Properties

Label 880.4.b.b
Level 880880
Weight 44
Character orbit 880.b
Analytic conductor 51.92251.922
Analytic rank 11
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [880,4,Mod(529,880)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("880.529"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(880, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 0])) N = Newforms(chi, 4, names="a")
 
Level: N N == 880=24511 880 = 2^{4} \cdot 5 \cdot 11
Weight: k k == 4 4
Character orbit: [χ][\chi] == 880.b (of order 22, degree 11, not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,-5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 51.921680805151.9216808051
Analytic rank: 11
Dimension: 22
Coefficient field: Q(19)\Q(\sqrt{-19})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x2x+5 x^{2} - x + 5 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 220)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of β=12(1+19)\beta = \frac{1}{2}(1 + \sqrt{-19}). We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(2β+1)q35βq5+(4β+2)q7+8q9+11q11+(32β16)q13+(5β50)q15+(12β6)q1768q1938q21+(54β+27)q23++88q99+O(q100) q + ( - 2 \beta + 1) q^{3} - 5 \beta q^{5} + ( - 4 \beta + 2) q^{7} + 8 q^{9} + 11 q^{11} + (32 \beta - 16) q^{13} + (5 \beta - 50) q^{15} + (12 \beta - 6) q^{17} - 68 q^{19} - 38 q^{21} + ( - 54 \beta + 27) q^{23} + \cdots + 88 q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q5q5+16q9+22q1195q15136q1976q21225q25520q29350q31190q35+608q39760q4140q45+534q49+228q5155q55++176q99+O(q100) 2 q - 5 q^{5} + 16 q^{9} + 22 q^{11} - 95 q^{15} - 136 q^{19} - 76 q^{21} - 225 q^{25} - 520 q^{29} - 350 q^{31} - 190 q^{35} + 608 q^{39} - 760 q^{41} - 40 q^{45} + 534 q^{49} + 228 q^{51} - 55 q^{55}+ \cdots + 176 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/880Z)×\left(\mathbb{Z}/880\mathbb{Z}\right)^\times.

nn 111111 177177 321321 661661
χ(n)\chi(n) 11 1-1 11 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
529.1
0.500000 + 2.17945i
0.500000 2.17945i
0 4.35890i 0 −2.50000 10.8972i 0 8.71780i 0 8.00000 0
529.2 0 4.35890i 0 −2.50000 + 10.8972i 0 8.71780i 0 8.00000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 880.4.b.b 2
4.b odd 2 1 220.4.b.a 2
5.b even 2 1 inner 880.4.b.b 2
12.b even 2 1 1980.4.c.a 2
20.d odd 2 1 220.4.b.a 2
20.e even 4 2 1100.4.a.f 2
60.h even 2 1 1980.4.c.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
220.4.b.a 2 4.b odd 2 1
220.4.b.a 2 20.d odd 2 1
880.4.b.b 2 1.a even 1 1 trivial
880.4.b.b 2 5.b even 2 1 inner
1100.4.a.f 2 20.e even 4 2
1980.4.c.a 2 12.b even 2 1
1980.4.c.a 2 60.h even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T32+19 T_{3}^{2} + 19 acting on S4new(880,[χ])S_{4}^{\mathrm{new}}(880, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T2+19 T^{2} + 19 Copy content Toggle raw display
55 T2+5T+125 T^{2} + 5T + 125 Copy content Toggle raw display
77 T2+76 T^{2} + 76 Copy content Toggle raw display
1111 (T11)2 (T - 11)^{2} Copy content Toggle raw display
1313 T2+4864 T^{2} + 4864 Copy content Toggle raw display
1717 T2+684 T^{2} + 684 Copy content Toggle raw display
1919 (T+68)2 (T + 68)^{2} Copy content Toggle raw display
2323 T2+13851 T^{2} + 13851 Copy content Toggle raw display
2929 (T+260)2 (T + 260)^{2} Copy content Toggle raw display
3131 (T+175)2 (T + 175)^{2} Copy content Toggle raw display
3737 T2+28899 T^{2} + 28899 Copy content Toggle raw display
4141 (T+380)2 (T + 380)^{2} Copy content Toggle raw display
4343 T2+93100 T^{2} + 93100 Copy content Toggle raw display
4747 T2+93100 T^{2} + 93100 Copy content Toggle raw display
5353 T2+205504 T^{2} + 205504 Copy content Toggle raw display
5959 (T+143)2 (T + 143)^{2} Copy content Toggle raw display
6161 (T676)2 (T - 676)^{2} Copy content Toggle raw display
6767 T2+278179 T^{2} + 278179 Copy content Toggle raw display
7171 (T+1035)2 (T + 1035)^{2} Copy content Toggle raw display
7373 T2+109744 T^{2} + 109744 Copy content Toggle raw display
7979 (T218)2 (T - 218)^{2} Copy content Toggle raw display
8383 T2+575244 T^{2} + 575244 Copy content Toggle raw display
8989 (T+1279)2 (T + 1279)^{2} Copy content Toggle raw display
9797 T2+595251 T^{2} + 595251 Copy content Toggle raw display
show more
show less