Properties

Label 882.2.bl.a.719.11
Level $882$
Weight $2$
Character 882.719
Analytic conductor $7.043$
Analytic rank $0$
Dimension $240$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [882,2,Mod(17,882)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("882.17"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(882, base_ring=CyclotomicField(42)) chi = DirichletCharacter(H, H._module([21, 25])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 882 = 2 \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 882.bl (of order \(42\), degree \(12\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.04280545828\)
Analytic rank: \(0\)
Dimension: \(240\)
Relative dimension: \(20\) over \(\Q(\zeta_{42})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{42}]$

Embedding invariants

Embedding label 719.11
Character \(\chi\) \(=\) 882.719
Dual form 882.2.bl.a.395.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.930874 - 0.365341i) q^{2} +(0.733052 - 0.680173i) q^{4} +(-3.09036 + 2.10697i) q^{5} +(-0.605636 - 2.57550i) q^{7} +(0.433884 - 0.900969i) q^{8} +(-2.10697 + 3.09036i) q^{10} +(-0.198018 + 1.31377i) q^{11} +(5.18974 + 4.13868i) q^{13} +(-1.50471 - 2.17620i) q^{14} +(0.0747301 - 0.997204i) q^{16} +(3.42802 - 1.05740i) q^{17} +(6.36887 + 3.67707i) q^{19} +(-0.832289 + 3.64650i) q^{20} +(0.295642 + 1.29529i) q^{22} +(-1.67066 + 5.41615i) q^{23} +(3.28429 - 8.36823i) q^{25} +(6.34303 + 1.95656i) q^{26} +(-2.19575 - 1.47604i) q^{28} +(6.48494 + 1.48014i) q^{29} +(-0.438536 + 0.253189i) q^{31} +(-0.294755 - 0.955573i) q^{32} +(2.80474 - 2.23671i) q^{34} +(7.29814 + 6.68316i) q^{35} +(-1.93416 - 1.79464i) q^{37} +(7.27200 + 1.09608i) q^{38} +(0.557459 + 3.69850i) q^{40} +(-6.06006 - 2.91837i) q^{41} +(-0.521418 + 0.251102i) q^{43} +(0.748430 + 1.09775i) q^{44} +(0.423567 + 5.65211i) q^{46} +(2.91481 + 7.42682i) q^{47} +(-6.26641 + 3.11963i) q^{49} -8.98965i q^{50} +(6.61937 - 0.496053i) q^{52} +(-5.04360 - 5.43570i) q^{53} +(-2.15612 - 4.47723i) q^{55} +(-2.58322 - 0.571808i) q^{56} +(6.57742 - 0.991386i) q^{58} +(10.7024 + 7.29681i) q^{59} +(-2.41389 + 2.60156i) q^{61} +(-0.315721 + 0.395902i) q^{62} +(-0.623490 - 0.781831i) q^{64} +(-24.7583 - 1.85538i) q^{65} +(-4.52583 - 7.83896i) q^{67} +(1.79370 - 3.10678i) q^{68} +(9.23528 + 3.55487i) q^{70} +(-5.14067 + 1.17332i) q^{71} +(5.00623 + 1.96480i) q^{73} +(-2.45611 - 0.963954i) q^{74} +(7.16976 - 1.63645i) q^{76} +(3.50353 - 0.285668i) q^{77} +(0.310444 - 0.537704i) q^{79} +(1.87014 + 3.23917i) q^{80} +(-6.70735 - 0.502647i) q^{82} +(3.06487 + 3.84322i) q^{83} +(-8.36590 + 10.4905i) q^{85} +(-0.393637 + 0.424240i) q^{86} +(1.09775 + 0.748430i) q^{88} +(-5.64124 + 0.850280i) q^{89} +(7.51608 - 15.8727i) q^{91} +(2.45924 + 5.10666i) q^{92} +(5.42664 + 5.84853i) q^{94} +(-27.4296 + 2.05556i) q^{95} -16.8856i q^{97} +(-4.69351 + 5.19336i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 240 q - 20 q^{4} - 4 q^{7} - 12 q^{10} + 20 q^{16} + 24 q^{19} - 20 q^{22} + 24 q^{25} + 4 q^{28} + 12 q^{31} - 32 q^{37} + 44 q^{40} - 48 q^{43} + 204 q^{49} + 140 q^{55} + 136 q^{58} + 88 q^{61} + 40 q^{64}+ \cdots + 80 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/882\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(785\)
\(\chi(n)\) \(e\left(\frac{41}{42}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.930874 0.365341i 0.658227 0.258335i
\(3\) 0 0
\(4\) 0.733052 0.680173i 0.366526 0.340086i
\(5\) −3.09036 + 2.10697i −1.38205 + 0.942266i −0.382216 + 0.924073i \(0.624839\pi\)
−0.999834 + 0.0181934i \(0.994209\pi\)
\(6\) 0 0
\(7\) −0.605636 2.57550i −0.228909 0.973448i
\(8\) 0.433884 0.900969i 0.153401 0.318541i
\(9\) 0 0
\(10\) −2.10697 + 3.09036i −0.666283 + 0.977257i
\(11\) −0.198018 + 1.31377i −0.0597048 + 0.396115i 0.938940 + 0.344080i \(0.111809\pi\)
−0.998645 + 0.0520356i \(0.983429\pi\)
\(12\) 0 0
\(13\) 5.18974 + 4.13868i 1.43938 + 1.14786i 0.963289 + 0.268466i \(0.0865166\pi\)
0.476087 + 0.879398i \(0.342055\pi\)
\(14\) −1.50471 2.17620i −0.402150 0.581615i
\(15\) 0 0
\(16\) 0.0747301 0.997204i 0.0186825 0.249301i
\(17\) 3.42802 1.05740i 0.831418 0.256458i 0.150307 0.988639i \(-0.451974\pi\)
0.681110 + 0.732181i \(0.261497\pi\)
\(18\) 0 0
\(19\) 6.36887 + 3.67707i 1.46112 + 0.843578i 0.999063 0.0432727i \(-0.0137784\pi\)
0.462056 + 0.886851i \(0.347112\pi\)
\(20\) −0.832289 + 3.64650i −0.186106 + 0.815382i
\(21\) 0 0
\(22\) 0.295642 + 1.29529i 0.0630312 + 0.276158i
\(23\) −1.67066 + 5.41615i −0.348357 + 1.12934i 0.596707 + 0.802459i \(0.296475\pi\)
−0.945064 + 0.326886i \(0.894001\pi\)
\(24\) 0 0
\(25\) 3.28429 8.36823i 0.656858 1.67365i
\(26\) 6.34303 + 1.95656i 1.24397 + 0.383714i
\(27\) 0 0
\(28\) −2.19575 1.47604i −0.414957 0.278945i
\(29\) 6.48494 + 1.48014i 1.20422 + 0.274856i 0.777123 0.629349i \(-0.216678\pi\)
0.427100 + 0.904205i \(0.359535\pi\)
\(30\) 0 0
\(31\) −0.438536 + 0.253189i −0.0787634 + 0.0454741i −0.538864 0.842392i \(-0.681147\pi\)
0.460101 + 0.887867i \(0.347813\pi\)
\(32\) −0.294755 0.955573i −0.0521058 0.168923i
\(33\) 0 0
\(34\) 2.80474 2.23671i 0.481009 0.383592i
\(35\) 7.29814 + 6.68316i 1.23361 + 1.12966i
\(36\) 0 0
\(37\) −1.93416 1.79464i −0.317974 0.295037i 0.504996 0.863122i \(-0.331494\pi\)
−0.822970 + 0.568085i \(0.807684\pi\)
\(38\) 7.27200 + 1.09608i 1.17967 + 0.177807i
\(39\) 0 0
\(40\) 0.557459 + 3.69850i 0.0881420 + 0.584784i
\(41\) −6.06006 2.91837i −0.946423 0.455773i −0.103992 0.994578i \(-0.533162\pi\)
−0.842431 + 0.538805i \(0.818876\pi\)
\(42\) 0 0
\(43\) −0.521418 + 0.251102i −0.0795156 + 0.0382927i −0.473219 0.880945i \(-0.656908\pi\)
0.393703 + 0.919238i \(0.371194\pi\)
\(44\) 0.748430 + 1.09775i 0.112830 + 0.165491i
\(45\) 0 0
\(46\) 0.423567 + 5.65211i 0.0624516 + 0.833358i
\(47\) 2.91481 + 7.42682i 0.425169 + 1.08331i 0.969641 + 0.244534i \(0.0786349\pi\)
−0.544472 + 0.838779i \(0.683270\pi\)
\(48\) 0 0
\(49\) −6.26641 + 3.11963i −0.895201 + 0.445662i
\(50\) 8.98965i 1.27133i
\(51\) 0 0
\(52\) 6.61937 0.496053i 0.917942 0.0687902i
\(53\) −5.04360 5.43570i −0.692791 0.746651i 0.284471 0.958685i \(-0.408182\pi\)
−0.977262 + 0.212033i \(0.931991\pi\)
\(54\) 0 0
\(55\) −2.15612 4.47723i −0.290731 0.603709i
\(56\) −2.58322 0.571808i −0.345198 0.0764111i
\(57\) 0 0
\(58\) 6.57742 0.991386i 0.863657 0.130175i
\(59\) 10.7024 + 7.29681i 1.39334 + 0.949963i 0.999526 + 0.0307729i \(0.00979688\pi\)
0.393814 + 0.919190i \(0.371156\pi\)
\(60\) 0 0
\(61\) −2.41389 + 2.60156i −0.309067 + 0.333095i −0.868415 0.495838i \(-0.834861\pi\)
0.559348 + 0.828933i \(0.311052\pi\)
\(62\) −0.315721 + 0.395902i −0.0400967 + 0.0502796i
\(63\) 0 0
\(64\) −0.623490 0.781831i −0.0779362 0.0977289i
\(65\) −24.7583 1.85538i −3.07088 0.230131i
\(66\) 0 0
\(67\) −4.52583 7.83896i −0.552918 0.957682i −0.998062 0.0622230i \(-0.980181\pi\)
0.445144 0.895459i \(-0.353152\pi\)
\(68\) 1.79370 3.10678i 0.217518 0.376752i
\(69\) 0 0
\(70\) 9.23528 + 3.55487i 1.10383 + 0.424889i
\(71\) −5.14067 + 1.17332i −0.610086 + 0.139248i −0.516391 0.856353i \(-0.672725\pi\)
−0.0936946 + 0.995601i \(0.529868\pi\)
\(72\) 0 0
\(73\) 5.00623 + 1.96480i 0.585935 + 0.229962i 0.639743 0.768589i \(-0.279041\pi\)
−0.0538085 + 0.998551i \(0.517136\pi\)
\(74\) −2.45611 0.963954i −0.285517 0.112057i
\(75\) 0 0
\(76\) 7.16976 1.63645i 0.822428 0.187714i
\(77\) 3.50353 0.285668i 0.399265 0.0325549i
\(78\) 0 0
\(79\) 0.310444 0.537704i 0.0349277 0.0604965i −0.848033 0.529943i \(-0.822213\pi\)
0.882961 + 0.469447i \(0.155547\pi\)
\(80\) 1.87014 + 3.23917i 0.209088 + 0.362150i
\(81\) 0 0
\(82\) −6.70735 0.502647i −0.740703 0.0555080i
\(83\) 3.06487 + 3.84322i 0.336413 + 0.421848i 0.921049 0.389448i \(-0.127334\pi\)
−0.584636 + 0.811296i \(0.698763\pi\)
\(84\) 0 0
\(85\) −8.36590 + 10.4905i −0.907409 + 1.13786i
\(86\) −0.393637 + 0.424240i −0.0424470 + 0.0457469i
\(87\) 0 0
\(88\) 1.09775 + 0.748430i 0.117020 + 0.0797829i
\(89\) −5.64124 + 0.850280i −0.597970 + 0.0901295i −0.441051 0.897482i \(-0.645394\pi\)
−0.156919 + 0.987611i \(0.550156\pi\)
\(90\) 0 0
\(91\) 7.51608 15.8727i 0.787900 1.66391i
\(92\) 2.45924 + 5.10666i 0.256393 + 0.532406i
\(93\) 0 0
\(94\) 5.42664 + 5.84853i 0.559715 + 0.603230i
\(95\) −27.4296 + 2.05556i −2.81422 + 0.210896i
\(96\) 0 0
\(97\) 16.8856i 1.71448i −0.514919 0.857239i \(-0.672178\pi\)
0.514919 0.857239i \(-0.327822\pi\)
\(98\) −4.69351 + 5.19336i −0.474116 + 0.524609i
\(99\) 0 0
\(100\) −3.28429 8.36823i −0.328429 0.836823i
\(101\) −1.10185 14.7031i −0.109638 1.46302i −0.732544 0.680719i \(-0.761667\pi\)
0.622907 0.782296i \(-0.285952\pi\)
\(102\) 0 0
\(103\) 8.58036 + 12.5851i 0.845448 + 1.24005i 0.968840 + 0.247687i \(0.0796705\pi\)
−0.123392 + 0.992358i \(0.539377\pi\)
\(104\) 5.98057 2.88009i 0.586443 0.282416i
\(105\) 0 0
\(106\) −6.68084 3.21732i −0.648900 0.312494i
\(107\) −0.618296 4.10213i −0.0597729 0.396567i −0.998633 0.0522687i \(-0.983355\pi\)
0.938860 0.344299i \(-0.111883\pi\)
\(108\) 0 0
\(109\) 2.43855 + 0.367552i 0.233570 + 0.0352051i 0.264784 0.964308i \(-0.414699\pi\)
−0.0312139 + 0.999513i \(0.509937\pi\)
\(110\) −3.64279 3.38001i −0.347326 0.322272i
\(111\) 0 0
\(112\) −2.61356 + 0.411475i −0.246958 + 0.0388808i
\(113\) 2.79551 2.22934i 0.262979 0.209719i −0.483119 0.875555i \(-0.660496\pi\)
0.746098 + 0.665836i \(0.231925\pi\)
\(114\) 0 0
\(115\) −6.24873 20.2579i −0.582697 1.88906i
\(116\) 5.76055 3.32586i 0.534854 0.308798i
\(117\) 0 0
\(118\) 12.6285 + 2.88236i 1.16254 + 0.265343i
\(119\) −4.79948 8.18847i −0.439968 0.750636i
\(120\) 0 0
\(121\) 8.82453 + 2.72201i 0.802230 + 0.247455i
\(122\) −1.29657 + 3.30361i −0.117386 + 0.299095i
\(123\) 0 0
\(124\) −0.149257 + 0.483881i −0.0134037 + 0.0434538i
\(125\) 3.32054 + 14.5483i 0.296998 + 1.30124i
\(126\) 0 0
\(127\) 1.47918 6.48070i 0.131256 0.575069i −0.865934 0.500157i \(-0.833275\pi\)
0.997190 0.0749114i \(-0.0238674\pi\)
\(128\) −0.866025 0.500000i −0.0765466 0.0441942i
\(129\) 0 0
\(130\) −23.7247 + 7.31809i −2.08079 + 0.641839i
\(131\) 0.634486 8.46663i 0.0554353 0.739733i −0.898357 0.439266i \(-0.855239\pi\)
0.953792 0.300467i \(-0.0971424\pi\)
\(132\) 0 0
\(133\) 5.61308 18.6300i 0.486715 1.61543i
\(134\) −7.07687 5.64361i −0.611348 0.487534i
\(135\) 0 0
\(136\) 0.534674 3.54733i 0.0458479 0.304181i
\(137\) 7.37758 10.8209i 0.630309 0.924493i −0.369680 0.929159i \(-0.620533\pi\)
0.999989 + 0.00466562i \(0.00148512\pi\)
\(138\) 0 0
\(139\) −2.70819 + 5.62362i −0.229706 + 0.476989i −0.983683 0.179912i \(-0.942419\pi\)
0.753977 + 0.656901i \(0.228133\pi\)
\(140\) 9.89562 0.0648899i 0.836333 0.00548420i
\(141\) 0 0
\(142\) −4.35665 + 2.97032i −0.365602 + 0.249263i
\(143\) −6.46492 + 5.99857i −0.540624 + 0.501626i
\(144\) 0 0
\(145\) −23.1594 + 9.08940i −1.92328 + 0.754834i
\(146\) 5.37799 0.445085
\(147\) 0 0
\(148\) −2.63850 −0.216884
\(149\) 17.0329 6.68493i 1.39539 0.547651i 0.455841 0.890061i \(-0.349339\pi\)
0.939550 + 0.342411i \(0.111243\pi\)
\(150\) 0 0
\(151\) −11.4737 + 10.6460i −0.933717 + 0.866363i −0.991252 0.131981i \(-0.957866\pi\)
0.0575354 + 0.998343i \(0.481676\pi\)
\(152\) 6.07628 4.14274i 0.492851 0.336020i
\(153\) 0 0
\(154\) 3.15698 1.54590i 0.254397 0.124573i
\(155\) 0.821772 1.70643i 0.0660063 0.137064i
\(156\) 0 0
\(157\) −12.1653 + 17.8432i −0.970898 + 1.42405i −0.0662902 + 0.997800i \(0.521116\pi\)
−0.904608 + 0.426245i \(0.859836\pi\)
\(158\) 0.0925385 0.613953i 0.00736197 0.0488435i
\(159\) 0 0
\(160\) 2.92426 + 2.33202i 0.231183 + 0.184363i
\(161\) 14.9611 + 1.02257i 1.17910 + 0.0805899i
\(162\) 0 0
\(163\) −0.907304 + 12.1071i −0.0710655 + 0.948304i 0.841733 + 0.539894i \(0.181536\pi\)
−0.912799 + 0.408410i \(0.866083\pi\)
\(164\) −6.42734 + 1.98257i −0.501891 + 0.154813i
\(165\) 0 0
\(166\) 4.25709 + 2.45783i 0.330414 + 0.190765i
\(167\) −3.75539 + 16.4534i −0.290601 + 1.27320i 0.593091 + 0.805135i \(0.297907\pi\)
−0.883692 + 0.468069i \(0.844950\pi\)
\(168\) 0 0
\(169\) 6.91198 + 30.2833i 0.531690 + 2.32949i
\(170\) −3.95498 + 12.8217i −0.303333 + 0.983383i
\(171\) 0 0
\(172\) −0.211434 + 0.538725i −0.0161217 + 0.0410774i
\(173\) −13.5671 4.18488i −1.03148 0.318171i −0.267604 0.963529i \(-0.586232\pi\)
−0.763880 + 0.645358i \(0.776708\pi\)
\(174\) 0 0
\(175\) −23.5415 3.39058i −1.77957 0.256304i
\(176\) 1.29529 + 0.295642i 0.0976365 + 0.0222849i
\(177\) 0 0
\(178\) −4.94064 + 2.85248i −0.370317 + 0.213802i
\(179\) 2.62184 + 8.49980i 0.195966 + 0.635305i 0.999213 + 0.0396597i \(0.0126274\pi\)
−0.803248 + 0.595645i \(0.796896\pi\)
\(180\) 0 0
\(181\) −3.67499 + 2.93070i −0.273160 + 0.217837i −0.750482 0.660891i \(-0.770179\pi\)
0.477323 + 0.878728i \(0.341607\pi\)
\(182\) 1.19757 17.5214i 0.0887695 1.29878i
\(183\) 0 0
\(184\) 4.15491 + 3.85519i 0.306304 + 0.284208i
\(185\) 9.75850 + 1.47086i 0.717459 + 0.108140i
\(186\) 0 0
\(187\) 0.710371 + 4.71300i 0.0519475 + 0.344649i
\(188\) 7.18823 + 3.46167i 0.524255 + 0.252468i
\(189\) 0 0
\(190\) −24.7825 + 11.9346i −1.79791 + 0.865829i
\(191\) −3.85118 5.64865i −0.278662 0.408722i 0.661236 0.750178i \(-0.270032\pi\)
−0.939898 + 0.341456i \(0.889080\pi\)
\(192\) 0 0
\(193\) −1.56213 20.8451i −0.112444 1.50047i −0.713159 0.701003i \(-0.752736\pi\)
0.600714 0.799464i \(-0.294883\pi\)
\(194\) −6.16902 15.7184i −0.442910 1.12852i
\(195\) 0 0
\(196\) −2.47171 + 6.54909i −0.176551 + 0.467792i
\(197\) 9.48752i 0.675958i 0.941154 + 0.337979i \(0.109743\pi\)
−0.941154 + 0.337979i \(0.890257\pi\)
\(198\) 0 0
\(199\) 17.6915 1.32579i 1.25411 0.0939829i 0.568951 0.822372i \(-0.307349\pi\)
0.685164 + 0.728389i \(0.259730\pi\)
\(200\) −6.11452 6.58988i −0.432362 0.465975i
\(201\) 0 0
\(202\) −6.39733 13.2842i −0.450115 0.934673i
\(203\) −0.115400 17.5984i −0.00809952 1.23517i
\(204\) 0 0
\(205\) 24.8767 3.74956i 1.73746 0.261881i
\(206\) 12.5851 + 8.58036i 0.876844 + 0.597822i
\(207\) 0 0
\(208\) 4.51494 4.86595i 0.313055 0.337393i
\(209\) −6.09196 + 7.63908i −0.421390 + 0.528406i
\(210\) 0 0
\(211\) −5.16103 6.47172i −0.355300 0.445532i 0.571774 0.820411i \(-0.306255\pi\)
−0.927074 + 0.374880i \(0.877684\pi\)
\(212\) −7.39443 0.554136i −0.507852 0.0380582i
\(213\) 0 0
\(214\) −2.07423 3.59267i −0.141791 0.245590i
\(215\) 1.08231 1.87461i 0.0738126 0.127847i
\(216\) 0 0
\(217\) 0.917682 + 0.976110i 0.0622963 + 0.0662626i
\(218\) 2.40426 0.548757i 0.162837 0.0371665i
\(219\) 0 0
\(220\) −4.62584 1.81551i −0.311874 0.122401i
\(221\) 22.1668 + 8.69984i 1.49110 + 0.585214i
\(222\) 0 0
\(223\) −23.3539 + 5.33037i −1.56389 + 0.356948i −0.914847 0.403802i \(-0.867689\pi\)
−0.649045 + 0.760750i \(0.724831\pi\)
\(224\) −2.28256 + 1.33787i −0.152510 + 0.0893903i
\(225\) 0 0
\(226\) 1.78779 3.09655i 0.118922 0.205979i
\(227\) −1.11398 1.92946i −0.0739372 0.128063i 0.826686 0.562663i \(-0.190223\pi\)
−0.900624 + 0.434600i \(0.856890\pi\)
\(228\) 0 0
\(229\) 13.0762 + 0.979928i 0.864102 + 0.0647555i 0.499403 0.866370i \(-0.333553\pi\)
0.364699 + 0.931125i \(0.381172\pi\)
\(230\) −13.2178 16.5746i −0.871557 1.09290i
\(231\) 0 0
\(232\) 4.14727 5.20052i 0.272282 0.341431i
\(233\) −4.53465 + 4.88719i −0.297075 + 0.320171i −0.863896 0.503670i \(-0.831983\pi\)
0.566821 + 0.823841i \(0.308173\pi\)
\(234\) 0 0
\(235\) −24.6559 16.8101i −1.60837 1.09657i
\(236\) 12.8085 1.93058i 0.833765 0.125670i
\(237\) 0 0
\(238\) −7.45930 5.86899i −0.483514 0.380430i
\(239\) −3.51602 7.30108i −0.227432 0.472268i 0.755758 0.654851i \(-0.227269\pi\)
−0.983190 + 0.182583i \(0.941554\pi\)
\(240\) 0 0
\(241\) −14.1078 15.2046i −0.908766 0.979417i 0.0910989 0.995842i \(-0.470962\pi\)
−0.999865 + 0.0164248i \(0.994772\pi\)
\(242\) 9.20899 0.690118i 0.591976 0.0443625i
\(243\) 0 0
\(244\) 3.54894i 0.227197i
\(245\) 12.7925 22.8439i 0.817281 1.45945i
\(246\) 0 0
\(247\) 17.8346 + 45.4418i 1.13479 + 2.89139i
\(248\) 0.0378417 + 0.504962i 0.00240295 + 0.0320651i
\(249\) 0 0
\(250\) 8.40608 + 12.3295i 0.531647 + 0.779783i
\(251\) −13.5118 + 6.50696i −0.852859 + 0.410715i −0.808638 0.588306i \(-0.799795\pi\)
−0.0442213 + 0.999022i \(0.514081\pi\)
\(252\) 0 0
\(253\) −6.78473 3.26735i −0.426552 0.205417i
\(254\) −0.990738 6.57312i −0.0621644 0.412434i
\(255\) 0 0
\(256\) −0.988831 0.149042i −0.0618019 0.00931514i
\(257\) −9.60367 8.91091i −0.599061 0.555847i 0.321270 0.946988i \(-0.395890\pi\)
−0.920331 + 0.391140i \(0.872081\pi\)
\(258\) 0 0
\(259\) −3.45069 + 6.06833i −0.214416 + 0.377068i
\(260\) −19.4111 + 15.4798i −1.20382 + 0.960017i
\(261\) 0 0
\(262\) −2.50258 8.11316i −0.154610 0.501233i
\(263\) 23.4562 13.5424i 1.44637 0.835062i 0.448107 0.893980i \(-0.352098\pi\)
0.998263 + 0.0589181i \(0.0187651\pi\)
\(264\) 0 0
\(265\) 27.0394 + 6.17157i 1.66102 + 0.379116i
\(266\) −1.58124 19.3929i −0.0969520 1.18905i
\(267\) 0 0
\(268\) −8.64952 2.66802i −0.528353 0.162975i
\(269\) 8.80775 22.4418i 0.537018 1.36830i −0.362732 0.931894i \(-0.618156\pi\)
0.899750 0.436406i \(-0.143749\pi\)
\(270\) 0 0
\(271\) −0.209571 + 0.679413i −0.0127305 + 0.0412714i −0.961715 0.274051i \(-0.911636\pi\)
0.948985 + 0.315322i \(0.102113\pi\)
\(272\) −0.798272 3.49746i −0.0484023 0.212064i
\(273\) 0 0
\(274\) 2.91427 12.7682i 0.176057 0.771358i
\(275\) 10.3435 + 5.97185i 0.623739 + 0.360116i
\(276\) 0 0
\(277\) −12.3609 + 3.81284i −0.742696 + 0.229091i −0.642936 0.765920i \(-0.722284\pi\)
−0.0997604 + 0.995011i \(0.531808\pi\)
\(278\) −0.466446 + 6.22429i −0.0279756 + 0.373308i
\(279\) 0 0
\(280\) 9.18787 3.67568i 0.549080 0.219664i
\(281\) −11.5083 9.17758i −0.686529 0.547489i 0.216917 0.976190i \(-0.430400\pi\)
−0.903446 + 0.428701i \(0.858971\pi\)
\(282\) 0 0
\(283\) 3.44972 22.8874i 0.205065 1.36052i −0.615128 0.788427i \(-0.710896\pi\)
0.820192 0.572088i \(-0.193866\pi\)
\(284\) −2.97032 + 4.35665i −0.176256 + 0.258520i
\(285\) 0 0
\(286\) −3.82650 + 7.94582i −0.226266 + 0.469846i
\(287\) −3.84608 + 17.3752i −0.227027 + 1.02562i
\(288\) 0 0
\(289\) −3.41283 + 2.32683i −0.200755 + 0.136872i
\(290\) −18.2378 + 16.9222i −1.07096 + 0.993704i
\(291\) 0 0
\(292\) 5.00623 1.96480i 0.292967 0.114981i
\(293\) −9.28442 −0.542401 −0.271201 0.962523i \(-0.587421\pi\)
−0.271201 + 0.962523i \(0.587421\pi\)
\(294\) 0 0
\(295\) −48.4486 −2.82079
\(296\) −2.45611 + 0.963954i −0.142759 + 0.0560287i
\(297\) 0 0
\(298\) 13.4132 12.4456i 0.777007 0.720957i
\(299\) −31.0860 + 21.1941i −1.79775 + 1.22569i
\(300\) 0 0
\(301\) 0.962503 + 1.19084i 0.0554777 + 0.0686387i
\(302\) −6.79113 + 14.1019i −0.390786 + 0.811475i
\(303\) 0 0
\(304\) 4.14274 6.07628i 0.237602 0.348498i
\(305\) 1.97839 13.1257i 0.113282 0.751578i
\(306\) 0 0
\(307\) −15.5409 12.3935i −0.886968 0.707334i 0.0699936 0.997547i \(-0.477702\pi\)
−0.956962 + 0.290214i \(0.906274\pi\)
\(308\) 2.37397 2.59242i 0.135269 0.147717i
\(309\) 0 0
\(310\) 0.141538 1.88870i 0.00803883 0.107271i
\(311\) 9.41517 2.90419i 0.533885 0.164682i −0.0160780 0.999871i \(-0.505118\pi\)
0.549963 + 0.835189i \(0.314642\pi\)
\(312\) 0 0
\(313\) 1.03887 + 0.599790i 0.0587202 + 0.0339021i 0.529073 0.848577i \(-0.322540\pi\)
−0.470352 + 0.882479i \(0.655873\pi\)
\(314\) −4.80550 + 21.0543i −0.271190 + 1.18816i
\(315\) 0 0
\(316\) −0.138161 0.605321i −0.00777214 0.0340520i
\(317\) 6.04233 19.5887i 0.339371 1.10021i −0.611661 0.791120i \(-0.709498\pi\)
0.951032 0.309094i \(-0.100026\pi\)
\(318\) 0 0
\(319\) −3.22870 + 8.22659i −0.180773 + 0.460601i
\(320\) 3.57410 + 1.10247i 0.199799 + 0.0616297i
\(321\) 0 0
\(322\) 14.3005 4.51402i 0.796935 0.251557i
\(323\) 25.7208 + 5.87060i 1.43114 + 0.326649i
\(324\) 0 0
\(325\) 51.6781 29.8363i 2.86658 1.65502i
\(326\) 3.57865 + 11.6017i 0.198203 + 0.642558i
\(327\) 0 0
\(328\) −5.25872 + 4.19369i −0.290365 + 0.231558i
\(329\) 17.3625 12.0050i 0.957223 0.661860i
\(330\) 0 0
\(331\) 11.8142 + 10.9620i 0.649370 + 0.602527i 0.934501 0.355962i \(-0.115847\pi\)
−0.285131 + 0.958489i \(0.592037\pi\)
\(332\) 4.86076 + 0.732642i 0.266769 + 0.0402089i
\(333\) 0 0
\(334\) 2.51532 + 16.6881i 0.137632 + 0.913130i
\(335\) 30.5029 + 14.6894i 1.66655 + 0.802569i
\(336\) 0 0
\(337\) 9.56292 4.60526i 0.520925 0.250864i −0.154895 0.987931i \(-0.549504\pi\)
0.675820 + 0.737067i \(0.263790\pi\)
\(338\) 17.4979 + 25.6647i 0.951762 + 1.39598i
\(339\) 0 0
\(340\) 1.00272 + 13.3803i 0.0543800 + 0.725651i
\(341\) −0.245793 0.626270i −0.0133104 0.0339144i
\(342\) 0 0
\(343\) 11.8298 + 14.2498i 0.638748 + 0.769416i
\(344\) 0.578731i 0.0312031i
\(345\) 0 0
\(346\) −14.1581 + 1.06100i −0.761146 + 0.0570400i
\(347\) −19.5687 21.0900i −1.05050 1.13217i −0.990989 0.133942i \(-0.957236\pi\)
−0.0595111 0.998228i \(-0.518954\pi\)
\(348\) 0 0
\(349\) 11.3948 + 23.6615i 0.609949 + 1.26657i 0.945828 + 0.324668i \(0.105252\pi\)
−0.335879 + 0.941905i \(0.609033\pi\)
\(350\) −23.1529 + 5.44446i −1.23757 + 0.291019i
\(351\) 0 0
\(352\) 1.31377 0.198018i 0.0700240 0.0105544i
\(353\) 10.1099 + 6.89285i 0.538098 + 0.366869i 0.801666 0.597772i \(-0.203947\pi\)
−0.263568 + 0.964641i \(0.584899\pi\)
\(354\) 0 0
\(355\) 13.4144 14.4572i 0.711961 0.767311i
\(356\) −3.55698 + 4.46032i −0.188520 + 0.236396i
\(357\) 0 0
\(358\) 5.54593 + 6.95437i 0.293111 + 0.367550i
\(359\) −19.5910 1.46814i −1.03397 0.0774855i −0.453083 0.891468i \(-0.649676\pi\)
−0.580889 + 0.813983i \(0.697295\pi\)
\(360\) 0 0
\(361\) 17.5417 + 30.3831i 0.923247 + 1.59911i
\(362\) −2.35024 + 4.07074i −0.123526 + 0.213953i
\(363\) 0 0
\(364\) −5.28652 16.7478i −0.277089 0.877822i
\(365\) −19.6108 + 4.47604i −1.02648 + 0.234287i
\(366\) 0 0
\(367\) 7.84582 + 3.07926i 0.409548 + 0.160736i 0.561166 0.827703i \(-0.310353\pi\)
−0.151618 + 0.988439i \(0.548448\pi\)
\(368\) 5.27615 + 2.07074i 0.275039 + 0.107945i
\(369\) 0 0
\(370\) 9.62130 2.19600i 0.500187 0.114165i
\(371\) −10.9451 + 16.2818i −0.568240 + 0.845311i
\(372\) 0 0
\(373\) 8.62849 14.9450i 0.446766 0.773822i −0.551407 0.834236i \(-0.685909\pi\)
0.998173 + 0.0604144i \(0.0192422\pi\)
\(374\) 2.38312 + 4.12768i 0.123228 + 0.213437i
\(375\) 0 0
\(376\) 7.95602 + 0.596221i 0.410300 + 0.0307478i
\(377\) 27.5293 + 34.5207i 1.41783 + 1.77791i
\(378\) 0 0
\(379\) −13.4120 + 16.8181i −0.688928 + 0.863888i −0.996142 0.0877521i \(-0.972032\pi\)
0.307214 + 0.951640i \(0.400603\pi\)
\(380\) −18.7092 + 20.1637i −0.959760 + 1.03438i
\(381\) 0 0
\(382\) −5.64865 3.85118i −0.289010 0.197044i
\(383\) −2.61513 + 0.394167i −0.133627 + 0.0201410i −0.215515 0.976501i \(-0.569143\pi\)
0.0818882 + 0.996642i \(0.473905\pi\)
\(384\) 0 0
\(385\) −10.2253 + 8.26466i −0.521128 + 0.421206i
\(386\) −9.06973 18.8335i −0.461637 0.958599i
\(387\) 0 0
\(388\) −11.4852 12.3781i −0.583071 0.628401i
\(389\) 3.99786 0.299598i 0.202700 0.0151902i 0.0270067 0.999635i \(-0.491402\pi\)
0.175693 + 0.984445i \(0.443783\pi\)
\(390\) 0 0
\(391\) 20.3332i 1.02830i
\(392\) 0.0918002 + 6.99940i 0.00463661 + 0.353523i
\(393\) 0 0
\(394\) 3.46618 + 8.83168i 0.174624 + 0.444934i
\(395\) 0.173545 + 2.31580i 0.00873199 + 0.116520i
\(396\) 0 0
\(397\) −2.60404 3.81943i −0.130693 0.191692i 0.755314 0.655363i \(-0.227484\pi\)
−0.886007 + 0.463671i \(0.846532\pi\)
\(398\) 15.9842 7.69756i 0.801213 0.385844i
\(399\) 0 0
\(400\) −8.09940 3.90046i −0.404970 0.195023i
\(401\) 0.0188342 + 0.124956i 0.000940533 + 0.00624003i 0.989296 0.145922i \(-0.0466147\pi\)
−0.988356 + 0.152162i \(0.951377\pi\)
\(402\) 0 0
\(403\) −3.32376 0.500976i −0.165568 0.0249554i
\(404\) −10.8084 10.0287i −0.537737 0.498947i
\(405\) 0 0
\(406\) −6.53684 16.3397i −0.324418 0.810927i
\(407\) 2.74073 2.18566i 0.135853 0.108339i
\(408\) 0 0
\(409\) 2.93224 + 9.50610i 0.144990 + 0.470046i 0.998715 0.0506778i \(-0.0161382\pi\)
−0.853725 + 0.520724i \(0.825662\pi\)
\(410\) 21.7872 12.5788i 1.07599 0.621225i
\(411\) 0 0
\(412\) 14.8499 + 3.38939i 0.731601 + 0.166983i
\(413\) 12.3111 31.9834i 0.605791 1.57380i
\(414\) 0 0
\(415\) −17.5691 5.41935i −0.862433 0.266025i
\(416\) 2.42511 6.17908i 0.118901 0.302954i
\(417\) 0 0
\(418\) −2.87998 + 9.33666i −0.140864 + 0.456671i
\(419\) −4.19165 18.3648i −0.204775 0.897179i −0.967981 0.251024i \(-0.919233\pi\)
0.763206 0.646156i \(-0.223624\pi\)
\(420\) 0 0
\(421\) −1.34951 + 5.91260i −0.0657712 + 0.288162i −0.997108 0.0759963i \(-0.975786\pi\)
0.931337 + 0.364159i \(0.118643\pi\)
\(422\) −7.16865 4.13882i −0.348964 0.201475i
\(423\) 0 0
\(424\) −7.08573 + 2.18566i −0.344114 + 0.106145i
\(425\) 2.41001 32.1593i 0.116902 1.55996i
\(426\) 0 0
\(427\) 8.16225 + 4.64138i 0.394999 + 0.224612i
\(428\) −3.24340 2.58652i −0.156776 0.125024i
\(429\) 0 0
\(430\) 0.322619 2.14043i 0.0155581 0.103221i
\(431\) −12.2849 + 18.0186i −0.591743 + 0.867928i −0.998969 0.0453999i \(-0.985544\pi\)
0.407226 + 0.913327i \(0.366496\pi\)
\(432\) 0 0
\(433\) 17.4808 36.2993i 0.840075 1.74443i 0.194242 0.980954i \(-0.437775\pi\)
0.645832 0.763479i \(-0.276511\pi\)
\(434\) 1.21086 + 0.573368i 0.0581231 + 0.0275225i
\(435\) 0 0
\(436\) 2.03758 1.38920i 0.0975824 0.0665305i
\(437\) −30.5558 + 28.3516i −1.46168 + 1.35624i
\(438\) 0 0
\(439\) −23.2885 + 9.14008i −1.11150 + 0.436232i −0.848837 0.528655i \(-0.822696\pi\)
−0.262664 + 0.964887i \(0.584601\pi\)
\(440\) −4.96935 −0.236904
\(441\) 0 0
\(442\) 23.8129 1.13267
\(443\) 29.9855 11.7684i 1.42465 0.559135i 0.477132 0.878831i \(-0.341676\pi\)
0.947520 + 0.319697i \(0.103581\pi\)
\(444\) 0 0
\(445\) 15.6419 14.5136i 0.741499 0.688011i
\(446\) −19.7921 + 13.4940i −0.937184 + 0.638961i
\(447\) 0 0
\(448\) −1.63600 + 2.07930i −0.0772937 + 0.0982379i
\(449\) 5.30712 11.0203i 0.250458 0.520082i −0.737397 0.675460i \(-0.763945\pi\)
0.987855 + 0.155378i \(0.0496594\pi\)
\(450\) 0 0
\(451\) 5.03406 7.38361i 0.237045 0.347681i
\(452\) 0.532913 3.53565i 0.0250661 0.166303i
\(453\) 0 0
\(454\) −1.74188 1.38911i −0.0817507 0.0651940i
\(455\) 10.2160 + 64.8886i 0.478933 + 3.04202i
\(456\) 0 0
\(457\) 2.37584 31.7034i 0.111137 1.48302i −0.611196 0.791479i \(-0.709311\pi\)
0.722333 0.691545i \(-0.243070\pi\)
\(458\) 12.5303 3.86509i 0.585504 0.180604i
\(459\) 0 0
\(460\) −18.3595 10.5999i −0.856016 0.494221i
\(461\) −0.633408 + 2.77514i −0.0295008 + 0.129251i −0.987534 0.157406i \(-0.949687\pi\)
0.958033 + 0.286657i \(0.0925441\pi\)
\(462\) 0 0
\(463\) 0.253492 + 1.11062i 0.0117808 + 0.0516149i 0.980477 0.196636i \(-0.0630016\pi\)
−0.968696 + 0.248250i \(0.920144\pi\)
\(464\) 1.96063 6.35619i 0.0910198 0.295079i
\(465\) 0 0
\(466\) −2.43570 + 6.20605i −0.112831 + 0.287490i
\(467\) −11.3387 3.49754i −0.524694 0.161847i 0.0210819 0.999778i \(-0.493289\pi\)
−0.545776 + 0.837931i \(0.683765\pi\)
\(468\) 0 0
\(469\) −17.4483 + 16.4038i −0.805685 + 0.757459i
\(470\) −29.0930 6.64028i −1.34196 0.306293i
\(471\) 0 0
\(472\) 11.2178 6.47661i 0.516342 0.298110i
\(473\) −0.226639 0.734744i −0.0104209 0.0337836i
\(474\) 0 0
\(475\) 51.6878 41.2196i 2.37160 1.89129i
\(476\) −9.08784 2.73810i −0.416541 0.125500i
\(477\) 0 0
\(478\) −5.94035 5.51184i −0.271705 0.252106i
\(479\) −3.16546 0.477117i −0.144634 0.0218000i 0.0763263 0.997083i \(-0.475681\pi\)
−0.220960 + 0.975283i \(0.570919\pi\)
\(480\) 0 0
\(481\) −2.61036 17.3186i −0.119022 0.789660i
\(482\) −18.6875 8.99943i −0.851192 0.409913i
\(483\) 0 0
\(484\) 8.32027 4.00683i 0.378194 0.182129i
\(485\) 35.5776 + 52.1827i 1.61549 + 2.36950i
\(486\) 0 0
\(487\) −2.32075 30.9683i −0.105163 1.40331i −0.761170 0.648553i \(-0.775375\pi\)
0.656006 0.754756i \(-0.272245\pi\)
\(488\) 1.29657 + 3.30361i 0.0586931 + 0.149548i
\(489\) 0 0
\(490\) 3.56235 25.9384i 0.160931 1.17178i
\(491\) 25.2042i 1.13745i −0.822528 0.568725i \(-0.807437\pi\)
0.822528 0.568725i \(-0.192563\pi\)
\(492\) 0 0
\(493\) 23.7956 1.78324i 1.07170 0.0803129i
\(494\) 33.2035 + 35.7849i 1.49390 + 1.61004i
\(495\) 0 0
\(496\) 0.219709 + 0.456231i 0.00986523 + 0.0204854i
\(497\) 6.13528 + 12.5292i 0.275205 + 0.562011i
\(498\) 0 0
\(499\) 35.6741 5.37700i 1.59699 0.240708i 0.710583 0.703613i \(-0.248431\pi\)
0.886408 + 0.462906i \(0.153193\pi\)
\(500\) 12.3295 + 8.40608i 0.551390 + 0.375931i
\(501\) 0 0
\(502\) −10.2006 + 10.9936i −0.455273 + 0.490668i
\(503\) 6.61094 8.28985i 0.294767 0.369626i −0.612290 0.790633i \(-0.709752\pi\)
0.907058 + 0.421007i \(0.138323\pi\)
\(504\) 0 0
\(505\) 34.3842 + 43.1164i 1.53008 + 1.91865i
\(506\) −7.50942 0.562754i −0.333835 0.0250174i
\(507\) 0 0
\(508\) −3.32368 5.75678i −0.147464 0.255416i
\(509\) −4.75038 + 8.22790i −0.210557 + 0.364695i −0.951889 0.306443i \(-0.900861\pi\)
0.741332 + 0.671138i \(0.234194\pi\)
\(510\) 0 0
\(511\) 2.02839 14.0835i 0.0897306 0.623017i
\(512\) −0.974928 + 0.222521i −0.0430861 + 0.00983413i
\(513\) 0 0
\(514\) −12.1953 4.78631i −0.537913 0.211115i
\(515\) −53.0328 20.8138i −2.33691 0.917168i
\(516\) 0 0
\(517\) −10.3343 + 2.35873i −0.454501 + 0.103737i
\(518\) −0.995152 + 6.90953i −0.0437244 + 0.303587i
\(519\) 0 0
\(520\) −12.4138 + 21.5014i −0.544383 + 0.942899i
\(521\) 10.2133 + 17.6900i 0.447454 + 0.775013i 0.998220 0.0596472i \(-0.0189976\pi\)
−0.550766 + 0.834660i \(0.685664\pi\)
\(522\) 0 0
\(523\) −7.69803 0.576887i −0.336611 0.0252255i −0.0946476 0.995511i \(-0.530172\pi\)
−0.241964 + 0.970285i \(0.577791\pi\)
\(524\) −5.29366 6.63804i −0.231255 0.289984i
\(525\) 0 0
\(526\) 16.8871 21.1758i 0.736314 0.923308i
\(527\) −1.23559 + 1.33165i −0.0538231 + 0.0580075i
\(528\) 0 0
\(529\) −7.54006 5.14073i −0.327829 0.223510i
\(530\) 27.4250 4.13365i 1.19127 0.179554i
\(531\) 0 0
\(532\) −8.55695 17.4746i −0.370991 0.757621i
\(533\) −19.3720 40.2263i −0.839093 1.74239i
\(534\) 0 0
\(535\) 10.5538 + 11.3743i 0.456281 + 0.491754i
\(536\) −9.02634 + 0.676431i −0.389879 + 0.0292174i
\(537\) 0 0
\(538\) 24.1083i 1.03938i
\(539\) −2.85760 8.85034i −0.123086 0.381211i
\(540\) 0 0
\(541\) 7.28404 + 18.5594i 0.313165 + 0.797932i 0.997625 + 0.0688812i \(0.0219429\pi\)
−0.684460 + 0.729051i \(0.739962\pi\)
\(542\) 0.0531332 + 0.709013i 0.00228227 + 0.0304547i
\(543\) 0 0
\(544\) −2.02085 2.96405i −0.0866434 0.127083i
\(545\) −8.31041 + 4.00208i −0.355979 + 0.171430i
\(546\) 0 0
\(547\) 25.0455 + 12.0613i 1.07087 + 0.515703i 0.884386 0.466756i \(-0.154577\pi\)
0.186482 + 0.982458i \(0.440292\pi\)
\(548\) −1.95195 12.9503i −0.0833830 0.553210i
\(549\) 0 0
\(550\) 11.8103 + 1.78012i 0.503593 + 0.0759044i
\(551\) 35.8592 + 33.2724i 1.52765 + 1.41745i
\(552\) 0 0
\(553\) −1.57287 0.473895i −0.0668854 0.0201521i
\(554\) −10.1135 + 8.06523i −0.429680 + 0.342659i
\(555\) 0 0
\(556\) 1.83979 + 5.96444i 0.0780243 + 0.252949i
\(557\) −13.8945 + 8.02197i −0.588727 + 0.339902i −0.764594 0.644512i \(-0.777061\pi\)
0.175867 + 0.984414i \(0.443727\pi\)
\(558\) 0 0
\(559\) −3.74526 0.854831i −0.158408 0.0361555i
\(560\) 7.20987 6.77830i 0.304673 0.286435i
\(561\) 0 0
\(562\) −14.0657 4.33871i −0.593327 0.183017i
\(563\) 10.1007 25.7361i 0.425693 1.08465i −0.543732 0.839259i \(-0.682989\pi\)
0.969425 0.245389i \(-0.0789157\pi\)
\(564\) 0 0
\(565\) −3.94196 + 12.7795i −0.165839 + 0.537638i
\(566\) −5.15045 22.5656i −0.216490 0.948503i
\(567\) 0 0
\(568\) −1.17332 + 5.14067i −0.0492316 + 0.215698i
\(569\) −28.3717 16.3804i −1.18941 0.686703i −0.231234 0.972898i \(-0.574276\pi\)
−0.958171 + 0.286195i \(0.907610\pi\)
\(570\) 0 0
\(571\) −3.97586 + 1.22639i −0.166385 + 0.0513229i −0.376828 0.926283i \(-0.622985\pi\)
0.210444 + 0.977606i \(0.432509\pi\)
\(572\) −0.659059 + 8.79453i −0.0275566 + 0.367718i
\(573\) 0 0
\(574\) 2.76765 + 17.5792i 0.115520 + 0.733742i
\(575\) 39.8366 + 31.7687i 1.66130 + 1.32484i
\(576\) 0 0
\(577\) −4.63913 + 30.7786i −0.193129 + 1.28133i 0.656652 + 0.754194i \(0.271972\pi\)
−0.849781 + 0.527136i \(0.823266\pi\)
\(578\) −2.32683 + 3.41283i −0.0967832 + 0.141955i
\(579\) 0 0
\(580\) −10.7947 + 22.4154i −0.448225 + 0.930749i
\(581\) 8.04202 10.2212i 0.333639 0.424045i
\(582\) 0 0
\(583\) 8.13996 5.54973i 0.337123 0.229846i
\(584\) 3.94234 3.65796i 0.163135 0.151367i
\(585\) 0 0
\(586\) −8.64262 + 3.39198i −0.357023 + 0.140121i
\(587\) 13.5513 0.559322 0.279661 0.960099i \(-0.409778\pi\)
0.279661 + 0.960099i \(0.409778\pi\)
\(588\) 0 0
\(589\) −3.72397 −0.153444
\(590\) −45.0995 + 17.7003i −1.85672 + 0.728708i
\(591\) 0 0
\(592\) −1.93416 + 1.79464i −0.0794935 + 0.0737592i
\(593\) 0.752150 0.512807i 0.0308871 0.0210585i −0.547778 0.836624i \(-0.684526\pi\)
0.578665 + 0.815565i \(0.303574\pi\)
\(594\) 0 0
\(595\) 32.0850 + 15.1929i 1.31536 + 0.622850i
\(596\) 7.93911 16.4857i 0.325199 0.675282i
\(597\) 0 0
\(598\) −21.1941 + 31.0860i −0.866691 + 1.27120i
\(599\) 6.45742 42.8422i 0.263843 1.75048i −0.328229 0.944598i \(-0.606452\pi\)
0.592072 0.805885i \(-0.298310\pi\)
\(600\) 0 0
\(601\) −7.37638 5.88246i −0.300889 0.239951i 0.461393 0.887196i \(-0.347350\pi\)
−0.762282 + 0.647245i \(0.775921\pi\)
\(602\) 1.33103 + 0.756877i 0.0542487 + 0.0308480i
\(603\) 0 0
\(604\) −1.16967 + 15.6082i −0.0475933 + 0.635089i
\(605\) −33.0062 + 10.1811i −1.34189 + 0.413919i
\(606\) 0 0
\(607\) −12.5949 7.27168i −0.511212 0.295148i 0.222120 0.975019i \(-0.428702\pi\)
−0.733332 + 0.679871i \(0.762036\pi\)
\(608\) 1.63645 7.16976i 0.0663668 0.290772i
\(609\) 0 0
\(610\) −2.95374 12.9412i −0.119594 0.523974i
\(611\) −15.6101 + 50.6068i −0.631518 + 2.04733i
\(612\) 0 0
\(613\) 1.07936 2.75015i 0.0435948 0.111078i −0.907418 0.420229i \(-0.861950\pi\)
0.951013 + 0.309151i \(0.100045\pi\)
\(614\) −18.9945 5.85903i −0.766556 0.236451i
\(615\) 0 0
\(616\) 1.26275 3.28052i 0.0508775 0.132176i
\(617\) 9.05445 + 2.06662i 0.364519 + 0.0831990i 0.400857 0.916141i \(-0.368712\pi\)
−0.0363386 + 0.999340i \(0.511569\pi\)
\(618\) 0 0
\(619\) 20.3634 11.7568i 0.818476 0.472547i −0.0314146 0.999506i \(-0.510001\pi\)
0.849891 + 0.526959i \(0.176668\pi\)
\(620\) −0.558264 1.80985i −0.0224204 0.0726852i
\(621\) 0 0
\(622\) 7.70331 6.14318i 0.308875 0.246319i
\(623\) 5.60644 + 14.0141i 0.224617 + 0.561461i
\(624\) 0 0
\(625\) −7.96502 7.39046i −0.318601 0.295618i
\(626\) 1.18618 + 0.178788i 0.0474094 + 0.00714581i
\(627\) 0 0
\(628\) 3.21868 + 21.3545i 0.128439 + 0.852139i
\(629\) −8.52800 4.10687i −0.340034 0.163752i
\(630\) 0 0
\(631\) −28.9687 + 13.9506i −1.15323 + 0.555365i −0.910001 0.414605i \(-0.863920\pi\)
−0.243225 + 0.969970i \(0.578205\pi\)
\(632\) −0.349758 0.513001i −0.0139126 0.0204061i
\(633\) 0 0
\(634\) −1.53193 20.4422i −0.0608406 0.811862i
\(635\) 9.08346 + 23.1443i 0.360466 + 0.918452i
\(636\) 0 0
\(637\) −45.4322 9.74458i −1.80009 0.386094i
\(638\) 8.83750i 0.349880i
\(639\) 0 0
\(640\) 3.72982 0.279511i 0.147434 0.0110486i
\(641\) −16.4880 17.7698i −0.651236 0.701866i 0.317974 0.948099i \(-0.396997\pi\)
−0.969211 + 0.246233i \(0.920807\pi\)
\(642\) 0 0
\(643\) 14.1789 + 29.4429i 0.559163 + 1.16111i 0.968565 + 0.248760i \(0.0800230\pi\)
−0.409402 + 0.912354i \(0.634263\pi\)
\(644\) 11.6628 9.42654i 0.459578 0.371458i
\(645\) 0 0
\(646\) 26.0876 3.93207i 1.02640 0.154705i
\(647\) −0.981216 0.668982i −0.0385756 0.0263004i 0.543879 0.839164i \(-0.316955\pi\)
−0.582454 + 0.812863i \(0.697908\pi\)
\(648\) 0 0
\(649\) −11.7056 + 12.6156i −0.459484 + 0.495206i
\(650\) 37.2053 46.6540i 1.45931 1.82992i
\(651\) 0 0
\(652\) 7.56984 + 9.49228i 0.296458 + 0.371746i
\(653\) 28.8985 + 2.16564i 1.13089 + 0.0847481i 0.626998 0.779021i \(-0.284284\pi\)
0.503888 + 0.863769i \(0.331903\pi\)
\(654\) 0 0
\(655\) 15.8782 + 27.5018i 0.620411 + 1.07458i
\(656\) −3.36308 + 5.82503i −0.131306 + 0.227429i
\(657\) 0 0
\(658\) 11.7763 17.5184i 0.459089 0.682939i
\(659\) 31.9926 7.30209i 1.24625 0.284449i 0.451990 0.892023i \(-0.350714\pi\)
0.794263 + 0.607574i \(0.207857\pi\)
\(660\) 0 0
\(661\) −31.3265 12.2947i −1.21846 0.478210i −0.333000 0.942927i \(-0.608061\pi\)
−0.885460 + 0.464716i \(0.846156\pi\)
\(662\) 15.0024 + 5.88802i 0.583086 + 0.228845i
\(663\) 0 0
\(664\) 4.79242 1.09384i 0.185982 0.0424491i
\(665\) 21.9065 + 69.4000i 0.849496 + 2.69122i
\(666\) 0 0
\(667\) −18.8508 + 32.6506i −0.729906 + 1.26424i
\(668\) 8.43828 + 14.6155i 0.326487 + 0.565492i
\(669\) 0 0
\(670\) 33.7610 + 2.53004i 1.30430 + 0.0977439i
\(671\) −2.93984 3.68644i −0.113491 0.142314i
\(672\) 0 0
\(673\) 21.9469 27.5205i 0.845989 1.06084i −0.151389 0.988474i \(-0.548375\pi\)
0.997378 0.0723624i \(-0.0230538\pi\)
\(674\) 7.21938 7.78064i 0.278080 0.299699i
\(675\) 0 0
\(676\) 25.6647 + 17.4979i 0.987106 + 0.672997i
\(677\) −10.9637 + 1.65252i −0.421370 + 0.0635113i −0.356305 0.934370i \(-0.615964\pi\)
−0.0650652 + 0.997881i \(0.520726\pi\)
\(678\) 0 0
\(679\) −43.4890 + 10.2266i −1.66895 + 0.392459i
\(680\) 5.82179 + 12.0891i 0.223256 + 0.463595i
\(681\) 0 0
\(682\) −0.457604 0.493180i −0.0175226 0.0188848i
\(683\) 6.49205 0.486512i 0.248411 0.0186159i 0.0500575 0.998746i \(-0.484060\pi\)
0.198354 + 0.980130i \(0.436441\pi\)
\(684\) 0 0
\(685\) 48.9849i 1.87162i
\(686\) 16.2181 + 8.94284i 0.619209 + 0.341439i
\(687\) 0 0
\(688\) 0.211434 + 0.538725i 0.00806085 + 0.0205387i
\(689\) −3.67832 49.0837i −0.140133 1.86994i
\(690\) 0 0
\(691\) −26.5003 38.8688i −1.00812 1.47864i −0.872945 0.487819i \(-0.837793\pi\)
−0.135175 0.990822i \(-0.543160\pi\)
\(692\) −12.7918 + 6.16021i −0.486271 + 0.234176i
\(693\) 0 0
\(694\) −25.9210 12.4829i −0.983947 0.473844i
\(695\) −3.47952 23.0851i −0.131986 0.875667i
\(696\) 0 0
\(697\) −23.8599 3.59631i −0.903759 0.136220i
\(698\) 19.2516 + 17.8629i 0.728686 + 0.676121i
\(699\) 0 0
\(700\) −19.5633 + 13.5268i −0.739423 + 0.511265i
\(701\) 16.7997 13.3973i 0.634515 0.506009i −0.252592 0.967573i \(-0.581283\pi\)
0.887107 + 0.461564i \(0.152712\pi\)
\(702\) 0 0
\(703\) −5.71941 18.5419i −0.215712 0.699320i
\(704\) 1.15061 0.664303i 0.0433651 0.0250368i
\(705\) 0 0
\(706\) 11.9293 + 2.72279i 0.448966 + 0.102474i
\(707\) −37.2006 + 11.7426i −1.39907 + 0.441624i
\(708\) 0 0
\(709\) −21.3249 6.57785i −0.800872 0.247036i −0.132810 0.991142i \(-0.542400\pi\)
−0.668063 + 0.744105i \(0.732876\pi\)
\(710\) 7.20525 18.3587i 0.270408 0.688989i
\(711\) 0 0
\(712\) −1.68157 + 5.45150i −0.0630194 + 0.204304i
\(713\) −0.638664 2.79817i −0.0239181 0.104792i
\(714\) 0 0
\(715\) 7.34012 32.1592i 0.274505 1.20268i
\(716\) 7.70328 + 4.44749i 0.287885 + 0.166210i
\(717\) 0 0
\(718\) −18.7731 + 5.79073i −0.700606 + 0.216108i
\(719\) −3.82393 + 51.0268i −0.142608 + 1.90298i 0.227165 + 0.973856i \(0.427054\pi\)
−0.369774 + 0.929122i \(0.620565\pi\)
\(720\) 0 0
\(721\) 27.2163 29.7207i 1.01359 1.10686i
\(722\) 27.4293 + 21.8741i 1.02081 + 0.814071i
\(723\) 0 0
\(724\) −0.700571 + 4.64798i −0.0260365 + 0.172741i
\(725\) 33.6846 49.4062i 1.25101 1.83490i
\(726\) 0 0
\(727\) 9.03038 18.7518i 0.334918 0.695465i −0.663701 0.747998i \(-0.731015\pi\)
0.998619 + 0.0525333i \(0.0167296\pi\)
\(728\) −11.0397 13.6587i −0.409160 0.506224i
\(729\) 0 0
\(730\) −16.6199 + 11.3313i −0.615131 + 0.419389i
\(731\) −1.52192 + 1.41213i −0.0562902 + 0.0522296i
\(732\) 0 0
\(733\) 22.4476 8.81002i 0.829120 0.325406i 0.0874487 0.996169i \(-0.472129\pi\)
0.741671 + 0.670763i \(0.234033\pi\)
\(734\) 8.42844 0.311100
\(735\) 0 0
\(736\) 5.66796 0.208924
\(737\) 11.1948 4.39362i 0.412364 0.161841i
\(738\) 0 0
\(739\) −26.3373 + 24.4374i −0.968832 + 0.898945i −0.994915 0.100715i \(-0.967887\pi\)
0.0260835 + 0.999660i \(0.491696\pi\)
\(740\) 8.15393 5.55925i 0.299744 0.204362i
\(741\) 0 0
\(742\) −4.24006 + 19.1550i −0.155657 + 0.703203i
\(743\) −5.84926 + 12.1461i −0.214588 + 0.445597i −0.980281 0.197609i \(-0.936682\pi\)
0.765692 + 0.643207i \(0.222396\pi\)
\(744\) 0 0
\(745\) −38.5529 + 56.5467i −1.41247 + 2.07171i
\(746\) 2.57202 17.0642i 0.0941683 0.624766i
\(747\) 0 0
\(748\) 3.72640 + 2.97170i 0.136251 + 0.108656i
\(749\) −10.1906 + 4.07682i −0.372355 + 0.148964i
\(750\) 0 0
\(751\) −1.47508 + 19.6836i −0.0538264 + 0.718264i 0.903377 + 0.428848i \(0.141080\pi\)
−0.957203 + 0.289416i \(0.906539\pi\)
\(752\) 7.62388 2.35165i 0.278014 0.0857560i
\(753\) 0 0
\(754\) 38.2381 + 22.0768i 1.39255 + 0.803990i
\(755\) 13.0270 57.0749i 0.474100 2.07717i
\(756\) 0 0
\(757\) −7.45750 32.6734i −0.271047 1.18754i −0.908779 0.417277i \(-0.862984\pi\)
0.637732 0.770258i \(-0.279873\pi\)
\(758\) −6.34053 + 20.5555i −0.230298 + 0.746609i
\(759\) 0 0
\(760\) −10.0493 + 25.6051i −0.364525 + 0.928794i
\(761\) 10.0095 + 3.08751i 0.362843 + 0.111922i 0.470816 0.882232i \(-0.343960\pi\)
−0.107973 + 0.994154i \(0.534436\pi\)
\(762\) 0 0
\(763\) −0.530243 6.50308i −0.0191961 0.235427i
\(764\) −6.66517 1.52128i −0.241137 0.0550381i
\(765\) 0 0
\(766\) −2.29035 + 1.32233i −0.0827537 + 0.0477779i
\(767\) 25.3438 + 82.1626i 0.915112 + 2.96672i
\(768\) 0 0
\(769\) 13.1951 10.5228i 0.475829 0.379461i −0.356006 0.934484i \(-0.615862\pi\)
0.831835 + 0.555023i \(0.187290\pi\)
\(770\) −6.49902 + 11.4291i −0.234209 + 0.411875i
\(771\) 0 0
\(772\) −15.3234 14.2181i −0.551502 0.511719i
\(773\) −9.77021 1.47262i −0.351410 0.0529665i −0.0290345 0.999578i \(-0.509243\pi\)
−0.322376 + 0.946612i \(0.604481\pi\)
\(774\) 0 0
\(775\) 0.678464 + 4.50132i 0.0243712 + 0.161692i
\(776\) −15.2134 7.32641i −0.546131 0.263003i
\(777\) 0 0
\(778\) 3.61205 1.73947i 0.129498 0.0623631i
\(779\) −27.8647 40.8700i −0.998357 1.46432i
\(780\) 0 0
\(781\) −0.523527 6.98598i −0.0187333 0.249978i
\(782\) 7.42857 + 18.9277i 0.265645 + 0.676852i
\(783\) 0 0
\(784\) 2.64262 + 6.48202i 0.0943793 + 0.231501i
\(785\) 80.7740i 2.88295i
\(786\) 0 0
\(787\) −7.10004 + 0.532074i −0.253089 + 0.0189664i −0.200670 0.979659i \(-0.564312\pi\)
−0.0524186 + 0.998625i \(0.516693\pi\)
\(788\) 6.45315 + 6.95484i 0.229884 + 0.247756i
\(789\) 0 0
\(790\) 1.00760 + 2.09231i 0.0358489 + 0.0744411i
\(791\) −7.43473 5.84966i −0.264349 0.207990i
\(792\) 0 0
\(793\) −23.2945 + 3.51108i −0.827212 + 0.124682i
\(794\) −3.81943 2.60404i −0.135547 0.0924141i
\(795\) 0 0
\(796\) 12.0670 13.0051i 0.427703 0.460955i
\(797\) −16.7160 + 20.9612i −0.592112 + 0.742485i −0.984125 0.177475i \(-0.943207\pi\)
0.392014 + 0.919959i \(0.371779\pi\)
\(798\) 0 0
\(799\) 17.8452 + 22.3772i 0.631317 + 0.791647i
\(800\) −8.96451 0.671797i −0.316943 0.0237516i
\(801\) 0 0
\(802\) 0.0631840 + 0.109438i 0.00223110 + 0.00386438i
\(803\) −3.57261 + 6.18794i −0.126075 + 0.218368i
\(804\) 0 0
\(805\) −48.3897 + 28.3625i −1.70551 + 0.999647i
\(806\) −3.27703 + 0.747960i −0.115428 + 0.0263458i
\(807\) 0 0
\(808\) −13.7251 5.38672i −0.482848 0.189504i
\(809\) −43.1255 16.9255i −1.51621 0.595069i −0.546097 0.837722i \(-0.683887\pi\)
−0.970113 + 0.242653i \(0.921982\pi\)
\(810\) 0 0
\(811\) −2.76664 + 0.631468i −0.0971500 + 0.0221738i −0.270820 0.962630i \(-0.587295\pi\)
0.173670 + 0.984804i \(0.444438\pi\)
\(812\) −12.0545 12.8220i −0.423032 0.449966i
\(813\) 0 0
\(814\) 1.75276 3.03588i 0.0614344 0.106407i
\(815\) −22.7055 39.3271i −0.795338 1.37757i
\(816\) 0 0
\(817\) −4.24417 0.318056i −0.148485 0.0111274i
\(818\) 6.20252 + 7.77771i 0.216866 + 0.271941i
\(819\) 0 0
\(820\) 15.6856 19.6691i 0.547764 0.686874i
\(821\) 16.1136 17.3663i 0.562367 0.606087i −0.386297 0.922375i \(-0.626246\pi\)
0.948663 + 0.316287i \(0.102436\pi\)
\(822\) 0 0
\(823\) 8.16626 + 5.56766i 0.284658 + 0.194076i 0.697228 0.716849i \(-0.254416\pi\)
−0.412570 + 0.910926i \(0.635369\pi\)
\(824\) 15.0616 2.27018i 0.524697 0.0790854i
\(825\) 0 0
\(826\) −0.224725 34.2702i −0.00781918 1.19241i
\(827\) −0.416708 0.865304i −0.0144904 0.0300896i 0.893598 0.448868i \(-0.148173\pi\)
−0.908088 + 0.418778i \(0.862458\pi\)
\(828\) 0 0
\(829\) 22.8857 + 24.6650i 0.794855 + 0.856650i 0.992325 0.123659i \(-0.0394630\pi\)
−0.197470 + 0.980309i \(0.563273\pi\)
\(830\) −18.3345 + 1.37398i −0.636400 + 0.0476916i
\(831\) 0 0
\(832\) 6.63793i 0.230129i
\(833\) −18.1827 + 17.3203i −0.629992 + 0.600113i
\(834\) 0 0
\(835\) −23.0614 58.7595i −0.798073 2.03346i
\(836\) 0.730169 + 9.74343i 0.0252534 + 0.336984i
\(837\) 0 0
\(838\) −10.6113 15.5639i −0.366562 0.537647i
\(839\) −27.9737 + 13.4714i −0.965760 + 0.465085i −0.849184 0.528097i \(-0.822906\pi\)
−0.116575 + 0.993182i \(0.537192\pi\)
\(840\) 0 0
\(841\) 13.7355 + 6.61467i 0.473638 + 0.228092i
\(842\) 0.903890 + 5.99692i 0.0311501 + 0.206667i
\(843\) 0 0
\(844\) −8.18519 1.23372i −0.281746 0.0424663i
\(845\) −85.1666 79.0231i −2.92982 2.71848i
\(846\) 0 0
\(847\) 1.66608 24.3761i 0.0572470 0.837574i
\(848\) −5.79741 + 4.62328i −0.199084 + 0.158764i
\(849\) 0 0
\(850\) −9.50570 30.8167i −0.326043 1.05700i
\(851\) 12.9514 7.47747i 0.443967 0.256324i
\(852\) 0 0
\(853\) −54.5429 12.4491i −1.86751 0.426248i −0.869775 0.493448i \(-0.835736\pi\)
−0.997740 + 0.0671998i \(0.978594\pi\)
\(854\) 9.29371 + 1.33854i 0.318024 + 0.0458037i
\(855\) 0 0
\(856\) −3.96416 1.22278i −0.135492 0.0417938i
\(857\) 7.11942 18.1400i 0.243195 0.619650i −0.756204 0.654337i \(-0.772948\pi\)
0.999398 + 0.0346864i \(0.0110432\pi\)
\(858\) 0 0
\(859\) −6.59084 + 21.3670i −0.224877 + 0.729032i 0.770878 + 0.636983i \(0.219818\pi\)
−0.995754 + 0.0920489i \(0.970658\pi\)
\(860\) −0.481671 2.11034i −0.0164249 0.0719620i
\(861\) 0 0
\(862\) −4.85274 + 21.2613i −0.165285 + 0.724161i
\(863\) 15.1729 + 8.76009i 0.516492 + 0.298197i 0.735498 0.677526i \(-0.236948\pi\)
−0.219006 + 0.975724i \(0.570281\pi\)
\(864\) 0 0
\(865\) 50.7445 15.6526i 1.72537 0.532205i
\(866\) 3.01081 40.1765i 0.102312 1.36525i
\(867\) 0 0
\(868\) 1.33663 + 0.0913569i 0.0453682 + 0.00310086i
\(869\) 0.644944 + 0.514326i 0.0218782 + 0.0174473i
\(870\) 0 0
\(871\) 8.95510 59.4132i 0.303432 2.01314i
\(872\) 1.38920 2.03758i 0.0470442 0.0690012i
\(873\) 0 0
\(874\) −18.0856 + 37.5551i −0.611753 + 1.27032i
\(875\) 35.4580 17.3630i 1.19870 0.586977i
\(876\) 0 0
\(877\) 2.04296 1.39287i 0.0689860 0.0470339i −0.528336 0.849035i \(-0.677184\pi\)
0.597322 + 0.802002i \(0.296231\pi\)
\(878\) −18.3394 + 17.0165i −0.618926 + 0.574280i
\(879\) 0 0
\(880\) −4.62584 + 1.81551i −0.155937 + 0.0612007i
\(881\) −12.7838 −0.430698 −0.215349 0.976537i \(-0.569089\pi\)
−0.215349 + 0.976537i \(0.569089\pi\)
\(882\) 0 0
\(883\) −46.7814 −1.57432 −0.787160 0.616749i \(-0.788449\pi\)
−0.787160 + 0.616749i \(0.788449\pi\)
\(884\) 22.1668 8.69984i 0.745551 0.292607i
\(885\) 0 0
\(886\) 23.6132 21.9098i 0.793301 0.736075i
\(887\) −4.62581 + 3.15383i −0.155320 + 0.105895i −0.638486 0.769633i \(-0.720439\pi\)
0.483166 + 0.875529i \(0.339487\pi\)
\(888\) 0 0
\(889\) −17.5869 + 0.115325i −0.589845 + 0.00386787i
\(890\) 9.25826 19.2250i 0.310338 0.644423i
\(891\) 0 0
\(892\) −13.4940 + 19.7921i −0.451814 + 0.662689i
\(893\) −8.74487 + 58.0184i −0.292636 + 1.94151i
\(894\) 0 0
\(895\) −26.0113 20.7433i −0.869461 0.693372i
\(896\) −0.763254 + 2.53327i −0.0254985 + 0.0846305i
\(897\) 0 0
\(898\) 0.914073 12.1975i 0.0305030 0.407034i
\(899\) −3.21864 + 0.992818i −0.107348 + 0.0331123i
\(900\) 0 0
\(901\) −23.0373 13.3006i −0.767484 0.443107i
\(902\) 1.98854 8.71236i 0.0662111 0.290090i
\(903\) 0 0
\(904\) −0.795643 3.48594i −0.0264627 0.115941i
\(905\) 5.18212 16.8000i 0.172259 0.558451i
\(906\) 0 0
\(907\) 10.1464 25.8527i 0.336907 0.858426i −0.657562 0.753400i \(-0.728412\pi\)
0.994470 0.105026i \(-0.0334925\pi\)
\(908\) −2.12897 0.656701i −0.0706524 0.0217934i
\(909\) 0 0
\(910\) 33.2163 + 56.6708i 1.10111 + 1.87862i
\(911\) −10.4482 2.38474i −0.346165 0.0790098i 0.0459038 0.998946i \(-0.485383\pi\)
−0.392068 + 0.919936i \(0.628240\pi\)
\(912\) 0 0
\(913\) −5.65599 + 3.26549i −0.187186 + 0.108072i
\(914\) −9.37095 30.3799i −0.309964 1.00488i
\(915\) 0 0
\(916\) 10.2521 8.17576i 0.338738 0.270135i
\(917\) −22.1901 + 3.49358i −0.732781 + 0.115368i
\(918\) 0 0
\(919\) −14.0920 13.0754i −0.464851 0.431318i 0.412653 0.910888i \(-0.364602\pi\)
−0.877504 + 0.479570i \(0.840793\pi\)
\(920\) −20.9629 3.15965i −0.691128 0.104171i
\(921\) 0 0
\(922\) 0.424251 + 2.81472i 0.0139719 + 0.0926978i
\(923\) −31.5348 15.1864i −1.03798 0.499865i
\(924\) 0 0
\(925\) −21.3703 + 10.2914i −0.702651 + 0.338379i
\(926\) 0.641724 + 0.941236i 0.0210884 + 0.0309309i
\(927\) 0 0
\(928\) −0.497083 6.63311i −0.0163175 0.217743i
\(929\) 19.8307 + 50.5278i 0.650624 + 1.65776i 0.748964 + 0.662611i \(0.230552\pi\)
−0.0983398 + 0.995153i \(0.531353\pi\)
\(930\) 0 0
\(931\) −51.3811 3.17348i −1.68395 0.104006i
\(932\) 6.66691i 0.218382i
\(933\) 0 0
\(934\) −11.8327 + 0.886741i −0.387179 + 0.0290150i
\(935\) −12.1255 13.0681i −0.396545 0.427374i
\(936\) 0 0
\(937\) 7.17025 + 14.8892i 0.234242 + 0.486409i 0.984644 0.174573i \(-0.0558545\pi\)
−0.750402 + 0.660981i \(0.770140\pi\)
\(938\) −10.2491 + 21.6445i −0.334646 + 0.706717i
\(939\) 0 0
\(940\) −29.5078 + 4.44759i −0.962440 + 0.145064i
\(941\) 3.92089 + 2.67322i 0.127817 + 0.0871445i 0.625541 0.780191i \(-0.284878\pi\)
−0.497724 + 0.867336i \(0.665831\pi\)
\(942\) 0 0
\(943\) 25.9306 27.9466i 0.844418 0.910066i
\(944\) 8.07620 10.1272i 0.262858 0.329613i
\(945\) 0 0
\(946\) −0.479404 0.601154i −0.0155868 0.0195452i
\(947\) −14.5329 1.08909i −0.472255 0.0353906i −0.163523 0.986540i \(-0.552286\pi\)
−0.308732 + 0.951149i \(0.599905\pi\)
\(948\) 0 0
\(949\) 17.8494 + 30.9160i 0.579415 + 1.00358i
\(950\) 33.0556 57.2539i 1.07246 1.85756i
\(951\) 0 0
\(952\) −9.45998 + 0.771339i −0.306600 + 0.0249993i
\(953\) −33.2254 + 7.58348i −1.07628 + 0.245653i −0.723689 0.690126i \(-0.757555\pi\)
−0.352587 + 0.935779i \(0.614698\pi\)
\(954\) 0 0
\(955\) 23.8031 + 9.34202i 0.770249 + 0.302301i
\(956\) −7.54342 2.96057i −0.243972 0.0957518i
\(957\) 0 0
\(958\) −3.12096 + 0.712338i −0.100834 + 0.0230146i
\(959\) −32.3374 12.4474i −1.04423 0.401948i
\(960\) 0 0
\(961\) −15.3718 + 26.6247i −0.495864 + 0.858862i
\(962\) −8.75710 15.1678i −0.282340 0.489028i
\(963\) 0 0
\(964\) −20.6836 1.55002i −0.666173 0.0499227i
\(965\) 48.7477 + 61.1276i 1.56924 + 1.96777i
\(966\) 0 0
\(967\) 23.6286 29.6293i 0.759844 0.952814i −0.239995 0.970774i \(-0.577146\pi\)
0.999839 + 0.0179600i \(0.00571716\pi\)
\(968\) 6.28126 6.76959i 0.201887 0.217583i
\(969\) 0 0
\(970\) 52.1827 + 35.5776i 1.67549 + 1.14233i
\(971\) 11.5685 1.74367i 0.371251 0.0559570i 0.0392327 0.999230i \(-0.487509\pi\)
0.332018 + 0.943273i \(0.392271\pi\)
\(972\) 0 0
\(973\) 16.1238 + 3.56908i 0.516906 + 0.114420i
\(974\) −13.4743 27.9797i −0.431745 0.896528i
\(975\) 0 0
\(976\) 2.41389 + 2.60156i 0.0772668 + 0.0832738i
\(977\) 11.5190 0.863233i 0.368527 0.0276173i 0.110820 0.993840i \(-0.464652\pi\)
0.257707 + 0.966223i \(0.417033\pi\)
\(978\) 0 0
\(979\) 7.57964i 0.242246i
\(980\) −6.16027 25.4469i −0.196783 0.812871i
\(981\) 0 0
\(982\) −9.20813 23.4619i −0.293843 0.748700i
\(983\) −0.0731088 0.975569i −0.00233181 0.0311158i 0.995917 0.0902789i \(-0.0287758\pi\)
−0.998248 + 0.0591631i \(0.981157\pi\)
\(984\) 0 0
\(985\) −19.9899 29.3198i −0.636932 0.934208i
\(986\) 21.4992 10.3535i 0.684675 0.329722i
\(987\) 0 0
\(988\) 43.9820 + 21.1806i 1.39925 + 0.673844i
\(989\) −0.488892 3.24358i −0.0155459 0.103140i
\(990\) 0 0
\(991\) −17.1908 2.59109i −0.546083 0.0823087i −0.129794 0.991541i \(-0.541431\pi\)
−0.416289 + 0.909232i \(0.636670\pi\)
\(992\) 0.371201 + 0.344424i 0.0117856 + 0.0109355i
\(993\) 0 0
\(994\) 10.2886 + 9.42163i 0.326335 + 0.298836i
\(995\) −51.8796 + 41.3726i −1.64469 + 1.31160i
\(996\) 0 0
\(997\) −6.74656 21.8718i −0.213666 0.692687i −0.997431 0.0716305i \(-0.977180\pi\)
0.783765 0.621057i \(-0.213296\pi\)
\(998\) 31.2436 18.0385i 0.988999 0.570999i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 882.2.bl.a.719.11 yes 240
3.2 odd 2 inner 882.2.bl.a.719.10 yes 240
49.3 odd 42 inner 882.2.bl.a.395.10 240
147.101 even 42 inner 882.2.bl.a.395.11 yes 240
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
882.2.bl.a.395.10 240 49.3 odd 42 inner
882.2.bl.a.395.11 yes 240 147.101 even 42 inner
882.2.bl.a.719.10 yes 240 3.2 odd 2 inner
882.2.bl.a.719.11 yes 240 1.1 even 1 trivial