Properties

Label 880.3.n.a.639.2
Level $880$
Weight $3$
Character 880.639
Analytic conductor $23.978$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [880,3,Mod(639,880)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(880, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1, 0])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("880.639"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 880 = 2^{4} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 880.n (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(23.9782632637\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 10 x^{19} - 35 x^{18} + 600 x^{17} + 281 x^{16} - 17140 x^{15} + 16590 x^{14} + \cdots + 10140467375 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{20}\cdot 5^{4}\cdot 11 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 639.2
Root \(5.71178 + 1.65831i\) of defining polynomial
Character \(\chi\) \(=\) 880.639
Dual form 880.3.n.a.639.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-5.21178 q^{3} +(2.33138 + 4.42320i) q^{5} -8.94099 q^{7} +18.1626 q^{9} +3.31662i q^{11} -4.60640i q^{13} +(-12.1507 - 23.0527i) q^{15} +32.7204i q^{17} +17.4499i q^{19} +46.5985 q^{21} +23.6253 q^{23} +(-14.1293 + 20.6243i) q^{25} -47.7537 q^{27} +7.05234 q^{29} +40.2409i q^{31} -17.2855i q^{33} +(-20.8449 - 39.5478i) q^{35} -54.9230i q^{37} +24.0075i q^{39} -13.5959 q^{41} +14.7714 q^{43} +(42.3441 + 80.3369i) q^{45} +59.2416 q^{47} +30.9413 q^{49} -170.531i q^{51} +13.6744i q^{53} +(-14.6701 + 7.73232i) q^{55} -90.9448i q^{57} +15.0250i q^{59} -109.420 q^{61} -162.392 q^{63} +(20.3750 - 10.7393i) q^{65} -129.380 q^{67} -123.130 q^{69} -44.6372i q^{71} +96.7596i q^{73} +(73.6389 - 107.489i) q^{75} -29.6539i q^{77} -46.4190i q^{79} +85.4178 q^{81} -129.339 q^{83} +(-144.729 + 76.2837i) q^{85} -36.7552 q^{87} +14.9683 q^{89} +41.1858i q^{91} -209.727i q^{93} +(-77.1841 + 40.6823i) q^{95} -168.151i q^{97} +60.2387i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 10 q^{5} + 40 q^{9} + 184 q^{21} - 18 q^{25} + 16 q^{29} + 144 q^{41} + 16 q^{45} + 36 q^{49} - 384 q^{61} - 32 q^{65} - 244 q^{69} + 236 q^{81} - 348 q^{85} - 100 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/880\mathbb{Z}\right)^\times\).

\(n\) \(111\) \(177\) \(321\) \(661\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −5.21178 −1.73726 −0.868630 0.495462i \(-0.834999\pi\)
−0.868630 + 0.495462i \(0.834999\pi\)
\(4\) 0 0
\(5\) 2.33138 + 4.42320i 0.466276 + 0.884639i
\(6\) 0 0
\(7\) −8.94099 −1.27728 −0.638642 0.769504i \(-0.720504\pi\)
−0.638642 + 0.769504i \(0.720504\pi\)
\(8\) 0 0
\(9\) 18.1626 2.01807
\(10\) 0 0
\(11\) 3.31662i 0.301511i
\(12\) 0 0
\(13\) 4.60640i 0.354339i −0.984180 0.177169i \(-0.943306\pi\)
0.984180 0.177169i \(-0.0566940\pi\)
\(14\) 0 0
\(15\) −12.1507 23.0527i −0.810043 1.53685i
\(16\) 0 0
\(17\) 32.7204i 1.92473i 0.271766 + 0.962363i \(0.412392\pi\)
−0.271766 + 0.962363i \(0.587608\pi\)
\(18\) 0 0
\(19\) 17.4499i 0.918414i 0.888329 + 0.459207i \(0.151866\pi\)
−0.888329 + 0.459207i \(0.848134\pi\)
\(20\) 0 0
\(21\) 46.5985 2.21897
\(22\) 0 0
\(23\) 23.6253 1.02719 0.513593 0.858034i \(-0.328314\pi\)
0.513593 + 0.858034i \(0.328314\pi\)
\(24\) 0 0
\(25\) −14.1293 + 20.6243i −0.565172 + 0.824973i
\(26\) 0 0
\(27\) −47.7537 −1.76865
\(28\) 0 0
\(29\) 7.05234 0.243184 0.121592 0.992580i \(-0.461200\pi\)
0.121592 + 0.992580i \(0.461200\pi\)
\(30\) 0 0
\(31\) 40.2409i 1.29809i 0.760749 + 0.649047i \(0.224832\pi\)
−0.760749 + 0.649047i \(0.775168\pi\)
\(32\) 0 0
\(33\) 17.2855i 0.523804i
\(34\) 0 0
\(35\) −20.8449 39.5478i −0.595568 1.12994i
\(36\) 0 0
\(37\) 54.9230i 1.48441i −0.670176 0.742203i \(-0.733781\pi\)
0.670176 0.742203i \(-0.266219\pi\)
\(38\) 0 0
\(39\) 24.0075i 0.615578i
\(40\) 0 0
\(41\) −13.5959 −0.331606 −0.165803 0.986159i \(-0.553022\pi\)
−0.165803 + 0.986159i \(0.553022\pi\)
\(42\) 0 0
\(43\) 14.7714 0.343521 0.171760 0.985139i \(-0.445054\pi\)
0.171760 + 0.985139i \(0.445054\pi\)
\(44\) 0 0
\(45\) 42.3441 + 80.3369i 0.940979 + 1.78526i
\(46\) 0 0
\(47\) 59.2416 1.26046 0.630229 0.776409i \(-0.282961\pi\)
0.630229 + 0.776409i \(0.282961\pi\)
\(48\) 0 0
\(49\) 30.9413 0.631456
\(50\) 0 0
\(51\) 170.531i 3.34375i
\(52\) 0 0
\(53\) 13.6744i 0.258007i 0.991644 + 0.129003i \(0.0411778\pi\)
−0.991644 + 0.129003i \(0.958822\pi\)
\(54\) 0 0
\(55\) −14.6701 + 7.73232i −0.266729 + 0.140588i
\(56\) 0 0
\(57\) 90.9448i 1.59552i
\(58\) 0 0
\(59\) 15.0250i 0.254661i 0.991860 + 0.127331i \(0.0406409\pi\)
−0.991860 + 0.127331i \(0.959359\pi\)
\(60\) 0 0
\(61\) −109.420 −1.79378 −0.896889 0.442256i \(-0.854178\pi\)
−0.896889 + 0.442256i \(0.854178\pi\)
\(62\) 0 0
\(63\) −162.392 −2.57765
\(64\) 0 0
\(65\) 20.3750 10.7393i 0.313462 0.165220i
\(66\) 0 0
\(67\) −129.380 −1.93105 −0.965523 0.260319i \(-0.916172\pi\)
−0.965523 + 0.260319i \(0.916172\pi\)
\(68\) 0 0
\(69\) −123.130 −1.78449
\(70\) 0 0
\(71\) 44.6372i 0.628693i −0.949308 0.314346i \(-0.898215\pi\)
0.949308 0.314346i \(-0.101785\pi\)
\(72\) 0 0
\(73\) 96.7596i 1.32547i 0.748852 + 0.662737i \(0.230605\pi\)
−0.748852 + 0.662737i \(0.769395\pi\)
\(74\) 0 0
\(75\) 73.6389 107.489i 0.981851 1.43319i
\(76\) 0 0
\(77\) 29.6539i 0.385116i
\(78\) 0 0
\(79\) 46.4190i 0.587582i −0.955870 0.293791i \(-0.905083\pi\)
0.955870 0.293791i \(-0.0949169\pi\)
\(80\) 0 0
\(81\) 85.4178 1.05454
\(82\) 0 0
\(83\) −129.339 −1.55830 −0.779148 0.626840i \(-0.784348\pi\)
−0.779148 + 0.626840i \(0.784348\pi\)
\(84\) 0 0
\(85\) −144.729 + 76.2837i −1.70269 + 0.897455i
\(86\) 0 0
\(87\) −36.7552 −0.422474
\(88\) 0 0
\(89\) 14.9683 0.168184 0.0840919 0.996458i \(-0.473201\pi\)
0.0840919 + 0.996458i \(0.473201\pi\)
\(90\) 0 0
\(91\) 41.1858i 0.452591i
\(92\) 0 0
\(93\) 209.727i 2.25513i
\(94\) 0 0
\(95\) −77.1841 + 40.6823i −0.812465 + 0.428235i
\(96\) 0 0
\(97\) 168.151i 1.73352i −0.498728 0.866759i \(-0.666199\pi\)
0.498728 0.866759i \(-0.333801\pi\)
\(98\) 0 0
\(99\) 60.2387i 0.608471i
\(100\) 0 0
\(101\) 40.0084 0.396123 0.198062 0.980190i \(-0.436535\pi\)
0.198062 + 0.980190i \(0.436535\pi\)
\(102\) 0 0
\(103\) −43.3528 −0.420901 −0.210451 0.977604i \(-0.567493\pi\)
−0.210451 + 0.977604i \(0.567493\pi\)
\(104\) 0 0
\(105\) 108.639 + 206.114i 1.03466 + 1.96299i
\(106\) 0 0
\(107\) 98.8535 0.923864 0.461932 0.886915i \(-0.347156\pi\)
0.461932 + 0.886915i \(0.347156\pi\)
\(108\) 0 0
\(109\) −93.2143 −0.855177 −0.427589 0.903973i \(-0.640637\pi\)
−0.427589 + 0.903973i \(0.640637\pi\)
\(110\) 0 0
\(111\) 286.246i 2.57880i
\(112\) 0 0
\(113\) 11.7332i 0.103834i 0.998651 + 0.0519169i \(0.0165331\pi\)
−0.998651 + 0.0519169i \(0.983467\pi\)
\(114\) 0 0
\(115\) 55.0796 + 104.499i 0.478953 + 0.908689i
\(116\) 0 0
\(117\) 83.6644i 0.715080i
\(118\) 0 0
\(119\) 292.552i 2.45842i
\(120\) 0 0
\(121\) −11.0000 −0.0909091
\(122\) 0 0
\(123\) 70.8586 0.576086
\(124\) 0 0
\(125\) −124.166 14.4135i −0.993330 0.115308i
\(126\) 0 0
\(127\) −18.3713 −0.144656 −0.0723281 0.997381i \(-0.523043\pi\)
−0.0723281 + 0.997381i \(0.523043\pi\)
\(128\) 0 0
\(129\) −76.9853 −0.596785
\(130\) 0 0
\(131\) 17.1165i 0.130660i 0.997864 + 0.0653300i \(0.0208100\pi\)
−0.997864 + 0.0653300i \(0.979190\pi\)
\(132\) 0 0
\(133\) 156.019i 1.17308i
\(134\) 0 0
\(135\) −111.332 211.224i −0.824682 1.56462i
\(136\) 0 0
\(137\) 204.809i 1.49496i −0.664285 0.747479i \(-0.731264\pi\)
0.664285 0.747479i \(-0.268736\pi\)
\(138\) 0 0
\(139\) 154.632i 1.11246i −0.831029 0.556229i \(-0.812248\pi\)
0.831029 0.556229i \(-0.187752\pi\)
\(140\) 0 0
\(141\) −308.754 −2.18974
\(142\) 0 0
\(143\) 15.2777 0.106837
\(144\) 0 0
\(145\) 16.4417 + 31.1939i 0.113391 + 0.215130i
\(146\) 0 0
\(147\) −161.259 −1.09700
\(148\) 0 0
\(149\) 109.984 0.738151 0.369075 0.929399i \(-0.379674\pi\)
0.369075 + 0.929399i \(0.379674\pi\)
\(150\) 0 0
\(151\) 157.308i 1.04178i 0.853625 + 0.520888i \(0.174399\pi\)
−0.853625 + 0.520888i \(0.825601\pi\)
\(152\) 0 0
\(153\) 594.288i 3.88424i
\(154\) 0 0
\(155\) −177.993 + 93.8169i −1.14834 + 0.605270i
\(156\) 0 0
\(157\) 31.9788i 0.203687i −0.994800 0.101843i \(-0.967526\pi\)
0.994800 0.101843i \(-0.0324740\pi\)
\(158\) 0 0
\(159\) 71.2677i 0.448225i
\(160\) 0 0
\(161\) −211.234 −1.31201
\(162\) 0 0
\(163\) −164.309 −1.00803 −0.504014 0.863695i \(-0.668144\pi\)
−0.504014 + 0.863695i \(0.668144\pi\)
\(164\) 0 0
\(165\) 76.4572 40.2991i 0.463377 0.244237i
\(166\) 0 0
\(167\) −73.3521 −0.439234 −0.219617 0.975586i \(-0.570481\pi\)
−0.219617 + 0.975586i \(0.570481\pi\)
\(168\) 0 0
\(169\) 147.781 0.874444
\(170\) 0 0
\(171\) 316.936i 1.85342i
\(172\) 0 0
\(173\) 252.766i 1.46108i 0.682872 + 0.730538i \(0.260731\pi\)
−0.682872 + 0.730538i \(0.739269\pi\)
\(174\) 0 0
\(175\) 126.330 184.402i 0.721886 1.05372i
\(176\) 0 0
\(177\) 78.3071i 0.442413i
\(178\) 0 0
\(179\) 198.094i 1.10667i −0.832958 0.553336i \(-0.813355\pi\)
0.832958 0.553336i \(-0.186645\pi\)
\(180\) 0 0
\(181\) 162.434 0.897427 0.448713 0.893676i \(-0.351882\pi\)
0.448713 + 0.893676i \(0.351882\pi\)
\(182\) 0 0
\(183\) 570.275 3.11626
\(184\) 0 0
\(185\) 242.935 128.046i 1.31316 0.692143i
\(186\) 0 0
\(187\) −108.521 −0.580327
\(188\) 0 0
\(189\) 426.965 2.25907
\(190\) 0 0
\(191\) 339.870i 1.77943i 0.456520 + 0.889713i \(0.349096\pi\)
−0.456520 + 0.889713i \(0.650904\pi\)
\(192\) 0 0
\(193\) 12.7864i 0.0662509i 0.999451 + 0.0331255i \(0.0105461\pi\)
−0.999451 + 0.0331255i \(0.989454\pi\)
\(194\) 0 0
\(195\) −106.190 + 55.9708i −0.544564 + 0.287030i
\(196\) 0 0
\(197\) 164.109i 0.833041i −0.909126 0.416520i \(-0.863249\pi\)
0.909126 0.416520i \(-0.136751\pi\)
\(198\) 0 0
\(199\) 7.06858i 0.0355205i 0.999842 + 0.0177602i \(0.00565356\pi\)
−0.999842 + 0.0177602i \(0.994346\pi\)
\(200\) 0 0
\(201\) 674.300 3.35473
\(202\) 0 0
\(203\) −63.0549 −0.310615
\(204\) 0 0
\(205\) −31.6971 60.1371i −0.154620 0.293352i
\(206\) 0 0
\(207\) 429.098 2.07294
\(208\) 0 0
\(209\) −57.8746 −0.276912
\(210\) 0 0
\(211\) 322.289i 1.52743i −0.645551 0.763717i \(-0.723372\pi\)
0.645551 0.763717i \(-0.276628\pi\)
\(212\) 0 0
\(213\) 232.639i 1.09220i
\(214\) 0 0
\(215\) 34.4378 + 65.3368i 0.160176 + 0.303892i
\(216\) 0 0
\(217\) 359.794i 1.65803i
\(218\) 0 0
\(219\) 504.290i 2.30269i
\(220\) 0 0
\(221\) 150.723 0.682005
\(222\) 0 0
\(223\) 223.474 1.00213 0.501063 0.865411i \(-0.332943\pi\)
0.501063 + 0.865411i \(0.332943\pi\)
\(224\) 0 0
\(225\) −256.626 + 374.592i −1.14056 + 1.66485i
\(226\) 0 0
\(227\) 207.360 0.913481 0.456741 0.889600i \(-0.349017\pi\)
0.456741 + 0.889600i \(0.349017\pi\)
\(228\) 0 0
\(229\) −341.681 −1.49206 −0.746028 0.665915i \(-0.768042\pi\)
−0.746028 + 0.665915i \(0.768042\pi\)
\(230\) 0 0
\(231\) 154.550i 0.669046i
\(232\) 0 0
\(233\) 284.842i 1.22250i 0.791439 + 0.611248i \(0.209332\pi\)
−0.791439 + 0.611248i \(0.790668\pi\)
\(234\) 0 0
\(235\) 138.115 + 262.037i 0.587722 + 1.11505i
\(236\) 0 0
\(237\) 241.925i 1.02078i
\(238\) 0 0
\(239\) 284.588i 1.19075i 0.803449 + 0.595373i \(0.202996\pi\)
−0.803449 + 0.595373i \(0.797004\pi\)
\(240\) 0 0
\(241\) 59.1427 0.245405 0.122703 0.992443i \(-0.460844\pi\)
0.122703 + 0.992443i \(0.460844\pi\)
\(242\) 0 0
\(243\) −15.3957 −0.0633567
\(244\) 0 0
\(245\) 72.1361 + 136.860i 0.294433 + 0.558610i
\(246\) 0 0
\(247\) 80.3811 0.325429
\(248\) 0 0
\(249\) 674.084 2.70716
\(250\) 0 0
\(251\) 265.930i 1.05948i −0.848160 0.529741i \(-0.822289\pi\)
0.848160 0.529741i \(-0.177711\pi\)
\(252\) 0 0
\(253\) 78.3562i 0.309708i
\(254\) 0 0
\(255\) 754.293 397.574i 2.95801 1.55911i
\(256\) 0 0
\(257\) 7.52232i 0.0292697i −0.999893 0.0146349i \(-0.995341\pi\)
0.999893 0.0146349i \(-0.00465859\pi\)
\(258\) 0 0
\(259\) 491.066i 1.89601i
\(260\) 0 0
\(261\) 128.089 0.490763
\(262\) 0 0
\(263\) 150.331 0.571602 0.285801 0.958289i \(-0.407740\pi\)
0.285801 + 0.958289i \(0.407740\pi\)
\(264\) 0 0
\(265\) −60.4843 + 31.8801i −0.228243 + 0.120302i
\(266\) 0 0
\(267\) −78.0117 −0.292179
\(268\) 0 0
\(269\) −458.467 −1.70434 −0.852169 0.523267i \(-0.824713\pi\)
−0.852169 + 0.523267i \(0.824713\pi\)
\(270\) 0 0
\(271\) 308.200i 1.13727i 0.822590 + 0.568635i \(0.192528\pi\)
−0.822590 + 0.568635i \(0.807472\pi\)
\(272\) 0 0
\(273\) 214.651i 0.786268i
\(274\) 0 0
\(275\) −68.4031 46.8616i −0.248739 0.170406i
\(276\) 0 0
\(277\) 234.559i 0.846783i 0.905947 + 0.423391i \(0.139161\pi\)
−0.905947 + 0.423391i \(0.860839\pi\)
\(278\) 0 0
\(279\) 730.881i 2.61965i
\(280\) 0 0
\(281\) −425.745 −1.51511 −0.757553 0.652774i \(-0.773605\pi\)
−0.757553 + 0.652774i \(0.773605\pi\)
\(282\) 0 0
\(283\) 120.687 0.426455 0.213228 0.977003i \(-0.431602\pi\)
0.213228 + 0.977003i \(0.431602\pi\)
\(284\) 0 0
\(285\) 402.267 212.027i 1.41146 0.743955i
\(286\) 0 0
\(287\) 121.560 0.423556
\(288\) 0 0
\(289\) −781.622 −2.70457
\(290\) 0 0
\(291\) 876.367i 3.01157i
\(292\) 0 0
\(293\) 479.969i 1.63812i −0.573708 0.819060i \(-0.694495\pi\)
0.573708 0.819060i \(-0.305505\pi\)
\(294\) 0 0
\(295\) −66.4586 + 35.0291i −0.225283 + 0.118743i
\(296\) 0 0
\(297\) 158.381i 0.533269i
\(298\) 0 0
\(299\) 108.828i 0.363972i
\(300\) 0 0
\(301\) −132.071 −0.438774
\(302\) 0 0
\(303\) −208.515 −0.688169
\(304\) 0 0
\(305\) −255.101 483.988i −0.836396 1.58685i
\(306\) 0 0
\(307\) 65.1335 0.212161 0.106081 0.994358i \(-0.466170\pi\)
0.106081 + 0.994358i \(0.466170\pi\)
\(308\) 0 0
\(309\) 225.945 0.731215
\(310\) 0 0
\(311\) 83.2282i 0.267615i 0.991007 + 0.133807i \(0.0427203\pi\)
−0.991007 + 0.133807i \(0.957280\pi\)
\(312\) 0 0
\(313\) 192.654i 0.615508i 0.951466 + 0.307754i \(0.0995775\pi\)
−0.951466 + 0.307754i \(0.900423\pi\)
\(314\) 0 0
\(315\) −378.598 718.292i −1.20190 2.28029i
\(316\) 0 0
\(317\) 232.076i 0.732100i 0.930595 + 0.366050i \(0.119290\pi\)
−0.930595 + 0.366050i \(0.880710\pi\)
\(318\) 0 0
\(319\) 23.3900i 0.0733228i
\(320\) 0 0
\(321\) −515.203 −1.60499
\(322\) 0 0
\(323\) −570.966 −1.76770
\(324\) 0 0
\(325\) 95.0039 + 65.0853i 0.292320 + 0.200262i
\(326\) 0 0
\(327\) 485.813 1.48567
\(328\) 0 0
\(329\) −529.678 −1.60996
\(330\) 0 0
\(331\) 97.7582i 0.295342i 0.989037 + 0.147671i \(0.0471777\pi\)
−0.989037 + 0.147671i \(0.952822\pi\)
\(332\) 0 0
\(333\) 997.547i 2.99564i
\(334\) 0 0
\(335\) −301.634 572.273i −0.900401 1.70828i
\(336\) 0 0
\(337\) 422.995i 1.25518i −0.778545 0.627589i \(-0.784042\pi\)
0.778545 0.627589i \(-0.215958\pi\)
\(338\) 0 0
\(339\) 61.1509i 0.180386i
\(340\) 0 0
\(341\) −133.464 −0.391390
\(342\) 0 0
\(343\) 161.462 0.470736
\(344\) 0 0
\(345\) −287.063 544.627i −0.832066 1.57863i
\(346\) 0 0
\(347\) −440.881 −1.27055 −0.635276 0.772286i \(-0.719113\pi\)
−0.635276 + 0.772286i \(0.719113\pi\)
\(348\) 0 0
\(349\) 436.709 1.25131 0.625657 0.780098i \(-0.284831\pi\)
0.625657 + 0.780098i \(0.284831\pi\)
\(350\) 0 0
\(351\) 219.973i 0.626702i
\(352\) 0 0
\(353\) 270.780i 0.767082i −0.923524 0.383541i \(-0.874705\pi\)
0.923524 0.383541i \(-0.125295\pi\)
\(354\) 0 0
\(355\) 197.439 104.066i 0.556166 0.293145i
\(356\) 0 0
\(357\) 1524.72i 4.27092i
\(358\) 0 0
\(359\) 482.341i 1.34357i −0.740747 0.671785i \(-0.765528\pi\)
0.740747 0.671785i \(-0.234472\pi\)
\(360\) 0 0
\(361\) 56.5023 0.156516
\(362\) 0 0
\(363\) 57.3296 0.157933
\(364\) 0 0
\(365\) −427.987 + 225.584i −1.17257 + 0.618037i
\(366\) 0 0
\(367\) −116.977 −0.318739 −0.159370 0.987219i \(-0.550946\pi\)
−0.159370 + 0.987219i \(0.550946\pi\)
\(368\) 0 0
\(369\) −246.937 −0.669205
\(370\) 0 0
\(371\) 122.262i 0.329548i
\(372\) 0 0
\(373\) 24.6905i 0.0661944i 0.999452 + 0.0330972i \(0.0105371\pi\)
−0.999452 + 0.0330972i \(0.989463\pi\)
\(374\) 0 0
\(375\) 647.127 + 75.1201i 1.72567 + 0.200320i
\(376\) 0 0
\(377\) 32.4859i 0.0861695i
\(378\) 0 0
\(379\) 73.5825i 0.194149i −0.995277 0.0970746i \(-0.969051\pi\)
0.995277 0.0970746i \(-0.0309485\pi\)
\(380\) 0 0
\(381\) 95.7474 0.251305
\(382\) 0 0
\(383\) 6.13890 0.0160285 0.00801423 0.999968i \(-0.497449\pi\)
0.00801423 + 0.999968i \(0.497449\pi\)
\(384\) 0 0
\(385\) 131.165 69.1346i 0.340688 0.179570i
\(386\) 0 0
\(387\) 268.288 0.693250
\(388\) 0 0
\(389\) 503.766 1.29503 0.647514 0.762053i \(-0.275809\pi\)
0.647514 + 0.762053i \(0.275809\pi\)
\(390\) 0 0
\(391\) 773.028i 1.97705i
\(392\) 0 0
\(393\) 89.2072i 0.226990i
\(394\) 0 0
\(395\) 205.320 108.220i 0.519798 0.273976i
\(396\) 0 0
\(397\) 567.375i 1.42916i −0.699555 0.714578i \(-0.746619\pi\)
0.699555 0.714578i \(-0.253381\pi\)
\(398\) 0 0
\(399\) 813.137i 2.03794i
\(400\) 0 0
\(401\) −516.351 −1.28766 −0.643830 0.765169i \(-0.722656\pi\)
−0.643830 + 0.765169i \(0.722656\pi\)
\(402\) 0 0
\(403\) 185.366 0.459965
\(404\) 0 0
\(405\) 199.142 + 377.820i 0.491708 + 0.932888i
\(406\) 0 0
\(407\) 182.159 0.447565
\(408\) 0 0
\(409\) −393.925 −0.963141 −0.481571 0.876407i \(-0.659933\pi\)
−0.481571 + 0.876407i \(0.659933\pi\)
\(410\) 0 0
\(411\) 1067.42i 2.59713i
\(412\) 0 0
\(413\) 134.339i 0.325275i
\(414\) 0 0
\(415\) −301.538 572.090i −0.726597 1.37853i
\(416\) 0 0
\(417\) 805.906i 1.93263i
\(418\) 0 0
\(419\) 107.398i 0.256319i 0.991754 + 0.128159i \(0.0409069\pi\)
−0.991754 + 0.128159i \(0.959093\pi\)
\(420\) 0 0
\(421\) 92.3044 0.219250 0.109625 0.993973i \(-0.465035\pi\)
0.109625 + 0.993973i \(0.465035\pi\)
\(422\) 0 0
\(423\) 1075.98 2.54370
\(424\) 0 0
\(425\) −674.835 462.316i −1.58785 1.08780i
\(426\) 0 0
\(427\) 978.327 2.29116
\(428\) 0 0
\(429\) −79.6240 −0.185604
\(430\) 0 0
\(431\) 443.446i 1.02888i −0.857527 0.514439i \(-0.828000\pi\)
0.857527 0.514439i \(-0.172000\pi\)
\(432\) 0 0
\(433\) 468.756i 1.08258i 0.840837 + 0.541289i \(0.182063\pi\)
−0.840837 + 0.541289i \(0.817937\pi\)
\(434\) 0 0
\(435\) −85.6905 162.576i −0.196990 0.373737i
\(436\) 0 0
\(437\) 412.258i 0.943382i
\(438\) 0 0
\(439\) 67.3501i 0.153417i 0.997054 + 0.0767085i \(0.0244411\pi\)
−0.997054 + 0.0767085i \(0.975559\pi\)
\(440\) 0 0
\(441\) 561.976 1.27432
\(442\) 0 0
\(443\) −338.549 −0.764219 −0.382110 0.924117i \(-0.624802\pi\)
−0.382110 + 0.924117i \(0.624802\pi\)
\(444\) 0 0
\(445\) 34.8969 + 66.2079i 0.0784201 + 0.148782i
\(446\) 0 0
\(447\) −573.215 −1.28236
\(448\) 0 0
\(449\) 132.750 0.295657 0.147828 0.989013i \(-0.452772\pi\)
0.147828 + 0.989013i \(0.452772\pi\)
\(450\) 0 0
\(451\) 45.0924i 0.0999831i
\(452\) 0 0
\(453\) 819.856i 1.80984i
\(454\) 0 0
\(455\) −182.173 + 96.0198i −0.400380 + 0.211033i
\(456\) 0 0
\(457\) 529.101i 1.15777i 0.815409 + 0.578885i \(0.196512\pi\)
−0.815409 + 0.578885i \(0.803488\pi\)
\(458\) 0 0
\(459\) 1562.52i 3.40418i
\(460\) 0 0
\(461\) 491.865 1.06695 0.533477 0.845815i \(-0.320885\pi\)
0.533477 + 0.845815i \(0.320885\pi\)
\(462\) 0 0
\(463\) −714.900 −1.54406 −0.772031 0.635585i \(-0.780759\pi\)
−0.772031 + 0.635585i \(0.780759\pi\)
\(464\) 0 0
\(465\) 927.662 488.953i 1.99497 1.05151i
\(466\) 0 0
\(467\) −606.408 −1.29852 −0.649260 0.760567i \(-0.724921\pi\)
−0.649260 + 0.760567i \(0.724921\pi\)
\(468\) 0 0
\(469\) 1156.79 2.46649
\(470\) 0 0
\(471\) 166.666i 0.353856i
\(472\) 0 0
\(473\) 48.9912i 0.103575i
\(474\) 0 0
\(475\) −359.892 246.555i −0.757666 0.519062i
\(476\) 0 0
\(477\) 248.362i 0.520676i
\(478\) 0 0
\(479\) 176.822i 0.369148i 0.982819 + 0.184574i \(0.0590906\pi\)
−0.982819 + 0.184574i \(0.940909\pi\)
\(480\) 0 0
\(481\) −252.997 −0.525982
\(482\) 0 0
\(483\) 1100.90 2.27930
\(484\) 0 0
\(485\) 743.766 392.025i 1.53354 0.808298i
\(486\) 0 0
\(487\) 479.170 0.983922 0.491961 0.870617i \(-0.336280\pi\)
0.491961 + 0.870617i \(0.336280\pi\)
\(488\) 0 0
\(489\) 856.340 1.75121
\(490\) 0 0
\(491\) 397.341i 0.809248i 0.914483 + 0.404624i \(0.132598\pi\)
−0.914483 + 0.404624i \(0.867402\pi\)
\(492\) 0 0
\(493\) 230.755i 0.468063i
\(494\) 0 0
\(495\) −266.447 + 140.439i −0.538278 + 0.283716i
\(496\) 0 0
\(497\) 399.101i 0.803019i
\(498\) 0 0
\(499\) 251.648i 0.504305i −0.967687 0.252153i \(-0.918862\pi\)
0.967687 0.252153i \(-0.0811385\pi\)
\(500\) 0 0
\(501\) 382.295 0.763063
\(502\) 0 0
\(503\) −341.999 −0.679919 −0.339959 0.940440i \(-0.610413\pi\)
−0.339959 + 0.940440i \(0.610413\pi\)
\(504\) 0 0
\(505\) 93.2749 + 176.965i 0.184703 + 0.350426i
\(506\) 0 0
\(507\) −770.202 −1.51914
\(508\) 0 0
\(509\) −348.704 −0.685077 −0.342538 0.939504i \(-0.611287\pi\)
−0.342538 + 0.939504i \(0.611287\pi\)
\(510\) 0 0
\(511\) 865.127i 1.69301i
\(512\) 0 0
\(513\) 833.295i 1.62436i
\(514\) 0 0
\(515\) −101.072 191.758i −0.196256 0.372346i
\(516\) 0 0
\(517\) 196.482i 0.380043i
\(518\) 0 0
\(519\) 1317.36i 2.53827i
\(520\) 0 0
\(521\) −415.301 −0.797123 −0.398562 0.917142i \(-0.630491\pi\)
−0.398562 + 0.917142i \(0.630491\pi\)
\(522\) 0 0
\(523\) 744.535 1.42359 0.711793 0.702389i \(-0.247883\pi\)
0.711793 + 0.702389i \(0.247883\pi\)
\(524\) 0 0
\(525\) −658.404 + 961.062i −1.25410 + 1.83059i
\(526\) 0 0
\(527\) −1316.70 −2.49848
\(528\) 0 0
\(529\) 29.1544 0.0551122
\(530\) 0 0
\(531\) 272.894i 0.513925i
\(532\) 0 0
\(533\) 62.6280i 0.117501i
\(534\) 0 0
\(535\) 230.465 + 437.248i 0.430776 + 0.817287i
\(536\) 0 0
\(537\) 1032.42i 1.92258i
\(538\) 0 0
\(539\) 102.621i 0.190391i
\(540\) 0 0
\(541\) −257.151 −0.475326 −0.237663 0.971348i \(-0.576381\pi\)
−0.237663 + 0.971348i \(0.576381\pi\)
\(542\) 0 0
\(543\) −846.571 −1.55906
\(544\) 0 0
\(545\) −217.318 412.305i −0.398749 0.756523i
\(546\) 0 0
\(547\) 551.325 1.00791 0.503953 0.863731i \(-0.331878\pi\)
0.503953 + 0.863731i \(0.331878\pi\)
\(548\) 0 0
\(549\) −1987.36 −3.61997
\(550\) 0 0
\(551\) 123.062i 0.223344i
\(552\) 0 0
\(553\) 415.032i 0.750509i
\(554\) 0 0
\(555\) −1266.12 + 667.350i −2.28130 + 1.20243i
\(556\) 0 0
\(557\) 841.665i 1.51107i 0.655109 + 0.755534i \(0.272623\pi\)
−0.655109 + 0.755534i \(0.727377\pi\)
\(558\) 0 0
\(559\) 68.0430i 0.121723i
\(560\) 0 0
\(561\) 565.588 1.00818
\(562\) 0 0
\(563\) −575.688 −1.02254 −0.511269 0.859421i \(-0.670824\pi\)
−0.511269 + 0.859421i \(0.670824\pi\)
\(564\) 0 0
\(565\) −51.8983 + 27.3546i −0.0918554 + 0.0484152i
\(566\) 0 0
\(567\) −763.720 −1.34695
\(568\) 0 0
\(569\) 735.995 1.29349 0.646744 0.762707i \(-0.276130\pi\)
0.646744 + 0.762707i \(0.276130\pi\)
\(570\) 0 0
\(571\) 632.991i 1.10857i −0.832328 0.554283i \(-0.812993\pi\)
0.832328 0.554283i \(-0.187007\pi\)
\(572\) 0 0
\(573\) 1771.33i 3.09133i
\(574\) 0 0
\(575\) −333.809 + 487.256i −0.580538 + 0.847401i
\(576\) 0 0
\(577\) 860.484i 1.49131i −0.666334 0.745654i \(-0.732137\pi\)
0.666334 0.745654i \(-0.267863\pi\)
\(578\) 0 0
\(579\) 66.6400i 0.115095i
\(580\) 0 0
\(581\) 1156.41 1.99039
\(582\) 0 0
\(583\) −45.3527 −0.0777919
\(584\) 0 0
\(585\) 370.064 195.054i 0.632588 0.333425i
\(586\) 0 0
\(587\) −645.463 −1.09960 −0.549798 0.835298i \(-0.685295\pi\)
−0.549798 + 0.835298i \(0.685295\pi\)
\(588\) 0 0
\(589\) −702.198 −1.19219
\(590\) 0 0
\(591\) 855.300i 1.44721i
\(592\) 0 0
\(593\) 159.924i 0.269686i 0.990867 + 0.134843i \(0.0430530\pi\)
−0.990867 + 0.134843i \(0.956947\pi\)
\(594\) 0 0
\(595\) 1294.02 682.052i 2.17482 1.14631i
\(596\) 0 0
\(597\) 36.8399i 0.0617083i
\(598\) 0 0
\(599\) 45.3949i 0.0757844i 0.999282 + 0.0378922i \(0.0120644\pi\)
−0.999282 + 0.0378922i \(0.987936\pi\)
\(600\) 0 0
\(601\) 455.715 0.758262 0.379131 0.925343i \(-0.376223\pi\)
0.379131 + 0.925343i \(0.376223\pi\)
\(602\) 0 0
\(603\) −2349.88 −3.89699
\(604\) 0 0
\(605\) −25.6452 48.6551i −0.0423888 0.0804217i
\(606\) 0 0
\(607\) −57.0950 −0.0940609 −0.0470305 0.998893i \(-0.514976\pi\)
−0.0470305 + 0.998893i \(0.514976\pi\)
\(608\) 0 0
\(609\) 328.628 0.539619
\(610\) 0 0
\(611\) 272.890i 0.446629i
\(612\) 0 0
\(613\) 756.252i 1.23369i 0.787085 + 0.616845i \(0.211589\pi\)
−0.787085 + 0.616845i \(0.788411\pi\)
\(614\) 0 0
\(615\) 165.199 + 313.422i 0.268616 + 0.509628i
\(616\) 0 0
\(617\) 392.159i 0.635590i −0.948159 0.317795i \(-0.897058\pi\)
0.948159 0.317795i \(-0.102942\pi\)
\(618\) 0 0
\(619\) 1017.10i 1.64314i −0.570109 0.821569i \(-0.693099\pi\)
0.570109 0.821569i \(-0.306901\pi\)
\(620\) 0 0
\(621\) −1128.19 −1.81674
\(622\) 0 0
\(623\) −133.832 −0.214818
\(624\) 0 0
\(625\) −225.725 582.815i −0.361160 0.932504i
\(626\) 0 0
\(627\) 301.630 0.481068
\(628\) 0 0
\(629\) 1797.10 2.85707
\(630\) 0 0
\(631\) 203.151i 0.321952i 0.986958 + 0.160976i \(0.0514641\pi\)
−0.986958 + 0.160976i \(0.948536\pi\)
\(632\) 0 0
\(633\) 1679.70i 2.65355i
\(634\) 0 0
\(635\) −42.8306 81.2600i −0.0674498 0.127969i
\(636\) 0 0
\(637\) 142.528i 0.223749i
\(638\) 0 0
\(639\) 810.729i 1.26875i
\(640\) 0 0
\(641\) 239.790 0.374087 0.187043 0.982352i \(-0.440109\pi\)
0.187043 + 0.982352i \(0.440109\pi\)
\(642\) 0 0
\(643\) −44.3768 −0.0690153 −0.0345076 0.999404i \(-0.510986\pi\)
−0.0345076 + 0.999404i \(0.510986\pi\)
\(644\) 0 0
\(645\) −179.482 340.521i −0.278267 0.527939i
\(646\) 0 0
\(647\) 234.286 0.362111 0.181055 0.983473i \(-0.442049\pi\)
0.181055 + 0.983473i \(0.442049\pi\)
\(648\) 0 0
\(649\) −49.8323 −0.0767833
\(650\) 0 0
\(651\) 1875.16i 2.88044i
\(652\) 0 0
\(653\) 710.306i 1.08776i −0.839163 0.543879i \(-0.816955\pi\)
0.839163 0.543879i \(-0.183045\pi\)
\(654\) 0 0
\(655\) −75.7094 + 39.9050i −0.115587 + 0.0609237i
\(656\) 0 0
\(657\) 1757.41i 2.67490i
\(658\) 0 0
\(659\) 355.382i 0.539275i −0.962962 0.269637i \(-0.913096\pi\)
0.962962 0.269637i \(-0.0869038\pi\)
\(660\) 0 0
\(661\) −442.779 −0.669862 −0.334931 0.942243i \(-0.608713\pi\)
−0.334931 + 0.942243i \(0.608713\pi\)
\(662\) 0 0
\(663\) −785.535 −1.18482
\(664\) 0 0
\(665\) 690.103 363.740i 1.03775 0.546978i
\(666\) 0 0
\(667\) 166.614 0.249795
\(668\) 0 0
\(669\) −1164.70 −1.74095
\(670\) 0 0
\(671\) 362.906i 0.540844i
\(672\) 0 0
\(673\) 179.454i 0.266648i −0.991072 0.133324i \(-0.957435\pi\)
0.991072 0.133324i \(-0.0425651\pi\)
\(674\) 0 0
\(675\) 674.727 984.887i 0.999595 1.45909i
\(676\) 0 0
\(677\) 573.195i 0.846669i 0.905973 + 0.423335i \(0.139141\pi\)
−0.905973 + 0.423335i \(0.860859\pi\)
\(678\) 0 0
\(679\) 1503.44i 2.21419i
\(680\) 0 0
\(681\) −1080.72 −1.58695
\(682\) 0 0
\(683\) −410.490 −0.601010 −0.300505 0.953780i \(-0.597155\pi\)
−0.300505 + 0.953780i \(0.597155\pi\)
\(684\) 0 0
\(685\) 905.911 477.489i 1.32250 0.697064i
\(686\) 0 0
\(687\) 1780.76 2.59209
\(688\) 0 0
\(689\) 62.9895 0.0914217
\(690\) 0 0
\(691\) 1283.81i 1.85789i 0.370212 + 0.928947i \(0.379285\pi\)
−0.370212 + 0.928947i \(0.620715\pi\)
\(692\) 0 0
\(693\) 538.593i 0.777191i
\(694\) 0 0
\(695\) 683.966 360.505i 0.984123 0.518713i
\(696\) 0 0
\(697\) 444.861i 0.638252i
\(698\) 0 0
\(699\) 1484.53i 2.12379i
\(700\) 0 0
\(701\) −653.254 −0.931889 −0.465944 0.884814i \(-0.654285\pi\)
−0.465944 + 0.884814i \(0.654285\pi\)
\(702\) 0 0
\(703\) 958.399 1.36330
\(704\) 0 0
\(705\) −719.823 1365.68i −1.02103 1.93713i
\(706\) 0 0
\(707\) −357.715 −0.505962
\(708\) 0 0
\(709\) 175.725 0.247850 0.123925 0.992292i \(-0.460452\pi\)
0.123925 + 0.992292i \(0.460452\pi\)
\(710\) 0 0
\(711\) 843.091i 1.18578i
\(712\) 0 0
\(713\) 950.703i 1.33338i
\(714\) 0 0
\(715\) 35.6182 + 67.5763i 0.0498156 + 0.0945123i
\(716\) 0 0
\(717\) 1483.21i 2.06863i
\(718\) 0 0
\(719\) 695.911i 0.967887i −0.875099 0.483943i \(-0.839204\pi\)
0.875099 0.483943i \(-0.160796\pi\)
\(720\) 0 0
\(721\) 387.617 0.537611
\(722\) 0 0
\(723\) −308.239 −0.426333
\(724\) 0 0
\(725\) −99.6447 + 145.450i −0.137441 + 0.200620i
\(726\) 0 0
\(727\) −187.681 −0.258158 −0.129079 0.991634i \(-0.541202\pi\)
−0.129079 + 0.991634i \(0.541202\pi\)
\(728\) 0 0
\(729\) −688.521 −0.944474
\(730\) 0 0
\(731\) 483.325i 0.661184i
\(732\) 0 0
\(733\) 156.326i 0.213269i 0.994298 + 0.106635i \(0.0340075\pi\)
−0.994298 + 0.106635i \(0.965993\pi\)
\(734\) 0 0
\(735\) −375.957 713.282i −0.511507 0.970451i
\(736\) 0 0
\(737\) 429.105i 0.582232i
\(738\) 0 0
\(739\) 934.196i 1.26414i 0.774913 + 0.632068i \(0.217794\pi\)
−0.774913 + 0.632068i \(0.782206\pi\)
\(740\) 0 0
\(741\) −418.928 −0.565355
\(742\) 0 0
\(743\) 949.248 1.27759 0.638794 0.769378i \(-0.279434\pi\)
0.638794 + 0.769378i \(0.279434\pi\)
\(744\) 0 0
\(745\) 256.416 + 486.483i 0.344182 + 0.652997i
\(746\) 0 0
\(747\) −2349.13 −3.14475
\(748\) 0 0
\(749\) −883.848 −1.18004
\(750\) 0 0
\(751\) 643.029i 0.856230i −0.903724 0.428115i \(-0.859178\pi\)
0.903724 0.428115i \(-0.140822\pi\)
\(752\) 0 0
\(753\) 1385.97i 1.84059i
\(754\) 0 0
\(755\) −695.805 + 366.746i −0.921596 + 0.485756i
\(756\) 0 0
\(757\) 932.399i 1.23170i −0.787862 0.615851i \(-0.788812\pi\)
0.787862 0.615851i \(-0.211188\pi\)
\(758\) 0 0
\(759\) 408.375i 0.538044i
\(760\) 0 0
\(761\) 542.027 0.712257 0.356128 0.934437i \(-0.384097\pi\)
0.356128 + 0.934437i \(0.384097\pi\)
\(762\) 0 0
\(763\) 833.429 1.09230
\(764\) 0 0
\(765\) −2628.65 + 1385.51i −3.43615 + 1.81113i
\(766\) 0 0
\(767\) 69.2112 0.0902363
\(768\) 0 0
\(769\) 746.509 0.970753 0.485377 0.874305i \(-0.338682\pi\)
0.485377 + 0.874305i \(0.338682\pi\)
\(770\) 0 0
\(771\) 39.2047i 0.0508491i
\(772\) 0 0
\(773\) 978.971i 1.26646i 0.773965 + 0.633228i \(0.218271\pi\)
−0.773965 + 0.633228i \(0.781729\pi\)
\(774\) 0 0
\(775\) −829.941 568.576i −1.07089 0.733647i
\(776\) 0 0
\(777\) 2559.33i 3.29386i
\(778\) 0 0
\(779\) 237.246i 0.304552i
\(780\) 0 0
\(781\) 148.045 0.189558
\(782\) 0 0
\(783\) −336.775 −0.430109
\(784\) 0 0
\(785\) 141.448 74.5548i 0.180189 0.0949742i
\(786\) 0 0
\(787\) −1215.01 −1.54385 −0.771924 0.635715i \(-0.780705\pi\)
−0.771924 + 0.635715i \(0.780705\pi\)
\(788\) 0 0
\(789\) −783.494 −0.993021
\(790\) 0 0
\(791\) 104.907i 0.132625i
\(792\) 0 0
\(793\) 504.034i 0.635604i
\(794\) 0 0
\(795\) 315.231 166.152i 0.396517 0.208997i
\(796\) 0 0
\(797\) 70.2191i 0.0881043i 0.999029 + 0.0440521i \(0.0140268\pi\)
−0.999029 + 0.0440521i \(0.985973\pi\)
\(798\) 0 0
\(799\) 1938.40i 2.42604i
\(800\) 0 0
\(801\) 271.865 0.339407
\(802\) 0 0
\(803\) −320.915 −0.399645
\(804\) 0 0
\(805\) −492.466 934.327i −0.611759 1.16065i
\(806\) 0 0
\(807\) 2389.43 2.96088
\(808\) 0 0
\(809\) −1177.27 −1.45521 −0.727607 0.685995i \(-0.759367\pi\)
−0.727607 + 0.685995i \(0.759367\pi\)
\(810\) 0 0
\(811\) 1061.68i 1.30910i −0.756019 0.654550i \(-0.772858\pi\)
0.756019 0.654550i \(-0.227142\pi\)
\(812\) 0 0
\(813\) 1606.27i 1.97573i
\(814\) 0 0
\(815\) −383.066 726.769i −0.470020 0.891741i
\(816\) 0 0
\(817\) 257.759i 0.315494i
\(818\) 0 0
\(819\) 748.043i 0.913361i
\(820\) 0 0
\(821\) 322.247 0.392505 0.196253 0.980553i \(-0.437123\pi\)
0.196253 + 0.980553i \(0.437123\pi\)
\(822\) 0 0
\(823\) −751.577 −0.913216 −0.456608 0.889668i \(-0.650936\pi\)
−0.456608 + 0.889668i \(0.650936\pi\)
\(824\) 0 0
\(825\) 356.502 + 244.232i 0.432124 + 0.296039i
\(826\) 0 0
\(827\) −1601.64 −1.93669 −0.968344 0.249620i \(-0.919694\pi\)
−0.968344 + 0.249620i \(0.919694\pi\)
\(828\) 0 0
\(829\) 1249.91 1.50773 0.753866 0.657028i \(-0.228187\pi\)
0.753866 + 0.657028i \(0.228187\pi\)
\(830\) 0 0
\(831\) 1222.47i 1.47108i
\(832\) 0 0
\(833\) 1012.41i 1.21538i
\(834\) 0 0
\(835\) −171.012 324.450i −0.204804 0.388563i
\(836\) 0 0
\(837\) 1921.65i 2.29588i
\(838\) 0 0
\(839\) 1039.99i 1.23956i −0.784778 0.619778i \(-0.787223\pi\)
0.784778 0.619778i \(-0.212777\pi\)
\(840\) 0 0
\(841\) −791.265 −0.940861
\(842\) 0 0
\(843\) 2218.89 2.63213
\(844\) 0 0
\(845\) 344.534 + 653.665i 0.407733 + 0.773568i
\(846\) 0 0
\(847\) 98.3509 0.116117
\(848\) 0 0
\(849\) −628.993 −0.740864
\(850\) 0 0
\(851\) 1297.57i 1.52476i
\(852\) 0 0
\(853\) 1161.51i 1.36167i 0.732436 + 0.680836i \(0.238383\pi\)
−0.732436 + 0.680836i \(0.761617\pi\)
\(854\) 0 0
\(855\) −1401.87 + 738.898i −1.63961 + 0.864208i
\(856\) 0 0
\(857\) 18.6298i 0.0217384i −0.999941 0.0108692i \(-0.996540\pi\)
0.999941 0.0108692i \(-0.00345984\pi\)
\(858\) 0 0
\(859\) 1310.76i 1.52591i 0.646449 + 0.762957i \(0.276253\pi\)
−0.646449 + 0.762957i \(0.723747\pi\)
\(860\) 0 0
\(861\) −633.546 −0.735826
\(862\) 0 0
\(863\) −332.009 −0.384715 −0.192357 0.981325i \(-0.561613\pi\)
−0.192357 + 0.981325i \(0.561613\pi\)
\(864\) 0 0
\(865\) −1118.03 + 589.294i −1.29252 + 0.681265i
\(866\) 0 0
\(867\) 4073.64 4.69855
\(868\) 0 0
\(869\) 153.954 0.177163
\(870\) 0 0
\(871\) 595.976i 0.684244i
\(872\) 0 0
\(873\) 3054.07i 3.49836i
\(874\) 0 0
\(875\) 1110.17 + 128.871i 1.26876 + 0.147281i
\(876\) 0 0
\(877\) 182.631i 0.208245i 0.994564 + 0.104123i \(0.0332035\pi\)
−0.994564 + 0.104123i \(0.966797\pi\)
\(878\) 0 0
\(879\) 2501.49i 2.84584i
\(880\) 0 0
\(881\) 1470.26 1.66885 0.834426 0.551120i \(-0.185799\pi\)
0.834426 + 0.551120i \(0.185799\pi\)
\(882\) 0 0
\(883\) 1041.14 1.17910 0.589548 0.807733i \(-0.299306\pi\)
0.589548 + 0.807733i \(0.299306\pi\)
\(884\) 0 0
\(885\) 346.367 182.564i 0.391376 0.206287i
\(886\) 0 0
\(887\) −1402.58 −1.58127 −0.790633 0.612290i \(-0.790249\pi\)
−0.790633 + 0.612290i \(0.790249\pi\)
\(888\) 0 0
\(889\) 164.258 0.184767
\(890\) 0 0
\(891\) 283.299i 0.317956i
\(892\) 0 0
\(893\) 1033.76i 1.15762i
\(894\) 0 0
\(895\) 876.209 461.833i 0.979005 0.516015i
\(896\) 0 0
\(897\) 567.185i 0.632313i
\(898\) 0 0
\(899\) 283.792i 0.315676i
\(900\) 0 0
\(901\) −447.430 −0.496592
\(902\) 0 0
\(903\) 688.325 0.762264
\(904\) 0 0
\(905\) 378.696 + 718.478i 0.418449 + 0.793899i
\(906\) 0 0
\(907\) 699.199 0.770892 0.385446 0.922730i \(-0.374048\pi\)
0.385446 + 0.922730i \(0.374048\pi\)
\(908\) 0 0
\(909\) 726.659 0.799405
\(910\) 0 0
\(911\) 1223.02i 1.34251i −0.741228 0.671253i \(-0.765756\pi\)
0.741228 0.671253i \(-0.234244\pi\)
\(912\) 0 0
\(913\) 428.967i 0.469844i
\(914\) 0 0
\(915\) 1329.53 + 2522.44i 1.45304 + 2.75676i
\(916\) 0 0
\(917\) 153.038i 0.166890i
\(918\) 0 0
\(919\) 803.727i 0.874566i 0.899324 + 0.437283i \(0.144059\pi\)
−0.899324 + 0.437283i \(0.855941\pi\)
\(920\) 0 0
\(921\) −339.462 −0.368579
\(922\) 0 0
\(923\) −205.617 −0.222770
\(924\) 0 0
\(925\) 1132.75 + 776.024i 1.22459 + 0.838945i
\(926\) 0 0
\(927\) −787.402 −0.849409
\(928\) 0 0
\(929\) −180.570 −0.194371 −0.0971853 0.995266i \(-0.530984\pi\)
−0.0971853 + 0.995266i \(0.530984\pi\)
\(930\) 0 0
\(931\) 539.922i 0.579938i
\(932\) 0 0
\(933\) 433.767i 0.464916i
\(934\) 0 0
\(935\) −253.004 480.010i −0.270593 0.513380i
\(936\) 0 0
\(937\) 159.144i 0.169844i −0.996388 0.0849222i \(-0.972936\pi\)
0.996388 0.0849222i \(-0.0270642\pi\)
\(938\) 0 0
\(939\) 1004.07i 1.06930i
\(940\) 0 0
\(941\) 1060.32 1.12680 0.563401 0.826183i \(-0.309493\pi\)
0.563401 + 0.826183i \(0.309493\pi\)
\(942\) 0 0
\(943\) −321.206 −0.340622
\(944\) 0 0
\(945\) 995.419 + 1888.55i 1.05335 + 1.99847i
\(946\) 0 0
\(947\) 42.3814 0.0447533 0.0223767 0.999750i \(-0.492877\pi\)
0.0223767 + 0.999750i \(0.492877\pi\)
\(948\) 0 0
\(949\) 445.713 0.469666
\(950\) 0 0
\(951\) 1209.53i 1.27185i
\(952\) 0 0
\(953\) 500.390i 0.525069i 0.964923 + 0.262534i \(0.0845583\pi\)
−0.964923 + 0.262534i \(0.915442\pi\)
\(954\) 0 0
\(955\) −1503.31 + 792.368i −1.57415 + 0.829705i
\(956\) 0 0
\(957\) 121.903i 0.127381i
\(958\) 0 0
\(959\) 1831.20i 1.90949i
\(960\) 0 0
\(961\) −658.330 −0.685047
\(962\) 0 0
\(963\) 1795.44 1.86442
\(964\) 0 0
\(965\) −56.5568 + 29.8100i −0.0586081 + 0.0308912i
\(966\) 0 0
\(967\) −390.757 −0.404092 −0.202046 0.979376i \(-0.564759\pi\)
−0.202046 + 0.979376i \(0.564759\pi\)
\(968\) 0 0
\(969\) 2975.75 3.07095
\(970\) 0 0
\(971\) 461.787i 0.475579i 0.971317 + 0.237790i \(0.0764229\pi\)
−0.971317 + 0.237790i \(0.923577\pi\)
\(972\) 0 0
\(973\) 1382.56i 1.42092i
\(974\) 0 0
\(975\) −495.139 339.210i −0.507835 0.347908i
\(976\) 0 0
\(977\) 901.857i 0.923088i 0.887117 + 0.461544i \(0.152704\pi\)
−0.887117 + 0.461544i \(0.847296\pi\)
\(978\) 0 0
\(979\) 49.6444i 0.0507093i
\(980\) 0 0
\(981\) −1693.02 −1.72581
\(982\) 0 0
\(983\) −98.1581 −0.0998556 −0.0499278 0.998753i \(-0.515899\pi\)
−0.0499278 + 0.998753i \(0.515899\pi\)
\(984\) 0 0
\(985\) 725.886 382.601i 0.736941 0.388427i
\(986\) 0 0
\(987\) 2760.57 2.79693
\(988\) 0 0
\(989\) 348.979 0.352860
\(990\) 0 0
\(991\) 427.551i 0.431434i −0.976456 0.215717i \(-0.930791\pi\)
0.976456 0.215717i \(-0.0692088\pi\)
\(992\) 0 0
\(993\) 509.494i 0.513086i
\(994\) 0 0
\(995\) −31.2657 + 16.4796i −0.0314228 + 0.0165624i
\(996\) 0 0
\(997\) 724.591i 0.726772i −0.931639 0.363386i \(-0.881621\pi\)
0.931639 0.363386i \(-0.118379\pi\)
\(998\) 0 0
\(999\) 2622.77i 2.62540i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 880.3.n.a.639.2 yes 20
4.3 odd 2 inner 880.3.n.a.639.20 yes 20
5.4 even 2 inner 880.3.n.a.639.19 yes 20
20.19 odd 2 inner 880.3.n.a.639.1 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
880.3.n.a.639.1 20 20.19 odd 2 inner
880.3.n.a.639.2 yes 20 1.1 even 1 trivial
880.3.n.a.639.19 yes 20 5.4 even 2 inner
880.3.n.a.639.20 yes 20 4.3 odd 2 inner