Properties

Label 880.2.bd.i.593.3
Level $880$
Weight $2$
Character 880.593
Analytic conductor $7.027$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [880,2,Mod(417,880)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("880.417"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(880, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 0, 1, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 880 = 2^{4} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 880.bd (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,4,0,8,0,0,0,0,0,8,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.02683537787\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(i)\)
Twist minimal: no (minimal twist has level 440)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 593.3
Character \(\chi\) \(=\) 880.593
Dual form 880.2.bd.i.417.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.78145 - 1.78145i) q^{3} +(-0.300869 + 2.21573i) q^{5} +(-1.52953 - 1.52953i) q^{7} +3.34712i q^{9} +(-0.328917 + 3.30027i) q^{11} +(0.884324 - 0.884324i) q^{13} +(4.48320 - 3.41123i) q^{15} +(-0.303994 - 0.303994i) q^{17} +5.84773 q^{19} +5.44955i q^{21} +(-2.07794 - 2.07794i) q^{23} +(-4.81896 - 1.33329i) q^{25} +(0.618370 - 0.618370i) q^{27} +7.00868 q^{29} +4.58066 q^{31} +(6.46522 - 5.29332i) q^{33} +(3.84921 - 2.92884i) q^{35} +(4.10163 - 4.10163i) q^{37} -3.15076 q^{39} -2.46834i q^{41} +(8.48972 - 8.48972i) q^{43} +(-7.41632 - 1.00704i) q^{45} +(-7.49702 + 7.49702i) q^{47} -2.32109i q^{49} +1.08310i q^{51} +(4.04743 + 4.04743i) q^{53} +(-7.21357 - 1.72174i) q^{55} +(-10.4174 - 10.4174i) q^{57} -8.07502i q^{59} -2.60774i q^{61} +(5.11951 - 5.11951i) q^{63} +(1.69336 + 2.22549i) q^{65} +(-1.98917 + 1.98917i) q^{67} +7.40350i q^{69} -6.78733 q^{71} +(11.5640 - 11.5640i) q^{73} +(6.20953 + 10.9599i) q^{75} +(5.55095 - 4.54477i) q^{77} +7.60905 q^{79} +7.83816 q^{81} +(8.18822 - 8.18822i) q^{83} +(0.765033 - 0.582108i) q^{85} +(-12.4856 - 12.4856i) q^{87} -0.510584i q^{89} -2.70520 q^{91} +(-8.16021 - 8.16021i) q^{93} +(-1.75940 + 12.9570i) q^{95} +(1.60712 - 1.60712i) q^{97} +(-11.0464 - 1.10092i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 4 q^{3} + 8 q^{5} + 8 q^{11} - 24 q^{15} + 28 q^{23} + 4 q^{25} + 4 q^{27} - 24 q^{31} - 12 q^{33} + 4 q^{37} - 28 q^{45} - 8 q^{47} + 24 q^{53} - 12 q^{55} + 52 q^{67} - 48 q^{71} + 24 q^{75} + 56 q^{77}+ \cdots - 36 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/880\mathbb{Z}\right)^\times\).

\(n\) \(111\) \(177\) \(321\) \(661\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{4}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.78145 1.78145i −1.02852 1.02852i −0.999581 0.0289385i \(-0.990787\pi\)
−0.0289385 0.999581i \(-0.509213\pi\)
\(4\) 0 0
\(5\) −0.300869 + 2.21573i −0.134553 + 0.990906i
\(6\) 0 0
\(7\) −1.52953 1.52953i −0.578107 0.578107i 0.356274 0.934381i \(-0.384047\pi\)
−0.934381 + 0.356274i \(0.884047\pi\)
\(8\) 0 0
\(9\) 3.34712i 1.11571i
\(10\) 0 0
\(11\) −0.328917 + 3.30027i −0.0991722 + 0.995070i
\(12\) 0 0
\(13\) 0.884324 0.884324i 0.245267 0.245267i −0.573758 0.819025i \(-0.694515\pi\)
0.819025 + 0.573758i \(0.194515\pi\)
\(14\) 0 0
\(15\) 4.48320 3.41123i 1.15756 0.880777i
\(16\) 0 0
\(17\) −0.303994 0.303994i −0.0737294 0.0737294i 0.669280 0.743010i \(-0.266602\pi\)
−0.743010 + 0.669280i \(0.766602\pi\)
\(18\) 0 0
\(19\) 5.84773 1.34156 0.670781 0.741655i \(-0.265959\pi\)
0.670781 + 0.741655i \(0.265959\pi\)
\(20\) 0 0
\(21\) 5.44955i 1.18919i
\(22\) 0 0
\(23\) −2.07794 2.07794i −0.433281 0.433281i 0.456462 0.889743i \(-0.349117\pi\)
−0.889743 + 0.456462i \(0.849117\pi\)
\(24\) 0 0
\(25\) −4.81896 1.33329i −0.963791 0.266658i
\(26\) 0 0
\(27\) 0.618370 0.618370i 0.119005 0.119005i
\(28\) 0 0
\(29\) 7.00868 1.30148 0.650740 0.759301i \(-0.274459\pi\)
0.650740 + 0.759301i \(0.274459\pi\)
\(30\) 0 0
\(31\) 4.58066 0.822711 0.411356 0.911475i \(-0.365055\pi\)
0.411356 + 0.911475i \(0.365055\pi\)
\(32\) 0 0
\(33\) 6.46522 5.29332i 1.12545 0.921449i
\(34\) 0 0
\(35\) 3.84921 2.92884i 0.650636 0.495064i
\(36\) 0 0
\(37\) 4.10163 4.10163i 0.674303 0.674303i −0.284402 0.958705i \(-0.591795\pi\)
0.958705 + 0.284402i \(0.0917951\pi\)
\(38\) 0 0
\(39\) −3.15076 −0.504525
\(40\) 0 0
\(41\) 2.46834i 0.385490i −0.981249 0.192745i \(-0.938261\pi\)
0.981249 0.192745i \(-0.0617390\pi\)
\(42\) 0 0
\(43\) 8.48972 8.48972i 1.29467 1.29467i 0.362806 0.931865i \(-0.381819\pi\)
0.931865 0.362806i \(-0.118181\pi\)
\(44\) 0 0
\(45\) −7.41632 1.00704i −1.10556 0.150121i
\(46\) 0 0
\(47\) −7.49702 + 7.49702i −1.09355 + 1.09355i −0.0984072 + 0.995146i \(0.531375\pi\)
−0.995146 + 0.0984072i \(0.968625\pi\)
\(48\) 0 0
\(49\) 2.32109i 0.331585i
\(50\) 0 0
\(51\) 1.08310i 0.151664i
\(52\) 0 0
\(53\) 4.04743 + 4.04743i 0.555957 + 0.555957i 0.928154 0.372197i \(-0.121395\pi\)
−0.372197 + 0.928154i \(0.621395\pi\)
\(54\) 0 0
\(55\) −7.21357 1.72174i −0.972678 0.232160i
\(56\) 0 0
\(57\) −10.4174 10.4174i −1.37982 1.37982i
\(58\) 0 0
\(59\) 8.07502i 1.05128i −0.850708 0.525639i \(-0.823826\pi\)
0.850708 0.525639i \(-0.176174\pi\)
\(60\) 0 0
\(61\) 2.60774i 0.333887i −0.985966 0.166944i \(-0.946610\pi\)
0.985966 0.166944i \(-0.0533898\pi\)
\(62\) 0 0
\(63\) 5.11951 5.11951i 0.644997 0.644997i
\(64\) 0 0
\(65\) 1.69336 + 2.22549i 0.210036 + 0.276038i
\(66\) 0 0
\(67\) −1.98917 + 1.98917i −0.243016 + 0.243016i −0.818096 0.575081i \(-0.804971\pi\)
0.575081 + 0.818096i \(0.304971\pi\)
\(68\) 0 0
\(69\) 7.40350i 0.891277i
\(70\) 0 0
\(71\) −6.78733 −0.805508 −0.402754 0.915308i \(-0.631947\pi\)
−0.402754 + 0.915308i \(0.631947\pi\)
\(72\) 0 0
\(73\) 11.5640 11.5640i 1.35346 1.35346i 0.471700 0.881759i \(-0.343641\pi\)
0.881759 0.471700i \(-0.156359\pi\)
\(74\) 0 0
\(75\) 6.20953 + 10.9599i 0.717015 + 1.26554i
\(76\) 0 0
\(77\) 5.55095 4.54477i 0.632589 0.517925i
\(78\) 0 0
\(79\) 7.60905 0.856086 0.428043 0.903758i \(-0.359203\pi\)
0.428043 + 0.903758i \(0.359203\pi\)
\(80\) 0 0
\(81\) 7.83816 0.870907
\(82\) 0 0
\(83\) 8.18822 8.18822i 0.898774 0.898774i −0.0965539 0.995328i \(-0.530782\pi\)
0.995328 + 0.0965539i \(0.0307820\pi\)
\(84\) 0 0
\(85\) 0.765033 0.582108i 0.0829794 0.0631385i
\(86\) 0 0
\(87\) −12.4856 12.4856i −1.33860 1.33860i
\(88\) 0 0
\(89\) 0.510584i 0.0541218i −0.999634 0.0270609i \(-0.991385\pi\)
0.999634 0.0270609i \(-0.00861480\pi\)
\(90\) 0 0
\(91\) −2.70520 −0.283582
\(92\) 0 0
\(93\) −8.16021 8.16021i −0.846175 0.846175i
\(94\) 0 0
\(95\) −1.75940 + 12.9570i −0.180511 + 1.32936i
\(96\) 0 0
\(97\) 1.60712 1.60712i 0.163178 0.163178i −0.620795 0.783973i \(-0.713190\pi\)
0.783973 + 0.620795i \(0.213190\pi\)
\(98\) 0 0
\(99\) −11.0464 1.10092i −1.11021 0.110647i
\(100\) 0 0
\(101\) 18.1666i 1.80764i 0.427913 + 0.903820i \(0.359249\pi\)
−0.427913 + 0.903820i \(0.640751\pi\)
\(102\) 0 0
\(103\) 12.6439 + 12.6439i 1.24584 + 1.24584i 0.957540 + 0.288299i \(0.0930898\pi\)
0.288299 + 0.957540i \(0.406910\pi\)
\(104\) 0 0
\(105\) −12.0748 1.63960i −1.17837 0.160008i
\(106\) 0 0
\(107\) 8.57552 + 8.57552i 0.829027 + 0.829027i 0.987382 0.158355i \(-0.0506190\pi\)
−0.158355 + 0.987382i \(0.550619\pi\)
\(108\) 0 0
\(109\) 3.10511 0.297415 0.148708 0.988881i \(-0.452489\pi\)
0.148708 + 0.988881i \(0.452489\pi\)
\(110\) 0 0
\(111\) −14.6137 −1.38707
\(112\) 0 0
\(113\) −7.20515 7.20515i −0.677803 0.677803i 0.281699 0.959503i \(-0.409102\pi\)
−0.959503 + 0.281699i \(0.909102\pi\)
\(114\) 0 0
\(115\) 5.22936 3.97898i 0.487640 0.371042i
\(116\) 0 0
\(117\) 2.95994 + 2.95994i 0.273646 + 0.273646i
\(118\) 0 0
\(119\) 0.929935i 0.0852470i
\(120\) 0 0
\(121\) −10.7836 2.17103i −0.980330 0.197367i
\(122\) 0 0
\(123\) −4.39722 + 4.39722i −0.396484 + 0.396484i
\(124\) 0 0
\(125\) 4.40409 10.2764i 0.393914 0.919147i
\(126\) 0 0
\(127\) 0.487942 + 0.487942i 0.0432978 + 0.0432978i 0.728424 0.685126i \(-0.240253\pi\)
−0.685126 + 0.728424i \(0.740253\pi\)
\(128\) 0 0
\(129\) −30.2480 −2.66319
\(130\) 0 0
\(131\) 12.6997i 1.10958i 0.831990 + 0.554791i \(0.187202\pi\)
−0.831990 + 0.554791i \(0.812798\pi\)
\(132\) 0 0
\(133\) −8.94427 8.94427i −0.775567 0.775567i
\(134\) 0 0
\(135\) 1.18410 + 1.55619i 0.101911 + 0.133936i
\(136\) 0 0
\(137\) 10.4906 10.4906i 0.896274 0.896274i −0.0988305 0.995104i \(-0.531510\pi\)
0.995104 + 0.0988305i \(0.0315101\pi\)
\(138\) 0 0
\(139\) −12.5097 −1.06106 −0.530530 0.847666i \(-0.678007\pi\)
−0.530530 + 0.847666i \(0.678007\pi\)
\(140\) 0 0
\(141\) 26.7111 2.24948
\(142\) 0 0
\(143\) 2.62764 + 3.20938i 0.219735 + 0.268382i
\(144\) 0 0
\(145\) −2.10869 + 15.5294i −0.175117 + 1.28964i
\(146\) 0 0
\(147\) −4.13491 + 4.13491i −0.341041 + 0.341041i
\(148\) 0 0
\(149\) 8.41517 0.689398 0.344699 0.938713i \(-0.387981\pi\)
0.344699 + 0.938713i \(0.387981\pi\)
\(150\) 0 0
\(151\) 6.83507i 0.556230i 0.960548 + 0.278115i \(0.0897097\pi\)
−0.960548 + 0.278115i \(0.910290\pi\)
\(152\) 0 0
\(153\) 1.01750 1.01750i 0.0822603 0.0822603i
\(154\) 0 0
\(155\) −1.37818 + 10.1495i −0.110698 + 0.815230i
\(156\) 0 0
\(157\) −13.0855 + 13.0855i −1.04434 + 1.04434i −0.0453663 + 0.998970i \(0.514445\pi\)
−0.998970 + 0.0453663i \(0.985555\pi\)
\(158\) 0 0
\(159\) 14.4206i 1.14363i
\(160\) 0 0
\(161\) 6.35654i 0.500966i
\(162\) 0 0
\(163\) 12.8355 + 12.8355i 1.00535 + 1.00535i 0.999986 + 0.00536615i \(0.00170811\pi\)
0.00536615 + 0.999986i \(0.498292\pi\)
\(164\) 0 0
\(165\) 9.78341 + 15.9178i 0.761637 + 1.23920i
\(166\) 0 0
\(167\) −2.60268 2.60268i −0.201402 0.201402i 0.599199 0.800600i \(-0.295486\pi\)
−0.800600 + 0.599199i \(0.795486\pi\)
\(168\) 0 0
\(169\) 11.4359i 0.879688i
\(170\) 0 0
\(171\) 19.5730i 1.49679i
\(172\) 0 0
\(173\) −2.92391 + 2.92391i −0.222301 + 0.222301i −0.809467 0.587166i \(-0.800244\pi\)
0.587166 + 0.809467i \(0.300244\pi\)
\(174\) 0 0
\(175\) 5.33142 + 9.41003i 0.403018 + 0.711331i
\(176\) 0 0
\(177\) −14.3852 + 14.3852i −1.08126 + 1.08126i
\(178\) 0 0
\(179\) 3.79240i 0.283457i −0.989906 0.141728i \(-0.954734\pi\)
0.989906 0.141728i \(-0.0452660\pi\)
\(180\) 0 0
\(181\) −9.76096 −0.725526 −0.362763 0.931881i \(-0.618167\pi\)
−0.362763 + 0.931881i \(0.618167\pi\)
\(182\) 0 0
\(183\) −4.64556 + 4.64556i −0.343410 + 0.343410i
\(184\) 0 0
\(185\) 7.85406 + 10.3222i 0.577442 + 0.758900i
\(186\) 0 0
\(187\) 1.10325 0.903276i 0.0806779 0.0660540i
\(188\) 0 0
\(189\) −1.89163 −0.137596
\(190\) 0 0
\(191\) 13.5188 0.978188 0.489094 0.872231i \(-0.337328\pi\)
0.489094 + 0.872231i \(0.337328\pi\)
\(192\) 0 0
\(193\) −16.9973 + 16.9973i −1.22350 + 1.22350i −0.257114 + 0.966381i \(0.582772\pi\)
−0.966381 + 0.257114i \(0.917228\pi\)
\(194\) 0 0
\(195\) 0.947964 6.98124i 0.0678851 0.499937i
\(196\) 0 0
\(197\) 7.79758 + 7.79758i 0.555555 + 0.555555i 0.928039 0.372484i \(-0.121494\pi\)
−0.372484 + 0.928039i \(0.621494\pi\)
\(198\) 0 0
\(199\) 18.7501i 1.32916i −0.747217 0.664580i \(-0.768610\pi\)
0.747217 0.664580i \(-0.231390\pi\)
\(200\) 0 0
\(201\) 7.08720 0.499892
\(202\) 0 0
\(203\) −10.7200 10.7200i −0.752394 0.752394i
\(204\) 0 0
\(205\) 5.46918 + 0.742646i 0.381984 + 0.0518686i
\(206\) 0 0
\(207\) 6.95512 6.95512i 0.483414 0.483414i
\(208\) 0 0
\(209\) −1.92342 + 19.2991i −0.133046 + 1.33495i
\(210\) 0 0
\(211\) 10.6204i 0.731139i −0.930784 0.365569i \(-0.880874\pi\)
0.930784 0.365569i \(-0.119126\pi\)
\(212\) 0 0
\(213\) 12.0913 + 12.0913i 0.828481 + 0.828481i
\(214\) 0 0
\(215\) 16.2567 + 21.3653i 1.10870 + 1.45710i
\(216\) 0 0
\(217\) −7.00625 7.00625i −0.475615 0.475615i
\(218\) 0 0
\(219\) −41.2012 −2.78412
\(220\) 0 0
\(221\) −0.537659 −0.0361669
\(222\) 0 0
\(223\) −2.61503 2.61503i −0.175115 0.175115i 0.614107 0.789223i \(-0.289516\pi\)
−0.789223 + 0.614107i \(0.789516\pi\)
\(224\) 0 0
\(225\) 4.46268 16.1296i 0.297512 1.07531i
\(226\) 0 0
\(227\) −12.0556 12.0556i −0.800158 0.800158i 0.182962 0.983120i \(-0.441432\pi\)
−0.983120 + 0.182962i \(0.941432\pi\)
\(228\) 0 0
\(229\) 10.9190i 0.721550i 0.932653 + 0.360775i \(0.117488\pi\)
−0.932653 + 0.360775i \(0.882512\pi\)
\(230\) 0 0
\(231\) −17.9850 1.79245i −1.18333 0.117934i
\(232\) 0 0
\(233\) 14.2452 14.2452i 0.933235 0.933235i −0.0646717 0.997907i \(-0.520600\pi\)
0.997907 + 0.0646717i \(0.0206000\pi\)
\(234\) 0 0
\(235\) −14.3558 18.8670i −0.936469 1.23075i
\(236\) 0 0
\(237\) −13.5551 13.5551i −0.880501 0.880501i
\(238\) 0 0
\(239\) 20.0592 1.29752 0.648762 0.760991i \(-0.275287\pi\)
0.648762 + 0.760991i \(0.275287\pi\)
\(240\) 0 0
\(241\) 9.03519i 0.582008i −0.956722 0.291004i \(-0.906011\pi\)
0.956722 0.291004i \(-0.0939893\pi\)
\(242\) 0 0
\(243\) −15.8184 15.8184i −1.01475 1.01475i
\(244\) 0 0
\(245\) 5.14292 + 0.698344i 0.328569 + 0.0446156i
\(246\) 0 0
\(247\) 5.17129 5.17129i 0.329042 0.329042i
\(248\) 0 0
\(249\) −29.1738 −1.84881
\(250\) 0 0
\(251\) 13.7921 0.870549 0.435275 0.900298i \(-0.356651\pi\)
0.435275 + 0.900298i \(0.356651\pi\)
\(252\) 0 0
\(253\) 7.54126 6.17431i 0.474115 0.388176i
\(254\) 0 0
\(255\) −2.39986 0.325871i −0.150285 0.0204068i
\(256\) 0 0
\(257\) 4.02455 4.02455i 0.251045 0.251045i −0.570354 0.821399i \(-0.693194\pi\)
0.821399 + 0.570354i \(0.193194\pi\)
\(258\) 0 0
\(259\) −12.5471 −0.779639
\(260\) 0 0
\(261\) 23.4589i 1.45207i
\(262\) 0 0
\(263\) −13.0080 + 13.0080i −0.802110 + 0.802110i −0.983425 0.181315i \(-0.941965\pi\)
0.181315 + 0.983425i \(0.441965\pi\)
\(264\) 0 0
\(265\) −10.1858 + 7.75028i −0.625707 + 0.476096i
\(266\) 0 0
\(267\) −0.909578 + 0.909578i −0.0556653 + 0.0556653i
\(268\) 0 0
\(269\) 19.8989i 1.21326i 0.794984 + 0.606630i \(0.207479\pi\)
−0.794984 + 0.606630i \(0.792521\pi\)
\(270\) 0 0
\(271\) 30.9084i 1.87755i −0.344531 0.938775i \(-0.611962\pi\)
0.344531 0.938775i \(-0.388038\pi\)
\(272\) 0 0
\(273\) 4.81917 + 4.81917i 0.291669 + 0.291669i
\(274\) 0 0
\(275\) 5.98526 15.4653i 0.360925 0.932595i
\(276\) 0 0
\(277\) −11.5217 11.5217i −0.692270 0.692270i 0.270461 0.962731i \(-0.412824\pi\)
−0.962731 + 0.270461i \(0.912824\pi\)
\(278\) 0 0
\(279\) 15.3320i 0.917904i
\(280\) 0 0
\(281\) 21.2994i 1.27062i −0.772259 0.635308i \(-0.780873\pi\)
0.772259 0.635308i \(-0.219127\pi\)
\(282\) 0 0
\(283\) −0.816018 + 0.816018i −0.0485072 + 0.0485072i −0.730944 0.682437i \(-0.760920\pi\)
0.682437 + 0.730944i \(0.260920\pi\)
\(284\) 0 0
\(285\) 26.2166 19.9480i 1.55293 1.18162i
\(286\) 0 0
\(287\) −3.77539 + 3.77539i −0.222854 + 0.222854i
\(288\) 0 0
\(289\) 16.8152i 0.989128i
\(290\) 0 0
\(291\) −5.72599 −0.335663
\(292\) 0 0
\(293\) −12.7346 + 12.7346i −0.743961 + 0.743961i −0.973338 0.229377i \(-0.926331\pi\)
0.229377 + 0.973338i \(0.426331\pi\)
\(294\) 0 0
\(295\) 17.8921 + 2.42952i 1.04172 + 0.141452i
\(296\) 0 0
\(297\) 1.83740 + 2.24418i 0.106617 + 0.130221i
\(298\) 0 0
\(299\) −3.67515 −0.212540
\(300\) 0 0
\(301\) −25.9705 −1.49692
\(302\) 0 0
\(303\) 32.3628 32.3628i 1.85919 1.85919i
\(304\) 0 0
\(305\) 5.77807 + 0.784588i 0.330851 + 0.0449254i
\(306\) 0 0
\(307\) −6.67492 6.67492i −0.380958 0.380958i 0.490489 0.871447i \(-0.336818\pi\)
−0.871447 + 0.490489i \(0.836818\pi\)
\(308\) 0 0
\(309\) 45.0489i 2.56274i
\(310\) 0 0
\(311\) 12.4220 0.704386 0.352193 0.935927i \(-0.385436\pi\)
0.352193 + 0.935927i \(0.385436\pi\)
\(312\) 0 0
\(313\) −13.2894 13.2894i −0.751162 0.751162i 0.223534 0.974696i \(-0.428241\pi\)
−0.974696 + 0.223534i \(0.928241\pi\)
\(314\) 0 0
\(315\) 9.80317 + 12.8838i 0.552346 + 0.725918i
\(316\) 0 0
\(317\) −2.84585 + 2.84585i −0.159839 + 0.159839i −0.782495 0.622656i \(-0.786053\pi\)
0.622656 + 0.782495i \(0.286053\pi\)
\(318\) 0 0
\(319\) −2.30527 + 23.1306i −0.129071 + 1.29506i
\(320\) 0 0
\(321\) 30.5537i 1.70534i
\(322\) 0 0
\(323\) −1.77768 1.77768i −0.0989126 0.0989126i
\(324\) 0 0
\(325\) −5.44058 + 3.08246i −0.301789 + 0.170984i
\(326\) 0 0
\(327\) −5.53159 5.53159i −0.305898 0.305898i
\(328\) 0 0
\(329\) 22.9338 1.26438
\(330\) 0 0
\(331\) 23.7666 1.30633 0.653165 0.757216i \(-0.273441\pi\)
0.653165 + 0.757216i \(0.273441\pi\)
\(332\) 0 0
\(333\) 13.7286 + 13.7286i 0.752324 + 0.752324i
\(334\) 0 0
\(335\) −3.80899 5.00595i −0.208107 0.273504i
\(336\) 0 0
\(337\) 9.10416 + 9.10416i 0.495935 + 0.495935i 0.910170 0.414235i \(-0.135951\pi\)
−0.414235 + 0.910170i \(0.635951\pi\)
\(338\) 0 0
\(339\) 25.6712i 1.39427i
\(340\) 0 0
\(341\) −1.50666 + 15.1174i −0.0815901 + 0.818656i
\(342\) 0 0
\(343\) −14.2569 + 14.2569i −0.769798 + 0.769798i
\(344\) 0 0
\(345\) −16.4042 2.22748i −0.883172 0.119924i
\(346\) 0 0
\(347\) 3.85348 + 3.85348i 0.206866 + 0.206866i 0.802934 0.596068i \(-0.203271\pi\)
−0.596068 + 0.802934i \(0.703271\pi\)
\(348\) 0 0
\(349\) −31.9890 −1.71233 −0.856165 0.516702i \(-0.827160\pi\)
−0.856165 + 0.516702i \(0.827160\pi\)
\(350\) 0 0
\(351\) 1.09368i 0.0583763i
\(352\) 0 0
\(353\) 2.82326 + 2.82326i 0.150267 + 0.150267i 0.778237 0.627970i \(-0.216114\pi\)
−0.627970 + 0.778237i \(0.716114\pi\)
\(354\) 0 0
\(355\) 2.04210 15.0389i 0.108383 0.798183i
\(356\) 0 0
\(357\) 1.65663 1.65663i 0.0876782 0.0876782i
\(358\) 0 0
\(359\) 23.6416 1.24776 0.623879 0.781521i \(-0.285556\pi\)
0.623879 + 0.781521i \(0.285556\pi\)
\(360\) 0 0
\(361\) 15.1960 0.799790
\(362\) 0 0
\(363\) 15.3429 + 23.0781i 0.805293 + 1.21128i
\(364\) 0 0
\(365\) 22.1434 + 29.1019i 1.15904 + 1.52326i
\(366\) 0 0
\(367\) 11.8905 11.8905i 0.620680 0.620680i −0.325025 0.945705i \(-0.605373\pi\)
0.945705 + 0.325025i \(0.105373\pi\)
\(368\) 0 0
\(369\) 8.26182 0.430093
\(370\) 0 0
\(371\) 12.3813i 0.642805i
\(372\) 0 0
\(373\) 1.89470 1.89470i 0.0981037 0.0981037i −0.656352 0.754455i \(-0.727901\pi\)
0.754455 + 0.656352i \(0.227901\pi\)
\(374\) 0 0
\(375\) −26.1525 + 10.4612i −1.35051 + 0.540213i
\(376\) 0 0
\(377\) 6.19795 6.19795i 0.319210 0.319210i
\(378\) 0 0
\(379\) 28.9628i 1.48772i 0.668336 + 0.743859i \(0.267007\pi\)
−0.668336 + 0.743859i \(0.732993\pi\)
\(380\) 0 0
\(381\) 1.73849i 0.0890654i
\(382\) 0 0
\(383\) −16.6202 16.6202i −0.849251 0.849251i 0.140789 0.990040i \(-0.455036\pi\)
−0.990040 + 0.140789i \(0.955036\pi\)
\(384\) 0 0
\(385\) 8.39990 + 13.6668i 0.428099 + 0.696525i
\(386\) 0 0
\(387\) 28.4161 + 28.4161i 1.44447 + 1.44447i
\(388\) 0 0
\(389\) 28.2986i 1.43479i −0.696665 0.717397i \(-0.745333\pi\)
0.696665 0.717397i \(-0.254667\pi\)
\(390\) 0 0
\(391\) 1.26337i 0.0638912i
\(392\) 0 0
\(393\) 22.6239 22.6239i 1.14123 1.14123i
\(394\) 0 0
\(395\) −2.28933 + 16.8596i −0.115189 + 0.848301i
\(396\) 0 0
\(397\) 19.7234 19.7234i 0.989888 0.989888i −0.0100613 0.999949i \(-0.503203\pi\)
0.999949 + 0.0100613i \(0.00320266\pi\)
\(398\) 0 0
\(399\) 31.8675i 1.59537i
\(400\) 0 0
\(401\) −38.0099 −1.89812 −0.949061 0.315092i \(-0.897965\pi\)
−0.949061 + 0.315092i \(0.897965\pi\)
\(402\) 0 0
\(403\) 4.05079 4.05079i 0.201784 0.201784i
\(404\) 0 0
\(405\) −2.35826 + 17.3673i −0.117183 + 0.862987i
\(406\) 0 0
\(407\) 12.1874 + 14.8856i 0.604107 + 0.737851i
\(408\) 0 0
\(409\) −2.46478 −0.121876 −0.0609378 0.998142i \(-0.519409\pi\)
−0.0609378 + 0.998142i \(0.519409\pi\)
\(410\) 0 0
\(411\) −37.3770 −1.84367
\(412\) 0 0
\(413\) −12.3510 + 12.3510i −0.607751 + 0.607751i
\(414\) 0 0
\(415\) 15.6793 + 20.6065i 0.769669 + 1.01153i
\(416\) 0 0
\(417\) 22.2854 + 22.2854i 1.09132 + 1.09132i
\(418\) 0 0
\(419\) 25.4043i 1.24108i −0.784175 0.620540i \(-0.786913\pi\)
0.784175 0.620540i \(-0.213087\pi\)
\(420\) 0 0
\(421\) 7.18265 0.350061 0.175031 0.984563i \(-0.443998\pi\)
0.175031 + 0.984563i \(0.443998\pi\)
\(422\) 0 0
\(423\) −25.0934 25.0934i −1.22008 1.22008i
\(424\) 0 0
\(425\) 1.05962 + 1.87025i 0.0513992 + 0.0907203i
\(426\) 0 0
\(427\) −3.98861 + 3.98861i −0.193023 + 0.193023i
\(428\) 0 0
\(429\) 1.03634 10.3984i 0.0500348 0.502038i
\(430\) 0 0
\(431\) 3.08421i 0.148561i −0.997237 0.0742806i \(-0.976334\pi\)
0.997237 0.0742806i \(-0.0236660\pi\)
\(432\) 0 0
\(433\) 11.3329 + 11.3329i 0.544624 + 0.544624i 0.924881 0.380257i \(-0.124164\pi\)
−0.380257 + 0.924881i \(0.624164\pi\)
\(434\) 0 0
\(435\) 31.4213 23.9082i 1.50654 1.14631i
\(436\) 0 0
\(437\) −12.1513 12.1513i −0.581274 0.581274i
\(438\) 0 0
\(439\) −4.53785 −0.216580 −0.108290 0.994119i \(-0.534537\pi\)
−0.108290 + 0.994119i \(0.534537\pi\)
\(440\) 0 0
\(441\) 7.76896 0.369951
\(442\) 0 0
\(443\) 5.92742 + 5.92742i 0.281620 + 0.281620i 0.833755 0.552135i \(-0.186187\pi\)
−0.552135 + 0.833755i \(0.686187\pi\)
\(444\) 0 0
\(445\) 1.13132 + 0.153619i 0.0536296 + 0.00728222i
\(446\) 0 0
\(447\) −14.9912 14.9912i −0.709059 0.709059i
\(448\) 0 0
\(449\) 20.5293i 0.968837i −0.874836 0.484419i \(-0.839031\pi\)
0.874836 0.484419i \(-0.160969\pi\)
\(450\) 0 0
\(451\) 8.14620 + 0.811878i 0.383589 + 0.0382299i
\(452\) 0 0
\(453\) 12.1763 12.1763i 0.572094 0.572094i
\(454\) 0 0
\(455\) 0.813909 5.99400i 0.0381566 0.281003i
\(456\) 0 0
\(457\) 22.7956 + 22.7956i 1.06633 + 1.06633i 0.997638 + 0.0686971i \(0.0218842\pi\)
0.0686971 + 0.997638i \(0.478116\pi\)
\(458\) 0 0
\(459\) −0.375962 −0.0175484
\(460\) 0 0
\(461\) 19.3522i 0.901323i −0.892695 0.450662i \(-0.851188\pi\)
0.892695 0.450662i \(-0.148812\pi\)
\(462\) 0 0
\(463\) −4.69686 4.69686i −0.218281 0.218281i 0.589492 0.807774i \(-0.299328\pi\)
−0.807774 + 0.589492i \(0.799328\pi\)
\(464\) 0 0
\(465\) 20.5360 15.6257i 0.952335 0.724625i
\(466\) 0 0
\(467\) −3.61995 + 3.61995i −0.167511 + 0.167511i −0.785885 0.618373i \(-0.787792\pi\)
0.618373 + 0.785885i \(0.287792\pi\)
\(468\) 0 0
\(469\) 6.08497 0.280978
\(470\) 0 0
\(471\) 46.6223 2.14824
\(472\) 0 0
\(473\) 25.2260 + 30.8108i 1.15989 + 1.41668i
\(474\) 0 0
\(475\) −28.1800 7.79673i −1.29299 0.357738i
\(476\) 0 0
\(477\) −13.5472 + 13.5472i −0.620284 + 0.620284i
\(478\) 0 0
\(479\) −19.7177 −0.900925 −0.450463 0.892795i \(-0.648741\pi\)
−0.450463 + 0.892795i \(0.648741\pi\)
\(480\) 0 0
\(481\) 7.25433i 0.330769i
\(482\) 0 0
\(483\) 11.3239 11.3239i 0.515253 0.515253i
\(484\) 0 0
\(485\) 3.07741 + 4.04447i 0.139738 + 0.183650i
\(486\) 0 0
\(487\) −11.1464 + 11.1464i −0.505091 + 0.505091i −0.913016 0.407925i \(-0.866253\pi\)
0.407925 + 0.913016i \(0.366253\pi\)
\(488\) 0 0
\(489\) 45.7315i 2.06805i
\(490\) 0 0
\(491\) 5.12509i 0.231292i 0.993290 + 0.115646i \(0.0368938\pi\)
−0.993290 + 0.115646i \(0.963106\pi\)
\(492\) 0 0
\(493\) −2.13060 2.13060i −0.0959573 0.0959573i
\(494\) 0 0
\(495\) 5.76287 24.1447i 0.259022 1.08522i
\(496\) 0 0
\(497\) 10.3814 + 10.3814i 0.465670 + 0.465670i
\(498\) 0 0
\(499\) 13.1043i 0.586629i 0.956016 + 0.293314i \(0.0947583\pi\)
−0.956016 + 0.293314i \(0.905242\pi\)
\(500\) 0 0
\(501\) 9.27309i 0.414291i
\(502\) 0 0
\(503\) −12.0287 + 12.0287i −0.536334 + 0.536334i −0.922450 0.386116i \(-0.873816\pi\)
0.386116 + 0.922450i \(0.373816\pi\)
\(504\) 0 0
\(505\) −40.2523 5.46575i −1.79120 0.243223i
\(506\) 0 0
\(507\) 20.3725 20.3725i 0.904776 0.904776i
\(508\) 0 0
\(509\) 33.3415i 1.47783i 0.673796 + 0.738917i \(0.264663\pi\)
−0.673796 + 0.738917i \(0.735337\pi\)
\(510\) 0 0
\(511\) −35.3748 −1.56489
\(512\) 0 0
\(513\) 3.61606 3.61606i 0.159653 0.159653i
\(514\) 0 0
\(515\) −31.8197 + 24.2114i −1.40214 + 1.06688i
\(516\) 0 0
\(517\) −22.2763 27.2081i −0.979712 1.19661i
\(518\) 0 0
\(519\) 10.4176 0.457281
\(520\) 0 0
\(521\) −27.1194 −1.18812 −0.594061 0.804420i \(-0.702476\pi\)
−0.594061 + 0.804420i \(0.702476\pi\)
\(522\) 0 0
\(523\) 16.8930 16.8930i 0.738678 0.738678i −0.233644 0.972322i \(-0.575065\pi\)
0.972322 + 0.233644i \(0.0750652\pi\)
\(524\) 0 0
\(525\) 7.26583 26.2611i 0.317107 1.14613i
\(526\) 0 0
\(527\) −1.39249 1.39249i −0.0606580 0.0606580i
\(528\) 0 0
\(529\) 14.3643i 0.624535i
\(530\) 0 0
\(531\) 27.0280 1.17292
\(532\) 0 0
\(533\) −2.18281 2.18281i −0.0945481 0.0945481i
\(534\) 0 0
\(535\) −21.5812 + 16.4210i −0.933036 + 0.709941i
\(536\) 0 0
\(537\) −6.75596 + 6.75596i −0.291541 + 0.291541i
\(538\) 0 0
\(539\) 7.66024 + 0.763446i 0.329950 + 0.0328840i
\(540\) 0 0
\(541\) 19.5896i 0.842221i −0.907009 0.421110i \(-0.861640\pi\)
0.907009 0.421110i \(-0.138360\pi\)
\(542\) 0 0
\(543\) 17.3886 + 17.3886i 0.746218 + 0.746218i
\(544\) 0 0
\(545\) −0.934230 + 6.88010i −0.0400180 + 0.294711i
\(546\) 0 0
\(547\) 5.45521 + 5.45521i 0.233248 + 0.233248i 0.814047 0.580799i \(-0.197260\pi\)
−0.580799 + 0.814047i \(0.697260\pi\)
\(548\) 0 0
\(549\) 8.72842 0.372520
\(550\) 0 0
\(551\) 40.9849 1.74602
\(552\) 0 0
\(553\) −11.6383 11.6383i −0.494909 0.494909i
\(554\) 0 0
\(555\) 4.39679 32.3800i 0.186634 1.37445i
\(556\) 0 0
\(557\) 1.93073 + 1.93073i 0.0818074 + 0.0818074i 0.746826 0.665019i \(-0.231577\pi\)
−0.665019 + 0.746826i \(0.731577\pi\)
\(558\) 0 0
\(559\) 15.0153i 0.635081i
\(560\) 0 0
\(561\) −3.57453 0.356250i −0.150917 0.0150409i
\(562\) 0 0
\(563\) 7.11122 7.11122i 0.299702 0.299702i −0.541195 0.840897i \(-0.682028\pi\)
0.840897 + 0.541195i \(0.182028\pi\)
\(564\) 0 0
\(565\) 18.1325 13.7969i 0.762840 0.580440i
\(566\) 0 0
\(567\) −11.9887 11.9887i −0.503477 0.503477i
\(568\) 0 0
\(569\) −7.48123 −0.313630 −0.156815 0.987628i \(-0.550123\pi\)
−0.156815 + 0.987628i \(0.550123\pi\)
\(570\) 0 0
\(571\) 20.8881i 0.874139i −0.899428 0.437069i \(-0.856016\pi\)
0.899428 0.437069i \(-0.143984\pi\)
\(572\) 0 0
\(573\) −24.0831 24.0831i −1.00609 1.00609i
\(574\) 0 0
\(575\) 7.24302 + 12.7840i 0.302055 + 0.533131i
\(576\) 0 0
\(577\) −25.4516 + 25.4516i −1.05956 + 1.05956i −0.0614540 + 0.998110i \(0.519574\pi\)
−0.998110 + 0.0614540i \(0.980426\pi\)
\(578\) 0 0
\(579\) 60.5598 2.51678
\(580\) 0 0
\(581\) −25.0482 −1.03917
\(582\) 0 0
\(583\) −14.6889 + 12.0264i −0.608352 + 0.498081i
\(584\) 0 0
\(585\) −7.44899 + 5.66788i −0.307978 + 0.234338i
\(586\) 0 0
\(587\) −13.3887 + 13.3887i −0.552612 + 0.552612i −0.927194 0.374582i \(-0.877786\pi\)
0.374582 + 0.927194i \(0.377786\pi\)
\(588\) 0 0
\(589\) 26.7865 1.10372
\(590\) 0 0
\(591\) 27.7820i 1.14280i
\(592\) 0 0
\(593\) 7.54934 7.54934i 0.310014 0.310014i −0.534901 0.844915i \(-0.679651\pi\)
0.844915 + 0.534901i \(0.179651\pi\)
\(594\) 0 0
\(595\) −2.06049 0.279788i −0.0844718 0.0114702i
\(596\) 0 0
\(597\) −33.4024 + 33.4024i −1.36707 + 1.36707i
\(598\) 0 0
\(599\) 0.363805i 0.0148647i −0.999972 0.00743234i \(-0.997634\pi\)
0.999972 0.00743234i \(-0.00236581\pi\)
\(600\) 0 0
\(601\) 12.7778i 0.521216i 0.965445 + 0.260608i \(0.0839230\pi\)
−0.965445 + 0.260608i \(0.916077\pi\)
\(602\) 0 0
\(603\) −6.65798 6.65798i −0.271134 0.271134i
\(604\) 0 0
\(605\) 8.05489 23.2405i 0.327478 0.944859i
\(606\) 0 0
\(607\) −3.09163 3.09163i −0.125486 0.125486i 0.641575 0.767060i \(-0.278281\pi\)
−0.767060 + 0.641575i \(0.778281\pi\)
\(608\) 0 0
\(609\) 38.1941i 1.54770i
\(610\) 0 0
\(611\) 13.2596i 0.536426i
\(612\) 0 0
\(613\) 13.4790 13.4790i 0.544411 0.544411i −0.380408 0.924819i \(-0.624216\pi\)
0.924819 + 0.380408i \(0.124216\pi\)
\(614\) 0 0
\(615\) −8.42008 11.0661i −0.339530 0.446226i
\(616\) 0 0
\(617\) −1.48032 + 1.48032i −0.0595952 + 0.0595952i −0.736276 0.676681i \(-0.763418\pi\)
0.676681 + 0.736276i \(0.263418\pi\)
\(618\) 0 0
\(619\) 2.93096i 0.117805i −0.998264 0.0589025i \(-0.981240\pi\)
0.998264 0.0589025i \(-0.0187601\pi\)
\(620\) 0 0
\(621\) −2.56988 −0.103126
\(622\) 0 0
\(623\) −0.780952 + 0.780952i −0.0312882 + 0.0312882i
\(624\) 0 0
\(625\) 21.4447 + 12.8501i 0.857787 + 0.514005i
\(626\) 0 0
\(627\) 37.8069 30.9539i 1.50986 1.23618i
\(628\) 0 0
\(629\) −2.49374 −0.0994319
\(630\) 0 0
\(631\) −44.5685 −1.77424 −0.887122 0.461535i \(-0.847299\pi\)
−0.887122 + 0.461535i \(0.847299\pi\)
\(632\) 0 0
\(633\) −18.9197 + 18.9197i −0.751991 + 0.751991i
\(634\) 0 0
\(635\) −1.22796 + 0.934343i −0.0487299 + 0.0370783i
\(636\) 0 0
\(637\) −2.05260 2.05260i −0.0813269 0.0813269i
\(638\) 0 0
\(639\) 22.7180i 0.898710i
\(640\) 0 0
\(641\) 27.6637 1.09265 0.546325 0.837574i \(-0.316026\pi\)
0.546325 + 0.837574i \(0.316026\pi\)
\(642\) 0 0
\(643\) −3.11829 3.11829i −0.122973 0.122973i 0.642942 0.765915i \(-0.277714\pi\)
−0.765915 + 0.642942i \(0.777714\pi\)
\(644\) 0 0
\(645\) 9.10068 67.0215i 0.358339 2.63897i
\(646\) 0 0
\(647\) −21.1385 + 21.1385i −0.831040 + 0.831040i −0.987659 0.156619i \(-0.949940\pi\)
0.156619 + 0.987659i \(0.449940\pi\)
\(648\) 0 0
\(649\) 26.6498 + 2.65601i 1.04609 + 0.104257i
\(650\) 0 0
\(651\) 24.9625i 0.978359i
\(652\) 0 0
\(653\) 2.05913 + 2.05913i 0.0805801 + 0.0805801i 0.746248 0.665668i \(-0.231853\pi\)
−0.665668 + 0.746248i \(0.731853\pi\)
\(654\) 0 0
\(655\) −28.1392 3.82095i −1.09949 0.149297i
\(656\) 0 0
\(657\) 38.7059 + 38.7059i 1.51006 + 1.51006i
\(658\) 0 0
\(659\) 28.9414 1.12740 0.563698 0.825981i \(-0.309378\pi\)
0.563698 + 0.825981i \(0.309378\pi\)
\(660\) 0 0
\(661\) 41.6833 1.62129 0.810647 0.585536i \(-0.199116\pi\)
0.810647 + 0.585536i \(0.199116\pi\)
\(662\) 0 0
\(663\) 0.957812 + 0.957812i 0.0371983 + 0.0371983i
\(664\) 0 0
\(665\) 22.5092 17.1271i 0.872868 0.664159i
\(666\) 0 0
\(667\) −14.5636 14.5636i −0.563907 0.563907i
\(668\) 0 0
\(669\) 9.31707i 0.360219i
\(670\) 0 0
\(671\) 8.60627 + 0.857731i 0.332241 + 0.0331123i
\(672\) 0 0
\(673\) −10.2229 + 10.2229i −0.394062 + 0.394062i −0.876133 0.482070i \(-0.839885\pi\)
0.482070 + 0.876133i \(0.339885\pi\)
\(674\) 0 0
\(675\) −3.80436 + 2.15543i −0.146430 + 0.0829626i
\(676\) 0 0
\(677\) −33.5097 33.5097i −1.28788 1.28788i −0.936070 0.351815i \(-0.885565\pi\)
−0.351815 0.936070i \(-0.614435\pi\)
\(678\) 0 0
\(679\) −4.91626 −0.188669
\(680\) 0 0
\(681\) 42.9529i 1.64596i
\(682\) 0 0
\(683\) −5.04385 5.04385i −0.192998 0.192998i 0.603992 0.796990i \(-0.293576\pi\)
−0.796990 + 0.603992i \(0.793576\pi\)
\(684\) 0 0
\(685\) 20.0881 + 26.4007i 0.767528 + 1.00872i
\(686\) 0 0
\(687\) 19.4517 19.4517i 0.742128 0.742128i
\(688\) 0 0
\(689\) 7.15848 0.272716
\(690\) 0 0
\(691\) −37.0145 −1.40810 −0.704049 0.710151i \(-0.748626\pi\)
−0.704049 + 0.710151i \(0.748626\pi\)
\(692\) 0 0
\(693\) 15.2119 + 18.5797i 0.577852 + 0.705783i
\(694\) 0 0
\(695\) 3.76378 27.7182i 0.142768 1.05141i
\(696\) 0 0
\(697\) −0.750361 + 0.750361i −0.0284219 + 0.0284219i
\(698\) 0 0
\(699\) −50.7542 −1.91970
\(700\) 0 0
\(701\) 42.0327i 1.58755i 0.608209 + 0.793777i \(0.291888\pi\)
−0.608209 + 0.793777i \(0.708112\pi\)
\(702\) 0 0
\(703\) 23.9852 23.9852i 0.904620 0.904620i
\(704\) 0 0
\(705\) −8.03654 + 59.1847i −0.302674 + 2.22903i
\(706\) 0 0
\(707\) 27.7862 27.7862i 1.04501 1.04501i
\(708\) 0 0
\(709\) 24.3303i 0.913744i 0.889532 + 0.456872i \(0.151030\pi\)
−0.889532 + 0.456872i \(0.848970\pi\)
\(710\) 0 0
\(711\) 25.4684i 0.955139i
\(712\) 0 0
\(713\) −9.51836 9.51836i −0.356465 0.356465i
\(714\) 0 0
\(715\) −7.90171 + 4.85656i −0.295507 + 0.181625i
\(716\) 0 0
\(717\) −35.7345 35.7345i −1.33453 1.33453i
\(718\) 0 0
\(719\) 29.3291i 1.09379i −0.837201 0.546895i \(-0.815810\pi\)
0.837201 0.546895i \(-0.184190\pi\)
\(720\) 0 0
\(721\) 38.6784i 1.44046i
\(722\) 0 0
\(723\) −16.0957 + 16.0957i −0.598606 + 0.598606i
\(724\) 0 0
\(725\) −33.7745 9.34460i −1.25435 0.347050i
\(726\) 0 0
\(727\) −1.38305 + 1.38305i −0.0512946 + 0.0512946i −0.732289 0.680994i \(-0.761548\pi\)
0.680994 + 0.732289i \(0.261548\pi\)
\(728\) 0 0
\(729\) 32.8448i 1.21647i
\(730\) 0 0
\(731\) −5.16165 −0.190911
\(732\) 0 0
\(733\) −5.36112 + 5.36112i −0.198017 + 0.198017i −0.799150 0.601132i \(-0.794717\pi\)
0.601132 + 0.799150i \(0.294717\pi\)
\(734\) 0 0
\(735\) −7.91779 10.4059i −0.292052 0.383828i
\(736\) 0 0
\(737\) −5.91053 7.21907i −0.217717 0.265918i
\(738\) 0 0
\(739\) 26.5663 0.977258 0.488629 0.872492i \(-0.337497\pi\)
0.488629 + 0.872492i \(0.337497\pi\)
\(740\) 0 0
\(741\) −18.4248 −0.676851
\(742\) 0 0
\(743\) −32.8436 + 32.8436i −1.20491 + 1.20491i −0.232261 + 0.972654i \(0.574612\pi\)
−0.972654 + 0.232261i \(0.925388\pi\)
\(744\) 0 0
\(745\) −2.53186 + 18.6458i −0.0927602 + 0.683129i
\(746\) 0 0
\(747\) 27.4069 + 27.4069i 1.00277 + 1.00277i
\(748\) 0 0
\(749\) 26.2330i 0.958533i
\(750\) 0 0
\(751\) 17.8712 0.652130 0.326065 0.945347i \(-0.394277\pi\)
0.326065 + 0.945347i \(0.394277\pi\)
\(752\) 0 0
\(753\) −24.5699 24.5699i −0.895377 0.895377i
\(754\) 0 0
\(755\) −15.1447 2.05646i −0.551172 0.0748422i
\(756\) 0 0
\(757\) −15.8663 + 15.8663i −0.576671 + 0.576671i −0.933985 0.357313i \(-0.883693\pi\)
0.357313 + 0.933985i \(0.383693\pi\)
\(758\) 0 0
\(759\) −24.4336 2.43514i −0.886883 0.0883899i
\(760\) 0 0
\(761\) 30.6777i 1.11206i 0.831161 + 0.556032i \(0.187677\pi\)
−0.831161 + 0.556032i \(0.812323\pi\)
\(762\) 0 0
\(763\) −4.74935 4.74935i −0.171938 0.171938i
\(764\) 0 0
\(765\) 1.94838 + 2.56065i 0.0704439 + 0.0925806i
\(766\) 0 0
\(767\) −7.14093 7.14093i −0.257844 0.257844i
\(768\) 0 0
\(769\) −40.6433 −1.46564 −0.732818 0.680425i \(-0.761795\pi\)
−0.732818 + 0.680425i \(0.761795\pi\)
\(770\) 0 0
\(771\) −14.3391 −0.516409
\(772\) 0 0
\(773\) 8.53506 + 8.53506i 0.306985 + 0.306985i 0.843739 0.536754i \(-0.180350\pi\)
−0.536754 + 0.843739i \(0.680350\pi\)
\(774\) 0 0
\(775\) −22.0740 6.10735i −0.792922 0.219383i
\(776\) 0 0
\(777\) 22.3520 + 22.3520i 0.801874 + 0.801874i
\(778\) 0 0
\(779\) 14.4342i 0.517159i
\(780\) 0 0
\(781\) 2.23247 22.4001i 0.0798840 0.801537i
\(782\) 0 0
\(783\) 4.33396 4.33396i 0.154883 0.154883i
\(784\) 0 0
\(785\) −25.0570 32.9310i −0.894322 1.17536i
\(786\) 0 0
\(787\) 9.42078 + 9.42078i 0.335814 + 0.335814i 0.854789 0.518975i \(-0.173686\pi\)
−0.518975 + 0.854789i \(0.673686\pi\)
\(788\) 0 0
\(789\) 46.3463 1.64997
\(790\) 0 0
\(791\) 22.0409i 0.783686i
\(792\) 0 0
\(793\) −2.30609 2.30609i −0.0818917 0.0818917i
\(794\) 0 0
\(795\) 31.9521 + 4.33870i 1.13323 + 0.153878i
\(796\) 0 0
\(797\) −6.06738 + 6.06738i −0.214918 + 0.214918i −0.806353 0.591435i \(-0.798562\pi\)
0.591435 + 0.806353i \(0.298562\pi\)
\(798\) 0 0
\(799\) 4.55810 0.161254
\(800\) 0 0
\(801\) 1.70898 0.0603839
\(802\) 0 0
\(803\) 34.3607 + 41.9678i 1.21256 + 1.48101i
\(804\) 0 0
\(805\) −14.0844 1.91249i −0.496410 0.0674062i
\(806\) 0 0
\(807\) 35.4489 35.4489i 1.24786 1.24786i
\(808\) 0 0
\(809\) 52.1858 1.83475 0.917377 0.398019i \(-0.130302\pi\)
0.917377 + 0.398019i \(0.130302\pi\)
\(810\) 0 0
\(811\) 6.09021i 0.213856i 0.994267 + 0.106928i \(0.0341015\pi\)
−0.994267 + 0.106928i \(0.965899\pi\)
\(812\) 0 0
\(813\) −55.0617 + 55.0617i −1.93110 + 1.93110i
\(814\) 0 0
\(815\) −32.3018 + 24.5782i −1.13148 + 0.860937i
\(816\) 0 0
\(817\) 49.6456 49.6456i 1.73688 1.73688i
\(818\) 0 0
\(819\) 9.05461i 0.316394i
\(820\) 0 0
\(821\) 33.0669i 1.15404i 0.816729 + 0.577021i \(0.195785\pi\)
−0.816729 + 0.577021i \(0.804215\pi\)
\(822\) 0 0
\(823\) 14.1917 + 14.1917i 0.494690 + 0.494690i 0.909780 0.415090i \(-0.136250\pi\)
−0.415090 + 0.909780i \(0.636250\pi\)
\(824\) 0 0
\(825\) −38.2131 + 16.8883i −1.33041 + 0.587974i
\(826\) 0 0
\(827\) −37.1038 37.1038i −1.29023 1.29023i −0.934646 0.355579i \(-0.884284\pi\)
−0.355579 0.934646i \(-0.615716\pi\)
\(828\) 0 0
\(829\) 35.7655i 1.24219i −0.783736 0.621094i \(-0.786688\pi\)
0.783736 0.621094i \(-0.213312\pi\)
\(830\) 0 0
\(831\) 41.0505i 1.42403i
\(832\) 0 0
\(833\) −0.705598 + 0.705598i −0.0244475 + 0.0244475i
\(834\) 0 0
\(835\) 6.54992 4.98379i 0.226669 0.172471i
\(836\) 0 0
\(837\) 2.83254 2.83254i 0.0979071 0.0979071i
\(838\) 0 0
\(839\) 29.0915i 1.00435i 0.864766 + 0.502174i \(0.167466\pi\)
−0.864766 + 0.502174i \(0.832534\pi\)
\(840\) 0 0
\(841\) 20.1216 0.693848
\(842\) 0 0
\(843\) −37.9438 + 37.9438i −1.30685 + 1.30685i
\(844\) 0 0
\(845\) −25.3390 3.44072i −0.871688 0.118364i
\(846\) 0 0
\(847\) 13.1732 + 19.8145i 0.452636 + 0.680835i
\(848\) 0 0
\(849\) 2.90739 0.0997812
\(850\) 0 0
\(851\) −17.0459 −0.584326
\(852\) 0 0
\(853\) 0.511025 0.511025i 0.0174972 0.0174972i −0.698304 0.715801i \(-0.746062\pi\)
0.715801 + 0.698304i \(0.246062\pi\)
\(854\) 0 0
\(855\) −43.3687 5.88892i −1.48318 0.201397i
\(856\) 0 0
\(857\) −6.01074 6.01074i −0.205323 0.205323i 0.596953 0.802276i \(-0.296378\pi\)
−0.802276 + 0.596953i \(0.796378\pi\)
\(858\) 0 0
\(859\) 14.9147i 0.508882i −0.967088 0.254441i \(-0.918109\pi\)
0.967088 0.254441i \(-0.0818915\pi\)
\(860\) 0 0
\(861\) 13.4513 0.458420
\(862\) 0 0
\(863\) 19.1426 + 19.1426i 0.651622 + 0.651622i 0.953383 0.301762i \(-0.0975747\pi\)
−0.301762 + 0.953383i \(0.597575\pi\)
\(864\) 0 0
\(865\) −5.59889 7.35832i −0.190368 0.250190i
\(866\) 0 0
\(867\) −29.9554 + 29.9554i −1.01734 + 1.01734i
\(868\) 0 0
\(869\) −2.50275 + 25.1120i −0.0848999 + 0.851865i
\(870\) 0 0
\(871\) 3.51814i 0.119208i
\(872\) 0 0
\(873\) 5.37920 + 5.37920i 0.182058 + 0.182058i
\(874\) 0 0
\(875\) −22.4542 + 8.98183i −0.759090 + 0.303641i
\(876\) 0 0
\(877\) 9.69384 + 9.69384i 0.327338 + 0.327338i 0.851573 0.524236i \(-0.175649\pi\)
−0.524236 + 0.851573i \(0.675649\pi\)
\(878\) 0 0
\(879\) 45.3719 1.53036
\(880\) 0 0
\(881\) −18.8905 −0.636436 −0.318218 0.948018i \(-0.603084\pi\)
−0.318218 + 0.948018i \(0.603084\pi\)
\(882\) 0 0
\(883\) −21.2111 21.2111i −0.713809 0.713809i 0.253521 0.967330i \(-0.418411\pi\)
−0.967330 + 0.253521i \(0.918411\pi\)
\(884\) 0 0
\(885\) −27.5458 36.2019i −0.925941 1.21691i
\(886\) 0 0
\(887\) 6.10008 + 6.10008i 0.204821 + 0.204821i 0.802062 0.597241i \(-0.203736\pi\)
−0.597241 + 0.802062i \(0.703736\pi\)
\(888\) 0 0
\(889\) 1.49264i 0.0500616i
\(890\) 0 0
\(891\) −2.57810 + 25.8681i −0.0863697 + 0.866613i
\(892\) 0 0
\(893\) −43.8406 + 43.8406i −1.46707 + 1.46707i
\(894\) 0 0
\(895\) 8.40294 + 1.14101i 0.280879 + 0.0381399i
\(896\) 0 0
\(897\) 6.54709 + 6.54709i 0.218601 + 0.218601i
\(898\) 0 0
\(899\) 32.1044 1.07074
\(900\) 0 0
\(901\) 2.46079i 0.0819808i
\(902\) 0 0
\(903\) 46.2652 + 46.2652i 1.53961 + 1.53961i
\(904\) 0 0
\(905\) 2.93677 21.6277i 0.0976215 0.718929i
\(906\) 0 0
\(907\) −29.1109 + 29.1109i −0.966613 + 0.966613i −0.999460 0.0328475i \(-0.989542\pi\)
0.0328475 + 0.999460i \(0.489542\pi\)
\(908\) 0 0
\(909\) −60.8056 −2.01679
\(910\) 0 0
\(911\) 29.3410 0.972111 0.486055 0.873928i \(-0.338435\pi\)
0.486055 + 0.873928i \(0.338435\pi\)
\(912\) 0 0
\(913\) 24.3301 + 29.7166i 0.805210 + 0.983477i
\(914\) 0 0
\(915\) −8.89562 11.6910i −0.294080 0.386494i
\(916\) 0 0
\(917\) 19.4246 19.4246i 0.641457 0.641457i
\(918\) 0 0
\(919\) −12.4710 −0.411379 −0.205690 0.978617i \(-0.565944\pi\)
−0.205690 + 0.978617i \(0.565944\pi\)
\(920\) 0 0
\(921\) 23.7820i 0.783645i
\(922\) 0 0
\(923\) −6.00220 + 6.00220i −0.197565 + 0.197565i
\(924\) 0 0
\(925\) −25.2342 + 14.2969i −0.829696 + 0.470079i
\(926\) 0 0
\(927\) −42.3206 + 42.3206i −1.38999 + 1.38999i
\(928\) 0 0
\(929\) 7.26158i 0.238245i −0.992880 0.119122i \(-0.961992\pi\)
0.992880 0.119122i \(-0.0380081\pi\)
\(930\) 0 0
\(931\) 13.5731i 0.444841i
\(932\) 0 0
\(933\) −22.1291 22.1291i −0.724475 0.724475i
\(934\) 0 0
\(935\) 1.66948 + 2.71628i 0.0545980 + 0.0888320i
\(936\) 0 0
\(937\) 35.9743 + 35.9743i 1.17523 + 1.17523i 0.980945 + 0.194285i \(0.0622387\pi\)
0.194285 + 0.980945i \(0.437761\pi\)
\(938\) 0 0
\(939\) 47.3488i 1.54517i
\(940\) 0 0
\(941\) 20.1138i 0.655692i −0.944731 0.327846i \(-0.893677\pi\)
0.944731 0.327846i \(-0.106323\pi\)
\(942\) 0 0
\(943\) −5.12907 + 5.12907i −0.167025 + 0.167025i
\(944\) 0 0
\(945\) 0.569132 4.19134i 0.0185138 0.136344i
\(946\) 0 0
\(947\) −23.3109 + 23.3109i −0.757502 + 0.757502i −0.975867 0.218365i \(-0.929928\pi\)
0.218365 + 0.975867i \(0.429928\pi\)
\(948\) 0 0
\(949\) 20.4526i 0.663919i
\(950\) 0 0
\(951\) 10.1395 0.328795
\(952\) 0 0
\(953\) 33.1105 33.1105i 1.07255 1.07255i 0.0754003 0.997153i \(-0.475977\pi\)
0.997153 0.0754003i \(-0.0240235\pi\)
\(954\) 0 0
\(955\) −4.06739 + 29.9541i −0.131618 + 0.969293i
\(956\) 0 0
\(957\) 45.3126 37.0992i 1.46475 1.19925i
\(958\) 0 0
\(959\) −32.0914 −1.03628
\(960\) 0 0
\(961\) −10.0175 −0.323146
\(962\) 0 0
\(963\) −28.7033 + 28.7033i −0.924950 + 0.924950i
\(964\) 0 0
\(965\) −32.5476 42.7756i −1.04775 1.37699i
\(966\) 0 0
\(967\) 15.4800 + 15.4800i 0.497803 + 0.497803i 0.910754 0.412950i \(-0.135502\pi\)
−0.412950 + 0.910754i \(0.635502\pi\)
\(968\) 0 0
\(969\) 6.33368i 0.203467i
\(970\) 0 0
\(971\) 49.5123 1.58892 0.794462 0.607313i \(-0.207753\pi\)
0.794462 + 0.607313i \(0.207753\pi\)
\(972\) 0 0
\(973\) 19.1339 + 19.1339i 0.613406 + 0.613406i
\(974\) 0 0
\(975\) 15.1834 + 4.20087i 0.486257 + 0.134536i
\(976\) 0 0
\(977\) −23.4655 + 23.4655i −0.750727 + 0.750727i −0.974615 0.223888i \(-0.928125\pi\)
0.223888 + 0.974615i \(0.428125\pi\)
\(978\) 0 0
\(979\) 1.68507 + 0.167940i 0.0538549 + 0.00536737i
\(980\) 0 0
\(981\) 10.3932i 0.331828i
\(982\) 0 0
\(983\) −36.6594 36.6594i −1.16925 1.16925i −0.982385 0.186869i \(-0.940166\pi\)
−0.186869 0.982385i \(-0.559834\pi\)
\(984\) 0 0
\(985\) −19.6234 + 14.9313i −0.625254 + 0.475752i
\(986\) 0 0
\(987\) −40.8554 40.8554i −1.30044 1.30044i
\(988\) 0 0
\(989\) −35.2823 −1.12191
\(990\) 0 0
\(991\) −15.1739 −0.482014 −0.241007 0.970523i \(-0.577478\pi\)
−0.241007 + 0.970523i \(0.577478\pi\)
\(992\) 0 0
\(993\) −42.3389 42.3389i −1.34359 1.34359i
\(994\) 0 0
\(995\) 41.5453 + 5.64132i 1.31707 + 0.178842i
\(996\) 0 0
\(997\) 1.83464 + 1.83464i 0.0581037 + 0.0581037i 0.735562 0.677458i \(-0.236918\pi\)
−0.677458 + 0.735562i \(0.736918\pi\)
\(998\) 0 0
\(999\) 5.07264i 0.160491i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 880.2.bd.i.593.3 32
4.3 odd 2 440.2.v.b.153.14 yes 32
5.2 odd 4 inner 880.2.bd.i.417.4 32
11.10 odd 2 inner 880.2.bd.i.593.4 32
20.7 even 4 440.2.v.b.417.13 yes 32
44.43 even 2 440.2.v.b.153.13 32
55.32 even 4 inner 880.2.bd.i.417.3 32
220.87 odd 4 440.2.v.b.417.14 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
440.2.v.b.153.13 32 44.43 even 2
440.2.v.b.153.14 yes 32 4.3 odd 2
440.2.v.b.417.13 yes 32 20.7 even 4
440.2.v.b.417.14 yes 32 220.87 odd 4
880.2.bd.i.417.3 32 55.32 even 4 inner
880.2.bd.i.417.4 32 5.2 odd 4 inner
880.2.bd.i.593.3 32 1.1 even 1 trivial
880.2.bd.i.593.4 32 11.10 odd 2 inner