Properties

Label 875.2.bb.b.143.15
Level $875$
Weight $2$
Character 875.143
Analytic conductor $6.987$
Analytic rank $0$
Dimension $288$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [875,2,Mod(82,875)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("875.82"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(875, base_ring=CyclotomicField(60)) chi = DirichletCharacter(H, H._module([27, 50])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 875 = 5^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 875.bb (of order \(60\), degree \(16\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [288,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.98691017686\)
Analytic rank: \(0\)
Dimension: \(288\)
Relative dimension: \(18\) over \(\Q(\zeta_{60})\)
Twist minimal: no (minimal twist has level 175)
Sato-Tate group: $\mathrm{SU}(2)[C_{60}]$

Embedding invariants

Embedding label 143.15
Character \(\chi\) \(=\) 875.143
Dual form 875.2.bb.b.257.15

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.0947490 + 1.80792i) q^{2} +(1.64111 + 1.32895i) q^{3} +(-1.27055 + 0.133540i) q^{4} +(-2.24713 + 3.09291i) q^{6} +(2.61446 - 0.405696i) q^{7} +(0.204604 + 1.29182i) q^{8} +(0.303414 + 1.42745i) q^{9} +(-2.23088 - 0.474189i) q^{11} +(-2.26258 - 1.46934i) q^{12} +(2.14873 + 4.21711i) q^{13} +(0.981183 + 4.68830i) q^{14} +(-4.81539 + 1.02354i) q^{16} +(-3.47011 - 1.33205i) q^{17} +(-2.55197 + 0.683798i) q^{18} +(0.216377 - 2.05869i) q^{19} +(4.82977 + 2.80869i) q^{21} +(0.645921 - 4.07818i) q^{22} +(1.58250 - 0.0829354i) q^{23} +(-1.38098 + 2.39193i) q^{24} +(-7.42061 + 4.28429i) q^{26} +(1.47703 - 2.89883i) q^{27} +(-3.26763 + 0.864593i) q^{28} +(6.19928 + 8.53257i) q^{29} +(1.38755 + 3.11648i) q^{31} +(-1.62970 - 6.08214i) q^{32} +(-3.03095 - 3.74292i) q^{33} +(2.07945 - 6.39988i) q^{34} +(-0.576126 - 1.77313i) q^{36} +(-1.17298 + 1.80623i) q^{37} +(3.74244 + 0.196133i) q^{38} +(-2.07801 + 9.77629i) q^{39} +(-4.99913 - 1.62432i) q^{41} +(-4.62026 + 8.99795i) q^{42} +(-6.27631 - 6.27631i) q^{43} +(2.89777 + 0.304568i) q^{44} +(0.299881 + 2.85318i) q^{46} +(2.30438 + 6.00311i) q^{47} +(-9.26282 - 4.71964i) q^{48} +(6.67082 - 2.12135i) q^{49} +(-3.92461 - 6.79762i) q^{51} +(-3.29322 - 5.07112i) q^{52} +(2.55248 - 3.15205i) q^{53} +(5.38080 + 2.39569i) q^{54} +(1.05902 + 3.29441i) q^{56} +(3.09098 - 3.09098i) q^{57} +(-14.8388 + 12.0162i) q^{58} +(-8.50113 - 9.44146i) q^{59} +(-0.722763 - 0.650779i) q^{61} +(-5.50288 + 2.80386i) q^{62} +(1.37238 + 3.60892i) q^{63} +(1.47757 - 0.480090i) q^{64} +(6.47971 - 5.83436i) q^{66} +(3.67699 - 9.57888i) q^{67} +(4.58683 + 1.22904i) q^{68} +(2.70728 + 1.96695i) q^{69} +(-1.86024 + 1.35154i) q^{71} +(-1.78193 + 0.684019i) q^{72} +(6.58242 - 4.27467i) q^{73} +(-3.37666 - 1.94951i) q^{74} +2.64456i q^{76} +(-6.02493 - 0.334689i) q^{77} +(-17.8716 - 2.83059i) q^{78} +(4.69941 - 10.5550i) q^{79} +(10.2759 - 4.57511i) q^{81} +(2.46297 - 9.19193i) q^{82} +(5.73970 - 0.909079i) q^{83} +(-6.51154 - 2.92361i) q^{84} +(10.7524 - 11.9417i) q^{86} +(-1.16562 + 22.2414i) q^{87} +(0.156119 - 2.97892i) q^{88} +(4.47423 - 4.96914i) q^{89} +(7.32863 + 10.1538i) q^{91} +(-1.99958 + 0.316702i) q^{92} +(-1.86452 + 6.95847i) q^{93} +(-10.6348 + 4.73492i) q^{94} +(5.40831 - 12.1473i) q^{96} +(-2.86204 - 0.453302i) q^{97} +(4.46729 + 11.8593i) q^{98} -3.32835i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 288 q + 2 q^{2} + 6 q^{3} + 10 q^{4} - 10 q^{7} + 64 q^{8} + 10 q^{9} - 6 q^{11} - 6 q^{12} + 20 q^{14} - 30 q^{16} - 12 q^{17} - 14 q^{18} + 30 q^{19} - 12 q^{21} - 8 q^{22} + 30 q^{23} - 48 q^{26} - 58 q^{28}+ \cdots + 62 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/875\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(626\)
\(\chi(n)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.0947490 + 1.80792i 0.0669977 + 1.27839i 0.800760 + 0.598986i \(0.204429\pi\)
−0.733762 + 0.679407i \(0.762237\pi\)
\(3\) 1.64111 + 1.32895i 0.947496 + 0.767267i 0.972616 0.232417i \(-0.0746635\pi\)
−0.0251203 + 0.999684i \(0.507997\pi\)
\(4\) −1.27055 + 0.133540i −0.635276 + 0.0667702i
\(5\) 0 0
\(6\) −2.24713 + 3.09291i −0.917388 + 1.26268i
\(7\) 2.61446 0.405696i 0.988174 0.153339i
\(8\) 0.204604 + 1.29182i 0.0723385 + 0.456728i
\(9\) 0.303414 + 1.42745i 0.101138 + 0.475817i
\(10\) 0 0
\(11\) −2.23088 0.474189i −0.672636 0.142973i −0.141083 0.989998i \(-0.545058\pi\)
−0.531554 + 0.847025i \(0.678392\pi\)
\(12\) −2.26258 1.46934i −0.653152 0.424162i
\(13\) 2.14873 + 4.21711i 0.595949 + 1.16962i 0.970204 + 0.242290i \(0.0778987\pi\)
−0.374254 + 0.927326i \(0.622101\pi\)
\(14\) 0.981183 + 4.68830i 0.262232 + 1.25300i
\(15\) 0 0
\(16\) −4.81539 + 1.02354i −1.20385 + 0.255886i
\(17\) −3.47011 1.33205i −0.841625 0.323069i −0.100915 0.994895i \(-0.532177\pi\)
−0.740709 + 0.671826i \(0.765510\pi\)
\(18\) −2.55197 + 0.683798i −0.601505 + 0.161173i
\(19\) 0.216377 2.05869i 0.0496402 0.472295i −0.941259 0.337686i \(-0.890356\pi\)
0.990899 0.134608i \(-0.0429777\pi\)
\(20\) 0 0
\(21\) 4.82977 + 2.80869i 1.05394 + 0.612905i
\(22\) 0.645921 4.07818i 0.137711 0.869472i
\(23\) 1.58250 0.0829354i 0.329975 0.0172932i 0.113371 0.993553i \(-0.463835\pi\)
0.216604 + 0.976260i \(0.430502\pi\)
\(24\) −1.38098 + 2.39193i −0.281892 + 0.488251i
\(25\) 0 0
\(26\) −7.42061 + 4.28429i −1.45530 + 0.840219i
\(27\) 1.47703 2.89883i 0.284254 0.557880i
\(28\) −3.26763 + 0.864593i −0.617524 + 0.163393i
\(29\) 6.19928 + 8.53257i 1.15118 + 1.58446i 0.739543 + 0.673109i \(0.235042\pi\)
0.411633 + 0.911350i \(0.364958\pi\)
\(30\) 0 0
\(31\) 1.38755 + 3.11648i 0.249211 + 0.559737i 0.994225 0.107312i \(-0.0342242\pi\)
−0.745015 + 0.667048i \(0.767558\pi\)
\(32\) −1.62970 6.08214i −0.288094 1.07518i
\(33\) −3.03095 3.74292i −0.527621 0.651558i
\(34\) 2.07945 6.39988i 0.356622 1.09757i
\(35\) 0 0
\(36\) −0.576126 1.77313i −0.0960209 0.295522i
\(37\) −1.17298 + 1.80623i −0.192837 + 0.296942i −0.921842 0.387565i \(-0.873316\pi\)
0.729006 + 0.684508i \(0.239983\pi\)
\(38\) 3.74244 + 0.196133i 0.607104 + 0.0318170i
\(39\) −2.07801 + 9.77629i −0.332749 + 1.56546i
\(40\) 0 0
\(41\) −4.99913 1.62432i −0.780733 0.253676i −0.108580 0.994088i \(-0.534630\pi\)
−0.672153 + 0.740412i \(0.734630\pi\)
\(42\) −4.62026 + 8.99795i −0.712922 + 1.38841i
\(43\) −6.27631 6.27631i −0.957128 0.957128i 0.0419898 0.999118i \(-0.486630\pi\)
−0.999118 + 0.0419898i \(0.986630\pi\)
\(44\) 2.89777 + 0.304568i 0.436856 + 0.0459154i
\(45\) 0 0
\(46\) 0.299881 + 2.85318i 0.0442151 + 0.420678i
\(47\) 2.30438 + 6.00311i 0.336128 + 0.875644i 0.992615 + 0.121306i \(0.0387084\pi\)
−0.656487 + 0.754337i \(0.727958\pi\)
\(48\) −9.26282 4.71964i −1.33697 0.681221i
\(49\) 6.67082 2.12135i 0.952975 0.303050i
\(50\) 0 0
\(51\) −3.92461 6.79762i −0.549555 0.951858i
\(52\) −3.29322 5.07112i −0.456688 0.703237i
\(53\) 2.55248 3.15205i 0.350610 0.432968i −0.571080 0.820894i \(-0.693475\pi\)
0.921690 + 0.387927i \(0.126809\pi\)
\(54\) 5.38080 + 2.39569i 0.732234 + 0.326011i
\(55\) 0 0
\(56\) 1.05902 + 3.29441i 0.141517 + 0.440234i
\(57\) 3.09098 3.09098i 0.409410 0.409410i
\(58\) −14.8388 + 12.0162i −1.94843 + 1.57781i
\(59\) −8.50113 9.44146i −1.10675 1.22917i −0.971165 0.238408i \(-0.923375\pi\)
−0.135587 0.990765i \(-0.543292\pi\)
\(60\) 0 0
\(61\) −0.722763 0.650779i −0.0925403 0.0833237i 0.621562 0.783365i \(-0.286498\pi\)
−0.714103 + 0.700041i \(0.753165\pi\)
\(62\) −5.50288 + 2.80386i −0.698866 + 0.356090i
\(63\) 1.37238 + 3.60892i 0.172903 + 0.454682i
\(64\) 1.47757 0.480090i 0.184696 0.0600113i
\(65\) 0 0
\(66\) 6.47971 5.83436i 0.797597 0.718160i
\(67\) 3.67699 9.57888i 0.449216 1.17025i −0.502856 0.864370i \(-0.667717\pi\)
0.952071 0.305876i \(-0.0989494\pi\)
\(68\) 4.58683 + 1.22904i 0.556235 + 0.149043i
\(69\) 2.70728 + 1.96695i 0.325918 + 0.236793i
\(70\) 0 0
\(71\) −1.86024 + 1.35154i −0.220770 + 0.160399i −0.692673 0.721252i \(-0.743567\pi\)
0.471903 + 0.881650i \(0.343567\pi\)
\(72\) −1.78193 + 0.684019i −0.210003 + 0.0806125i
\(73\) 6.58242 4.27467i 0.770414 0.500312i −0.0985840 0.995129i \(-0.531431\pi\)
0.868998 + 0.494816i \(0.164765\pi\)
\(74\) −3.37666 1.94951i −0.392528 0.226626i
\(75\) 0 0
\(76\) 2.64456i 0.303352i
\(77\) −6.02493 0.334689i −0.686605 0.0381414i
\(78\) −17.8716 2.83059i −2.02356 0.320501i
\(79\) 4.69941 10.5550i 0.528725 1.18754i −0.429904 0.902875i \(-0.641453\pi\)
0.958628 0.284660i \(-0.0918808\pi\)
\(80\) 0 0
\(81\) 10.2759 4.57511i 1.14176 0.508346i
\(82\) 2.46297 9.19193i 0.271990 1.01508i
\(83\) 5.73970 0.909079i 0.630014 0.0997844i 0.166742 0.986001i \(-0.446675\pi\)
0.463272 + 0.886216i \(0.346675\pi\)
\(84\) −6.51154 2.92361i −0.710468 0.318992i
\(85\) 0 0
\(86\) 10.7524 11.9417i 1.15946 1.28771i
\(87\) −1.16562 + 22.2414i −0.124968 + 2.38453i
\(88\) 0.156119 2.97892i 0.0166423 0.317554i
\(89\) 4.47423 4.96914i 0.474268 0.526728i −0.457779 0.889066i \(-0.651355\pi\)
0.932047 + 0.362338i \(0.118022\pi\)
\(90\) 0 0
\(91\) 7.32863 + 10.1538i 0.768249 + 1.06440i
\(92\) −1.99958 + 0.316702i −0.208470 + 0.0330184i
\(93\) −1.86452 + 6.95847i −0.193341 + 0.721559i
\(94\) −10.6348 + 4.73492i −1.09690 + 0.488370i
\(95\) 0 0
\(96\) 5.40831 12.1473i 0.551983 1.23977i
\(97\) −2.86204 0.453302i −0.290596 0.0460259i 0.00943453 0.999955i \(-0.496997\pi\)
−0.300030 + 0.953930i \(0.596997\pi\)
\(98\) 4.46729 + 11.8593i 0.451264 + 1.19797i
\(99\) 3.32835i 0.334512i
\(100\) 0 0
\(101\) −3.29920 1.90480i −0.328283 0.189534i 0.326796 0.945095i \(-0.394031\pi\)
−0.655079 + 0.755561i \(0.727364\pi\)
\(102\) 11.9177 7.73945i 1.18003 0.766319i
\(103\) 15.9945 6.13972i 1.57599 0.604965i 0.595817 0.803120i \(-0.296828\pi\)
0.980171 + 0.198155i \(0.0634950\pi\)
\(104\) −5.00811 + 3.63861i −0.491086 + 0.356795i
\(105\) 0 0
\(106\) 5.94050 + 4.31603i 0.576992 + 0.419210i
\(107\) 6.17530 + 1.65467i 0.596988 + 0.159963i 0.544645 0.838667i \(-0.316664\pi\)
0.0523433 + 0.998629i \(0.483331\pi\)
\(108\) −1.48953 + 3.88036i −0.143330 + 0.373387i
\(109\) 6.87193 6.18751i 0.658211 0.592656i −0.270832 0.962627i \(-0.587299\pi\)
0.929044 + 0.369970i \(0.120632\pi\)
\(110\) 0 0
\(111\) −4.32537 + 1.40540i −0.410546 + 0.133394i
\(112\) −12.1744 + 4.62959i −1.15037 + 0.437455i
\(113\) −1.40652 + 0.716658i −0.132314 + 0.0674175i −0.518894 0.854838i \(-0.673656\pi\)
0.386580 + 0.922256i \(0.373656\pi\)
\(114\) 5.88111 + 5.29537i 0.550816 + 0.495957i
\(115\) 0 0
\(116\) −9.01594 10.0132i −0.837109 0.929704i
\(117\) −5.36777 + 4.34673i −0.496250 + 0.401856i
\(118\) 16.2639 16.2639i 1.49722 1.49722i
\(119\) −9.61287 2.07478i −0.881210 0.190195i
\(120\) 0 0
\(121\) −5.29702 2.35839i −0.481547 0.214399i
\(122\) 1.10807 1.36836i 0.100320 0.123885i
\(123\) −6.04550 9.30926i −0.545105 0.839387i
\(124\) −2.17913 3.77436i −0.195691 0.338947i
\(125\) 0 0
\(126\) −6.39461 + 2.82309i −0.569677 + 0.251501i
\(127\) −11.3459 5.78103i −1.00679 0.512984i −0.128801 0.991670i \(-0.541113\pi\)
−0.877986 + 0.478687i \(0.841113\pi\)
\(128\) −3.50510 9.13111i −0.309810 0.807083i
\(129\) −1.95925 18.6410i −0.172502 1.64125i
\(130\) 0 0
\(131\) −14.2509 1.49783i −1.24511 0.130866i −0.541040 0.840997i \(-0.681969\pi\)
−0.704070 + 0.710131i \(0.748636\pi\)
\(132\) 4.35081 + 4.35081i 0.378690 + 0.378690i
\(133\) −0.269491 5.47014i −0.0233679 0.474321i
\(134\) 17.6662 + 5.74011i 1.52613 + 0.495870i
\(135\) 0 0
\(136\) 1.01077 4.75530i 0.0866728 0.407764i
\(137\) −2.38153 0.124811i −0.203468 0.0106633i −0.0496701 0.998766i \(-0.515817\pi\)
−0.153797 + 0.988102i \(0.549150\pi\)
\(138\) −3.29958 + 5.08091i −0.280879 + 0.432516i
\(139\) 6.04915 + 18.6174i 0.513082 + 1.57910i 0.786745 + 0.617278i \(0.211765\pi\)
−0.273663 + 0.961826i \(0.588235\pi\)
\(140\) 0 0
\(141\) −4.19607 + 12.9142i −0.353373 + 1.08757i
\(142\) −2.61974 3.23511i −0.219843 0.271484i
\(143\) −2.79385 10.4268i −0.233633 0.871931i
\(144\) −2.92211 6.56317i −0.243509 0.546931i
\(145\) 0 0
\(146\) 8.35194 + 11.4955i 0.691211 + 0.951371i
\(147\) 13.7667 + 5.38379i 1.13546 + 0.444047i
\(148\) 1.24913 2.45155i 0.102678 0.201516i
\(149\) −20.6257 + 11.9082i −1.68972 + 0.975561i −0.734995 + 0.678072i \(0.762816\pi\)
−0.954725 + 0.297488i \(0.903851\pi\)
\(150\) 0 0
\(151\) 4.22319 7.31478i 0.343678 0.595268i −0.641434 0.767178i \(-0.721660\pi\)
0.985113 + 0.171910i \(0.0549937\pi\)
\(152\) 2.70372 0.141696i 0.219301 0.0114931i
\(153\) 0.848556 5.35757i 0.0686017 0.433134i
\(154\) 0.0342342 10.9243i 0.00275867 0.880306i
\(155\) 0 0
\(156\) 1.33470 12.6988i 0.106861 1.01672i
\(157\) 15.7673 4.22483i 1.25837 0.337178i 0.432803 0.901489i \(-0.357525\pi\)
0.825562 + 0.564311i \(0.190858\pi\)
\(158\) 19.5279 + 7.49607i 1.55356 + 0.596355i
\(159\) 8.37781 1.78076i 0.664403 0.141223i
\(160\) 0 0
\(161\) 4.10375 0.858846i 0.323421 0.0676865i
\(162\) 9.24507 + 18.1445i 0.726361 + 1.42556i
\(163\) 8.46854 + 5.49953i 0.663307 + 0.430757i 0.831897 0.554929i \(-0.187255\pi\)
−0.168590 + 0.985686i \(0.553921\pi\)
\(164\) 6.56857 + 1.39619i 0.512919 + 0.109024i
\(165\) 0 0
\(166\) 2.18737 + 10.2908i 0.169773 + 0.798719i
\(167\) 3.25176 + 20.5308i 0.251628 + 1.58872i 0.712773 + 0.701394i \(0.247439\pi\)
−0.461145 + 0.887325i \(0.652561\pi\)
\(168\) −2.64013 + 6.81387i −0.203690 + 0.525701i
\(169\) −5.52581 + 7.60562i −0.425062 + 0.585048i
\(170\) 0 0
\(171\) 3.00432 0.315767i 0.229746 0.0241473i
\(172\) 8.81252 + 7.13623i 0.671948 + 0.544133i
\(173\) 0.825101 + 15.7439i 0.0627313 + 1.19698i 0.830783 + 0.556596i \(0.187893\pi\)
−0.768052 + 0.640388i \(0.778774\pi\)
\(174\) −40.3211 −3.05673
\(175\) 0 0
\(176\) 11.2279 0.846336
\(177\) −1.40411 26.7920i −0.105539 2.01381i
\(178\) 9.40773 + 7.61823i 0.705139 + 0.571011i
\(179\) −15.9352 + 1.67486i −1.19105 + 0.125185i −0.679243 0.733914i \(-0.737692\pi\)
−0.511810 + 0.859098i \(0.671025\pi\)
\(180\) 0 0
\(181\) −5.00248 + 6.88532i −0.371831 + 0.511782i −0.953397 0.301717i \(-0.902440\pi\)
0.581566 + 0.813499i \(0.302440\pi\)
\(182\) −17.6628 + 14.2116i −1.30925 + 1.05344i
\(183\) −0.321285 2.02851i −0.0237501 0.149952i
\(184\) 0.430925 + 2.02734i 0.0317682 + 0.149458i
\(185\) 0 0
\(186\) −12.7570 2.71159i −0.935389 0.198823i
\(187\) 7.10976 + 4.61713i 0.519917 + 0.337638i
\(188\) −3.72949 7.31954i −0.272001 0.533832i
\(189\) 2.68559 8.17810i 0.195348 0.594869i
\(190\) 0 0
\(191\) −11.8260 + 2.51369i −0.855699 + 0.181884i −0.614817 0.788670i \(-0.710770\pi\)
−0.240882 + 0.970554i \(0.577437\pi\)
\(192\) 3.06286 + 1.17572i 0.221043 + 0.0848505i
\(193\) −8.48275 + 2.27295i −0.610602 + 0.163610i −0.550852 0.834603i \(-0.685697\pi\)
−0.0597499 + 0.998213i \(0.519030\pi\)
\(194\) 0.548359 5.21728i 0.0393699 0.374579i
\(195\) 0 0
\(196\) −8.19234 + 3.58611i −0.585167 + 0.256151i
\(197\) 1.54234 9.73798i 0.109887 0.693802i −0.869820 0.493369i \(-0.835765\pi\)
0.979707 0.200433i \(-0.0642348\pi\)
\(198\) 6.01739 0.315358i 0.427637 0.0224115i
\(199\) 2.51334 4.35324i 0.178166 0.308593i −0.763086 0.646297i \(-0.776317\pi\)
0.941252 + 0.337704i \(0.109650\pi\)
\(200\) 0 0
\(201\) 18.7642 10.8335i 1.32352 0.764136i
\(202\) 3.13112 6.14517i 0.220305 0.432373i
\(203\) 19.6694 + 19.7931i 1.38052 + 1.38920i
\(204\) 5.89418 + 8.11264i 0.412675 + 0.567998i
\(205\) 0 0
\(206\) 12.6156 + 28.3351i 0.878970 + 1.97420i
\(207\) 0.598540 + 2.23378i 0.0416014 + 0.155259i
\(208\) −14.6633 18.1077i −1.01672 1.25554i
\(209\) −1.45892 + 4.49008i −0.100915 + 0.310585i
\(210\) 0 0
\(211\) 5.17345 + 15.9222i 0.356155 + 1.09613i 0.955337 + 0.295519i \(0.0954927\pi\)
−0.599182 + 0.800613i \(0.704507\pi\)
\(212\) −2.82213 + 4.34570i −0.193825 + 0.298464i
\(213\) −4.84899 0.254125i −0.332247 0.0174123i
\(214\) −2.40640 + 11.3212i −0.164498 + 0.773902i
\(215\) 0 0
\(216\) 4.04697 + 1.31494i 0.275362 + 0.0894704i
\(217\) 4.89203 + 7.58500i 0.332093 + 0.514903i
\(218\) 11.8376 + 11.8376i 0.801746 + 0.801746i
\(219\) 16.4833 + 1.73246i 1.11384 + 0.117069i
\(220\) 0 0
\(221\) −1.83891 17.4960i −0.123698 1.17691i
\(222\) −2.95067 7.68676i −0.198036 0.515902i
\(223\) 9.48013 + 4.83037i 0.634836 + 0.323465i 0.741623 0.670817i \(-0.234056\pi\)
−0.106787 + 0.994282i \(0.534056\pi\)
\(224\) −6.72830 15.2404i −0.449553 1.01829i
\(225\) 0 0
\(226\) −1.42893 2.47497i −0.0950507 0.164633i
\(227\) 1.96131 + 3.02015i 0.130177 + 0.200455i 0.897748 0.440509i \(-0.145202\pi\)
−0.767572 + 0.640963i \(0.778535\pi\)
\(228\) −3.51448 + 4.34002i −0.232752 + 0.287425i
\(229\) 7.55461 + 3.36353i 0.499222 + 0.222268i 0.640871 0.767649i \(-0.278574\pi\)
−0.141648 + 0.989917i \(0.545240\pi\)
\(230\) 0 0
\(231\) −9.44280 8.55607i −0.621291 0.562948i
\(232\) −9.75415 + 9.75415i −0.640392 + 0.640392i
\(233\) −3.05602 + 2.47471i −0.200206 + 0.162124i −0.724181 0.689610i \(-0.757782\pi\)
0.523975 + 0.851734i \(0.324449\pi\)
\(234\) −8.36713 9.29264i −0.546977 0.607479i
\(235\) 0 0
\(236\) 12.0619 + 10.8606i 0.785165 + 0.706966i
\(237\) 21.7393 11.0767i 1.41212 0.719512i
\(238\) 2.84023 17.5759i 0.184105 1.13927i
\(239\) −13.0724 + 4.24747i −0.845581 + 0.274746i −0.699594 0.714541i \(-0.746636\pi\)
−0.145987 + 0.989287i \(0.546636\pi\)
\(240\) 0 0
\(241\) 7.90168 7.11470i 0.508992 0.458298i −0.374174 0.927358i \(-0.622074\pi\)
0.883166 + 0.469060i \(0.155407\pi\)
\(242\) 3.76188 9.80004i 0.241823 0.629970i
\(243\) 13.5162 + 3.62166i 0.867065 + 0.232329i
\(244\) 1.00521 + 0.730330i 0.0643522 + 0.0467546i
\(245\) 0 0
\(246\) 16.2576 11.8118i 1.03655 0.753094i
\(247\) 9.14664 3.51107i 0.581987 0.223404i
\(248\) −3.74204 + 2.43011i −0.237620 + 0.154312i
\(249\) 10.6276 + 6.13585i 0.673497 + 0.388843i
\(250\) 0 0
\(251\) 7.76448i 0.490090i 0.969512 + 0.245045i \(0.0788027\pi\)
−0.969512 + 0.245045i \(0.921197\pi\)
\(252\) −2.22561 4.40206i −0.140200 0.277303i
\(253\) −3.56970 0.565386i −0.224425 0.0355455i
\(254\) 9.37662 21.0602i 0.588342 1.32144i
\(255\) 0 0
\(256\) 19.0148 8.46592i 1.18842 0.529120i
\(257\) 5.27589 19.6899i 0.329101 1.22822i −0.581024 0.813887i \(-0.697348\pi\)
0.910125 0.414335i \(-0.135986\pi\)
\(258\) 33.5158 5.30838i 2.08660 0.330485i
\(259\) −2.33393 + 5.19819i −0.145023 + 0.323000i
\(260\) 0 0
\(261\) −10.2989 + 11.4381i −0.637485 + 0.707999i
\(262\) 1.35770 25.9065i 0.0838790 1.60051i
\(263\) 1.02582 19.5739i 0.0632549 1.20698i −0.764025 0.645186i \(-0.776780\pi\)
0.827280 0.561789i \(-0.189887\pi\)
\(264\) 4.21503 4.68127i 0.259417 0.288112i
\(265\) 0 0
\(266\) 9.86403 1.00551i 0.604803 0.0616517i
\(267\) 13.9464 2.20890i 0.853508 0.135182i
\(268\) −3.39264 + 12.6615i −0.207238 + 0.773424i
\(269\) 18.9392 8.43229i 1.15475 0.514126i 0.262169 0.965022i \(-0.415562\pi\)
0.892576 + 0.450896i \(0.148896\pi\)
\(270\) 0 0
\(271\) −2.16651 + 4.86606i −0.131606 + 0.295592i −0.967314 0.253582i \(-0.918391\pi\)
0.835708 + 0.549174i \(0.185058\pi\)
\(272\) 18.0733 + 2.86253i 1.09586 + 0.173567i
\(273\) −1.46669 + 26.4028i −0.0887682 + 1.59797i
\(274\) 4.31743i 0.260826i
\(275\) 0 0
\(276\) −3.70241 2.13758i −0.222859 0.128667i
\(277\) 4.47434 2.90567i 0.268837 0.174585i −0.403179 0.915121i \(-0.632095\pi\)
0.672017 + 0.740536i \(0.265428\pi\)
\(278\) −33.0855 + 12.7004i −1.98434 + 0.761716i
\(279\) −4.02762 + 2.92624i −0.241128 + 0.175189i
\(280\) 0 0
\(281\) −19.3712 14.0740i −1.15559 0.839582i −0.166372 0.986063i \(-0.553205\pi\)
−0.989214 + 0.146481i \(0.953205\pi\)
\(282\) −23.7453 6.36255i −1.41401 0.378884i
\(283\) −1.20959 + 3.15108i −0.0719025 + 0.187312i −0.964822 0.262904i \(-0.915320\pi\)
0.892920 + 0.450216i \(0.148653\pi\)
\(284\) 2.18304 1.96562i 0.129540 0.116638i
\(285\) 0 0
\(286\) 18.5861 6.03898i 1.09902 0.357092i
\(287\) −13.7290 2.21859i −0.810398 0.130959i
\(288\) 8.18748 4.17173i 0.482452 0.245822i
\(289\) −2.36618 2.13051i −0.139187 0.125324i
\(290\) 0 0
\(291\) −4.09451 4.54741i −0.240024 0.266574i
\(292\) −7.79246 + 6.31021i −0.456019 + 0.369277i
\(293\) −13.2445 + 13.2445i −0.773751 + 0.773751i −0.978760 0.205009i \(-0.934278\pi\)
0.205009 + 0.978760i \(0.434278\pi\)
\(294\) −8.42907 + 25.3992i −0.491593 + 1.48131i
\(295\) 0 0
\(296\) −2.57332 1.14572i −0.149571 0.0665934i
\(297\) −4.66967 + 5.76656i −0.270962 + 0.334610i
\(298\) −23.4834 36.1613i −1.36036 2.09477i
\(299\) 3.75011 + 6.49539i 0.216875 + 0.375638i
\(300\) 0 0
\(301\) −18.9554 13.8629i −1.09257 0.799044i
\(302\) 13.6247 + 6.94212i 0.784012 + 0.399474i
\(303\) −2.88299 7.51044i −0.165623 0.431464i
\(304\) 1.06521 + 10.1348i 0.0610942 + 0.581273i
\(305\) 0 0
\(306\) 9.76646 + 1.02650i 0.558311 + 0.0586809i
\(307\) 1.06555 + 1.06555i 0.0608142 + 0.0608142i 0.736860 0.676046i \(-0.236308\pi\)
−0.676046 + 0.736860i \(0.736308\pi\)
\(308\) 7.69968 0.379332i 0.438730 0.0216144i
\(309\) 34.4082 + 11.1799i 1.95741 + 0.636002i
\(310\) 0 0
\(311\) 1.04078 4.89649i 0.0590173 0.277655i −0.938737 0.344634i \(-0.888003\pi\)
0.997754 + 0.0669796i \(0.0213363\pi\)
\(312\) −13.0544 0.684151i −0.739059 0.0387324i
\(313\) −18.4298 + 28.3794i −1.04171 + 1.60410i −0.275733 + 0.961234i \(0.588921\pi\)
−0.765980 + 0.642864i \(0.777746\pi\)
\(314\) 9.13208 + 28.1057i 0.515353 + 1.58609i
\(315\) 0 0
\(316\) −4.56132 + 14.0383i −0.256594 + 0.789715i
\(317\) −8.47232 10.4624i −0.475853 0.587629i 0.481538 0.876425i \(-0.340078\pi\)
−0.957391 + 0.288796i \(0.906745\pi\)
\(318\) 4.01326 + 14.9777i 0.225052 + 0.839907i
\(319\) −9.78380 21.9748i −0.547788 1.23035i
\(320\) 0 0
\(321\) 7.93539 + 10.9221i 0.442910 + 0.609613i
\(322\) 1.94155 + 7.33787i 0.108198 + 0.408923i
\(323\) −3.49312 + 6.85563i −0.194362 + 0.381458i
\(324\) −12.4451 + 7.18516i −0.691393 + 0.399176i
\(325\) 0 0
\(326\) −9.14033 + 15.8315i −0.506236 + 0.876826i
\(327\) 19.5005 1.02198i 1.07838 0.0565154i
\(328\) 1.07548 6.79032i 0.0593835 0.374933i
\(329\) 8.46015 + 14.7600i 0.466423 + 0.813747i
\(330\) 0 0
\(331\) 1.28920 12.2659i 0.0708609 0.674196i −0.900218 0.435439i \(-0.856593\pi\)
0.971079 0.238758i \(-0.0767401\pi\)
\(332\) −7.17118 + 1.92151i −0.393570 + 0.105457i
\(333\) −2.93420 1.12634i −0.160793 0.0617228i
\(334\) −36.8099 + 7.82418i −2.01415 + 0.428120i
\(335\) 0 0
\(336\) −26.1320 8.58144i −1.42562 0.468156i
\(337\) −7.73487 15.1805i −0.421345 0.826936i −0.999936 0.0113182i \(-0.996397\pi\)
0.578591 0.815618i \(-0.303603\pi\)
\(338\) −14.2739 9.26959i −0.776398 0.504199i
\(339\) −3.26065 0.693073i −0.177094 0.0376426i
\(340\) 0 0
\(341\) −1.61765 7.61046i −0.0876008 0.412130i
\(342\) 0.855539 + 5.40166i 0.0462622 + 0.292088i
\(343\) 16.5800 8.25252i 0.895235 0.445594i
\(344\) 6.82371 9.39203i 0.367910 0.506384i
\(345\) 0 0
\(346\) −28.3855 + 2.98343i −1.52601 + 0.160390i
\(347\) 13.3971 + 10.8488i 0.719194 + 0.582392i 0.917494 0.397749i \(-0.130209\pi\)
−0.198300 + 0.980141i \(0.563542\pi\)
\(348\) −1.48914 28.4145i −0.0798263 1.52318i
\(349\) −13.4664 −0.720839 −0.360419 0.932790i \(-0.617366\pi\)
−0.360419 + 0.932790i \(0.617366\pi\)
\(350\) 0 0
\(351\) 15.3984 0.821907
\(352\) 0.751597 + 14.3413i 0.0400602 + 0.764395i
\(353\) 6.92890 + 5.61091i 0.368788 + 0.298639i 0.795743 0.605634i \(-0.207080\pi\)
−0.426955 + 0.904273i \(0.640414\pi\)
\(354\) 48.3048 5.07704i 2.56737 0.269841i
\(355\) 0 0
\(356\) −5.02116 + 6.91104i −0.266121 + 0.366284i
\(357\) −13.0185 16.1799i −0.689013 0.856333i
\(358\) −4.53785 28.6509i −0.239833 1.51425i
\(359\) −4.52910 21.3077i −0.239037 1.12458i −0.919895 0.392164i \(-0.871726\pi\)
0.680859 0.732415i \(-0.261607\pi\)
\(360\) 0 0
\(361\) 14.3934 + 3.05942i 0.757549 + 0.161022i
\(362\) −12.9221 8.39170i −0.679170 0.441058i
\(363\) −5.55883 10.9098i −0.291763 0.572617i
\(364\) −10.6673 11.9222i −0.559120 0.624893i
\(365\) 0 0
\(366\) 3.63695 0.773057i 0.190106 0.0404083i
\(367\) −11.0923 4.25793i −0.579012 0.222262i 0.0511955 0.998689i \(-0.483697\pi\)
−0.630207 + 0.776427i \(0.717030\pi\)
\(368\) −7.53547 + 2.01912i −0.392814 + 0.105254i
\(369\) 0.801825 7.62886i 0.0417414 0.397142i
\(370\) 0 0
\(371\) 5.39459 9.27645i 0.280073 0.481609i
\(372\) 1.43973 9.09008i 0.0746464 0.471299i
\(373\) 19.9123 1.04356i 1.03102 0.0540334i 0.470686 0.882301i \(-0.344007\pi\)
0.560333 + 0.828267i \(0.310673\pi\)
\(374\) −7.67376 + 13.2913i −0.396801 + 0.687279i
\(375\) 0 0
\(376\) −7.28346 + 4.20511i −0.375616 + 0.216862i
\(377\) −22.6623 + 44.4772i −1.16717 + 2.29069i
\(378\) 15.0398 + 4.08046i 0.773564 + 0.209876i
\(379\) −11.9563 16.4564i −0.614154 0.845311i 0.382757 0.923849i \(-0.374975\pi\)
−0.996911 + 0.0785382i \(0.974975\pi\)
\(380\) 0 0
\(381\) −10.9372 24.5654i −0.560331 1.25852i
\(382\) −5.66505 21.1423i −0.289849 1.08173i
\(383\) 6.92646 + 8.55346i 0.353925 + 0.437062i 0.922751 0.385397i \(-0.125935\pi\)
−0.568826 + 0.822458i \(0.692602\pi\)
\(384\) 6.38248 19.6432i 0.325704 1.00242i
\(385\) 0 0
\(386\) −4.91303 15.1208i −0.250067 0.769627i
\(387\) 7.05480 10.8634i 0.358616 0.552220i
\(388\) 3.69690 + 0.193746i 0.187682 + 0.00983598i
\(389\) 1.22745 5.77469i 0.0622341 0.292788i −0.936013 0.351964i \(-0.885514\pi\)
0.998248 + 0.0591758i \(0.0188472\pi\)
\(390\) 0 0
\(391\) −5.60193 1.82018i −0.283302 0.0920503i
\(392\) 4.10528 + 8.18347i 0.207348 + 0.413328i
\(393\) −21.3968 21.3968i −1.07933 1.07933i
\(394\) 17.7516 + 1.86577i 0.894313 + 0.0939961i
\(395\) 0 0
\(396\) 0.444469 + 4.22884i 0.0223354 + 0.212507i
\(397\) 6.10596 + 15.9066i 0.306450 + 0.798328i 0.997168 + 0.0752046i \(0.0239610\pi\)
−0.690719 + 0.723124i \(0.742706\pi\)
\(398\) 8.10845 + 4.13146i 0.406440 + 0.207091i
\(399\) 6.82725 9.33524i 0.341790 0.467347i
\(400\) 0 0
\(401\) 7.60244 + 13.1678i 0.379648 + 0.657569i 0.991011 0.133781i \(-0.0427119\pi\)
−0.611363 + 0.791350i \(0.709379\pi\)
\(402\) 21.3640 + 32.8976i 1.06554 + 1.64078i
\(403\) −10.1611 + 12.5479i −0.506160 + 0.625056i
\(404\) 4.44618 + 1.97956i 0.221205 + 0.0984870i
\(405\) 0 0
\(406\) −33.9206 + 37.4361i −1.68345 + 1.85792i
\(407\) 3.47327 3.47327i 0.172164 0.172164i
\(408\) 7.97832 6.46072i 0.394986 0.319853i
\(409\) −7.61757 8.46017i −0.376665 0.418328i 0.524770 0.851244i \(-0.324151\pi\)
−0.901434 + 0.432916i \(0.857485\pi\)
\(410\) 0 0
\(411\) −3.74248 3.36975i −0.184603 0.166217i
\(412\) −19.5020 + 9.93675i −0.960793 + 0.489549i
\(413\) −26.0562 21.2355i −1.28214 1.04493i
\(414\) −3.98179 + 1.29376i −0.195694 + 0.0635849i
\(415\) 0 0
\(416\) 22.1473 19.9415i 1.08586 0.977712i
\(417\) −14.8141 + 38.5921i −0.725451 + 1.88987i
\(418\) −8.25594 2.21217i −0.403811 0.108201i
\(419\) 11.5358 + 8.38127i 0.563562 + 0.409452i 0.832761 0.553633i \(-0.186759\pi\)
−0.269199 + 0.963085i \(0.586759\pi\)
\(420\) 0 0
\(421\) −7.49291 + 5.44392i −0.365182 + 0.265320i −0.755210 0.655483i \(-0.772465\pi\)
0.390028 + 0.920803i \(0.372465\pi\)
\(422\) −28.2960 + 10.8618i −1.37743 + 0.528744i
\(423\) −7.86997 + 5.11082i −0.382651 + 0.248496i
\(424\) 4.59413 + 2.65242i 0.223111 + 0.128813i
\(425\) 0 0
\(426\) 8.79066i 0.425909i
\(427\) −2.15365 1.40821i −0.104223 0.0681483i
\(428\) −8.06700 1.27769i −0.389933 0.0617593i
\(429\) 9.27161 20.8244i 0.447638 1.00541i
\(430\) 0 0
\(431\) 7.32382 3.26078i 0.352776 0.157066i −0.222695 0.974888i \(-0.571485\pi\)
0.575471 + 0.817822i \(0.304819\pi\)
\(432\) −4.14538 + 15.4708i −0.199445 + 0.744339i
\(433\) −26.4096 + 4.18286i −1.26916 + 0.201016i −0.754456 0.656351i \(-0.772099\pi\)
−0.514707 + 0.857366i \(0.672099\pi\)
\(434\) −13.2496 + 9.56307i −0.635999 + 0.459042i
\(435\) 0 0
\(436\) −7.90486 + 8.77923i −0.378574 + 0.420449i
\(437\) 0.171678 3.27582i 0.00821249 0.156704i
\(438\) −1.57038 + 29.9646i −0.0750356 + 1.43176i
\(439\) −11.7293 + 13.0267i −0.559809 + 0.621731i −0.954906 0.296909i \(-0.904044\pi\)
0.395097 + 0.918639i \(0.370711\pi\)
\(440\) 0 0
\(441\) 5.05215 + 8.87863i 0.240578 + 0.422792i
\(442\) 31.4572 4.98233i 1.49627 0.236985i
\(443\) −3.98412 + 14.8689i −0.189291 + 0.706445i 0.804380 + 0.594116i \(0.202498\pi\)
−0.993671 + 0.112329i \(0.964169\pi\)
\(444\) 5.30793 2.36324i 0.251903 0.112155i
\(445\) 0 0
\(446\) −7.83468 + 17.5970i −0.370983 + 0.833241i
\(447\) −49.6744 7.86765i −2.34952 0.372127i
\(448\) 3.66827 1.85462i 0.173310 0.0876226i
\(449\) 1.46011i 0.0689067i −0.999406 0.0344533i \(-0.989031\pi\)
0.999406 0.0344533i \(-0.0109690\pi\)
\(450\) 0 0
\(451\) 10.3822 + 5.99419i 0.488881 + 0.282255i
\(452\) 1.69135 1.09838i 0.0795546 0.0516633i
\(453\) 16.6517 6.39198i 0.782364 0.300321i
\(454\) −5.27436 + 3.83205i −0.247538 + 0.179847i
\(455\) 0 0
\(456\) 4.62542 + 3.36056i 0.216605 + 0.157373i
\(457\) −38.5827 10.3382i −1.80482 0.483600i −0.810106 0.586283i \(-0.800591\pi\)
−0.994714 + 0.102683i \(0.967257\pi\)
\(458\) −5.36519 + 13.9768i −0.250699 + 0.653093i
\(459\) −8.98683 + 8.09178i −0.419469 + 0.377692i
\(460\) 0 0
\(461\) −16.1060 + 5.23314i −0.750130 + 0.243732i −0.659037 0.752111i \(-0.729036\pi\)
−0.0910926 + 0.995842i \(0.529036\pi\)
\(462\) 14.5740 17.8825i 0.678043 0.831969i
\(463\) 11.4745 5.84654i 0.533265 0.271712i −0.166554 0.986032i \(-0.553264\pi\)
0.699819 + 0.714320i \(0.253264\pi\)
\(464\) −38.5854 34.7424i −1.79128 1.61288i
\(465\) 0 0
\(466\) −4.76364 5.29055i −0.220671 0.245080i
\(467\) 5.10565 4.13448i 0.236261 0.191321i −0.503877 0.863776i \(-0.668093\pi\)
0.740138 + 0.672455i \(0.234760\pi\)
\(468\) 6.23956 6.23956i 0.288424 0.288424i
\(469\) 5.72724 26.5354i 0.264459 1.22529i
\(470\) 0 0
\(471\) 31.4904 + 14.0204i 1.45100 + 0.646027i
\(472\) 10.4573 12.9137i 0.481336 0.594401i
\(473\) 11.0256 + 16.9779i 0.506955 + 0.780643i
\(474\) 22.0856 + 38.2534i 1.01443 + 1.75704i
\(475\) 0 0
\(476\) 12.4907 + 1.35242i 0.572511 + 0.0619879i
\(477\) 5.27386 + 2.68717i 0.241473 + 0.123037i
\(478\) −8.91767 23.2313i −0.407885 1.06258i
\(479\) 1.06015 + 10.0866i 0.0484393 + 0.460869i 0.991677 + 0.128751i \(0.0410967\pi\)
−0.943238 + 0.332118i \(0.892237\pi\)
\(480\) 0 0
\(481\) −10.1375 1.06549i −0.462230 0.0485823i
\(482\) 13.6115 + 13.6115i 0.619986 + 0.619986i
\(483\) 7.87606 + 4.04419i 0.358373 + 0.184017i
\(484\) 7.04508 + 2.28908i 0.320231 + 0.104049i
\(485\) 0 0
\(486\) −5.26702 + 24.7794i −0.238917 + 1.12401i
\(487\) −37.9617 1.98949i −1.72021 0.0901523i −0.833511 0.552502i \(-0.813673\pi\)
−0.886698 + 0.462350i \(0.847006\pi\)
\(488\) 0.692809 1.06683i 0.0313620 0.0482932i
\(489\) 6.58923 + 20.2796i 0.297975 + 0.917074i
\(490\) 0 0
\(491\) 11.9197 36.6850i 0.537927 1.65557i −0.199311 0.979936i \(-0.563870\pi\)
0.737238 0.675633i \(-0.236130\pi\)
\(492\) 8.92429 + 11.0206i 0.402338 + 0.496846i
\(493\) −10.1463 37.8667i −0.456968 1.70543i
\(494\) 7.21436 + 16.2037i 0.324589 + 0.729040i
\(495\) 0 0
\(496\) −9.87143 13.5869i −0.443240 0.610068i
\(497\) −4.31521 + 4.28825i −0.193564 + 0.192354i
\(498\) −10.0862 + 19.7952i −0.451972 + 0.887044i
\(499\) −2.65771 + 1.53443i −0.118976 + 0.0686906i −0.558307 0.829635i \(-0.688549\pi\)
0.439331 + 0.898325i \(0.355215\pi\)
\(500\) 0 0
\(501\) −21.9478 + 38.0147i −0.980555 + 1.69837i
\(502\) −14.0376 + 0.735677i −0.626527 + 0.0328349i
\(503\) −4.81016 + 30.3701i −0.214474 + 1.35414i 0.611864 + 0.790963i \(0.290420\pi\)
−0.826338 + 0.563174i \(0.809580\pi\)
\(504\) −4.38129 + 2.51126i −0.195158 + 0.111861i
\(505\) 0 0
\(506\) 0.683945 6.50731i 0.0304051 0.289285i
\(507\) −19.1759 + 5.13817i −0.851632 + 0.228194i
\(508\) 15.1876 + 5.82996i 0.673839 + 0.258663i
\(509\) −11.1394 + 2.36776i −0.493747 + 0.104949i −0.448054 0.894006i \(-0.647883\pi\)
−0.0456925 + 0.998956i \(0.514549\pi\)
\(510\) 0 0
\(511\) 15.4753 13.8464i 0.684585 0.612530i
\(512\) 8.22662 + 16.1456i 0.363569 + 0.713543i
\(513\) −5.64818 3.66797i −0.249373 0.161945i
\(514\) 36.0976 + 7.67278i 1.59220 + 0.338432i
\(515\) 0 0
\(516\) 4.97865 + 23.4227i 0.219173 + 1.03113i
\(517\) −2.29419 14.4849i −0.100898 0.637047i
\(518\) −9.61905 3.72703i −0.422637 0.163756i
\(519\) −19.5687 + 26.9339i −0.858969 + 1.18227i
\(520\) 0 0
\(521\) −34.8820 + 3.66624i −1.52821 + 0.160621i −0.831009 0.556259i \(-0.812236\pi\)
−0.697197 + 0.716880i \(0.745570\pi\)
\(522\) −21.6549 17.5358i −0.947810 0.767521i
\(523\) −1.09564 20.9061i −0.0479091 0.914160i −0.911839 0.410548i \(-0.865338\pi\)
0.863930 0.503612i \(-0.167996\pi\)
\(524\) 18.3066 0.799726
\(525\) 0 0
\(526\) 35.4852 1.54723
\(527\) −0.663629 12.6628i −0.0289082 0.551600i
\(528\) 18.4263 + 14.9213i 0.801900 + 0.649366i
\(529\) −20.3766 + 2.14166i −0.885938 + 0.0931158i
\(530\) 0 0
\(531\) 10.8979 14.9996i 0.472927 0.650928i
\(532\) 1.07289 + 6.91410i 0.0465155 + 0.299764i
\(533\) −3.89184 24.5721i −0.168574 1.06434i
\(534\) 5.31492 + 25.0047i 0.229999 + 1.08206i
\(535\) 0 0
\(536\) 13.1265 + 2.79013i 0.566980 + 0.120515i
\(537\) −28.3772 18.4284i −1.22457 0.795244i
\(538\) 17.0394 + 33.4416i 0.734619 + 1.44177i
\(539\) −15.8877 + 1.56926i −0.684333 + 0.0675927i
\(540\) 0 0
\(541\) −14.0929 + 2.99554i −0.605901 + 0.128788i −0.500639 0.865656i \(-0.666901\pi\)
−0.105262 + 0.994445i \(0.533568\pi\)
\(542\) −9.00272 3.45582i −0.386700 0.148440i
\(543\) −17.3598 + 4.65155i −0.744982 + 0.199617i
\(544\) −2.44646 + 23.2765i −0.104891 + 0.997972i
\(545\) 0 0
\(546\) −47.8731 0.150023i −2.04878 0.00642038i
\(547\) 6.04502 38.1667i 0.258466 1.63189i −0.427328 0.904096i \(-0.640545\pi\)
0.685795 0.727795i \(-0.259455\pi\)
\(548\) 3.04252 0.159452i 0.129970 0.00681144i
\(549\) 0.709658 1.22916i 0.0302875 0.0524595i
\(550\) 0 0
\(551\) 18.9073 10.9161i 0.805476 0.465042i
\(552\) −1.98703 + 3.89977i −0.0845736 + 0.165985i
\(553\) 8.00429 29.5023i 0.340377 1.25456i
\(554\) 5.67716 + 7.81394i 0.241199 + 0.331983i
\(555\) 0 0
\(556\) −10.1719 22.8465i −0.431386 0.968908i
\(557\) 6.74079 + 25.1570i 0.285616 + 1.06593i 0.948388 + 0.317113i \(0.102713\pi\)
−0.662772 + 0.748822i \(0.730620\pi\)
\(558\) −5.67202 7.00436i −0.240116 0.296518i
\(559\) 12.9818 39.9540i 0.549073 1.68987i
\(560\) 0 0
\(561\) 5.53199 + 17.0257i 0.233561 + 0.718826i
\(562\) 23.6092 36.3550i 0.995894 1.53354i
\(563\) −5.12594 0.268639i −0.216032 0.0113218i −0.0559873 0.998431i \(-0.517831\pi\)
−0.160045 + 0.987110i \(0.551164\pi\)
\(564\) 3.60676 16.9685i 0.151872 0.714501i
\(565\) 0 0
\(566\) −5.81151 1.88827i −0.244276 0.0793701i
\(567\) 25.0098 16.1303i 1.05031 0.677411i
\(568\) −2.12656 2.12656i −0.0892287 0.0892287i
\(569\) −8.90580 0.936038i −0.373351 0.0392407i −0.0840048 0.996465i \(-0.526771\pi\)
−0.289346 + 0.957225i \(0.593438\pi\)
\(570\) 0 0
\(571\) 2.13250 + 20.2894i 0.0892423 + 0.849084i 0.943975 + 0.330016i \(0.107054\pi\)
−0.854733 + 0.519068i \(0.826279\pi\)
\(572\) 4.94212 + 12.8747i 0.206641 + 0.538317i
\(573\) −22.7483 11.5909i −0.950325 0.484215i
\(574\) 2.71022 25.0312i 0.113122 1.04478i
\(575\) 0 0
\(576\) 1.13362 + 1.96349i 0.0472342 + 0.0818120i
\(577\) −17.7297 27.3014i −0.738097 1.13657i −0.985831 0.167742i \(-0.946352\pi\)
0.247733 0.968828i \(-0.420314\pi\)
\(578\) 3.62760 4.47972i 0.150888 0.186332i
\(579\) −16.9418 7.54295i −0.704075 0.313474i
\(580\) 0 0
\(581\) 14.6374 4.70532i 0.607262 0.195210i
\(582\) 7.83340 7.83340i 0.324705 0.324705i
\(583\) −7.18895 + 5.82150i −0.297736 + 0.241102i
\(584\) 6.86890 + 7.62869i 0.284237 + 0.315677i
\(585\) 0 0
\(586\) −25.1999 22.6901i −1.04100 0.937318i
\(587\) 37.0069 18.8559i 1.52744 0.778268i 0.529877 0.848074i \(-0.322238\pi\)
0.997561 + 0.0698062i \(0.0222381\pi\)
\(588\) −18.2103 5.00197i −0.750979 0.206278i
\(589\) 6.71609 2.18219i 0.276732 0.0899155i
\(590\) 0 0
\(591\) 15.4724 13.9314i 0.636449 0.573062i
\(592\) 3.79960 9.89829i 0.156162 0.406817i
\(593\) 16.3610 + 4.38392i 0.671866 + 0.180026i 0.578595 0.815615i \(-0.303601\pi\)
0.0932706 + 0.995641i \(0.470268\pi\)
\(594\) −10.8679 7.89600i −0.445916 0.323977i
\(595\) 0 0
\(596\) 24.6157 17.8844i 1.00830 0.732573i
\(597\) 9.90990 3.80405i 0.405585 0.155690i
\(598\) −11.3878 + 7.39533i −0.465682 + 0.302418i
\(599\) 2.39394 + 1.38214i 0.0978138 + 0.0564728i 0.548109 0.836407i \(-0.315348\pi\)
−0.450295 + 0.892880i \(0.648681\pi\)
\(600\) 0 0
\(601\) 35.9435i 1.46616i 0.680140 + 0.733082i \(0.261919\pi\)
−0.680140 + 0.733082i \(0.738081\pi\)
\(602\) 23.2670 35.5834i 0.948292 1.45027i
\(603\) 14.7890 + 2.34235i 0.602256 + 0.0953880i
\(604\) −4.38896 + 9.85777i −0.178584 + 0.401107i
\(605\) 0 0
\(606\) 13.3051 5.92382i 0.540483 0.240639i
\(607\) −3.86472 + 14.4233i −0.156864 + 0.585425i 0.842074 + 0.539361i \(0.181334\pi\)
−0.998939 + 0.0460635i \(0.985332\pi\)
\(608\) −12.8738 + 2.03902i −0.522103 + 0.0826930i
\(609\) 5.97576 + 58.6222i 0.242150 + 2.37549i
\(610\) 0 0
\(611\) −20.3643 + 22.6169i −0.823852 + 0.914980i
\(612\) −0.362682 + 6.92039i −0.0146606 + 0.279740i
\(613\) −2.52574 + 48.1939i −0.102014 + 1.94654i 0.172625 + 0.984988i \(0.444775\pi\)
−0.274639 + 0.961548i \(0.588558\pi\)
\(614\) −1.82547 + 2.02739i −0.0736700 + 0.0818189i
\(615\) 0 0
\(616\) −0.800369 7.85161i −0.0322478 0.316350i
\(617\) 25.3234 4.01084i 1.01948 0.161470i 0.375750 0.926721i \(-0.377385\pi\)
0.643732 + 0.765251i \(0.277385\pi\)
\(618\) −16.9522 + 63.2665i −0.681917 + 2.54495i
\(619\) 1.31576 0.585813i 0.0528847 0.0235458i −0.380124 0.924936i \(-0.624119\pi\)
0.433009 + 0.901390i \(0.357452\pi\)
\(620\) 0 0
\(621\) 2.09698 4.70990i 0.0841491 0.189002i
\(622\) 8.95108 + 1.41771i 0.358906 + 0.0568451i
\(623\) 9.68175 14.8068i 0.387891 0.593222i
\(624\) 49.2036i 1.96972i
\(625\) 0 0
\(626\) −53.0539 30.6307i −2.12046 1.22425i
\(627\) −8.36131 + 5.42990i −0.333919 + 0.216849i
\(628\) −19.4689 + 7.47343i −0.776896 + 0.298222i
\(629\) 6.47635 4.70534i 0.258229 0.187614i
\(630\) 0 0
\(631\) −9.94266 7.22377i −0.395811 0.287574i 0.372021 0.928224i \(-0.378665\pi\)
−0.767833 + 0.640650i \(0.778665\pi\)
\(632\) 14.5967 + 3.91119i 0.580627 + 0.155579i
\(633\) −12.6696 + 33.0054i −0.503571 + 1.31185i
\(634\) 18.1125 16.3086i 0.719340 0.647696i
\(635\) 0 0
\(636\) −10.4066 + 3.38132i −0.412650 + 0.134078i
\(637\) 23.2797 + 23.5734i 0.922377 + 0.934012i
\(638\) 38.8016 19.7704i 1.53617 0.782718i
\(639\) −2.49368 2.24532i −0.0986487 0.0888236i
\(640\) 0 0
\(641\) −12.3273 13.6908i −0.486899 0.540756i 0.448764 0.893650i \(-0.351864\pi\)
−0.935663 + 0.352894i \(0.885198\pi\)
\(642\) −18.9944 + 15.3814i −0.749651 + 0.607055i
\(643\) 6.68684 6.68684i 0.263703 0.263703i −0.562853 0.826557i \(-0.690296\pi\)
0.826557 + 0.562853i \(0.190296\pi\)
\(644\) −5.09933 + 1.63922i −0.200942 + 0.0645945i
\(645\) 0 0
\(646\) −12.7254 5.66571i −0.500674 0.222915i
\(647\) −12.0946 + 14.9356i −0.475488 + 0.587178i −0.957300 0.289096i \(-0.906645\pi\)
0.481812 + 0.876274i \(0.339979\pi\)
\(648\) 8.01272 + 12.3385i 0.314769 + 0.484702i
\(649\) 14.4880 + 25.0939i 0.568703 + 0.985022i
\(650\) 0 0
\(651\) −2.05168 + 18.9491i −0.0804119 + 0.742673i
\(652\) −11.4941 5.85655i −0.450145 0.229360i
\(653\) −10.9430 28.5075i −0.428233 1.11558i −0.962742 0.270421i \(-0.912837\pi\)
0.534510 0.845162i \(-0.320496\pi\)
\(654\) 3.69530 + 35.1584i 0.144498 + 1.37480i
\(655\) 0 0
\(656\) 25.7353 + 2.70489i 1.00480 + 0.105608i
\(657\) 8.09908 + 8.09908i 0.315975 + 0.315975i
\(658\) −25.8834 + 16.6938i −1.00904 + 0.650791i
\(659\) 38.5495 + 12.5255i 1.50168 + 0.487924i 0.940506 0.339777i \(-0.110352\pi\)
0.561169 + 0.827701i \(0.310352\pi\)
\(660\) 0 0
\(661\) −3.84813 + 18.1040i −0.149675 + 0.704165i 0.837747 + 0.546059i \(0.183872\pi\)
−0.987422 + 0.158107i \(0.949461\pi\)
\(662\) 22.2980 + 1.16859i 0.866635 + 0.0454184i
\(663\) 20.2334 31.1568i 0.785801 1.21003i
\(664\) 2.34873 + 7.22866i 0.0911485 + 0.280526i
\(665\) 0 0
\(666\) 1.75831 5.41152i 0.0681331 0.209692i
\(667\) 10.5180 + 12.9887i 0.407259 + 0.502924i
\(668\) −6.87321 25.6512i −0.265933 0.992474i
\(669\) 9.13865 + 20.5257i 0.353321 + 0.793571i
\(670\) 0 0
\(671\) 1.30381 + 1.79454i 0.0503329 + 0.0692773i
\(672\) 9.21172 33.9527i 0.355350 1.30975i
\(673\) 2.55105 5.00671i 0.0983356 0.192994i −0.836598 0.547817i \(-0.815459\pi\)
0.934934 + 0.354823i \(0.115459\pi\)
\(674\) 26.7123 15.4224i 1.02892 0.594047i
\(675\) 0 0
\(676\) 6.00516 10.4012i 0.230968 0.400048i
\(677\) 24.7924 1.29931i 0.952847 0.0499366i 0.430428 0.902625i \(-0.358363\pi\)
0.522420 + 0.852688i \(0.325029\pi\)
\(678\) 0.944077 5.96067i 0.0362571 0.228918i
\(679\) −7.66659 0.0240253i −0.294217 0.000922005i
\(680\) 0 0
\(681\) −0.794891 + 7.56288i −0.0304603 + 0.289810i
\(682\) 13.6058 3.64567i 0.520994 0.139600i
\(683\) −35.6764 13.6949i −1.36512 0.524020i −0.438063 0.898944i \(-0.644335\pi\)
−0.927055 + 0.374925i \(0.877669\pi\)
\(684\) −3.77498 + 0.802397i −0.144340 + 0.0306804i
\(685\) 0 0
\(686\) 16.4908 + 29.1934i 0.629623 + 1.11461i
\(687\) 7.92800 + 15.5596i 0.302472 + 0.593635i
\(688\) 36.6469 + 23.7988i 1.39715 + 0.907320i
\(689\) 18.7771 + 3.99120i 0.715352 + 0.152053i
\(690\) 0 0
\(691\) −4.28899 20.1781i −0.163161 0.767612i −0.981284 0.192568i \(-0.938318\pi\)
0.818123 0.575044i \(-0.195015\pi\)
\(692\) −3.15078 19.8932i −0.119775 0.756226i
\(693\) −1.35030 8.70185i −0.0512936 0.330556i
\(694\) −18.3443 + 25.2488i −0.696341 + 0.958431i
\(695\) 0 0
\(696\) −28.9704 + 3.04491i −1.09812 + 0.115417i
\(697\) 15.1839 + 12.2956i 0.575129 + 0.465731i
\(698\) −1.27593 24.3461i −0.0482945 0.921515i
\(699\) −8.30402 −0.314087
\(700\) 0 0
\(701\) −16.8050 −0.634717 −0.317359 0.948306i \(-0.602796\pi\)
−0.317359 + 0.948306i \(0.602796\pi\)
\(702\) 1.45899 + 27.8391i 0.0550659 + 1.05072i
\(703\) 3.46465 + 2.80562i 0.130672 + 0.105816i
\(704\) −3.52393 + 0.370380i −0.132813 + 0.0139592i
\(705\) 0 0
\(706\) −9.48757 + 13.0585i −0.357069 + 0.491464i
\(707\) −9.39841 3.64154i −0.353464 0.136954i
\(708\) 5.36181 + 33.8531i 0.201509 + 1.27228i
\(709\) −3.71391 17.4726i −0.139479 0.656197i −0.991219 0.132232i \(-0.957786\pi\)
0.851740 0.523965i \(-0.175548\pi\)
\(710\) 0 0
\(711\) 16.4927 + 3.50563i 0.618524 + 0.131471i
\(712\) 7.33469 + 4.76320i 0.274879 + 0.178508i
\(713\) 2.45426 + 4.81676i 0.0919129 + 0.180389i
\(714\) 28.0185 25.0694i 1.04857 0.938201i
\(715\) 0 0
\(716\) 20.0228 4.25599i 0.748289 0.159054i
\(717\) −27.0978 10.4019i −1.01199 0.388466i
\(718\) 38.0935 10.2071i 1.42164 0.380927i
\(719\) 4.03131 38.3553i 0.150342 1.43041i −0.615882 0.787839i \(-0.711200\pi\)
0.766224 0.642574i \(-0.222133\pi\)
\(720\) 0 0
\(721\) 39.3262 22.5410i 1.46459 0.839470i
\(722\) −4.16742 + 26.3121i −0.155095 + 0.979233i
\(723\) 22.4226 1.17512i 0.833905 0.0437031i
\(724\) 5.43644 9.41619i 0.202044 0.349950i
\(725\) 0 0
\(726\) 19.1974 11.0836i 0.712482 0.411352i
\(727\) −12.2509 + 24.0437i −0.454359 + 0.891730i 0.544246 + 0.838926i \(0.316816\pi\)
−0.998605 + 0.0528040i \(0.983184\pi\)
\(728\) −11.6174 + 11.5448i −0.430568 + 0.427878i
\(729\) −2.46622 3.39447i −0.0913416 0.125721i
\(730\) 0 0
\(731\) 13.4191 + 30.1398i 0.496324 + 1.11476i
\(732\) 0.679097 + 2.53443i 0.0251002 + 0.0936751i
\(733\) 14.1650 + 17.4923i 0.523197 + 0.646094i 0.968420 0.249326i \(-0.0802089\pi\)
−0.445223 + 0.895420i \(0.646876\pi\)
\(734\) 6.64700 20.4574i 0.245345 0.755095i
\(735\) 0 0
\(736\) −3.08344 9.48984i −0.113657 0.349800i
\(737\) −12.7451 + 19.6258i −0.469473 + 0.722925i
\(738\) 13.8683 + 0.726809i 0.510500 + 0.0267542i
\(739\) 2.85454 13.4296i 0.105006 0.494015i −0.893943 0.448181i \(-0.852072\pi\)
0.998949 0.0458340i \(-0.0145945\pi\)
\(740\) 0 0
\(741\) 19.6767 + 6.39334i 0.722840 + 0.234865i
\(742\) 17.2822 + 8.87405i 0.634450 + 0.325777i
\(743\) 16.3770 + 16.3770i 0.600813 + 0.600813i 0.940528 0.339715i \(-0.110331\pi\)
−0.339715 + 0.940528i \(0.610331\pi\)
\(744\) −9.37058 0.984887i −0.343542 0.0361077i
\(745\) 0 0
\(746\) 3.77334 + 35.9009i 0.138152 + 1.31443i
\(747\) 3.03917 + 7.91731i 0.111197 + 0.289679i
\(748\) −9.64989 4.91686i −0.352835 0.179778i
\(749\) 16.8164 + 1.82077i 0.614457 + 0.0665295i
\(750\) 0 0
\(751\) −6.00270 10.3970i −0.219042 0.379391i 0.735474 0.677553i \(-0.236960\pi\)
−0.954515 + 0.298162i \(0.903626\pi\)
\(752\) −17.2409 26.5487i −0.628711 0.968131i
\(753\) −10.3186 + 12.7424i −0.376030 + 0.464358i
\(754\) −82.5584 36.7574i −3.00660 1.33862i
\(755\) 0 0
\(756\) −2.32007 + 10.7493i −0.0843803 + 0.390950i
\(757\) −31.8390 + 31.8390i −1.15721 + 1.15721i −0.172134 + 0.985073i \(0.555066\pi\)
−0.985073 + 0.172134i \(0.944934\pi\)
\(758\) 28.6191 23.1753i 1.03949 0.841764i
\(759\) −5.10691 5.67180i −0.185369 0.205873i
\(760\) 0 0
\(761\) 22.6106 + 20.3586i 0.819632 + 0.738000i 0.968005 0.250931i \(-0.0807368\pi\)
−0.148373 + 0.988932i \(0.547404\pi\)
\(762\) 43.3760 22.1012i 1.57135 0.800641i
\(763\) 15.4561 18.9649i 0.559550 0.686576i
\(764\) 14.6899 4.77302i 0.531460 0.172682i
\(765\) 0 0
\(766\) −14.8077 + 13.3329i −0.535024 + 0.481738i
\(767\) 21.5491 56.1373i 0.778093 2.02700i
\(768\) 42.4561 + 11.3761i 1.53200 + 0.410499i
\(769\) −21.3880 15.5393i −0.771270 0.560361i 0.131076 0.991372i \(-0.458157\pi\)
−0.902346 + 0.431012i \(0.858157\pi\)
\(770\) 0 0
\(771\) 34.8251 25.3019i 1.25420 0.911226i
\(772\) 10.4742 4.02068i 0.376976 0.144708i
\(773\) −8.85013 + 5.74734i −0.318317 + 0.206718i −0.693900 0.720071i \(-0.744109\pi\)
0.375583 + 0.926789i \(0.377442\pi\)
\(774\) 20.3087 + 11.7252i 0.729980 + 0.421454i
\(775\) 0 0
\(776\) 3.78999i 0.136053i
\(777\) −10.7384 + 5.42914i −0.385236 + 0.194769i
\(778\) 10.5565 + 1.67198i 0.378468 + 0.0599434i
\(779\) −4.42565 + 9.94018i −0.158565 + 0.356144i
\(780\) 0 0
\(781\) 4.79086 2.13303i 0.171431 0.0763258i
\(782\) 2.75996 10.3003i 0.0986958 0.368338i
\(783\) 33.8910 5.36780i 1.21116 0.191830i
\(784\) −29.9513 + 17.0430i −1.06969 + 0.608678i
\(785\) 0 0
\(786\) 36.6564 40.7111i 1.30749 1.45212i
\(787\) 0.288705 5.50882i 0.0102912 0.196368i −0.988646 0.150267i \(-0.951987\pi\)
0.998937 0.0461017i \(-0.0146798\pi\)
\(788\) −0.659215 + 12.5786i −0.0234836 + 0.448093i
\(789\) 27.6961 30.7596i 0.986006 1.09507i
\(790\) 0 0
\(791\) −3.38655 + 2.44429i −0.120412 + 0.0869090i
\(792\) 4.29963 0.680995i 0.152781 0.0241981i
\(793\) 1.19139 4.44632i 0.0423074 0.157893i
\(794\) −28.1793 + 12.5462i −1.00005 + 0.445249i
\(795\) 0 0
\(796\) −2.61200 + 5.86665i −0.0925799 + 0.207938i
\(797\) −9.27158 1.46847i −0.328416 0.0520160i −0.00995081 0.999950i \(-0.503167\pi\)
−0.318465 + 0.947934i \(0.603167\pi\)
\(798\) 17.5242 + 11.4586i 0.620351 + 0.405630i
\(799\) 23.9010i 0.845556i
\(800\) 0 0
\(801\) 8.45075 + 4.87904i 0.298593 + 0.172393i
\(802\) −23.0860 + 14.9922i −0.815196 + 0.529394i
\(803\) −16.7116 + 6.41498i −0.589739 + 0.226380i
\(804\) −22.3941 + 16.2703i −0.789780 + 0.573809i
\(805\) 0 0
\(806\) −23.6484 17.1815i −0.832978 0.605194i
\(807\) 42.2874 + 11.3309i 1.48859 + 0.398866i
\(808\) 1.78562 4.65171i 0.0628180 0.163647i
\(809\) −41.2878 + 37.1757i −1.45160 + 1.30703i −0.582080 + 0.813132i \(0.697761\pi\)
−0.869521 + 0.493895i \(0.835573\pi\)
\(810\) 0 0
\(811\) −11.0355 + 3.58564i −0.387508 + 0.125909i −0.496290 0.868157i \(-0.665305\pi\)
0.108782 + 0.994066i \(0.465305\pi\)
\(812\) −27.6342 22.5215i −0.969769 0.790348i
\(813\) −10.0222 + 5.10657i −0.351494 + 0.179095i
\(814\) 6.60849 + 5.95031i 0.231627 + 0.208558i
\(815\) 0 0
\(816\) 25.8562 + 28.7162i 0.905147 + 1.00527i
\(817\) −14.2790 + 11.5629i −0.499559 + 0.404535i
\(818\) 14.5735 14.5735i 0.509552 0.509552i
\(819\) −12.2704 + 13.5420i −0.428762 + 0.473197i
\(820\) 0 0
\(821\) −1.91514 0.852675i −0.0668389 0.0297586i 0.373045 0.927813i \(-0.378314\pi\)
−0.439884 + 0.898055i \(0.644980\pi\)
\(822\) 5.73764 7.08539i 0.200123 0.247131i
\(823\) 5.74818 + 8.85143i 0.200369 + 0.308541i 0.924544 0.381075i \(-0.124446\pi\)
−0.724175 + 0.689616i \(0.757779\pi\)
\(824\) 11.2040 + 19.4058i 0.390309 + 0.676035i
\(825\) 0 0
\(826\) 35.9232 49.1196i 1.24993 1.70909i
\(827\) 9.99601 + 5.09322i 0.347595 + 0.177109i 0.619068 0.785337i \(-0.287511\pi\)
−0.271472 + 0.962446i \(0.587511\pi\)
\(828\) −1.05878 2.75821i −0.0367950 0.0958543i
\(829\) 3.30687 + 31.4628i 0.114852 + 1.09275i 0.888419 + 0.459033i \(0.151804\pi\)
−0.773567 + 0.633715i \(0.781529\pi\)
\(830\) 0 0
\(831\) 11.2044 + 1.17763i 0.388675 + 0.0408514i
\(832\) 5.19948 + 5.19948i 0.180260 + 0.180260i
\(833\) −25.9742 1.52455i −0.899953 0.0528224i
\(834\) −71.1751 23.1262i −2.46459 0.800795i
\(835\) 0 0
\(836\) 1.25402 5.89970i 0.0433712 0.204046i
\(837\) 11.0836 + 0.580866i 0.383105 + 0.0200777i
\(838\) −14.0597 + 21.6500i −0.485683 + 0.747886i
\(839\) −1.19025 3.66323i −0.0410922 0.126469i 0.928406 0.371568i \(-0.121180\pi\)
−0.969498 + 0.245099i \(0.921180\pi\)
\(840\) 0 0
\(841\) −25.4123 + 78.2109i −0.876285 + 2.69693i
\(842\) −10.5521 13.0308i −0.363650 0.449070i
\(843\) −13.0867 48.8401i −0.450729 1.68214i
\(844\) −8.69940 19.5392i −0.299446 0.672566i
\(845\) 0 0
\(846\) −9.98562 13.7440i −0.343313 0.472529i
\(847\) −14.8056 4.01693i −0.508728 0.138023i
\(848\) −9.06493 + 17.7909i −0.311291 + 0.610943i
\(849\) −6.17268 + 3.56380i −0.211846 + 0.122309i
\(850\) 0 0
\(851\) −1.70644 + 2.95564i −0.0584961 + 0.101318i
\(852\) 6.19482 0.324657i 0.212231 0.0111226i
\(853\) 5.03998 31.8212i 0.172566 1.08954i −0.737583 0.675256i \(-0.764033\pi\)
0.910149 0.414281i \(-0.135967\pi\)
\(854\) 2.34188 4.02706i 0.0801376 0.137803i
\(855\) 0 0
\(856\) −0.874039 + 8.31593i −0.0298740 + 0.284233i
\(857\) 2.15174 0.576556i 0.0735019 0.0196948i −0.221881 0.975074i \(-0.571220\pi\)
0.295383 + 0.955379i \(0.404553\pi\)
\(858\) 38.5273 + 14.7892i 1.31530 + 0.504896i
\(859\) 42.4890 9.03132i 1.44971 0.308145i 0.585251 0.810852i \(-0.300996\pi\)
0.864456 + 0.502708i \(0.167663\pi\)
\(860\) 0 0
\(861\) −19.5825 21.8861i −0.667368 0.745875i
\(862\) 6.58914 + 12.9319i 0.224427 + 0.440463i
\(863\) −34.6780 22.5201i −1.18045 0.766595i −0.203296 0.979117i \(-0.565165\pi\)
−0.977156 + 0.212523i \(0.931832\pi\)
\(864\) −20.0382 4.25925i −0.681713 0.144903i
\(865\) 0 0
\(866\) −10.0646 47.3500i −0.342008 1.60902i
\(867\) −1.05182 6.64093i −0.0357217 0.225538i
\(868\) −7.22848 8.98385i −0.245351 0.304932i
\(869\) −15.4889 + 21.3187i −0.525425 + 0.723186i
\(870\) 0 0
\(871\) 48.2961 5.07612i 1.63645 0.171998i
\(872\) 9.39918 + 7.61131i 0.318297 + 0.257751i
\(873\) −0.221316 4.22296i −0.00749041 0.142925i
\(874\) 5.93868 0.200879
\(875\) 0 0
\(876\) −21.1742 −0.715410
\(877\) 2.25803 + 43.0858i 0.0762484 + 1.45491i 0.722283 + 0.691598i \(0.243093\pi\)
−0.646035 + 0.763308i \(0.723574\pi\)
\(878\) −24.6626 19.9714i −0.832321 0.674001i
\(879\) −39.3369 + 4.13447i −1.32680 + 0.139452i
\(880\) 0 0
\(881\) 31.0502 42.7370i 1.04611 1.43985i 0.153974 0.988075i \(-0.450793\pi\)
0.892134 0.451770i \(-0.149207\pi\)
\(882\) −15.5732 + 9.97512i −0.524375 + 0.335880i
\(883\) 4.81230 + 30.3837i 0.161947 + 1.02249i 0.926051 + 0.377399i \(0.123181\pi\)
−0.764104 + 0.645093i \(0.776819\pi\)
\(884\) 4.67286 + 21.9841i 0.157165 + 0.739404i
\(885\) 0 0
\(886\) −27.2594 5.79415i −0.915796 0.194658i
\(887\) 19.5745 + 12.7118i 0.657247 + 0.426821i 0.829710 0.558195i \(-0.188506\pi\)
−0.172463 + 0.985016i \(0.555173\pi\)
\(888\) −2.70051 5.30005i −0.0906232 0.177858i
\(889\) −32.0088 10.5113i −1.07354 0.352538i
\(890\) 0 0
\(891\) −25.0937 + 5.33384i −0.840672 + 0.178690i
\(892\) −12.6900 4.87125i −0.424894 0.163102i
\(893\) 12.8571 3.44506i 0.430247 0.115284i
\(894\) 9.51748 90.5528i 0.318312 3.02854i
\(895\) 0 0
\(896\) −12.8684 22.4509i −0.429903 0.750033i
\(897\) −2.47766 + 15.6433i −0.0827267 + 0.522316i
\(898\) 2.63975 0.138344i 0.0880897 0.00461659i
\(899\) −17.9898 + 31.1593i −0.599994 + 1.03922i
\(900\) 0 0
\(901\) −13.0561 + 7.53793i −0.434961 + 0.251125i
\(902\) −9.85331 + 19.3382i −0.328079 + 0.643892i
\(903\) −12.6849 47.9413i −0.422129 1.59539i
\(904\) −1.21357 1.67034i −0.0403628 0.0555547i
\(905\) 0 0
\(906\) 13.1339 + 29.4992i 0.436345 + 0.980047i
\(907\) 6.35831 + 23.7295i 0.211124 + 0.787926i 0.987495 + 0.157650i \(0.0503917\pi\)
−0.776371 + 0.630276i \(0.782942\pi\)
\(908\) −2.89526 3.57535i −0.0960825 0.118652i
\(909\) 1.71798 5.28739i 0.0569817 0.175372i
\(910\) 0 0
\(911\) −0.207879 0.639784i −0.00688732 0.0211970i 0.947554 0.319596i \(-0.103547\pi\)
−0.954441 + 0.298399i \(0.903547\pi\)
\(912\) −11.7205 + 18.0480i −0.388105 + 0.597629i
\(913\) −13.2357 0.693652i −0.438037 0.0229565i
\(914\) 15.0349 70.7339i 0.497312 2.33967i
\(915\) 0 0
\(916\) −10.0477 3.26469i −0.331985 0.107868i
\(917\) −37.8662 + 1.86551i −1.25045 + 0.0616047i
\(918\) −15.4808 15.4808i −0.510942 0.510942i
\(919\) −10.6826 1.12278i −0.352386 0.0370372i −0.0733178 0.997309i \(-0.523359\pi\)
−0.279068 + 0.960271i \(0.590025\pi\)
\(920\) 0 0
\(921\) 0.332628 + 3.16475i 0.0109605 + 0.104282i
\(922\) −10.9871 28.6225i −0.361842 0.942630i
\(923\) −9.69676 4.94074i −0.319173 0.162627i
\(924\) 13.1401 + 9.60993i 0.432279 + 0.316144i
\(925\) 0 0
\(926\) 11.6573 + 20.1910i 0.383082 + 0.663517i
\(927\) 13.6171 + 20.9685i 0.447245 + 0.688697i
\(928\) 41.7933 51.6104i 1.37193 1.69420i
\(929\) 23.4767 + 10.4525i 0.770246 + 0.342936i 0.753950 0.656931i \(-0.228146\pi\)
0.0162961 + 0.999867i \(0.494813\pi\)
\(930\) 0 0
\(931\) −2.92379 14.1921i −0.0958232 0.465128i
\(932\) 3.55235 3.55235i 0.116361 0.116361i
\(933\) 8.21521 6.65255i 0.268954 0.217795i
\(934\) 7.95855 + 8.83887i 0.260412 + 0.289217i
\(935\) 0 0
\(936\) −6.71347 6.04483i −0.219437 0.197582i
\(937\) −6.12376 + 3.12021i −0.200055 + 0.101933i −0.551148 0.834408i \(-0.685810\pi\)
0.351093 + 0.936340i \(0.385810\pi\)
\(938\) 48.5164 + 7.84018i 1.58412 + 0.255991i
\(939\) −67.9600 + 22.0815i −2.21779 + 0.720604i
\(940\) 0 0
\(941\) −21.3813 + 19.2518i −0.697009 + 0.627590i −0.939494 0.342565i \(-0.888704\pi\)
0.242485 + 0.970155i \(0.422038\pi\)
\(942\) −22.3641 + 58.2605i −0.728663 + 1.89823i
\(943\) −8.04585 2.15588i −0.262009 0.0702051i
\(944\) 50.5999 + 36.7630i 1.64689 + 1.19653i
\(945\) 0 0
\(946\) −29.6499 + 21.5419i −0.964003 + 0.700389i
\(947\) −10.7253 + 4.11707i −0.348526 + 0.133787i −0.526333 0.850279i \(-0.676433\pi\)
0.177806 + 0.984066i \(0.443100\pi\)
\(948\) −26.1417 + 16.9766i −0.849044 + 0.551376i
\(949\) 32.1706 + 18.5737i 1.04430 + 0.602928i
\(950\) 0 0
\(951\) 28.4293i 0.921883i
\(952\) 0.713416 12.8426i 0.0231219 0.416231i
\(953\) 44.1290 + 6.98934i 1.42948 + 0.226407i 0.822705 0.568468i \(-0.192464\pi\)
0.606773 + 0.794875i \(0.292464\pi\)
\(954\) −4.35848 + 9.78932i −0.141111 + 0.316941i
\(955\) 0 0
\(956\) 16.0419 7.14231i 0.518832 0.230999i
\(957\) 13.1470 49.0652i 0.424982 1.58605i
\(958\) −18.1353 + 2.87235i −0.585926 + 0.0928015i
\(959\) −6.27705 + 0.639863i −0.202696 + 0.0206622i
\(960\) 0 0
\(961\) 12.9559 14.3890i 0.417932 0.464160i
\(962\) 0.965808 18.4287i 0.0311389 0.594165i
\(963\) −0.488282 + 9.31698i −0.0157347 + 0.300236i
\(964\) −9.08939 + 10.0948i −0.292750 + 0.325131i
\(965\) 0 0
\(966\) −6.56533 + 14.6225i −0.211236 + 0.470470i
\(967\) −10.0191 + 1.58687i −0.322192 + 0.0510302i −0.315435 0.948947i \(-0.602151\pi\)
−0.00675621 + 0.999977i \(0.502151\pi\)
\(968\) 1.96282 7.32534i 0.0630874 0.235445i
\(969\) −14.8434 + 6.60869i −0.476837 + 0.212302i
\(970\) 0 0
\(971\) 6.19581 13.9160i 0.198833 0.446586i −0.786419 0.617693i \(-0.788068\pi\)
0.985253 + 0.171106i \(0.0547342\pi\)
\(972\) −17.6567 2.79654i −0.566338 0.0896992i
\(973\) 23.3683 + 46.2203i 0.749152 + 1.48175i
\(974\) 68.8202i 2.20514i
\(975\) 0 0
\(976\) 4.14648 + 2.39397i 0.132726 + 0.0766292i
\(977\) −1.11728 + 0.725573i −0.0357451 + 0.0232131i −0.562388 0.826874i \(-0.690117\pi\)
0.526643 + 0.850087i \(0.323451\pi\)
\(978\) −36.0395 + 13.8343i −1.15242 + 0.442371i
\(979\) −12.3378 + 8.96393i −0.394318 + 0.286489i
\(980\) 0 0
\(981\) 10.9174 + 7.93196i 0.348566 + 0.253248i
\(982\) 67.4528 + 18.0739i 2.15251 + 0.576762i
\(983\) 4.53193 11.8061i 0.144546 0.376555i −0.842125 0.539282i \(-0.818696\pi\)
0.986671 + 0.162727i \(0.0520290\pi\)
\(984\) 10.7890 9.71442i 0.343939 0.309684i
\(985\) 0 0
\(986\) 67.4985 21.9316i 2.14959 0.698445i
\(987\) −5.73124 + 35.4659i −0.182427 + 1.12889i
\(988\) −11.1524 + 5.68244i −0.354805 + 0.180782i
\(989\) −10.4528 9.41175i −0.332380 0.299276i
\(990\) 0 0
\(991\) −2.57117 2.85557i −0.0816758 0.0907102i 0.700922 0.713238i \(-0.252772\pi\)
−0.782597 + 0.622528i \(0.786106\pi\)
\(992\) 16.6936 13.5182i 0.530022 0.429203i
\(993\) 18.4165 18.4165i 0.584429 0.584429i
\(994\) −8.16167 7.39525i −0.258872 0.234563i
\(995\) 0 0
\(996\) −14.3223 6.37670i −0.453819 0.202053i
\(997\) −22.4421 + 27.7136i −0.710747 + 0.877700i −0.996752 0.0805283i \(-0.974339\pi\)
0.286005 + 0.958228i \(0.407673\pi\)
\(998\) −3.02595 4.65955i −0.0957846 0.147495i
\(999\) 3.50343 + 6.06812i 0.110844 + 0.191987i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 875.2.bb.b.143.15 288
5.2 odd 4 175.2.x.a.17.4 yes 288
5.3 odd 4 875.2.bb.c.857.15 288
5.4 even 2 875.2.bb.a.143.4 288
7.5 odd 6 inner 875.2.bb.b.768.15 288
25.3 odd 20 875.2.bb.a.507.4 288
25.4 even 10 875.2.bb.c.493.4 288
25.21 even 5 175.2.x.a.3.15 288
25.22 odd 20 inner 875.2.bb.b.507.15 288
35.12 even 12 175.2.x.a.117.15 yes 288
35.19 odd 6 875.2.bb.a.768.4 288
35.33 even 12 875.2.bb.c.607.4 288
175.47 even 60 inner 875.2.bb.b.257.15 288
175.54 odd 30 875.2.bb.c.243.15 288
175.96 odd 30 175.2.x.a.103.4 yes 288
175.103 even 60 875.2.bb.a.257.4 288
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
175.2.x.a.3.15 288 25.21 even 5
175.2.x.a.17.4 yes 288 5.2 odd 4
175.2.x.a.103.4 yes 288 175.96 odd 30
175.2.x.a.117.15 yes 288 35.12 even 12
875.2.bb.a.143.4 288 5.4 even 2
875.2.bb.a.257.4 288 175.103 even 60
875.2.bb.a.507.4 288 25.3 odd 20
875.2.bb.a.768.4 288 35.19 odd 6
875.2.bb.b.143.15 288 1.1 even 1 trivial
875.2.bb.b.257.15 288 175.47 even 60 inner
875.2.bb.b.507.15 288 25.22 odd 20 inner
875.2.bb.b.768.15 288 7.5 odd 6 inner
875.2.bb.c.243.15 288 175.54 odd 30
875.2.bb.c.493.4 288 25.4 even 10
875.2.bb.c.607.4 288 35.33 even 12
875.2.bb.c.857.15 288 5.3 odd 4