Properties

Label 880.1.y.d
Level $880$
Weight $1$
Character orbit 880.y
Analytic conductor $0.439$
Analytic rank $0$
Dimension $4$
Projective image $D_{12}$
CM discriminant -11
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [880,1,Mod(527,880)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(880, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 0, 1, 2])) N = Newforms(chi, 1, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("880.527"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Level: \( N \) \(=\) \( 880 = 2^{4} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 880.y (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.439177211117\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{12})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{12}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{12} - \cdots)\)

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q + (\zeta_{12}^{2} - \zeta_{12}) q^{3} - \zeta_{12}^{5} q^{5} + (\zeta_{12}^{4} + \cdots + \zeta_{12}^{2}) q^{9} + \zeta_{12}^{3} q^{11} + (\zeta_{12} - 1) q^{15} + ( - \zeta_{12}^{5} - \zeta_{12}^{4}) q^{23} + \cdots + (\zeta_{12}^{5} - \zeta_{12} + 1) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{3} - 4 q^{15} + 2 q^{23} + 2 q^{25} - 6 q^{27} + 2 q^{33} + 2 q^{37} - 2 q^{45} + 4 q^{47} - 4 q^{53} + 2 q^{55} - 4 q^{59} - 2 q^{67} + 4 q^{75} - 8 q^{81} + 2 q^{93} - 2 q^{97} + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/880\mathbb{Z}\right)^\times\).

\(n\) \(111\) \(177\) \(321\) \(661\)
\(\chi(n)\) \(-1\) \(-\zeta_{12}^{3}\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
527.1
0.866025 0.500000i
−0.866025 0.500000i
0.866025 + 0.500000i
−0.866025 + 0.500000i
0 −0.366025 0.366025i 0 0.866025 + 0.500000i 0 0 0 0.732051i 0
527.2 0 1.36603 + 1.36603i 0 −0.866025 + 0.500000i 0 0 0 2.73205i 0
703.1 0 −0.366025 + 0.366025i 0 0.866025 0.500000i 0 0 0 0.732051i 0
703.2 0 1.36603 1.36603i 0 −0.866025 0.500000i 0 0 0 2.73205i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
11.b odd 2 1 CM by \(\Q(\sqrt{-11}) \)
20.e even 4 1 inner
220.i odd 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 880.1.y.d yes 4
4.b odd 2 1 880.1.y.c 4
5.c odd 4 1 880.1.y.c 4
8.b even 2 1 3520.1.y.c 4
8.d odd 2 1 3520.1.y.d 4
11.b odd 2 1 CM 880.1.y.d yes 4
20.e even 4 1 inner 880.1.y.d yes 4
40.i odd 4 1 3520.1.y.d 4
40.k even 4 1 3520.1.y.c 4
44.c even 2 1 880.1.y.c 4
55.e even 4 1 880.1.y.c 4
88.b odd 2 1 3520.1.y.c 4
88.g even 2 1 3520.1.y.d 4
220.i odd 4 1 inner 880.1.y.d yes 4
440.t even 4 1 3520.1.y.d 4
440.w odd 4 1 3520.1.y.c 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
880.1.y.c 4 4.b odd 2 1
880.1.y.c 4 5.c odd 4 1
880.1.y.c 4 44.c even 2 1
880.1.y.c 4 55.e even 4 1
880.1.y.d yes 4 1.a even 1 1 trivial
880.1.y.d yes 4 11.b odd 2 1 CM
880.1.y.d yes 4 20.e even 4 1 inner
880.1.y.d yes 4 220.i odd 4 1 inner
3520.1.y.c 4 8.b even 2 1
3520.1.y.c 4 40.k even 4 1
3520.1.y.c 4 88.b odd 2 1
3520.1.y.c 4 440.w odd 4 1
3520.1.y.d 4 8.d odd 2 1
3520.1.y.d 4 40.i odd 4 1
3520.1.y.d 4 88.g even 2 1
3520.1.y.d 4 440.t even 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{4} - 2T_{3}^{3} + 2T_{3}^{2} + 2T_{3} + 1 \) acting on \(S_{1}^{\mathrm{new}}(880, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} - 2 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$5$ \( T^{4} - T^{2} + 1 \) Copy content Toggle raw display
$7$ \( T^{4} \) Copy content Toggle raw display
$11$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$13$ \( T^{4} \) Copy content Toggle raw display
$17$ \( T^{4} \) Copy content Toggle raw display
$19$ \( T^{4} \) Copy content Toggle raw display
$23$ \( T^{4} - 2 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$29$ \( T^{4} \) Copy content Toggle raw display
$31$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} - 2 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$41$ \( T^{4} \) Copy content Toggle raw display
$43$ \( T^{4} \) Copy content Toggle raw display
$47$ \( (T^{2} - 2 T + 2)^{2} \) Copy content Toggle raw display
$53$ \( (T^{2} + 2 T + 2)^{2} \) Copy content Toggle raw display
$59$ \( (T + 1)^{4} \) Copy content Toggle raw display
$61$ \( T^{4} \) Copy content Toggle raw display
$67$ \( T^{4} + 2 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$71$ \( (T^{2} + 3)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} \) Copy content Toggle raw display
$79$ \( T^{4} \) Copy content Toggle raw display
$83$ \( T^{4} \) Copy content Toggle raw display
$89$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$97$ \( T^{4} + 2 T^{3} + \cdots + 1 \) Copy content Toggle raw display
show more
show less