Properties

Label 8712.2.a.bw
Level $8712$
Weight $2$
Character orbit 8712.a
Self dual yes
Analytic conductor $69.566$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8712,2,Mod(1,8712)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8712.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8712, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 8712 = 2^{3} \cdot 3^{2} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8712.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,0,0,0,0,-1,0,0,0,0,0,4,0,0,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(69.5656702409\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.1436.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 11x - 12 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{5} - \beta_{2} q^{7} + (\beta_{2} + 1) q^{13} + (2 \beta_{2} + \beta_1 + 2) q^{17} + ( - \beta_{2} - 2 \beta_1) q^{19} + ( - 2 \beta_{2} + 2) q^{23} + (\beta_{2} + 2 \beta_1 + 2) q^{25}+ \cdots + ( - 4 \beta_{2} - 4 \beta_1 + 1) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - q^{7} + 4 q^{13} + 8 q^{17} - q^{19} + 4 q^{23} + 7 q^{25} + 12 q^{29} + q^{31} - 8 q^{35} - 3 q^{37} + 4 q^{41} + 12 q^{47} + 4 q^{49} - 12 q^{53} - 20 q^{59} + 7 q^{61} + 8 q^{65} - 11 q^{67}+ \cdots - q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - 11x - 12 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 2\nu - 7 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 2\beta _1 + 7 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
3.76644
−1.28282
−2.48361
0 0 0 −3.76644 0 0.346835 0 0 0
1.2 0 0 0 1.28282 0 2.78872 0 0 0
1.3 0 0 0 2.48361 0 −4.13555 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( +1 \)
\(11\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 8712.2.a.bw yes 3
3.b odd 2 1 8712.2.a.bv 3
11.b odd 2 1 8712.2.a.bx yes 3
33.d even 2 1 8712.2.a.by yes 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
8712.2.a.bv 3 3.b odd 2 1
8712.2.a.bw yes 3 1.a even 1 1 trivial
8712.2.a.bx yes 3 11.b odd 2 1
8712.2.a.by yes 3 33.d even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(8712))\):

\( T_{5}^{3} - 11T_{5} + 12 \) Copy content Toggle raw display
\( T_{7}^{3} + T_{7}^{2} - 12T_{7} + 4 \) Copy content Toggle raw display
\( T_{13}^{3} - 4T_{13}^{2} - 7T_{13} + 6 \) Copy content Toggle raw display
\( T_{17}^{3} - 8T_{17}^{2} - 23T_{17} + 192 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} \) Copy content Toggle raw display
$3$ \( T^{3} \) Copy content Toggle raw display
$5$ \( T^{3} - 11T + 12 \) Copy content Toggle raw display
$7$ \( T^{3} + T^{2} - 12T + 4 \) Copy content Toggle raw display
$11$ \( T^{3} \) Copy content Toggle raw display
$13$ \( T^{3} - 4 T^{2} + \cdots + 6 \) Copy content Toggle raw display
$17$ \( T^{3} - 8 T^{2} + \cdots + 192 \) Copy content Toggle raw display
$19$ \( T^{3} + T^{2} + \cdots + 32 \) Copy content Toggle raw display
$23$ \( T^{3} - 4 T^{2} + \cdots + 128 \) Copy content Toggle raw display
$29$ \( T^{3} - 12 T^{2} + \cdots - 8 \) Copy content Toggle raw display
$31$ \( T^{3} - T^{2} + \cdots - 16 \) Copy content Toggle raw display
$37$ \( T^{3} + 3 T^{2} + \cdots - 139 \) Copy content Toggle raw display
$41$ \( T^{3} - 4 T^{2} + \cdots + 356 \) Copy content Toggle raw display
$43$ \( T^{3} - 44T + 96 \) Copy content Toggle raw display
$47$ \( (T - 4)^{3} \) Copy content Toggle raw display
$53$ \( T^{3} + 12 T^{2} + \cdots + 32 \) Copy content Toggle raw display
$59$ \( T^{3} + 20 T^{2} + \cdots + 32 \) Copy content Toggle raw display
$61$ \( T^{3} - 7 T^{2} + \cdots + 116 \) Copy content Toggle raw display
$67$ \( T^{3} + 11 T^{2} + \cdots - 4 \) Copy content Toggle raw display
$71$ \( T^{3} - 8 T^{2} + \cdots + 48 \) Copy content Toggle raw display
$73$ \( T^{3} + 3 T^{2} + \cdots + 316 \) Copy content Toggle raw display
$79$ \( T^{3} + 15 T^{2} + \cdots - 832 \) Copy content Toggle raw display
$83$ \( T^{3} - 12 T^{2} + \cdots + 1408 \) Copy content Toggle raw display
$89$ \( T^{3} - 28 T^{2} + \cdots - 492 \) Copy content Toggle raw display
$97$ \( T^{3} + T^{2} + \cdots - 1229 \) Copy content Toggle raw display
show more
show less