Properties

Label 88.3.j
Level $88$
Weight $3$
Character orbit 88.j
Rep. character $\chi_{88}(17,\cdot)$
Character field $\Q(\zeta_{10})$
Dimension $24$
Newform subspaces $1$
Sturm bound $36$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 88 = 2^{3} \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 88.j (of order \(10\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 11 \)
Character field: \(\Q(\zeta_{10})\)
Newform subspaces: \( 1 \)
Sturm bound: \(36\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(88, [\chi])\).

Total New Old
Modular forms 112 24 88
Cusp forms 80 24 56
Eisenstein series 32 0 32

Trace form

\( 24 q + 4 q^{3} - 6 q^{9} - 10 q^{11} + 60 q^{15} + 40 q^{17} + 30 q^{19} + 32 q^{23} - 102 q^{25} - 122 q^{27} - 80 q^{29} - 64 q^{31} - 86 q^{33} - 240 q^{35} + 48 q^{37} - 240 q^{39} - 60 q^{41} - 112 q^{45}+ \cdots + 318 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(88, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
88.3.j.a 88.j 11.d $24$ $2.398$ None 88.3.j.a \(0\) \(4\) \(0\) \(0\) $\mathrm{SU}(2)[C_{10}]$

Decomposition of \(S_{3}^{\mathrm{old}}(88, [\chi])\) into lower level spaces

\( S_{3}^{\mathrm{old}}(88, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(11, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(22, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(44, [\chi])\)\(^{\oplus 2}\)