Properties

Label 8700.2.b.l
Level $8700$
Weight $2$
Character orbit 8700.b
Analytic conductor $69.470$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8700,2,Mod(7249,8700)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8700.7249"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8700, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 8700 = 2^{2} \cdot 3 \cdot 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8700.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,6,0,0,0,0,0,6,0,0,0,0,0,0,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(69.4698497585\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.399424.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} + 3x^{4} - 6x^{3} + 6x^{2} - 8x + 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 1740)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{3} + ( - \beta_{4} - \beta_1) q^{7} + q^{9} + (\beta_{4} - \beta_1) q^{11} + ( - \beta_{5} + \beta_{4}) q^{13} - \beta_{2} q^{17} + (\beta_{5} + \beta_{4} + \beta_1) q^{19} + ( - \beta_{4} - \beta_1) q^{21}+ \cdots + (\beta_{4} - \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 6 q^{3} + 6 q^{9} - 2 q^{17} + 6 q^{27} + 8 q^{29} - 4 q^{37} + 12 q^{43} + 2 q^{47} + 8 q^{49} - 2 q^{51} - 16 q^{59} + 4 q^{71} - 10 q^{77} + 6 q^{81} + 8 q^{87} - 2 q^{91} + 24 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - 2x^{5} + 3x^{4} - 6x^{3} + 6x^{2} - 8x + 8 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -\nu^{4} - \nu^{2} + 4\nu ) / 2 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -\nu^{5} + \nu^{4} - \nu^{3} + 5\nu^{2} + 4 ) / 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{4} - 2\nu^{3} + \nu^{2} - 2\nu + 2 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( \nu^{5} + 3\nu^{3} - 4\nu^{2} + 2\nu - 8 ) / 2 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 4\nu^{5} - 3\nu^{4} + 8\nu^{3} - 11\nu^{2} + 8\nu - 20 ) / 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( 2\beta_{4} + \beta_{3} + 2\beta_{2} + 4\beta _1 + 2 ) / 8 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{5} - 2\beta_{4} + 2\beta_{2} - \beta _1 - 2 ) / 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 2\beta_{4} - 3\beta_{3} + 2\beta_{2} - 4\beta _1 + 10 ) / 8 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( -\beta_{5} + 6\beta_{4} + 2\beta_{3} + 2\beta_{2} + \beta _1 + 6 ) / 4 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 8\beta_{5} - 10\beta_{4} + 7\beta_{3} + 6\beta_{2} - 4\beta _1 + 14 ) / 8 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/8700\mathbb{Z}\right)^\times\).

\(n\) \(901\) \(4177\) \(4351\) \(5801\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
7249.1
−0.671462 + 1.24464i
0.264658 + 1.38923i
1.40680 + 0.144584i
1.40680 0.144584i
0.264658 1.38923i
−0.671462 1.24464i
0 1.00000 0 0 0 3.48929i 0 1.00000 0
7249.2 0 1.00000 0 0 0 1.77846i 0 1.00000 0
7249.3 0 1.00000 0 0 0 1.28917i 0 1.00000 0
7249.4 0 1.00000 0 0 0 1.28917i 0 1.00000 0
7249.5 0 1.00000 0 0 0 1.77846i 0 1.00000 0
7249.6 0 1.00000 0 0 0 3.48929i 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 7249.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
145.d even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 8700.2.b.l 6
5.b even 2 1 8700.2.b.k 6
5.c odd 4 1 1740.2.l.c 6
5.c odd 4 1 8700.2.l.f 6
15.e even 4 1 5220.2.l.h 6
29.b even 2 1 8700.2.b.k 6
145.d even 2 1 inner 8700.2.b.l 6
145.h odd 4 1 1740.2.l.c 6
145.h odd 4 1 8700.2.l.f 6
435.p even 4 1 5220.2.l.h 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1740.2.l.c 6 5.c odd 4 1
1740.2.l.c 6 145.h odd 4 1
5220.2.l.h 6 15.e even 4 1
5220.2.l.h 6 435.p even 4 1
8700.2.b.k 6 5.b even 2 1
8700.2.b.k 6 29.b even 2 1
8700.2.b.l 6 1.a even 1 1 trivial
8700.2.b.l 6 145.d even 2 1 inner
8700.2.l.f 6 5.c odd 4 1
8700.2.l.f 6 145.h odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(8700, [\chi])\):

\( T_{7}^{6} + 17T_{7}^{4} + 64T_{7}^{2} + 64 \) Copy content Toggle raw display
\( T_{11}^{6} + 41T_{11}^{4} + 256T_{11}^{2} + 64 \) Copy content Toggle raw display
\( T_{17}^{3} + T_{17}^{2} - 16T_{17} + 16 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} \) Copy content Toggle raw display
$3$ \( (T - 1)^{6} \) Copy content Toggle raw display
$5$ \( T^{6} \) Copy content Toggle raw display
$7$ \( T^{6} + 17 T^{4} + \cdots + 64 \) Copy content Toggle raw display
$11$ \( T^{6} + 41 T^{4} + \cdots + 64 \) Copy content Toggle raw display
$13$ \( T^{6} + 41 T^{4} + \cdots + 1936 \) Copy content Toggle raw display
$17$ \( (T^{3} + T^{2} - 16 T + 16)^{2} \) Copy content Toggle raw display
$19$ \( T^{6} + 64 T^{4} + \cdots + 4096 \) Copy content Toggle raw display
$23$ \( T^{6} + 64 T^{4} + \cdots + 4096 \) Copy content Toggle raw display
$29$ \( T^{6} - 8 T^{5} + \cdots + 24389 \) Copy content Toggle raw display
$31$ \( T^{6} + 36 T^{4} + \cdots + 256 \) Copy content Toggle raw display
$37$ \( (T^{3} + 2 T^{2} + \cdots + 128)^{2} \) Copy content Toggle raw display
$41$ \( T^{6} + 260 T^{4} + \cdots + 369664 \) Copy content Toggle raw display
$43$ \( (T^{3} - 6 T^{2} - 16 T + 32)^{2} \) Copy content Toggle raw display
$47$ \( (T^{3} - T^{2} - 16 T - 16)^{2} \) Copy content Toggle raw display
$53$ \( T^{6} + 136 T^{4} + \cdots + 65536 \) Copy content Toggle raw display
$59$ \( (T^{3} + 8 T^{2} + \cdots - 128)^{2} \) Copy content Toggle raw display
$61$ \( T^{6} + 144 T^{4} + \cdots + 16384 \) Copy content Toggle raw display
$67$ \( T^{6} + 41 T^{4} + \cdots + 64 \) Copy content Toggle raw display
$71$ \( (T^{3} - 2 T^{2} + \cdots - 128)^{2} \) Copy content Toggle raw display
$73$ \( T^{6} \) Copy content Toggle raw display
$79$ \( T^{6} + 228 T^{4} + \cdots + 430336 \) Copy content Toggle raw display
$83$ \( T^{6} + 196 T^{4} + \cdots + 92416 \) Copy content Toggle raw display
$89$ \( T^{6} + 73 T^{4} + \cdots + 256 \) Copy content Toggle raw display
$97$ \( (T^{3} - 12 T^{2} + \cdots + 512)^{2} \) Copy content Toggle raw display
show more
show less