Newspace parameters
Level: | \( N \) | \(=\) | \( 875 = 5^{3} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 875.n (of order \(10\), degree \(4\), not minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(6.98691017686\) |
Analytic rank: | \(0\) |
Dimension: | \(64\) |
Relative dimension: | \(16\) over \(\Q(\zeta_{10})\) |
Twist minimal: | no (minimal twist has level 175) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{10}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
99.1 | −2.59530 | + | 0.843265i | 0.886773 | + | 1.22054i | 4.40646 | − | 3.20148i | 0 | −3.33068 | − | 2.41988i | 1.00000i | −5.52843 | + | 7.60923i | 0.223704 | − | 0.688489i | 0 | ||||||
99.2 | −2.44884 | + | 0.795678i | −1.34866 | − | 1.85627i | 3.74570 | − | 2.72141i | 0 | 4.77966 | + | 3.47263i | − | 1.00000i | −3.98034 | + | 5.47846i | −0.699813 | + | 2.15380i | 0 | |||||
99.3 | −2.42712 | + | 0.788620i | −1.80104 | − | 2.47892i | 3.65097 | − | 2.65259i | 0 | 6.32628 | + | 4.59631i | 1.00000i | −3.76938 | + | 5.18811i | −1.97425 | + | 6.07612i | 0 | ||||||
99.4 | −1.16988 | + | 0.380117i | 0.0547698 | + | 0.0753841i | −0.393906 | + | 0.286190i | 0 | −0.0927287 | − | 0.0673714i | 1.00000i | 1.79809 | − | 2.47485i | 0.924368 | − | 2.84491i | 0 | ||||||
99.5 | −1.13629 | + | 0.369205i | 0.735989 | + | 1.01300i | −0.463180 | + | 0.336520i | 0 | −1.21030 | − | 0.879338i | − | 1.00000i | 1.80660 | − | 2.48657i | 0.442558 | − | 1.36205i | 0 | |||||
99.6 | −0.999270 | + | 0.324683i | 0.772801 | + | 1.06367i | −0.724912 | + | 0.526679i | 0 | −1.11759 | − | 0.811978i | 1.00000i | 1.78855 | − | 2.46172i | 0.392880 | − | 1.20916i | 0 | ||||||
99.7 | −0.530468 | + | 0.172359i | −1.94012 | − | 2.67034i | −1.36635 | + | 0.992708i | 0 | 1.48943 | + | 1.08213i | − | 1.00000i | 1.20939 | − | 1.66459i | −2.43961 | + | 7.50836i | 0 | |||||
99.8 | −0.222797 | + | 0.0723910i | 0.927248 | + | 1.27625i | −1.57364 | + | 1.14331i | 0 | −0.298977 | − | 0.217219i | − | 1.00000i | 0.543227 | − | 0.747688i | 0.158032 | − | 0.486374i | 0 | |||||
99.9 | 0.222797 | − | 0.0723910i | −0.927248 | − | 1.27625i | −1.57364 | + | 1.14331i | 0 | −0.298977 | − | 0.217219i | 1.00000i | −0.543227 | + | 0.747688i | 0.158032 | − | 0.486374i | 0 | ||||||
99.10 | 0.530468 | − | 0.172359i | 1.94012 | + | 2.67034i | −1.36635 | + | 0.992708i | 0 | 1.48943 | + | 1.08213i | 1.00000i | −1.20939 | + | 1.66459i | −2.43961 | + | 7.50836i | 0 | ||||||
99.11 | 0.999270 | − | 0.324683i | −0.772801 | − | 1.06367i | −0.724912 | + | 0.526679i | 0 | −1.11759 | − | 0.811978i | − | 1.00000i | −1.78855 | + | 2.46172i | 0.392880 | − | 1.20916i | 0 | |||||
99.12 | 1.13629 | − | 0.369205i | −0.735989 | − | 1.01300i | −0.463180 | + | 0.336520i | 0 | −1.21030 | − | 0.879338i | 1.00000i | −1.80660 | + | 2.48657i | 0.442558 | − | 1.36205i | 0 | ||||||
99.13 | 1.16988 | − | 0.380117i | −0.0547698 | − | 0.0753841i | −0.393906 | + | 0.286190i | 0 | −0.0927287 | − | 0.0673714i | − | 1.00000i | −1.79809 | + | 2.47485i | 0.924368 | − | 2.84491i | 0 | |||||
99.14 | 2.42712 | − | 0.788620i | 1.80104 | + | 2.47892i | 3.65097 | − | 2.65259i | 0 | 6.32628 | + | 4.59631i | − | 1.00000i | 3.76938 | − | 5.18811i | −1.97425 | + | 6.07612i | 0 | |||||
99.15 | 2.44884 | − | 0.795678i | 1.34866 | + | 1.85627i | 3.74570 | − | 2.72141i | 0 | 4.77966 | + | 3.47263i | 1.00000i | 3.98034 | − | 5.47846i | −0.699813 | + | 2.15380i | 0 | ||||||
99.16 | 2.59530 | − | 0.843265i | −0.886773 | − | 1.22054i | 4.40646 | − | 3.20148i | 0 | −3.33068 | − | 2.41988i | − | 1.00000i | 5.52843 | − | 7.60923i | 0.223704 | − | 0.688489i | 0 | |||||
274.1 | −2.59530 | − | 0.843265i | 0.886773 | − | 1.22054i | 4.40646 | + | 3.20148i | 0 | −3.33068 | + | 2.41988i | − | 1.00000i | −5.52843 | − | 7.60923i | 0.223704 | + | 0.688489i | 0 | |||||
274.2 | −2.44884 | − | 0.795678i | −1.34866 | + | 1.85627i | 3.74570 | + | 2.72141i | 0 | 4.77966 | − | 3.47263i | 1.00000i | −3.98034 | − | 5.47846i | −0.699813 | − | 2.15380i | 0 | ||||||
274.3 | −2.42712 | − | 0.788620i | −1.80104 | + | 2.47892i | 3.65097 | + | 2.65259i | 0 | 6.32628 | − | 4.59631i | − | 1.00000i | −3.76938 | − | 5.18811i | −1.97425 | − | 6.07612i | 0 | |||||
274.4 | −1.16988 | − | 0.380117i | 0.0547698 | − | 0.0753841i | −0.393906 | − | 0.286190i | 0 | −0.0927287 | + | 0.0673714i | − | 1.00000i | 1.79809 | + | 2.47485i | 0.924368 | + | 2.84491i | 0 | |||||
See all 64 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
25.d | even | 5 | 1 | inner |
25.e | even | 10 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 875.2.n.d | 64 | |
5.b | even | 2 | 1 | inner | 875.2.n.d | 64 | |
5.c | odd | 4 | 1 | 175.2.h.c | ✓ | 32 | |
5.c | odd | 4 | 1 | 875.2.h.c | 32 | ||
25.d | even | 5 | 1 | inner | 875.2.n.d | 64 | |
25.e | even | 10 | 1 | inner | 875.2.n.d | 64 | |
25.f | odd | 20 | 1 | 175.2.h.c | ✓ | 32 | |
25.f | odd | 20 | 1 | 875.2.h.c | 32 | ||
25.f | odd | 20 | 1 | 4375.2.a.i | 16 | ||
25.f | odd | 20 | 1 | 4375.2.a.l | 16 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
175.2.h.c | ✓ | 32 | 5.c | odd | 4 | 1 | |
175.2.h.c | ✓ | 32 | 25.f | odd | 20 | 1 | |
875.2.h.c | 32 | 5.c | odd | 4 | 1 | ||
875.2.h.c | 32 | 25.f | odd | 20 | 1 | ||
875.2.n.d | 64 | 1.a | even | 1 | 1 | trivial | |
875.2.n.d | 64 | 5.b | even | 2 | 1 | inner | |
875.2.n.d | 64 | 25.d | even | 5 | 1 | inner | |
875.2.n.d | 64 | 25.e | even | 10 | 1 | inner | |
4375.2.a.i | 16 | 25.f | odd | 20 | 1 | ||
4375.2.a.l | 16 | 25.f | odd | 20 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{64} - 25 T_{2}^{62} + 379 T_{2}^{60} - 4531 T_{2}^{58} + 47740 T_{2}^{56} - 421543 T_{2}^{54} + \cdots + 625 \)
acting on \(S_{2}^{\mathrm{new}}(875, [\chi])\).