\)
−0.466977 + 0.884269i \(0.654657\pi\)
\(258\) 0 0
\(259\) −4.21840 7.07532i −0.262118 0.439639i
\(260\) −17.0883 + 13.6274i −1.05977 + 0.845138i
\(261\) 0 0
\(262\) 0.307833 + 0.997970i 0.0190180 + 0.0616548i
\(263\) 10.3977 6.00309i 0.641147 0.370166i −0.143909 0.989591i \(-0.545967\pi\)
0.785056 + 0.619425i \(0.212634\pi\)
\(264\) 0 0
\(265\) −12.4623 2.84445i −0.765555 0.174733i
\(266\) −12.6796 5.88847i −0.777438 0.361045i
\(267\) 0 0
\(268\) 3.81429 + 1.17655i 0.232995 + 0.0718694i
\(269\) −0.573435 + 1.46109i −0.0349630 + 0.0890842i −0.947289 0.320380i \(-0.896189\pi\)
0.912326 + 0.409465i \(0.134284\pi\)
\(270\) 0 0
\(271\) 5.30735 17.2060i 0.322398 1.04519i −0.638810 0.769365i \(-0.720573\pi\)
0.961208 0.275825i \(-0.0889510\pi\)
\(272\) 1.02420 + 4.48732i 0.0621013 + 0.272084i
\(273\) 0 0
\(274\) −3.51612 + 15.4051i −0.212417 + 0.930658i
\(275\) −17.0312 9.83297i −1.02702 0.592951i
\(276\) 0 0
\(277\) 31.3329 9.66493i 1.88261 0.580709i 0.890565 0.454856i \(-0.150309\pi\)
0.992049 0.125853i \(-0.0401668\pi\)
\(278\) 1.18805 15.8534i 0.0712545 0.950826i
\(279\) 0 0
\(280\) −1.13824 + 8.34454i −0.0680226 + 0.498682i
\(281\) 6.02057 + 4.80124i 0.359157 + 0.286418i 0.786399 0.617719i \(-0.211943\pi\)
−0.427242 + 0.904138i \(0.640515\pi\)
\(282\) 0 0
\(283\) 1.54926 10.2786i 0.0920937 0.611002i −0.894408 0.447252i \(-0.852403\pi\)
0.986502 0.163750i \(-0.0523590\pi\)
\(284\) 5.23949 7.68492i 0.310906 0.456016i
\(285\) 0 0
\(286\) −11.4155 + 23.7044i −0.675010 + 1.40167i
\(287\) −4.93684 4.45345i −0.291412 0.262879i
\(288\) 0 0
\(289\) 3.45782 2.35750i 0.203401 0.138677i
\(290\) 5.06202 4.69687i 0.297252 0.275810i
\(291\) 0 0
\(292\) −10.9744 + 4.30713i −0.642227 + 0.252056i
\(293\) −1.13101 −0.0660742 −0.0330371 0.999454i \(-0.510518\pi\)
−0.0330371 + 0.999454i \(0.510518\pi\)
\(294\) 0 0
\(295\) 20.1812 1.17500
\(296\) 2.89823 1.13747i 0.168456 0.0661142i
\(297\) 0 0
\(298\) 8.92027 8.27680i 0.516737 0.479462i
\(299\) 23.4759 16.0056i 1.35765 0.925627i
\(300\) 0 0
\(301\) −22.2730 + 3.67744i −1.28380 + 0.211964i
\(302\) −4.26481 + 8.85597i −0.245412 + 0.509604i
\(303\) 0 0
\(304\) 2.97660 4.36587i 0.170720 0.250400i
\(305\) 3.39841 22.5470i 0.194592 1.29103i
\(306\) 0 0
\(307\) 3.83448 + 3.05789i 0.218845 + 0.174523i 0.726776 0.686875i \(-0.241018\pi\)
−0.507931 + 0.861398i \(0.669589\pi\)
\(308\) 3.12378 + 9.64446i 0.177994 + 0.549544i
\(309\) 0 0
\(310\) 1.29484 17.2784i 0.0735419 0.981349i
\(311\) −23.7075 + 7.31279i −1.34433 + 0.414670i −0.881670 0.471866i \(-0.843581\pi\)
−0.462658 + 0.886537i \(0.653104\pi\)
\(312\) 0 0
\(313\) 8.46261 + 4.88589i 0.478335 + 0.276167i 0.719722 0.694262i \(-0.244269\pi\)
−0.241387 + 0.970429i \(0.577602\pi\)
\(314\) −0.512595 + 2.24582i −0.0289274 + 0.126739i
\(315\) 0 0
\(316\) −1.46526 6.41973i −0.0824274 0.361138i
\(317\) 0.434041 1.40713i 0.0243781 0.0790320i −0.942566 0.334019i \(-0.891595\pi\)
0.966944 + 0.254987i \(0.0820712\pi\)
\(318\) 0 0
\(319\) 3.03685 7.73776i 0.170031 0.433231i
\(320\) −3.04173 0.938249i −0.170038 0.0524497i
\(321\) 0 0
\(322\) 2.28617 10.7067i 0.127403 0.596662i
\(323\) −23.7111 5.41191i −1.31932 0.301127i
\(324\) 0 0
\(325\) −30.5198 + 17.6206i −1.69293 + 0.977416i
\(326\) 3.83402 + 12.4296i 0.212347 + 0.688412i
\(327\) 0 0
\(328\) 1.96473 1.56682i 0.108484 0.0865131i
\(329\) −1.23713 13.8901i −0.0682051 0.765784i
\(330\) 0 0
\(331\) 4.89425 + 4.54120i 0.269012 + 0.249607i 0.803131 0.595803i \(-0.203166\pi\)
−0.534119 + 0.845409i \(0.679356\pi\)
\(332\) 6.24677 + 0.941549i 0.342836 + 0.0516742i
\(333\) 0 0
\(334\) 2.68093 + 17.7868i 0.146694 + 0.973252i
\(335\) 11.4476 + 5.51290i 0.625452 + 0.301202i
\(336\) 0 0
\(337\) −10.1312 + 4.87891i −0.551879 + 0.265771i −0.688973 0.724787i \(-0.741938\pi\)
0.137094 + 0.990558i \(0.456224\pi\)
\(338\) 19.2358 + 28.2138i 1.04629 + 1.53463i
\(339\) 0 0
\(340\) 1.09488 + 14.6102i 0.0593782 + 0.792347i
\(341\) −7.61998 19.4154i −0.412645 1.05140i
\(342\) 0 0
\(343\) −12.1463 13.9810i −0.655839 0.754901i
\(344\) 8.53239i 0.460036i
\(345\) 0 0
\(346\) −9.23195 + 0.691839i −0.496313 + 0.0371935i
\(347\) 22.8301 + 24.6050i 1.22559 + 1.32087i 0.930900 + 0.365274i \(0.119025\pi\)
0.294687 + 0.955594i \(0.404785\pi\)
\(348\) 0 0
\(349\) 2.18725 + 4.54187i 0.117081 + 0.243121i 0.951271 0.308356i \(-0.0997788\pi\)
−0.834190 + 0.551477i \(0.814065\pi\)
\(350\) −3.82006 + 13.0307i −0.204191 + 0.696522i
\(351\) 0 0
\(352\) −3.78891 + 0.571086i −0.201949 + 0.0304390i
\(353\) −9.24639 6.30408i −0.492135 0.335532i 0.291691 0.956513i \(-0.405782\pi\)
−0.783826 + 0.620980i \(0.786735\pi\)
\(354\) 0 0
\(355\) 20.1377 21.7033i 1.06880 1.15189i
\(356\) −10.7473 + 13.4767i −0.569607 + 0.714264i
\(357\) 0 0
\(358\) 10.2803 + 12.8911i 0.543331 + 0.681315i
\(359\) −27.6283 2.07045i −1.45817 0.109274i −0.678099 0.734971i \(-0.737196\pi\)
−0.780067 + 0.625696i \(0.784815\pi\)
\(360\) 0 0
\(361\) 4.46051 + 7.72583i 0.234764 + 0.406623i
\(362\) −12.6305 + 21.8766i −0.663843 + 1.14981i
\(363\) 0 0
\(364\) 17.7662 + 3.79358i 0.931204 + 0.198837i
\(365\) −36.5863 + 8.35059i −1.91502 + 0.437090i
\(366\) 0 0
\(367\) 30.3449 + 11.9095i 1.58399 + 0.621671i 0.983974 0.178314i \(-0.0570644\pi\)
0.600019 + 0.799986i \(0.295160\pi\)
\(368\) 3.85194 + 1.51177i 0.200796 + 0.0788067i
\(369\) 0 0
\(370\) 9.66209 2.20531i 0.502308 0.114649i
\(371\) 4.74377 + 9.50695i 0.246284 + 0.493576i
\(372\) 0 0
\(373\) 14.7601 25.5653i 0.764251 1.32372i −0.176391 0.984320i \(-0.556442\pi\)
0.940642 0.339401i \(-0.110224\pi\)
\(374\) 8.81813 + 15.2734i 0.455974 + 0.789771i
\(375\) 0 0
\(376\) 5.25599 + 0.393882i 0.271057 + 0.0203129i
\(377\) −9.28731 11.6459i −0.478321 0.599795i
\(378\) 0 0
\(379\) −1.55041 + 1.94415i −0.0796391 + 0.0998643i −0.820055 0.572285i \(-0.806057\pi\)
0.740416 + 0.672149i \(0.234629\pi\)
\(380\) 11.4404 12.3298i 0.586881 0.632507i
\(381\) 0 0
\(382\) 22.5486 + 15.3734i 1.15369 + 0.786571i
\(383\) −4.78229 + 0.720814i −0.244363 + 0.0368319i −0.270082 0.962837i \(-0.587051\pi\)
0.0257184 + 0.999669i \(0.491813\pi\)
\(384\) 0 0
\(385\) 5.25683 + 31.8389i 0.267913 + 1.62266i
\(386\) 9.32117 + 19.3556i 0.474435 + 0.985175i
\(387\) 0 0
\(388\) −7.42182 7.99882i −0.376786 0.406079i
\(389\) −18.0119 + 1.34980i −0.913238 + 0.0684377i −0.523054 0.852299i \(-0.675208\pi\)
−0.390184 + 0.920737i \(0.627588\pi\)
\(390\) 0 0
\(391\) 19.0460i 0.963196i
\(392\) 5.96158 3.66872i 0.301105 0.185298i
\(393\) 0 0
\(394\) −7.30227 18.6059i −0.367883 0.937350i
\(395\) −1.56638 20.9019i −0.0788130 1.05169i
\(396\) 0 0
\(397\) −9.30762 13.6518i −0.467136 0.685163i 0.518302 0.855198i \(-0.326564\pi\)
−0.985438 + 0.170035i \(0.945612\pi\)
\(398\) −20.9574 + 10.0926i −1.05050 + 0.505894i
\(399\) 0 0
\(400\) −4.62416 2.22688i −0.231208 0.111344i
\(401\) −4.30632 28.5706i −0.215048 1.42675i −0.792275 0.610164i \(-0.791104\pi\)
0.577228 0.816583i \(-0.304135\pi\)
\(402\) 0 0
\(403\) −36.9585 5.57059i −1.84103 0.277491i
\(404\) −5.31441 4.93105i −0.264402 0.245329i
\(405\) 0 0
\(406\) −5.68693 0.775725i −0.282238 0.0384986i
\(407\) 9.32711 7.43812i 0.462328 0.368694i
\(408\) 0 0
\(409\) 8.08344 + 26.2059i 0.399700 + 1.29580i 0.902237 + 0.431241i \(0.141924\pi\)
−0.502536 + 0.864556i \(0.667600\pi\)
\(410\) 6.92751 3.99960i 0.342125 0.197526i
\(411\) 0 0
\(412\) −1.08448 0.247526i −0.0534287 0.0121947i
\(413\) −10.6415 12.9665i −0.523633 0.638040i
\(414\) 0 0
\(415\) 19.2156 + 5.92723i 0.943257 + 0.290956i
\(416\) −2.50857 + 6.39174i −0.122993 + 0.313381i
\(417\) 0 0
\(418\) 5.96787 19.3473i 0.291898 0.946310i
\(419\) −6.73810 29.5215i −0.329178 1.44222i −0.820701 0.571357i \(-0.806417\pi\)
0.491524 0.870864i \(-0.336440\pi\)
\(420\) 0 0
\(421\) 0.603089 2.64231i 0.0293928 0.128778i −0.958103 0.286424i \(-0.907533\pi\)
0.987496 + 0.157646i \(0.0503905\pi\)
\(422\) −10.9698 6.33339i −0.533999 0.308305i
\(423\) 0 0
\(424\) −3.83737 + 1.18367i −0.186359 + 0.0574842i
\(425\) −1.76536 + 23.5571i −0.0856324 + 1.14269i
\(426\) 0 0
\(427\) −16.2785 + 9.70543i −0.787770 + 0.469679i
\(428\) 1.61753 + 1.28993i 0.0781861 + 0.0623514i
\(429\) 0 0
\(430\) 4.04797 26.8565i 0.195210 1.29514i
\(431\) −20.9058 + 30.6632i −1.00700 + 1.47700i −0.132971 + 0.991120i \(0.542452\pi\)
−0.874028 + 0.485876i \(0.838501\pi\)
\(432\) 0 0
\(433\) 9.11048 18.9181i 0.437822 0.909147i −0.558976 0.829184i \(-0.688806\pi\)
0.996798 0.0799627i \(-0.0254801\pi\)
\(434\) −11.7842 + 8.27891i −0.565660 + 0.397400i
\(435\) 0 0
\(436\) 15.9164 10.8516i 0.762255 0.519697i
\(437\) −16.0283 + 14.8721i −0.766740 + 0.711431i
\(438\) 0 0
\(439\) 19.5712 7.68113i 0.934083 0.366600i 0.151011 0.988532i \(-0.451747\pi\)
0.783072 + 0.621932i \(0.213652\pi\)
\(440\) −12.1969 −0.581463
\(441\) 0 0
\(442\) 31.6040 1.50325
\(443\) −18.3583 + 7.20512i −0.872231 + 0.342326i −0.758881 0.651229i \(-0.774254\pi\)
−0.113351 + 0.993555i \(0.536158\pi\)
\(444\) 0 0
\(445\) −40.2219 + 37.3204i −1.90670 + 1.76916i
\(446\) −3.88059 + 2.64574i −0.183751 + 0.125279i
\(447\) 0 0
\(448\) 1.00106 + 2.44906i 0.0472958 + 0.115707i
\(449\) 1.41362 2.93542i 0.0667131 0.138531i −0.864946 0.501865i \(-0.832647\pi\)
0.931659 + 0.363334i \(0.118362\pi\)
\(450\) 0 0
\(451\) 5.42421 7.95586i 0.255416 0.374627i
\(452\) 0.684785 4.54325i 0.0322096 0.213697i
\(453\) 0 0
\(454\) 7.75137 + 6.18151i 0.363790 + 0.290113i
\(455\) 54.1212 + 20.3694i 2.53724 + 0.954930i
\(456\) 0 0
\(457\) 0.962484 12.8435i 0.0450231 0.600792i −0.928371 0.371655i \(-0.878791\pi\)
0.973394 0.229137i \(-0.0735904\pi\)
\(458\) −9.95719 + 3.07139i −0.465269 + 0.143516i
\(459\) 0 0
\(460\) 11.4071 + 6.58590i 0.531860 + 0.307069i
\(461\) −5.32719 + 23.3400i −0.248112 + 1.08705i 0.685305 + 0.728256i \(0.259669\pi\)
−0.933417 + 0.358794i \(0.883188\pi\)
\(462\) 0 0
\(463\) −4.23600 18.5591i −0.196864 0.862516i −0.972789 0.231691i \(-0.925574\pi\)
0.775926 0.630824i \(-0.217283\pi\)
\(464\) 0.639431 2.07298i 0.0296848 0.0962359i
\(465\) 0 0
\(466\) −5.65294 + 14.4035i −0.261867 + 0.667227i
\(467\) 15.3977 + 4.74956i 0.712520 + 0.219783i 0.629764 0.776787i \(-0.283152\pi\)
0.0827560 + 0.996570i \(0.473628\pi\)
\(468\) 0 0
\(469\) −2.49424 10.2621i −0.115173 0.473859i
\(470\) 16.3569 + 3.73335i 0.754486 + 0.172207i
\(471\) 0 0
\(472\) 5.49062 3.17001i 0.252726 0.145912i
\(473\) −9.63660 31.2411i −0.443092 1.43647i
\(474\) 0 0
\(475\) 21.2032 16.9090i 0.972870 0.775838i
\(476\) 8.80975 8.40734i 0.403794 0.385350i
\(477\) 0 0
\(478\) −19.6988 18.2778i −0.901004 0.836009i
\(479\) 23.4145 + 3.52917i 1.06984 + 0.161252i 0.660269 0.751029i \(-0.270442\pi\)
0.409566 + 0.912281i \(0.365680\pi\)
\(480\) 0 0
\(481\) −3.18625 21.1394i −0.145280 0.963872i
\(482\) −22.2285 10.7047i −1.01248 0.487584i
\(483\) 0 0
\(484\) −3.31733 + 1.59754i −0.150788 + 0.0726155i
\(485\) −19.5661 28.6981i −0.888449 1.30311i
\(486\) 0 0
\(487\) −1.21676 16.2365i −0.0551367 0.735748i −0.954436 0.298415i \(-0.903542\pi\)
0.899300 0.437333i \(-0.144077\pi\)
\(488\) −2.61702 6.66807i −0.118467 0.301849i
\(489\) 0 0
\(490\) 20.5052 8.71934i 0.926329 0.393899i
\(491\) 6.56725i 0.296376i 0.988959 + 0.148188i \(0.0473440\pi\)
−0.988959 + 0.148188i \(0.952656\pi\)
\(492\) 0 0
\(493\) −9.95705 + 0.746178i −0.448443 + 0.0336062i
\(494\) −24.6782 26.5967i −1.11032 1.19664i
\(495\) 0 0
\(496\) −2.36177 4.90426i −0.106046 0.220208i
\(497\) −24.5629 1.49449i −1.10180 0.0670370i
\(498\) 0 0
\(499\) −41.6585 + 6.27900i −1.86489 + 0.281087i −0.982055 0.188597i \(-0.939606\pi\)
−0.882835 + 0.469684i \(0.844368\pi\)
\(500\) −0.348291 0.237461i −0.0155761 0.0106196i
\(501\) 0 0
\(502\) −14.1492 + 15.2492i −0.631509 + 0.680605i
\(503\) −4.09923 + 5.14027i −0.182776 + 0.229194i −0.864775 0.502159i \(-0.832539\pi\)
0.682000 + 0.731353i \(0.261111\pi\)
\(504\) 0 0
\(505\) −14.3882 18.0422i −0.640266 0.802869i
\(506\) 15.8112 + 1.18488i 0.702893 + 0.0526745i
\(507\) 0 0
\(508\) −4.65631 8.06496i −0.206590 0.357825i
\(509\) 3.83721 6.64624i 0.170081 0.294589i −0.768367 0.640010i \(-0.778930\pi\)
0.938448 + 0.345420i \(0.112264\pi\)
\(510\) 0 0
\(511\) 24.6571 + 19.1036i 1.09077 + 0.845093i
\(512\) −0.974928 + 0.222521i −0.0430861 + 0.00983413i
\(513\) 0 0
\(514\) 7.73424 + 3.03547i 0.341143 + 0.133889i
\(515\) −3.29608 1.29362i −0.145243 0.0570036i
\(516\) 0 0
\(517\) 19.6895 4.49401i 0.865944 0.197646i
\(518\) −6.51170 5.04507i −0.286108 0.221668i
\(519\) 0 0
\(520\) −10.9284 + 18.9285i −0.479240 + 0.830068i
\(521\) 16.4520 + 28.4957i 0.720776 + 1.24842i 0.960689 + 0.277626i \(0.0895475\pi\)
−0.239914 + 0.970794i \(0.577119\pi\)
\(522\) 0 0
\(523\) 11.4606 + 0.858851i 0.501136 + 0.0375549i 0.322900 0.946433i \(-0.395342\pi\)
0.178235 + 0.983988i \(0.442961\pi\)
\(524\) 0.651153 + 0.816520i 0.0284458 + 0.0356699i
\(525\) 0 0
\(526\) 7.48573 9.38681i 0.326393 0.409284i
\(527\) −17.0411 + 18.3659i −0.742321 + 0.800032i
\(528\) 0 0
\(529\) 4.85590 + 3.31070i 0.211126 + 0.143943i
\(530\) −12.6400 + 1.90518i −0.549049 + 0.0827558i
\(531\) 0 0
\(532\) −13.9544 0.849033i −0.605002 0.0368102i
\(533\) −7.48671 15.5463i −0.324286 0.673386i
\(534\) 0 0
\(535\) 4.47934 + 4.82758i 0.193659 + 0.208715i
\(536\) 3.98046 0.298295i 0.171930 0.0128844i
\(537\) 0 0
\(538\) 1.56959i 0.0676698i
\(539\) 17.6847 20.1660i 0.761732 0.868612i
\(540\) 0 0
\(541\) 2.85801 + 7.28208i 0.122875 + 0.313081i 0.979055 0.203598i \(-0.0652634\pi\)
−0.856179 + 0.516679i \(0.827168\pi\)
\(542\) −1.34559 17.9556i −0.0577979 0.771259i
\(543\) 0 0
\(544\) 2.59280 + 3.80294i 0.111166 + 0.163050i
\(545\) 55.2465 26.6053i 2.36650 1.13965i
\(546\) 0 0
\(547\) −6.71446 3.23351i −0.287090 0.138255i 0.284797 0.958588i \(-0.408074\pi\)
−0.571886 + 0.820333i \(0.693788\pi\)
\(548\) 2.35506 + 15.6248i 0.100603 + 0.667459i
\(549\) 0 0
\(550\) −19.4463 2.93106i −0.829193 0.124981i
\(551\) 8.40297 + 7.79681i 0.357978 + 0.332155i
\(552\) 0 0
\(553\) −12.6036 + 12.0279i −0.535958 + 0.511477i
\(554\) 25.6360 20.4440i 1.08917 0.868584i
\(555\) 0 0
\(556\) −4.68598 15.1916i −0.198730 0.644267i
\(557\) −3.62068 + 2.09040i −0.153413 + 0.0885730i −0.574741 0.818335i \(-0.694897\pi\)
0.421328 + 0.906908i \(0.361564\pi\)
\(558\) 0 0
\(559\) −57.1178 13.0368i −2.41582 0.551396i
\(560\) 1.98905 + 8.18356i 0.0840527 + 0.345819i
\(561\) 0 0
\(562\) 7.35848 + 2.26979i 0.310399 + 0.0957454i
\(563\) −0.409276 + 1.04282i −0.0172489 + 0.0439496i −0.939239 0.343264i \(-0.888467\pi\)
0.921990 + 0.387214i \(0.126563\pi\)
\(564\) 0 0
\(565\) 4.31085 13.9754i 0.181359 0.587951i
\(566\) −2.31305 10.1341i −0.0972246 0.425969i
\(567\) 0 0
\(568\) 2.06969 9.06789i 0.0868421 0.380480i
\(569\) 0.737652 + 0.425883i 0.0309240 + 0.0178540i 0.515382 0.856960i \(-0.327650\pi\)
−0.484458 + 0.874814i \(0.660983\pi\)
\(570\) 0 0
\(571\) 7.07465 2.18224i 0.296065 0.0913239i −0.143164 0.989699i \(-0.545728\pi\)
0.439229 + 0.898375i \(0.355252\pi\)
\(572\) −1.96615 + 26.2364i −0.0822087 + 1.09700i
\(573\) 0 0
\(574\) −6.22260 2.34197i −0.259726 0.0977521i
\(575\) 16.6044 + 13.2416i 0.692453 + 0.552213i
\(576\) 0 0
\(577\) −1.60302 + 10.6353i −0.0667346 + 0.442755i 0.930364 + 0.366637i \(0.119491\pi\)
−0.997099 + 0.0761184i \(0.975747\pi\)
\(578\) 2.35750 3.45782i 0.0980592 0.143826i
\(579\) 0 0
\(580\) 2.99614 6.22155i 0.124408 0.258336i
\(581\) −6.32404 15.4715i −0.262365 0.641865i
\(582\) 0 0
\(583\) −12.7136 + 8.66796i −0.526542 + 0.358990i
\(584\) −8.64220 + 8.01879i −0.357617 + 0.331820i
\(585\) 0 0
\(586\) −1.05283 + 0.413204i −0.0434918 + 0.0170693i
\(587\) 19.6682 0.811795 0.405897 0.913919i \(-0.366959\pi\)
0.405897 + 0.913919i \(0.366959\pi\)
\(588\) 0 0
\(589\) 28.7627 1.18515
\(590\) 18.7862 7.37303i 0.773414 0.303543i
\(591\) 0 0
\(592\) 2.28232 2.11768i 0.0938028 0.0870363i
\(593\) −36.4229 + 24.8327i −1.49571 + 1.01976i −0.508371 + 0.861138i \(0.669752\pi\)
−0.987340 + 0.158620i \(0.949295\pi\)
\(594\) 0 0
\(595\) 31.7182 22.2833i 1.30032 0.913528i
\(596\) 5.27979 10.9636i 0.216269 0.449086i
\(597\) 0 0
\(598\) 16.0056 23.4759i 0.654517 0.960001i
\(599\) −1.59271 + 10.5670i −0.0650766 + 0.431755i 0.932440 + 0.361324i \(0.117675\pi\)
−0.997517 + 0.0704303i \(0.977563\pi\)
\(600\) 0 0
\(601\) −18.8606 15.0409i −0.769342 0.613530i 0.158132 0.987418i \(-0.449453\pi\)
−0.927474 + 0.373888i \(0.878024\pi\)
\(602\) −19.3899 + 11.5605i −0.790272 + 0.471170i
\(603\) 0 0
\(604\) −0.734551 + 9.80190i −0.0298885 + 0.398834i
\(605\) −11.1995 + 3.45459i −0.455325 + 0.140449i
\(606\) 0 0
\(607\) −1.47567 0.851978i −0.0598956 0.0345807i 0.469753 0.882798i \(-0.344343\pi\)
−0.529649 + 0.848217i \(0.677676\pi\)
\(608\) 1.17581 5.15155i 0.0476853 0.208923i
\(609\) 0 0
\(610\) −5.07384 22.2299i −0.205434 0.900064i
\(611\) 10.6674 34.5830i 0.431559 1.39908i
\(612\) 0 0
\(613\) −1.29641 + 3.30321i −0.0523617 + 0.133415i −0.954661 0.297694i \(-0.903782\pi\)
0.902300 + 0.431109i \(0.141878\pi\)
\(614\) 4.68659 + 1.44562i 0.189135 + 0.0583405i
\(615\) 0 0
\(616\) 6.43136 + 7.83653i 0.259127 + 0.315743i
\(617\) 39.9360 + 9.11513i 1.60776 + 0.366961i 0.929780 0.368117i \(-0.119997\pi\)
0.677983 + 0.735078i \(0.262854\pi\)
\(618\) 0 0
\(619\) −2.29789 + 1.32668i −0.0923598 + 0.0533240i −0.545469 0.838131i \(-0.683648\pi\)
0.453109 + 0.891455i \(0.350315\pi\)
\(620\) −5.10719 16.5571i −0.205110 0.664949i
\(621\) 0 0
\(622\) −19.3970 + 15.4686i −0.777750 + 0.620235i
\(623\) 45.1873 + 6.16377i 1.81039 + 0.246946i
\(624\) 0 0
\(625\) 17.8281 + 16.5420i 0.713122 + 0.661681i
\(626\) 9.66264 + 1.45641i 0.386197 + 0.0582098i
\(627\) 0 0
\(628\) 0.343331 + 2.27785i 0.0137004 + 0.0908962i
\(629\) −12.9112 6.21770i −0.514803 0.247916i
\(630\) 0 0
\(631\) 19.9521 9.60842i 0.794280 0.382505i 0.00768200 0.999970i \(-0.497555\pi\)
0.786598 + 0.617465i \(0.211840\pi\)
\(632\) −3.70936 5.44064i −0.147551 0.216417i
\(633\) 0 0
\(634\) −0.110044 1.46843i −0.00437039 0.0583188i
\(635\) −10.8300 27.5943i −0.429774 1.09505i
\(636\) 0 0
\(637\) −15.4505 45.5137i −0.612170 1.80332i
\(638\) 8.31236i 0.329089i
\(639\) 0 0
\(640\) −3.17425 + 0.237877i −0.125473 + 0.00940291i
\(641\) −22.1177 23.8372i −0.873595 0.941512i 0.125122 0.992141i \(-0.460068\pi\)
−0.998718 + 0.0506294i \(0.983877\pi\)
\(642\) 0 0
\(643\) 12.2631 + 25.4645i 0.483608 + 1.00422i 0.989888 + 0.141853i \(0.0453059\pi\)
−0.506280 + 0.862369i \(0.668980\pi\)
\(644\) −1.78346 10.8018i −0.0702782 0.425652i
\(645\) 0 0
\(646\) −24.0493 + 3.62485i −0.946206 + 0.142618i
\(647\) 32.6211 + 22.2407i 1.28247 + 0.874372i 0.996477 0.0838609i \(-0.0267251\pi\)
0.285990 + 0.958233i \(0.407678\pi\)
\(648\) 0 0
\(649\) 16.5235 17.8081i 0.648604 0.699029i
\(650\) −21.9725 + 27.5527i −0.861834 + 1.08071i
\(651\) 0 0
\(652\) 8.11004 + 10.1697i 0.317614 + 0.398275i
\(653\) −16.3346 1.22411i −0.639224 0.0479032i −0.248824 0.968549i \(-0.580044\pi\)
−0.390400 + 0.920645i \(0.627663\pi\)
\(654\) 0 0
\(655\) 1.66219 + 2.87900i 0.0649471 + 0.112492i
\(656\) 1.25649 2.17631i 0.0490578 0.0849705i
\(657\) 0 0
\(658\) −6.22622 12.4779i −0.242723 0.486440i
\(659\) −9.31074 + 2.12512i −0.362695 + 0.0827828i −0.399985 0.916522i \(-0.630985\pi\)
0.0372899 + 0.999304i \(0.488128\pi\)
\(660\) 0 0
\(661\) 8.28279 + 3.25076i 0.322163 + 0.126440i 0.520911 0.853611i \(-0.325592\pi\)
−0.198748 + 0.980051i \(0.563687\pi\)
\(662\) 6.21501 + 2.43921i 0.241553 + 0.0948027i
\(663\) 0 0
\(664\) 6.15894 1.40574i 0.239013 0.0545532i
\(665\) −43.5201 9.29272i −1.68764 0.360356i
\(666\) 0 0
\(667\) −4.48839 + 7.77412i −0.173791 + 0.301015i
\(668\) 8.99387 + 15.5778i 0.347983 + 0.602725i
\(669\) 0 0
\(670\) 12.6704 + 0.949515i 0.489500 + 0.0366830i
\(671\) −17.1132 21.4592i −0.660647 0.828425i
\(672\) 0 0
\(673\) −13.8290 + 17.3411i −0.533071 + 0.668449i −0.973327 0.229423i \(-0.926316\pi\)
0.440256 + 0.897872i \(0.354888\pi\)
\(674\) −7.64836 + 8.24297i −0.294604 + 0.317507i
\(675\) 0 0
\(676\) 28.2138 + 19.2358i 1.08514 + 0.739839i
\(677\) 25.1658 3.79313i 0.967199 0.145782i 0.353598 0.935398i \(-0.384958\pi\)
0.613601 + 0.789616i \(0.289720\pi\)
\(678\) 0 0
\(679\) −8.12154 + 27.7037i −0.311676 + 1.06317i
\(680\) 6.35689 + 13.2002i 0.243776 + 0.506205i
\(681\) 0 0
\(682\) −14.1865 15.2894i −0.543229 0.585461i
\(683\) −1.79735 + 0.134693i −0.0687739 + 0.00515389i −0.109073 0.994034i \(-0.534788\pi\)
0.0402987 + 0.999188i \(0.487169\pi\)
\(684\) 0 0
\(685\) 50.2979i 1.92178i
\(686\) −16.4145 8.57697i −0.626708 0.327470i
\(687\) 0 0
\(688\) −3.11723 7.94258i −0.118843 0.302808i
\(689\) 2.06060 + 27.4968i 0.0785026 + 1.04754i
\(690\) 0 0
\(691\) 7.49818 + 10.9978i 0.285244 + 0.418376i 0.941941 0.335778i \(-0.108999\pi\)
−0.656697 + 0.754155i \(0.728047\pi\)
\(692\) −8.34102 + 4.01682i −0.317078 + 0.152697i
\(693\) 0 0
\(694\) 30.2412 + 14.5634i 1.14794 + 0.552819i
\(695\) −7.54233 50.0401i −0.286097 1.89813i
\(696\) 0 0
\(697\) −11.4374 1.72391i −0.433221 0.0652976i
\(698\) 3.69538 + 3.42881i 0.139872 + 0.129783i
\(699\) 0 0
\(700\) 1.20467 + 13.5256i 0.0455321 + 0.511219i
\(701\) −32.8294 + 26.1806i −1.23995 + 0.988826i −0.240112 + 0.970745i \(0.577184\pi\)
−0.999837 + 0.0180811i \(0.994244\pi\)
\(702\) 0 0
\(703\) 4.84919 + 15.7207i 0.182891 + 0.592917i
\(704\) −3.31835 + 1.91585i −0.125065 + 0.0722064i
\(705\) 0 0
\(706\) −10.9104 2.49022i −0.410617 0.0937206i
\(707\) −4.00535 + 18.7581i −0.150637 + 0.705469i
\(708\) 0 0
\(709\) 19.2726 + 5.94482i 0.723799 + 0.223262i 0.634698 0.772760i \(-0.281124\pi\)
0.0891009 + 0.996023i \(0.471601\pi\)
\(710\) 10.8166 27.5601i 0.405938 1.03431i
\(711\) 0 0
\(712\) −5.08080 + 16.4716i −0.190411 + 0.617298i
\(713\) 5.01214 + 21.9596i 0.187706 + 0.822394i
\(714\) 0 0
\(715\) −18.6358 + 81.6487i −0.696939 + 3.05349i
\(716\) 14.2793 + 8.24416i 0.533643 + 0.308099i
\(717\) 0 0
\(718\) −26.4749 + 8.16642i −0.988034 + 0.304768i
\(719\) −0.00481569 + 0.0642609i −0.000179595 + 0.00239653i −0.997293 0.0735318i \(-0.976573\pi\)
0.997113 + 0.0759283i \(0.0241920\pi\)
\(720\) 0 0
\(721\) 0.906857 + 2.79986i 0.0337731 + 0.104272i
\(722\) 6.97473 + 5.56216i 0.259573 + 0.207002i
\(723\) 0 0
\(724\) −3.76495 + 24.9788i −0.139923 + 0.928330i
\(725\) 6.27206 9.19943i 0.232939 0.341658i
\(726\) 0 0
\(727\) 6.44241 13.3778i 0.238936 0.496156i −0.746674 0.665190i \(-0.768351\pi\)
0.985610 + 0.169034i \(0.0540649\pi\)
\(728\) 17.9241 2.95940i 0.664311 0.109683i
\(729\) 0 0
\(730\) −31.0064 + 21.1398i −1.14760 + 0.782420i
\(731\) −28.7885 + 26.7119i −1.06478 + 0.987974i
\(732\) 0 0
\(733\) −20.1336 + 7.90185i −0.743651 + 0.291861i −0.706756 0.707458i \(-0.749842\pi\)
−0.0368951 + 0.999319i \(0.511747\pi\)
\(734\) 32.5983 1.20323
\(735\) 0 0
\(736\) 4.13798 0.152528
\(737\) 14.2375 5.58779i 0.524444 0.205829i
\(738\) 0 0
\(739\) 32.3281 29.9961i 1.18921 1.10343i 0.196801 0.980444i \(-0.436945\pi\)
0.992409 0.122982i \(-0.0392457\pi\)
\(740\) 8.18850 5.58282i 0.301015 0.205229i
\(741\) 0 0
\(742\) 7.88913 + 7.11668i 0.289619 + 0.261261i
\(743\) −1.74955 + 3.63299i −0.0641849 + 0.133281i −0.930593 0.366055i \(-0.880708\pi\)
0.866408 + 0.499336i \(0.166423\pi\)
\(744\) 0 0
\(745\) 21.8200 32.0041i 0.799424 1.17254i
\(746\) 4.39977 29.1906i 0.161087 1.06874i
\(747\) 0 0
\(748\) 13.7886 + 10.9960i 0.504160 + 0.402054i
\(749\) 0.739799 5.42356i 0.0270317 0.198172i
\(750\) 0 0
\(751\) −2.27082 + 30.3019i −0.0828632 + 1.10573i 0.788480 + 0.615060i \(0.210868\pi\)
−0.871344 + 0.490673i \(0.836751\pi\)
\(752\) 5.03657 1.55358i 0.183665 0.0566531i
\(753\) 0 0
\(754\) −12.9000 7.44784i −0.469792 0.271234i
\(755\) −6.96232 + 30.5039i −0.253385 + 1.11015i
\(756\) 0 0
\(757\) −0.942046 4.12737i −0.0342392 0.150012i 0.954919 0.296867i \(-0.0959419\pi\)
−0.989158 + 0.146855i \(0.953085\pi\)
\(758\) −0.732957 + 2.37619i −0.0266222 + 0.0863070i
\(759\) 0 0
\(760\) 6.14499 15.6572i 0.222902 0.567945i
\(761\) 18.5406 + 5.71901i 0.672095 + 0.207314i 0.611975 0.790877i \(-0.290375\pi\)
0.0601202 + 0.998191i \(0.480852\pi\)
\(762\) 0 0
\(763\) −46.2252 21.4672i −1.67347 0.777164i
\(764\) 26.6065 + 6.07275i 0.962588 + 0.219704i
\(765\) 0 0
\(766\) −4.18836 + 2.41815i −0.151332 + 0.0873714i
\(767\) −12.8316 41.5990i −0.463322 1.50205i
\(768\) 0 0
\(769\) 23.1969 18.4989i 0.836502 0.667088i −0.108521 0.994094i \(-0.534611\pi\)
0.945022 + 0.327006i \(0.106040\pi\)
\(770\) 16.5255 + 27.7174i 0.595537 + 0.998866i
\(771\) 0 0
\(772\) 15.7482 + 14.6122i 0.566791 + 0.525906i
\(773\) 27.4200 + 4.13289i 0.986227 + 0.148650i 0.622301 0.782778i \(-0.286198\pi\)
0.363926 + 0.931428i \(0.381436\pi\)
\(774\) 0 0
\(775\) −4.16386 27.6254i −0.149570 0.992334i
\(776\) −9.83107 4.73440i −0.352915 0.169955i
\(777\) 0 0
\(778\) −16.2736 + 7.83697i −0.583438 + 0.280969i
\(779\) 7.48015 + 10.9714i 0.268004 + 0.393090i
\(780\) 0 0
\(781\) −2.66331 35.5394i −0.0953006 1.27170i
\(782\) −6.95827 17.7294i −0.248827 0.634001i
\(783\) 0 0
\(784\) 4.20915 5.59313i 0.150327 0.199755i
\(785\) 7.33264i 0.261713i
\(786\) 0 0
\(787\) 25.4864 1.90994i 0.908491 0.0680820i 0.387719 0.921778i \(-0.373263\pi\)
0.520772 + 0.853696i \(0.325644\pi\)
\(788\) −13.5950 14.6519i −0.484301 0.521952i
\(789\) 0 0
\(790\) −9.09440 18.8847i −0.323564 0.671888i
\(791\) −11.2524 + 4.59945i −0.400088 + 0.163538i
\(792\) 0 0
\(793\) −48.6362 + 7.33072i −1.72712 + 0.260322i
\(794\) −13.6518 9.30762i −0.484483 0.330315i
\(795\) 0 0
\(796\) −15.8215 + 17.0515i −0.560777 + 0.604374i
\(797\) 19.0155 23.8447i 0.673564 0.844622i −0.321180 0.947018i \(-0.604079\pi\)
0.994744 + 0.102396i \(0.0326508\pi\)
\(798\) 0 0
\(799\) −15.1257 18.9670i −0.535108 0.671004i
\(800\) −5.11808 0.383547i −0.180951 0.0135604i
\(801\) 0 0
\(802\) −14.4467 25.0223i −0.510129 0.883569i
\(803\) −22.5866 + 39.1212i −0.797065 + 1.38056i
\(804\) 0 0
\(805\) −0.488973 34.8459i −0.0172340 1.22816i
\(806\) −36.4388 + 8.31692i −1.28350 + 0.292951i
\(807\) 0 0
\(808\) −6.74856 2.64861i −0.237413 0.0931779i
\(809\) 46.6658 + 18.3150i 1.64068 + 0.643921i 0.993014 0.118001i \(-0.0376485\pi\)
0.647670 + 0.761921i \(0.275744\pi\)
\(810\) 0 0
\(811\) −38.2658 + 8.73393i −1.34370 + 0.306690i −0.833096 0.553129i \(-0.813434\pi\)
−0.510600 + 0.859818i \(0.670577\pi\)
\(812\) −5.57722 + 1.35557i −0.195722 + 0.0475711i
\(813\) 0 0
\(814\) 5.96491 10.3315i 0.209070 0.362120i
\(815\) 20.7024 + 35.8576i 0.725173 + 1.25604i
\(816\) 0 0
\(817\) 44.9594 + 3.36924i 1.57293 + 0.117875i
\(818\) 17.0987 + 21.4411i 0.597844 + 0.749672i
\(819\) 0 0
\(820\) 4.98742 6.25402i 0.174168 0.218400i
\(821\) 24.7456 26.6694i 0.863628 0.930770i −0.134562 0.990905i \(-0.542963\pi\)
0.998190 + 0.0601354i \(0.0191532\pi\)
\(822\) 0 0
\(823\) 2.75060 + 1.87533i 0.0958800 + 0.0653699i 0.610311 0.792162i \(-0.291044\pi\)
−0.514431 + 0.857532i \(0.671997\pi\)
\(824\) −1.09995 + 0.165791i −0.0383185 + 0.00577559i
\(825\) 0 0
\(826\) −14.6431 8.18241i −0.509497 0.284702i
\(827\) −14.1139 29.3077i −0.490787 1.01913i −0.988420 0.151742i \(-0.951512\pi\)
0.497633 0.867388i \(-0.334203\pi\)
\(828\) 0 0
\(829\) 0.560832 + 0.604433i 0.0194785 + 0.0209928i 0.742716 0.669607i \(-0.233537\pi\)
−0.723237 + 0.690599i \(0.757347\pi\)
\(830\) 20.0528 1.50275i 0.696041 0.0521611i
\(831\) 0 0
\(832\) 6.86638i 0.238049i
\(833\) −31.0420 8.62911i −1.07554 0.298981i
\(834\) 0 0
\(835\) 20.9186 + 53.2996i 0.723917 + 1.84451i
\(836\) −1.51305 20.1902i −0.0523299 0.698294i
\(837\) 0 0
\(838\) −17.0577 25.0191i −0.589250 0.864271i
\(839\) 7.40670 3.56688i 0.255708 0.123142i −0.301639 0.953422i \(-0.597534\pi\)
0.557347 + 0.830280i \(0.311819\pi\)
\(840\) 0 0
\(841\) −21.8880 10.5407i −0.754759 0.363473i
\(842\) −0.403943 2.67999i −0.0139208 0.0923585i
\(843\) 0 0
\(844\) −12.5253 1.88789i −0.431139 0.0649837i
\(845\) 79.6796 + 73.9318i 2.74106 + 2.54333i
\(846\) 0 0
\(847\) 8.12504 + 5.37413i 0.279180 + 0.184657i
\(848\) −3.13966 + 2.50380i −0.107816 + 0.0859808i
\(849\) 0 0
\(850\) 6.96304 + 22.5736i 0.238830 + 0.774268i
\(851\) −11.1573 + 6.44170i −0.382469 + 0.220819i
\(852\) 0 0
\(853\) −40.0941 9.15121i −1.37280 0.313332i −0.528374 0.849012i \(-0.677198\pi\)
−0.844421 + 0.535680i \(0.820055\pi\)
\(854\) −11.6074 + 14.9817i −0.397197 + 0.512664i
\(855\) 0 0
\(856\) 1.97698 + 0.609817i 0.0675718 + 0.0208431i
\(857\) 2.82904 7.20827i 0.0966381 0.246230i −0.874377 0.485247i \(-0.838730\pi\)
0.971015 + 0.239017i \(0.0768251\pi\)
\(858\) 0 0
\(859\) −12.8455 + 41.6441i −0.438282 + 1.42088i 0.419918 + 0.907562i \(0.362059\pi\)
−0.858200 + 0.513315i \(0.828417\pi\)
\(860\) −6.04364 26.4789i −0.206086 0.902923i
\(861\) 0 0
\(862\) −8.25816 + 36.1814i −0.281274 + 1.23234i
\(863\) 18.9919 + 10.9650i 0.646491 + 0.373252i 0.787111 0.616812i \(-0.211576\pi\)
−0.140620 + 0.990064i \(0.544909\pi\)
\(864\) 0 0
\(865\) −28.1598 + 8.68616i −0.957463 + 0.295338i
\(866\) 1.56915 20.9388i 0.0533218 0.711530i
\(867\) 0 0
\(868\) −7.94499 + 12.0119i −0.269671 + 0.407710i
\(869\) −19.7265 15.7313i −0.669174 0.533649i
\(870\) 0 0
\(871\) 4.08496 27.1019i 0.138413 0.918313i
\(872\) 10.8516 15.9164i 0.367481 0.538996i
\(873\) 0 0
\(874\) −9.48697 + 19.6999i −0.320901 + 0.666359i
\(875\) −0.0677323 + 1.11323i −0.00228977 + 0.0376339i
\(876\) 0 0
\(877\) 27.9301 19.0424i 0.943132 0.643016i 0.00900563 0.999959i \(-0.497133\pi\)
0.934126 + 0.356943i \(0.116181\pi\)
\(878\) 15.4121 14.3003i 0.520133 0.482613i
\(879\) 0 0
\(880\) −11.3538 + 4.45602i −0.382735 + 0.150212i
\(881\) −6.60971 −0.222687 −0.111343 0.993782i \(-0.535515\pi\)
−0.111343 + 0.993782i \(0.535515\pi\)
\(882\) 0 0
\(883\) −19.5618 −0.658308 −0.329154 0.944276i \(-0.606763\pi\)
−0.329154 + 0.944276i \(0.606763\pi\)
\(884\) 29.4194 11.5462i 0.989480 0.388342i
\(885\) 0 0
\(886\) −14.4570 + 13.4141i −0.485692 + 0.450656i
\(887\) 31.9781 21.8023i 1.07372 0.732050i 0.108660 0.994079i \(-0.465344\pi\)
0.965060 + 0.262029i \(0.0843916\pi\)
\(888\) 0 0
\(889\) −12.0188 + 21.5086i −0.403099 + 0.721377i
\(890\) −23.8068 + 49.4353i −0.798005 + 1.65708i
\(891\) 0 0
\(892\) −2.64574 + 3.88059i −0.0885859 + 0.129932i
\(893\) −4.15093 + 27.5397i −0.138906 + 0.921579i
\(894\) 0 0
\(895\) 41.0342 + 32.7237i 1.37162 + 1.09383i
\(896\) 1.82660 + 1.91403i 0.0610225 + 0.0639433i
\(897\) 0 0
\(898\) 0.243476 3.24896i 0.00812490 0.108419i
\(899\) 11.2839 3.48063i 0.376340 0.116085i
\(900\) 0 0
\(901\) 16.0072 + 9.24175i 0.533277 + 0.307887i
\(902\) 2.14266 9.38759i 0.0713426 0.312573i
\(903\) 0 0
\(904\) −1.02239 4.47937i −0.0340041 0.148982i
\(905\) −23.7011 + 76.8370i −0.787850 + 2.55415i
\(906\) 0 0
\(907\) 0.228612 0.582495i 0.00759095 0.0193414i −0.927028 0.374992i \(-0.877645\pi\)
0.934619 + 0.355651i \(0.115741\pi\)
\(908\) 9.47391 + 2.92231i 0.314403 + 0.0969804i
\(909\) 0 0
\(910\) 57.8217 0.811380i 1.91677 0.0268970i
\(911\) 52.9779 + 12.0919i 1.75524 + 0.400621i 0.974527 0.224271i \(-0.0720002\pi\)
0.780711 + 0.624893i \(0.214857\pi\)
\(912\) 0 0
\(913\) 20.9631 12.1031i 0.693778 0.400553i
\(914\) −3.79629 12.3073i −0.125570 0.407088i
\(915\) 0 0
\(916\) −8.14678 + 6.49684i −0.269177 + 0.214662i
\(917\) 0.973299 2.58605i 0.0321412 0.0853987i
\(918\) 0 0
\(919\) 1.89849 + 1.76154i 0.0626255 + 0.0581079i 0.710865 0.703329i \(-0.248304\pi\)
−0.648239 + 0.761437i \(0.724494\pi\)
\(920\) 13.0247 + 1.96316i 0.429411 + 0.0647233i
\(921\) 0 0
\(922\) 3.56810 + 23.6728i 0.117509 + 0.779622i
\(923\) −57.5402 27.7099i −1.89396 0.912083i
\(924\) 0 0
\(925\) 14.3971 6.93327i 0.473373 0.227965i
\(926\) −10.7236 15.7286i −0.352399 0.516874i
\(927\) 0 0
\(928\) −0.162117 2.16330i −0.00532174 0.0710137i
\(929\) 0.613141 + 1.56226i 0.0201165 + 0.0512560i 0.940579 0.339575i \(-0.110283\pi\)
−0.920463 + 0.390831i \(0.872188\pi\)
\(930\) 0 0
\(931\) 16.9774 + 32.8618i 0.556411 + 1.07700i
\(932\) 15.4731i 0.506837i
\(933\) 0 0
\(934\) 16.0685 1.20417i 0.525778 0.0394016i
\(935\) 38.1841 + 41.1527i 1.24875 + 1.34584i
\(936\) 0 0
\(937\) 8.49169 + 17.6332i 0.277411 + 0.576051i 0.992396 0.123090i \(-0.0392804\pi\)
−0.714984 + 0.699141i \(0.753566\pi\)
\(938\) −6.07098 8.64145i −0.198225 0.282153i
\(939\) 0 0
\(940\) 16.5901 2.50056i 0.541110 0.0815592i
\(941\) −39.5156 26.9413i −1.28817 0.878260i −0.291248 0.956648i \(-0.594070\pi\)
−0.996923 + 0.0783875i \(0.975023\pi\)
\(942\) 0 0
\(943\) −7.07290 + 7.62277i −0.230325 + 0.248232i
\(944\) 3.95294 4.95683i 0.128657 0.161331i
\(945\) 0 0
\(946\) −20.3841 25.5609i −0.662745 0.831056i
\(947\) 16.0736 + 1.20455i 0.522321 + 0.0391426i 0.333282 0.942827i \(-0.391844\pi\)
0.189039 + 0.981970i \(0.439463\pi\)
\(948\) 0 0
\(949\) 40.4751 + 70.1049i 1.31388 + 2.27570i
\(950\) 13.5600 23.4865i 0.439943 0.762004i
\(951\) 0 0
\(952\) 5.12922 11.0447i 0.166239 0.357962i
\(953\) 21.9102 5.00086i 0.709741 0.161994i 0.147615 0.989045i \(-0.452840\pi\)
0.562127 + 0.827051i \(0.309983\pi\)
\(954\) 0 0
\(955\) 80.8653 + 31.7373i 2.61674 + 1.02699i
\(956\) −25.0148 9.81758i −0.809036 0.317523i
\(957\) 0 0
\(958\) 23.0853 5.26906i 0.745852 0.170236i
\(959\) 32.3165 26.5218i 1.04356 0.856435i
\(960\) 0 0
\(961\) −0.685146 + 1.18671i −0.0221015 + 0.0382809i
\(962\) −10.6891 18.5140i −0.344630 0.596916i
\(963\) 0 0
\(964\) −24.6027 1.84372i −0.792401 0.0593822i
\(965\) 42.6367 + 53.4647i 1.37252 + 1.72109i
\(966\) 0 0
\(967\) −3.36079 + 4.21429i −0.108076 + 0.135522i −0.832927 0.553382i \(-0.813337\pi\)
0.724852 + 0.688905i \(0.241908\pi\)
\(968\) −2.50437 + 2.69906i −0.0804934 + 0.0867512i
\(969\) 0 0
\(970\) −28.6981 19.5661i −0.921441 0.628228i
\(971\) −13.1343 + 1.97968i −0.421501 + 0.0635310i −0.356368 0.934346i \(-0.615985\pi\)
−0.0651325 + 0.997877i \(0.520747\pi\)
\(972\) 0 0
\(973\) −28.1739 + 31.2319i −0.903213 + 1.00125i
\(974\) −7.06453 14.6696i −0.226362 0.470046i
\(975\) 0 0
\(976\) −4.87224 5.25102i −0.155956 0.168081i
\(977\) −52.4652 + 3.93172i −1.67851 + 0.125787i −0.879616 0.475685i \(-0.842200\pi\)
−0.798894 + 0.601472i \(0.794581\pi\)
\(978\) 0 0
\(979\) 66.0485i 2.11092i
\(980\) 15.9022 15.6080i 0.507977 0.498579i
\(981\) 0 0
\(982\) 2.39929 + 6.11328i 0.0765643 + 0.195083i
\(983\) −3.37032 44.9738i −0.107496 1.43444i −0.746576 0.665300i \(-0.768304\pi\)
0.639080 0.769141i \(-0.279315\pi\)
\(984\) 0 0
\(985\) −35.8403 52.5680i −1.14197 1.67496i
\(986\) −8.99615 + 4.33232i −0.286496 + 0.137969i
\(987\) 0 0
\(988\) −32.6891 15.7423i −1.03998 0.500828i
\(989\) 5.26221 + 34.9125i 0.167329 + 1.11015i
\(990\) 0 0
\(991\) 9.55779 + 1.44061i 0.303613 + 0.0457624i 0.299082 0.954227i \(-0.403320\pi\)
0.00453126 + 0.999990i \(0.498558\pi\)
\(992\) −3.99023 3.70240i −0.126690 0.117551i
\(993\) 0 0
\(994\) −23.4110 + 7.58267i −0.742552 + 0.240508i
\(995\) −57.8892 + 46.1651i −1.83521 + 1.46353i
\(996\) 0 0
\(997\) 14.0889 + 45.6751i 0.446200 + 1.44654i 0.847597 + 0.530640i \(0.178048\pi\)
−0.401398 + 0.915904i \(0.631475\pi\)
\(998\) −36.4848 + 21.0645i −1.15491 + 0.666785i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 882.2.bl.a.719.18 yes 240
3.2 odd 2 inner 882.2.bl.a.719.3 yes 240
49.3 odd 42 inner 882.2.bl.a.395.3 240
147.101 even 42 inner 882.2.bl.a.395.18 yes 240
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
882.2.bl.a.395.3 240 49.3 odd 42 inner
882.2.bl.a.395.18 yes 240 147.101 even 42 inner
882.2.bl.a.719.3 yes 240 3.2 odd 2 inner
882.2.bl.a.719.18 yes 240 1.1 even 1 trivial