Properties

Label 87.5.d.c.86.9
Level $87$
Weight $5$
Character 87.86
Analytic conductor $8.993$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [87,5,Mod(86,87)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(87, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 5, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("87.86"); S:= CuspForms(chi, 5); N := Newforms(S);
 
Level: \( N \) \(=\) \( 87 = 3 \cdot 29 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 87.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.99318678829\)
Analytic rank: \(0\)
Dimension: \(32\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 86.9
Character \(\chi\) \(=\) 87.86
Dual form 87.5.d.c.86.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.96406 q^{2} +(6.34485 - 6.38301i) q^{3} -0.286250 q^{4} +7.48339i q^{5} +(-25.1514 + 25.3026i) q^{6} +18.5615 q^{7} +64.5596 q^{8} +(-0.485670 - 80.9985i) q^{9} -29.6646i q^{10} +141.778 q^{11} +(-1.81621 + 1.82714i) q^{12} -227.588 q^{13} -73.5790 q^{14} +(47.7665 + 47.4810i) q^{15} -251.338 q^{16} +50.8285 q^{17} +(1.92522 + 321.083i) q^{18} -628.112i q^{19} -2.14212i q^{20} +(117.770 - 118.479i) q^{21} -562.017 q^{22} -898.114i q^{23} +(409.621 - 412.085i) q^{24} +568.999 q^{25} +902.171 q^{26} +(-520.096 - 510.824i) q^{27} -5.31324 q^{28} +(-605.272 + 583.889i) q^{29} +(-189.349 - 188.217i) q^{30} -1348.35i q^{31} -36.6355 q^{32} +(899.563 - 904.973i) q^{33} -201.487 q^{34} +138.903i q^{35} +(0.139023 + 23.1858i) q^{36} +550.479i q^{37} +2489.87i q^{38} +(-1444.01 + 1452.70i) q^{39} +483.125i q^{40} +1775.07 q^{41} +(-466.848 + 469.656i) q^{42} -916.159i q^{43} -40.5840 q^{44} +(606.143 - 3.63446i) q^{45} +3560.17i q^{46} +1685.01 q^{47} +(-1594.70 + 1604.29i) q^{48} -2056.47 q^{49} -2255.54 q^{50} +(322.500 - 324.439i) q^{51} +65.1469 q^{52} +2492.27i q^{53} +(2061.69 + 2024.94i) q^{54} +1060.98i q^{55} +1198.33 q^{56} +(-4009.24 - 3985.28i) q^{57} +(2399.33 - 2314.57i) q^{58} +3146.25i q^{59} +(-13.6732 - 13.5914i) q^{60} +4513.21i q^{61} +5344.95i q^{62} +(-9.01479 - 1503.46i) q^{63} +4166.63 q^{64} -1703.13i q^{65} +(-3565.92 + 3587.36i) q^{66} +5132.45 q^{67} -14.5497 q^{68} +(-5732.67 - 5698.40i) q^{69} -550.620i q^{70} -4512.12i q^{71} +(-31.3547 - 5229.24i) q^{72} -7190.98i q^{73} -2182.13i q^{74} +(3610.21 - 3631.93i) q^{75} +179.797i q^{76} +2631.62 q^{77} +(5724.14 - 5758.57i) q^{78} +1900.62i q^{79} -1880.86i q^{80} +(-6560.53 + 78.6772i) q^{81} -7036.47 q^{82} -1667.81i q^{83} +(-33.7117 + 33.9144i) q^{84} +380.370i q^{85} +3631.71i q^{86} +(-113.389 + 7568.15i) q^{87} +9153.16 q^{88} +5572.12 q^{89} +(-2402.79 + 14.4072i) q^{90} -4224.38 q^{91} +257.085i q^{92} +(-8606.56 - 8555.11i) q^{93} -6679.46 q^{94} +4700.40 q^{95} +(-232.447 + 233.845i) q^{96} +14488.2i q^{97} +8151.96 q^{98} +(-68.8575 - 11483.8i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 188 q^{4} - 36 q^{6} - 84 q^{7} - 452 q^{9} - 224 q^{13} - 52 q^{16} - 4216 q^{22} - 832 q^{24} - 7684 q^{25} - 396 q^{28} + 3384 q^{30} - 3308 q^{33} + 9124 q^{34} - 3680 q^{36} + 19764 q^{42} + 44 q^{45}+ \cdots + 13884 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/87\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(59\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −3.96406 −0.991014 −0.495507 0.868604i \(-0.665018\pi\)
−0.495507 + 0.868604i \(0.665018\pi\)
\(3\) 6.34485 6.38301i 0.704984 0.709223i
\(4\) −0.286250 −0.0178906
\(5\) 7.48339i 0.299335i 0.988736 + 0.149668i \(0.0478204\pi\)
−0.988736 + 0.149668i \(0.952180\pi\)
\(6\) −25.1514 + 25.3026i −0.698649 + 0.702851i
\(7\) 18.5615 0.378807 0.189403 0.981899i \(-0.439345\pi\)
0.189403 + 0.981899i \(0.439345\pi\)
\(8\) 64.5596 1.00874
\(9\) −0.485670 80.9985i −0.00599593 0.999982i
\(10\) 29.6646i 0.296646i
\(11\) 141.778 1.17172 0.585861 0.810412i \(-0.300757\pi\)
0.585861 + 0.810412i \(0.300757\pi\)
\(12\) −1.81621 + 1.82714i −0.0126126 + 0.0126884i
\(13\) −227.588 −1.34667 −0.673336 0.739336i \(-0.735139\pi\)
−0.673336 + 0.739336i \(0.735139\pi\)
\(14\) −73.5790 −0.375403
\(15\) 47.7665 + 47.4810i 0.212296 + 0.211027i
\(16\) −251.338 −0.981789
\(17\) 50.8285 0.175877 0.0879387 0.996126i \(-0.471972\pi\)
0.0879387 + 0.996126i \(0.471972\pi\)
\(18\) 1.92522 + 321.083i 0.00594205 + 0.990997i
\(19\) 628.112i 1.73992i −0.493121 0.869961i \(-0.664144\pi\)
0.493121 0.869961i \(-0.335856\pi\)
\(20\) 2.14212i 0.00535529i
\(21\) 117.770 118.479i 0.267053 0.268659i
\(22\) −562.017 −1.16119
\(23\) 898.114i 1.69776i −0.528588 0.848879i \(-0.677278\pi\)
0.528588 0.848879i \(-0.322722\pi\)
\(24\) 409.621 412.085i 0.711148 0.715425i
\(25\) 568.999 0.910398
\(26\) 902.171 1.33457
\(27\) −520.096 510.824i −0.713438 0.700719i
\(28\) −5.31324 −0.00677709
\(29\) −605.272 + 583.889i −0.719705 + 0.694280i
\(30\) −189.349 188.217i −0.210388 0.209130i
\(31\) 1348.35i 1.40307i −0.712633 0.701537i \(-0.752498\pi\)
0.712633 0.701537i \(-0.247502\pi\)
\(32\) −36.6355 −0.0357769
\(33\) 899.563 904.973i 0.826045 0.831013i
\(34\) −201.487 −0.174297
\(35\) 138.903i 0.113390i
\(36\) 0.139023 + 23.1858i 0.000107271 + 0.0178903i
\(37\) 550.479i 0.402103i 0.979581 + 0.201052i \(0.0644359\pi\)
−0.979581 + 0.201052i \(0.935564\pi\)
\(38\) 2489.87i 1.72429i
\(39\) −1444.01 + 1452.70i −0.949382 + 0.955092i
\(40\) 483.125i 0.301953i
\(41\) 1775.07 1.05596 0.527980 0.849257i \(-0.322950\pi\)
0.527980 + 0.849257i \(0.322950\pi\)
\(42\) −466.848 + 469.656i −0.264653 + 0.266245i
\(43\) 916.159i 0.495489i −0.968825 0.247744i \(-0.920311\pi\)
0.968825 0.247744i \(-0.0796893\pi\)
\(44\) −40.5840 −0.0209628
\(45\) 606.143 3.63446i 0.299330 0.00179479i
\(46\) 3560.17i 1.68250i
\(47\) 1685.01 0.762792 0.381396 0.924412i \(-0.375443\pi\)
0.381396 + 0.924412i \(0.375443\pi\)
\(48\) −1594.70 + 1604.29i −0.692145 + 0.696308i
\(49\) −2056.47 −0.856505
\(50\) −2255.54 −0.902218
\(51\) 322.500 324.439i 0.123991 0.124736i
\(52\) 65.1469 0.0240928
\(53\) 2492.27i 0.887244i 0.896214 + 0.443622i \(0.146307\pi\)
−0.896214 + 0.443622i \(0.853693\pi\)
\(54\) 2061.69 + 2024.94i 0.707027 + 0.694422i
\(55\) 1060.98i 0.350738i
\(56\) 1198.33 0.382119
\(57\) −4009.24 3985.28i −1.23399 1.22662i
\(58\) 2399.33 2314.57i 0.713238 0.688041i
\(59\) 3146.25i 0.903835i 0.892060 + 0.451917i \(0.149260\pi\)
−0.892060 + 0.451917i \(0.850740\pi\)
\(60\) −13.6732 13.5914i −0.00379810 0.00377539i
\(61\) 4513.21i 1.21290i 0.795121 + 0.606451i \(0.207408\pi\)
−0.795121 + 0.606451i \(0.792592\pi\)
\(62\) 5344.95i 1.39047i
\(63\) −9.01479 1503.46i −0.00227130 0.378800i
\(64\) 4166.63 1.01724
\(65\) 1703.13i 0.403107i
\(66\) −3565.92 + 3587.36i −0.818622 + 0.823545i
\(67\) 5132.45 1.14334 0.571670 0.820484i \(-0.306296\pi\)
0.571670 + 0.820484i \(0.306296\pi\)
\(68\) −14.5497 −0.00314655
\(69\) −5732.67 5698.40i −1.20409 1.19689i
\(70\) 550.620i 0.112371i
\(71\) 4512.12i 0.895084i −0.894263 0.447542i \(-0.852300\pi\)
0.894263 0.447542i \(-0.147700\pi\)
\(72\) −31.3547 5229.24i −0.00604836 1.00873i
\(73\) 7190.98i 1.34941i −0.738090 0.674703i \(-0.764272\pi\)
0.738090 0.674703i \(-0.235728\pi\)
\(74\) 2182.13i 0.398490i
\(75\) 3610.21 3631.93i 0.641816 0.645676i
\(76\) 179.797i 0.0311283i
\(77\) 2631.62 0.443856
\(78\) 5724.14 5758.57i 0.940852 0.946510i
\(79\) 1900.62i 0.304538i 0.988339 + 0.152269i \(0.0486580\pi\)
−0.988339 + 0.152269i \(0.951342\pi\)
\(80\) 1880.86i 0.293884i
\(81\) −6560.53 + 78.6772i −0.999928 + 0.0119916i
\(82\) −7036.47 −1.04647
\(83\) 1667.81i 0.242097i −0.992647 0.121049i \(-0.961374\pi\)
0.992647 0.121049i \(-0.0386257\pi\)
\(84\) −33.7117 + 33.9144i −0.00477774 + 0.00480647i
\(85\) 380.370i 0.0526463i
\(86\) 3631.71i 0.491036i
\(87\) −113.389 + 7568.15i −0.0149807 + 0.999888i
\(88\) 9153.16 1.18197
\(89\) 5572.12 0.703462 0.351731 0.936101i \(-0.385593\pi\)
0.351731 + 0.936101i \(0.385593\pi\)
\(90\) −2402.79 + 14.4072i −0.296640 + 0.00177867i
\(91\) −4224.38 −0.510129
\(92\) 257.085i 0.0303739i
\(93\) −8606.56 8555.11i −0.995093 0.989144i
\(94\) −6679.46 −0.755938
\(95\) 4700.40 0.520820
\(96\) −232.447 + 233.845i −0.0252221 + 0.0253738i
\(97\) 14488.2i 1.53983i 0.638148 + 0.769914i \(0.279701\pi\)
−0.638148 + 0.769914i \(0.720299\pi\)
\(98\) 8151.96 0.848809
\(99\) −68.8575 11483.8i −0.00702556 1.17170i
\(100\) −162.876 −0.0162876
\(101\) 2130.39 0.208842 0.104421 0.994533i \(-0.466701\pi\)
0.104421 + 0.994533i \(0.466701\pi\)
\(102\) −1278.41 + 1286.10i −0.122877 + 0.123615i
\(103\) −4238.51 −0.399520 −0.199760 0.979845i \(-0.564016\pi\)
−0.199760 + 0.979845i \(0.564016\pi\)
\(104\) −14693.0 −1.35845
\(105\) 886.620 + 881.320i 0.0804191 + 0.0799383i
\(106\) 9879.50i 0.879272i
\(107\) 2002.81i 0.174933i 0.996167 + 0.0874665i \(0.0278771\pi\)
−0.996167 + 0.0874665i \(0.972123\pi\)
\(108\) 148.877 + 146.223i 0.0127638 + 0.0125363i
\(109\) −13769.4 −1.15894 −0.579472 0.814992i \(-0.696741\pi\)
−0.579472 + 0.814992i \(0.696741\pi\)
\(110\) 4205.79i 0.347586i
\(111\) 3513.72 + 3492.71i 0.285181 + 0.283476i
\(112\) −4665.22 −0.371909
\(113\) 13310.3 1.04239 0.521194 0.853438i \(-0.325487\pi\)
0.521194 + 0.853438i \(0.325487\pi\)
\(114\) 15892.9 + 15797.9i 1.22290 + 1.21559i
\(115\) 6720.93 0.508199
\(116\) 173.259 167.138i 0.0128760 0.0124211i
\(117\) 110.533 + 18434.3i 0.00807456 + 1.34665i
\(118\) 12471.9i 0.895713i
\(119\) 943.456 0.0666235
\(120\) 3083.79 + 3065.35i 0.214152 + 0.212872i
\(121\) 5460.09 0.372932
\(122\) 17890.6i 1.20200i
\(123\) 11262.5 11330.3i 0.744434 0.748911i
\(124\) 385.966i 0.0251018i
\(125\) 8935.15i 0.571850i
\(126\) 35.7351 + 5959.79i 0.00225089 + 0.375396i
\(127\) 11188.9i 0.693716i −0.937918 0.346858i \(-0.887249\pi\)
0.937918 0.346858i \(-0.112751\pi\)
\(128\) −15930.6 −0.972327
\(129\) −5847.85 5812.89i −0.351412 0.349311i
\(130\) 6751.29i 0.399485i
\(131\) −6843.15 −0.398762 −0.199381 0.979922i \(-0.563893\pi\)
−0.199381 + 0.979922i \(0.563893\pi\)
\(132\) −257.500 + 259.048i −0.0147784 + 0.0148673i
\(133\) 11658.7i 0.659094i
\(134\) −20345.3 −1.13307
\(135\) 3822.69 3892.08i 0.209750 0.213557i
\(136\) 3281.47 0.177415
\(137\) −5158.03 −0.274816 −0.137408 0.990515i \(-0.543877\pi\)
−0.137408 + 0.990515i \(0.543877\pi\)
\(138\) 22724.6 + 22588.8i 1.19327 + 1.18614i
\(139\) 36925.2 1.91114 0.955571 0.294760i \(-0.0952396\pi\)
0.955571 + 0.294760i \(0.0952396\pi\)
\(140\) 39.7610i 0.00202862i
\(141\) 10691.1 10755.4i 0.537756 0.540990i
\(142\) 17886.3i 0.887041i
\(143\) −32267.0 −1.57793
\(144\) 122.067 + 20358.0i 0.00588674 + 0.981772i
\(145\) −4369.47 4529.48i −0.207823 0.215433i
\(146\) 28505.5i 1.33728i
\(147\) −13048.0 + 13126.5i −0.603822 + 0.607454i
\(148\) 157.575i 0.00719387i
\(149\) 17763.8i 0.800137i −0.916485 0.400068i \(-0.868986\pi\)
0.916485 0.400068i \(-0.131014\pi\)
\(150\) −14311.1 + 14397.2i −0.636049 + 0.639874i
\(151\) −19720.7 −0.864905 −0.432453 0.901657i \(-0.642352\pi\)
−0.432453 + 0.901657i \(0.642352\pi\)
\(152\) 40550.7i 1.75514i
\(153\) −24.6859 4117.04i −0.00105455 0.175874i
\(154\) −10431.9 −0.439868
\(155\) 10090.3 0.419990
\(156\) 413.348 415.834i 0.0169850 0.0170872i
\(157\) 21898.4i 0.888410i 0.895925 + 0.444205i \(0.146514\pi\)
−0.895925 + 0.444205i \(0.853486\pi\)
\(158\) 7534.17i 0.301802i
\(159\) 15908.2 + 15813.1i 0.629255 + 0.625493i
\(160\) 274.158i 0.0107093i
\(161\) 16670.4i 0.643122i
\(162\) 26006.3 311.881i 0.990943 0.0118839i
\(163\) 2843.91i 0.107039i 0.998567 + 0.0535194i \(0.0170439\pi\)
−0.998567 + 0.0535194i \(0.982956\pi\)
\(164\) −508.113 −0.0188918
\(165\) 6772.26 + 6731.77i 0.248751 + 0.247264i
\(166\) 6611.28i 0.239922i
\(167\) 53431.2i 1.91585i 0.287018 + 0.957925i \(0.407336\pi\)
−0.287018 + 0.957925i \(0.592664\pi\)
\(168\) 7603.20 7648.93i 0.269388 0.271008i
\(169\) 23235.2 0.813528
\(170\) 1507.81i 0.0521732i
\(171\) −50876.1 + 305.055i −1.73989 + 0.0104324i
\(172\) 262.250i 0.00886459i
\(173\) 9975.60i 0.333309i 0.986015 + 0.166654i \(0.0532964\pi\)
−0.986015 + 0.166654i \(0.946704\pi\)
\(174\) 449.482 30000.6i 0.0148461 0.990903i
\(175\) 10561.5 0.344865
\(176\) −35634.3 −1.15038
\(177\) 20082.5 + 19962.5i 0.641021 + 0.637189i
\(178\) −22088.2 −0.697141
\(179\) 4165.62i 0.130009i 0.997885 + 0.0650046i \(0.0207062\pi\)
−0.997885 + 0.0650046i \(0.979294\pi\)
\(180\) −173.508 + 1.04036i −0.00535520 + 3.21100e-5i
\(181\) −47906.0 −1.46229 −0.731143 0.682224i \(-0.761013\pi\)
−0.731143 + 0.682224i \(0.761013\pi\)
\(182\) 16745.7 0.505545
\(183\) 28807.9 + 28635.7i 0.860219 + 0.855077i
\(184\) 57981.9i 1.71260i
\(185\) −4119.45 −0.120364
\(186\) 34116.9 + 33912.9i 0.986151 + 0.980256i
\(187\) 7206.39 0.206079
\(188\) −482.333 −0.0136468
\(189\) −9653.79 9481.68i −0.270255 0.265437i
\(190\) −18632.7 −0.516140
\(191\) 5121.88 0.140398 0.0701992 0.997533i \(-0.477637\pi\)
0.0701992 + 0.997533i \(0.477637\pi\)
\(192\) 26436.7 26595.7i 0.717141 0.721454i
\(193\) 23714.6i 0.636651i 0.947981 + 0.318326i \(0.103121\pi\)
−0.947981 + 0.318326i \(0.896879\pi\)
\(194\) 57432.2i 1.52599i
\(195\) −10871.1 10806.1i −0.285893 0.284184i
\(196\) 588.664 0.0153234
\(197\) 1734.75i 0.0446998i −0.999750 0.0223499i \(-0.992885\pi\)
0.999750 0.0223499i \(-0.00711478\pi\)
\(198\) 272.955 + 45522.6i 0.00696243 + 1.16117i
\(199\) 20797.7 0.525180 0.262590 0.964907i \(-0.415423\pi\)
0.262590 + 0.964907i \(0.415423\pi\)
\(200\) 36734.4 0.918359
\(201\) 32564.7 32760.5i 0.806036 0.810883i
\(202\) −8445.00 −0.206965
\(203\) −11234.8 + 10837.9i −0.272629 + 0.262998i
\(204\) −92.3154 + 92.8706i −0.00221827 + 0.00223161i
\(205\) 13283.5i 0.316086i
\(206\) 16801.7 0.395930
\(207\) −72745.9 + 436.187i −1.69773 + 0.0101796i
\(208\) 57201.5 1.32215
\(209\) 89052.6i 2.03870i
\(210\) −3514.61 3493.60i −0.0796965 0.0792200i
\(211\) 30443.4i 0.683799i 0.939737 + 0.341899i \(0.111070\pi\)
−0.939737 + 0.341899i \(0.888930\pi\)
\(212\) 713.411i 0.0158733i
\(213\) −28800.9 28628.7i −0.634814 0.631019i
\(214\) 7939.25i 0.173361i
\(215\) 6855.97 0.148317
\(216\) −33577.2 32978.6i −0.719676 0.706846i
\(217\) 25027.5i 0.531494i
\(218\) 54582.8 1.14853
\(219\) −45900.1 45625.7i −0.957030 0.951309i
\(220\) 303.706i 0.00627491i
\(221\) −11568.0 −0.236849
\(222\) −13928.6 13845.3i −0.282619 0.280929i
\(223\) 46878.8 0.942685 0.471343 0.881950i \(-0.343770\pi\)
0.471343 + 0.881950i \(0.343770\pi\)
\(224\) −680.012 −0.0135525
\(225\) −276.346 46088.1i −0.00545868 0.910382i
\(226\) −52762.6 −1.03302
\(227\) 97468.1i 1.89152i 0.324866 + 0.945760i \(0.394681\pi\)
−0.324866 + 0.945760i \(0.605319\pi\)
\(228\) 1147.64 + 1140.78i 0.0220769 + 0.0219449i
\(229\) 49269.9i 0.939530i −0.882792 0.469765i \(-0.844339\pi\)
0.882792 0.469765i \(-0.155661\pi\)
\(230\) −26642.2 −0.503632
\(231\) 16697.3 16797.7i 0.312911 0.314793i
\(232\) −39076.1 + 37695.7i −0.725998 + 0.700351i
\(233\) 62695.1i 1.15484i 0.816448 + 0.577420i \(0.195940\pi\)
−0.816448 + 0.577420i \(0.804060\pi\)
\(234\) −438.158 73074.5i −0.00800200 1.33455i
\(235\) 12609.6i 0.228331i
\(236\) 900.613i 0.0161702i
\(237\) 12131.7 + 12059.2i 0.215986 + 0.214694i
\(238\) −3739.91 −0.0660249
\(239\) 77087.8i 1.34955i −0.738022 0.674777i \(-0.764240\pi\)
0.738022 0.674777i \(-0.235760\pi\)
\(240\) −12005.5 11933.8i −0.208430 0.207184i
\(241\) 68992.2 1.18786 0.593931 0.804516i \(-0.297575\pi\)
0.593931 + 0.804516i \(0.297575\pi\)
\(242\) −21644.1 −0.369581
\(243\) −41123.4 + 42375.1i −0.696428 + 0.717626i
\(244\) 1291.91i 0.0216996i
\(245\) 15389.4i 0.256382i
\(246\) −44645.4 + 44913.9i −0.737745 + 0.742182i
\(247\) 142950.i 2.34311i
\(248\) 87049.2i 1.41534i
\(249\) −10645.6 10582.0i −0.171701 0.170675i
\(250\) 35419.5i 0.566711i
\(251\) 22173.6 0.351956 0.175978 0.984394i \(-0.443691\pi\)
0.175978 + 0.984394i \(0.443691\pi\)
\(252\) 2.58048 + 430.364i 4.06349e−5 + 0.00677696i
\(253\) 127333.i 1.98930i
\(254\) 44353.6i 0.687483i
\(255\) 2427.90 + 2413.39i 0.0373380 + 0.0371148i
\(256\) −3516.30 −0.0536545
\(257\) 91364.9i 1.38329i 0.722238 + 0.691645i \(0.243114\pi\)
−0.722238 + 0.691645i \(0.756886\pi\)
\(258\) 23181.2 + 23042.6i 0.348255 + 0.346173i
\(259\) 10217.7i 0.152320i
\(260\) 487.520i 0.00721183i
\(261\) 47588.2 + 48742.6i 0.698583 + 0.715529i
\(262\) 27126.6 0.395179
\(263\) −14052.8 −0.203166 −0.101583 0.994827i \(-0.532391\pi\)
−0.101583 + 0.994827i \(0.532391\pi\)
\(264\) 58075.4 58424.7i 0.833268 0.838279i
\(265\) −18650.6 −0.265584
\(266\) 46215.8i 0.653172i
\(267\) 35354.3 35566.9i 0.495929 0.498912i
\(268\) −1469.16 −0.0204550
\(269\) 132853. 1.83598 0.917990 0.396604i \(-0.129811\pi\)
0.917990 + 0.396604i \(0.129811\pi\)
\(270\) −15153.4 + 15428.4i −0.207865 + 0.211638i
\(271\) 3176.64i 0.0432544i 0.999766 + 0.0216272i \(0.00688468\pi\)
−0.999766 + 0.0216272i \(0.993115\pi\)
\(272\) −12775.1 −0.172674
\(273\) −26803.1 + 26964.3i −0.359633 + 0.361796i
\(274\) 20446.7 0.272347
\(275\) 80671.7 1.06673
\(276\) 1640.98 + 1631.17i 0.0215419 + 0.0214131i
\(277\) −66770.4 −0.870211 −0.435105 0.900380i \(-0.643289\pi\)
−0.435105 + 0.900380i \(0.643289\pi\)
\(278\) −146374. −1.89397
\(279\) −109215. + 654.855i −1.40305 + 0.00841273i
\(280\) 8967.54i 0.114382i
\(281\) 84043.8i 1.06437i 0.846628 + 0.532185i \(0.178629\pi\)
−0.846628 + 0.532185i \(0.821371\pi\)
\(282\) −42380.2 + 42635.1i −0.532924 + 0.536129i
\(283\) 25654.4 0.320323 0.160162 0.987091i \(-0.448798\pi\)
0.160162 + 0.987091i \(0.448798\pi\)
\(284\) 1291.59i 0.0160136i
\(285\) 29823.4 30002.7i 0.367170 0.369378i
\(286\) 127908. 1.56375
\(287\) 32948.0 0.400005
\(288\) 17.7928 + 2967.43i 0.000214516 + 0.0357763i
\(289\) −80937.5 −0.969067
\(290\) 17320.8 + 17955.1i 0.205955 + 0.213497i
\(291\) 92478.6 + 91925.7i 1.09208 + 1.08555i
\(292\) 2058.42i 0.0241417i
\(293\) −53324.1 −0.621138 −0.310569 0.950551i \(-0.600520\pi\)
−0.310569 + 0.950551i \(0.600520\pi\)
\(294\) 51723.0 52034.1i 0.598397 0.601995i
\(295\) −23544.6 −0.270550
\(296\) 35538.7i 0.405619i
\(297\) −73738.4 72423.7i −0.835951 0.821047i
\(298\) 70416.9i 0.792947i
\(299\) 204400.i 2.28632i
\(300\) −1033.42 + 1039.64i −0.0114825 + 0.0115515i
\(301\) 17005.3i 0.187695i
\(302\) 78174.0 0.857133
\(303\) 13517.0 13598.3i 0.147230 0.148115i
\(304\) 157868.i 1.70824i
\(305\) −33774.1 −0.363065
\(306\) 97.8564 + 16320.2i 0.00104507 + 0.174294i
\(307\) 58822.0i 0.624113i −0.950064 0.312056i \(-0.898982\pi\)
0.950064 0.312056i \(-0.101018\pi\)
\(308\) −753.302 −0.00794086
\(309\) −26892.7 + 27054.4i −0.281655 + 0.283349i
\(310\) −39998.3 −0.416216
\(311\) −28239.0 −0.291964 −0.145982 0.989287i \(-0.546634\pi\)
−0.145982 + 0.989287i \(0.546634\pi\)
\(312\) −93224.8 + 93785.5i −0.957684 + 0.963444i
\(313\) 71547.7 0.730310 0.365155 0.930947i \(-0.381016\pi\)
0.365155 + 0.930947i \(0.381016\pi\)
\(314\) 86806.6i 0.880427i
\(315\) 11251.0 67.4611i 0.113388 0.000679880i
\(316\) 544.053i 0.00544837i
\(317\) 108594. 1.08066 0.540328 0.841454i \(-0.318300\pi\)
0.540328 + 0.841454i \(0.318300\pi\)
\(318\) −63061.0 62684.0i −0.623600 0.619872i
\(319\) −85814.4 + 82782.9i −0.843294 + 0.813503i
\(320\) 31180.5i 0.304497i
\(321\) 12784.0 + 12707.5i 0.124067 + 0.123325i
\(322\) 66082.3i 0.637343i
\(323\) 31926.0i 0.306013i
\(324\) 1877.95 22.5213i 0.0178893 0.000214538i
\(325\) −129497. −1.22601
\(326\) 11273.4i 0.106077i
\(327\) −87365.0 + 87890.4i −0.817037 + 0.821951i
\(328\) 114598. 1.06519
\(329\) 31276.3 0.288951
\(330\) −26845.6 26685.1i −0.246516 0.245043i
\(331\) 51045.9i 0.465913i −0.972487 0.232956i \(-0.925160\pi\)
0.972487 0.232956i \(-0.0748399\pi\)
\(332\) 477.409i 0.00433127i
\(333\) 44588.0 267.351i 0.402096 0.00241098i
\(334\) 211804.i 1.89864i
\(335\) 38408.1i 0.342242i
\(336\) −29600.1 + 29778.2i −0.262190 + 0.263766i
\(337\) 209472.i 1.84444i −0.386662 0.922221i \(-0.626372\pi\)
0.386662 0.922221i \(-0.373628\pi\)
\(338\) −92105.6 −0.806218
\(339\) 84451.6 84959.5i 0.734867 0.739286i
\(340\) 108.881i 0.000941874i
\(341\) 191167.i 1.64401i
\(342\) 201676. 1209.26i 1.72426 0.0103387i
\(343\) −82737.5 −0.703257
\(344\) 59146.9i 0.499821i
\(345\) 42643.3 42899.8i 0.358272 0.360427i
\(346\) 39543.8i 0.330314i
\(347\) 13540.2i 0.112452i −0.998418 0.0562259i \(-0.982093\pi\)
0.998418 0.0562259i \(-0.0179067\pi\)
\(348\) 32.4576 2166.38i 0.000268015 0.0178886i
\(349\) 85154.7 0.699129 0.349565 0.936912i \(-0.386329\pi\)
0.349565 + 0.936912i \(0.386329\pi\)
\(350\) −41866.4 −0.341766
\(351\) 118367. + 116257.i 0.960767 + 0.943639i
\(352\) −5194.13 −0.0419206
\(353\) 102903.i 0.825806i −0.910775 0.412903i \(-0.864515\pi\)
0.910775 0.412903i \(-0.135485\pi\)
\(354\) −79608.4 79132.5i −0.635261 0.631463i
\(355\) 33765.9 0.267930
\(356\) −1595.02 −0.0125854
\(357\) 5986.09 6022.09i 0.0469685 0.0472510i
\(358\) 16512.8i 0.128841i
\(359\) −194404. −1.50840 −0.754201 0.656644i \(-0.771975\pi\)
−0.754201 + 0.656644i \(0.771975\pi\)
\(360\) 39132.4 234.639i 0.301947 0.00181049i
\(361\) −264203. −2.02733
\(362\) 189902. 1.44915
\(363\) 34643.5 34851.8i 0.262911 0.264492i
\(364\) 1209.23 0.00912652
\(365\) 53812.9 0.403925
\(366\) −114196. 113513.i −0.852489 0.847393i
\(367\) 25078.0i 0.186192i 0.995657 + 0.0930959i \(0.0296763\pi\)
−0.995657 + 0.0930959i \(0.970324\pi\)
\(368\) 225730.i 1.66684i
\(369\) −862.098 143778.i −0.00633146 1.05594i
\(370\) 16329.7 0.119282
\(371\) 46260.4i 0.336094i
\(372\) 2463.62 + 2448.90i 0.0178028 + 0.0176964i
\(373\) 58824.9 0.422808 0.211404 0.977399i \(-0.432196\pi\)
0.211404 + 0.977399i \(0.432196\pi\)
\(374\) −28566.5 −0.204227
\(375\) 57033.2 + 56692.2i 0.405569 + 0.403145i
\(376\) 108783. 0.769462
\(377\) 137752. 132886.i 0.969207 0.934968i
\(378\) 38268.2 + 37585.9i 0.267827 + 0.263052i
\(379\) 267968.i 1.86554i −0.360469 0.932771i \(-0.617383\pi\)
0.360469 0.932771i \(-0.382617\pi\)
\(380\) −1345.49 −0.00931779
\(381\) −71419.2 70992.2i −0.492000 0.489059i
\(382\) −20303.4 −0.139137
\(383\) 2302.04i 0.0156934i −0.999969 0.00784668i \(-0.997502\pi\)
0.999969 0.00784668i \(-0.00249770\pi\)
\(384\) −101077. + 101685.i −0.685475 + 0.689597i
\(385\) 19693.5i 0.132862i
\(386\) 94006.1i 0.630930i
\(387\) −74207.5 + 444.951i −0.495480 + 0.00297092i
\(388\) 4147.25i 0.0275484i
\(389\) 218702. 1.44528 0.722642 0.691223i \(-0.242928\pi\)
0.722642 + 0.691223i \(0.242928\pi\)
\(390\) 43093.6 + 42836.0i 0.283324 + 0.281630i
\(391\) 45649.8i 0.298597i
\(392\) −132765. −0.863995
\(393\) −43418.8 + 43679.9i −0.281121 + 0.282811i
\(394\) 6876.66i 0.0442981i
\(395\) −14223.1 −0.0911590
\(396\) 19.7104 + 3287.25i 0.000125692 + 0.0209624i
\(397\) 80294.1 0.509452 0.254726 0.967013i \(-0.418015\pi\)
0.254726 + 0.967013i \(0.418015\pi\)
\(398\) −82443.1 −0.520461
\(399\) −74417.7 73972.9i −0.467445 0.464651i
\(400\) −143011. −0.893819
\(401\) 218911.i 1.36138i −0.732571 0.680690i \(-0.761680\pi\)
0.732571 0.680690i \(-0.238320\pi\)
\(402\) −129088. + 129864.i −0.798793 + 0.803597i
\(403\) 306869.i 1.88948i
\(404\) −609.824 −0.00373630
\(405\) −588.772 49095.0i −0.00358952 0.299314i
\(406\) 44535.3 42962.0i 0.270180 0.260635i
\(407\) 78046.0i 0.471153i
\(408\) 20820.5 20945.7i 0.125075 0.125827i
\(409\) 72150.8i 0.431315i 0.976469 + 0.215658i \(0.0691895\pi\)
−0.976469 + 0.215658i \(0.930811\pi\)
\(410\) 52656.6i 0.313246i
\(411\) −32726.9 + 32923.8i −0.193741 + 0.194906i
\(412\) 1213.27 0.00714766
\(413\) 58399.2i 0.342379i
\(414\) 288369. 1729.07i 1.68247 0.0100882i
\(415\) 12480.8 0.0724683
\(416\) 8337.80 0.0481798
\(417\) 234285. 235694.i 1.34732 1.35543i
\(418\) 353010.i 2.02038i
\(419\) 235144.i 1.33939i −0.742638 0.669694i \(-0.766425\pi\)
0.742638 0.669694i \(-0.233575\pi\)
\(420\) −253.795 252.278i −0.00143875 0.00143015i
\(421\) 56537.7i 0.318988i −0.987199 0.159494i \(-0.949014\pi\)
0.987199 0.159494i \(-0.0509862\pi\)
\(422\) 120679.i 0.677654i
\(423\) −818.358 136483.i −0.00457365 0.762778i
\(424\) 160900.i 0.895003i
\(425\) 28921.4 0.160118
\(426\) 114168. + 113486.i 0.629110 + 0.625349i
\(427\) 83772.1i 0.459456i
\(428\) 573.303i 0.00312966i
\(429\) −204729. + 205961.i −1.11241 + 1.11910i
\(430\) −27177.4 −0.146985
\(431\) 237846.i 1.28039i 0.768214 + 0.640193i \(0.221145\pi\)
−0.768214 + 0.640193i \(0.778855\pi\)
\(432\) 130720. + 128389.i 0.700446 + 0.687958i
\(433\) 213192.i 1.13709i 0.822652 + 0.568546i \(0.192494\pi\)
−0.822652 + 0.568546i \(0.807506\pi\)
\(434\) 99210.5i 0.526718i
\(435\) −56635.4 848.536i −0.299302 0.00448427i
\(436\) 3941.49 0.0207342
\(437\) −564116. −2.95396
\(438\) 181951. + 180863.i 0.948430 + 0.942760i
\(439\) −170822. −0.886367 −0.443184 0.896431i \(-0.646151\pi\)
−0.443184 + 0.896431i \(0.646151\pi\)
\(440\) 68496.6i 0.353805i
\(441\) 998.766 + 166571.i 0.00513555 + 0.856490i
\(442\) 45856.0 0.234721
\(443\) 110340. 0.562244 0.281122 0.959672i \(-0.409293\pi\)
0.281122 + 0.959672i \(0.409293\pi\)
\(444\) −1005.80 999.788i −0.00510206 0.00507156i
\(445\) 41698.4i 0.210571i
\(446\) −185830. −0.934215
\(447\) −113387. 112709.i −0.567476 0.564083i
\(448\) 77339.2 0.385339
\(449\) −204649. −1.01512 −0.507559 0.861617i \(-0.669452\pi\)
−0.507559 + 0.861617i \(0.669452\pi\)
\(450\) 1095.45 + 182696.i 0.00540963 + 0.902202i
\(451\) 251666. 1.23729
\(452\) −3810.06 −0.0186490
\(453\) −125125. + 125877.i −0.609744 + 0.613411i
\(454\) 386369.i 1.87452i
\(455\) 31612.7i 0.152700i
\(456\) −258835. 257288.i −1.24478 1.23734i
\(457\) 95123.8 0.455467 0.227733 0.973724i \(-0.426869\pi\)
0.227733 + 0.973724i \(0.426869\pi\)
\(458\) 195309.i 0.931088i
\(459\) −26435.7 25964.4i −0.125478 0.123241i
\(460\) −1923.86 −0.00909199
\(461\) 39889.1 0.187695 0.0938475 0.995587i \(-0.470083\pi\)
0.0938475 + 0.995587i \(0.470083\pi\)
\(462\) −66188.9 + 66587.0i −0.310100 + 0.311965i
\(463\) 71426.4 0.333194 0.166597 0.986025i \(-0.446722\pi\)
0.166597 + 0.986025i \(0.446722\pi\)
\(464\) 152128. 146754.i 0.706599 0.681637i
\(465\) 64021.2 64406.2i 0.296086 0.297867i
\(466\) 248527.i 1.14446i
\(467\) 119947. 0.549993 0.274996 0.961445i \(-0.411323\pi\)
0.274996 + 0.961445i \(0.411323\pi\)
\(468\) −31.6399 5276.81i −0.000144459 0.0240924i
\(469\) 95266.2 0.433105
\(470\) 49985.0i 0.226279i
\(471\) 139778. + 138942.i 0.630081 + 0.626315i
\(472\) 203121.i 0.911738i
\(473\) 129891.i 0.580575i
\(474\) −48090.7 47803.2i −0.214045 0.212765i
\(475\) 357395.i 1.58402i
\(476\) −270.064 −0.00119194
\(477\) 201870. 1210.42i 0.887228 0.00531985i
\(478\) 305581.i 1.33743i
\(479\) 219847. 0.958186 0.479093 0.877764i \(-0.340966\pi\)
0.479093 + 0.877764i \(0.340966\pi\)
\(480\) −1749.95 1739.49i −0.00759528 0.00754988i
\(481\) 125282.i 0.541502i
\(482\) −273489. −1.17719
\(483\) −106407. 105771.i −0.456117 0.453391i
\(484\) −1562.95 −0.00667197
\(485\) −108421. −0.460925
\(486\) 163015. 167977.i 0.690170 0.711178i
\(487\) 275259. 1.16060 0.580302 0.814401i \(-0.302935\pi\)
0.580302 + 0.814401i \(0.302935\pi\)
\(488\) 291371.i 1.22351i
\(489\) 18152.7 + 18044.2i 0.0759144 + 0.0754606i
\(490\) 61004.3i 0.254079i
\(491\) −366481. −1.52016 −0.760079 0.649831i \(-0.774840\pi\)
−0.760079 + 0.649831i \(0.774840\pi\)
\(492\) −3223.90 + 3243.29i −0.0133184 + 0.0133985i
\(493\) −30765.1 + 29678.2i −0.126580 + 0.122108i
\(494\) 566664.i 2.32205i
\(495\) 85938.0 515.287i 0.350731 0.00210300i
\(496\) 338893.i 1.37752i
\(497\) 83751.8i 0.339064i
\(498\) 42199.9 + 41947.6i 0.170158 + 0.169141i
\(499\) 280703. 1.12732 0.563658 0.826008i \(-0.309394\pi\)
0.563658 + 0.826008i \(0.309394\pi\)
\(500\) 2557.69i 0.0102307i
\(501\) 341052. + 339013.i 1.35877 + 1.35064i
\(502\) −87897.4 −0.348794
\(503\) −167460. −0.661874 −0.330937 0.943653i \(-0.607365\pi\)
−0.330937 + 0.943653i \(0.607365\pi\)
\(504\) −581.991 97062.7i −0.00229116 0.382112i
\(505\) 15942.6i 0.0625137i
\(506\) 504756.i 1.97142i
\(507\) 147424. 148310.i 0.573524 0.576973i
\(508\) 3202.83i 0.0124110i
\(509\) 88725.9i 0.342464i 0.985231 + 0.171232i \(0.0547747\pi\)
−0.985231 + 0.171232i \(0.945225\pi\)
\(510\) −9624.35 9566.81i −0.0370025 0.0367813i
\(511\) 133476.i 0.511164i
\(512\) 268829. 1.02550
\(513\) −320854. + 326678.i −1.21920 + 1.24133i
\(514\) 362176.i 1.37086i
\(515\) 31718.4i 0.119590i
\(516\) 1673.95 + 1663.94i 0.00628698 + 0.00624939i
\(517\) 238897. 0.893780
\(518\) 40503.7i 0.150951i
\(519\) 63674.3 + 63293.7i 0.236390 + 0.234977i
\(520\) 109953.i 0.406632i
\(521\) 352376.i 1.29817i −0.760717 0.649084i \(-0.775152\pi\)
0.760717 0.649084i \(-0.224848\pi\)
\(522\) −188642. 193218.i −0.692305 0.709100i
\(523\) −198158. −0.724451 −0.362226 0.932090i \(-0.617983\pi\)
−0.362226 + 0.932090i \(0.617983\pi\)
\(524\) 1958.85 0.00713409
\(525\) 67011.1 67414.2i 0.243124 0.244587i
\(526\) 55706.0 0.201340
\(527\) 68534.9i 0.246769i
\(528\) −226094. + 227454.i −0.811002 + 0.815879i
\(529\) −526767. −1.88238
\(530\) 73932.1 0.263197
\(531\) 254842. 1528.04i 0.903819 0.00541933i
\(532\) 3337.31i 0.0117916i
\(533\) −403984. −1.42203
\(534\) −140147. + 140989.i −0.491473 + 0.494429i
\(535\) −14987.8 −0.0523637
\(536\) 331349. 1.15334
\(537\) 26589.2 + 26430.3i 0.0922056 + 0.0916544i
\(538\) −526638. −1.81948
\(539\) −291563. −1.00359
\(540\) −1094.24 + 1114.11i −0.00375255 + 0.00382067i
\(541\) 290944.i 0.994067i 0.867731 + 0.497033i \(0.165577\pi\)
−0.867731 + 0.497033i \(0.834423\pi\)
\(542\) 12592.4i 0.0428657i
\(543\) −303956. + 305784.i −1.03089 + 1.03709i
\(544\) −1862.13 −0.00629234
\(545\) 103042.i 0.346913i
\(546\) 106249. 106888.i 0.356401 0.358545i
\(547\) 87466.4 0.292326 0.146163 0.989261i \(-0.453308\pi\)
0.146163 + 0.989261i \(0.453308\pi\)
\(548\) 1476.48 0.00491663
\(549\) 365564. 2191.93i 1.21288 0.00727248i
\(550\) −319787. −1.05715
\(551\) 366748. + 380178.i 1.20799 + 1.25223i
\(552\) −370099. 367887.i −1.21462 1.20736i
\(553\) 35278.5i 0.115361i
\(554\) 264682. 0.862391
\(555\) −26137.3 + 26294.5i −0.0848545 + 0.0853648i
\(556\) −10569.8 −0.0341915
\(557\) 578992.i 1.86622i 0.359595 + 0.933109i \(0.382915\pi\)
−0.359595 + 0.933109i \(0.617085\pi\)
\(558\) 432933. 2595.88i 1.39044 0.00833714i
\(559\) 208506.i 0.667261i
\(560\) 34911.7i 0.111325i
\(561\) 45723.5 45998.4i 0.145283 0.146156i
\(562\) 333154.i 1.05481i
\(563\) 548574. 1.73069 0.865343 0.501180i \(-0.167100\pi\)
0.865343 + 0.501180i \(0.167100\pi\)
\(564\) −3060.33 + 3078.74i −0.00962078 + 0.00967864i
\(565\) 99605.8i 0.312024i
\(566\) −101695. −0.317445
\(567\) −121774. + 1460.37i −0.378780 + 0.00454252i
\(568\) 291301.i 0.902910i
\(569\) 267083. 0.824939 0.412470 0.910971i \(-0.364666\pi\)
0.412470 + 0.910971i \(0.364666\pi\)
\(570\) −118222. + 118932.i −0.363870 + 0.366059i
\(571\) −222961. −0.683844 −0.341922 0.939728i \(-0.611078\pi\)
−0.341922 + 0.939728i \(0.611078\pi\)
\(572\) 9236.42 0.0282301
\(573\) 32497.5 32693.0i 0.0989786 0.0995739i
\(574\) −130608. −0.396410
\(575\) 511026.i 1.54564i
\(576\) −2023.61 337491.i −0.00609933 1.01723i
\(577\) 77553.5i 0.232943i −0.993194 0.116472i \(-0.962842\pi\)
0.993194 0.116472i \(-0.0371584\pi\)
\(578\) 320841. 0.960359
\(579\) 151371. + 150466.i 0.451528 + 0.448829i
\(580\) 1250.76 + 1296.56i 0.00371807 + 0.00385423i
\(581\) 30957.1i 0.0917081i
\(582\) −366590. 364399.i −1.08227 1.07580i
\(583\) 353350.i 1.03960i
\(584\) 464247.i 1.36120i
\(585\) −137951. + 827.158i −0.403100 + 0.00241700i
\(586\) 211380. 0.615557
\(587\) 221620.i 0.643179i 0.946879 + 0.321590i \(0.104217\pi\)
−0.946879 + 0.321590i \(0.895783\pi\)
\(588\) 3734.99 3757.45i 0.0108027 0.0108677i
\(589\) −846917. −2.44124
\(590\) 93332.1 0.268119
\(591\) −11073.0 11006.8i −0.0317021 0.0315126i
\(592\) 138356.i 0.394781i
\(593\) 210667.i 0.599084i 0.954083 + 0.299542i \(0.0968339\pi\)
−0.954083 + 0.299542i \(0.903166\pi\)
\(594\) 292303. + 287092.i 0.828439 + 0.813669i
\(595\) 7060.25i 0.0199428i
\(596\) 5084.89i 0.0143149i
\(597\) 131958. 132752.i 0.370243 0.372470i
\(598\) 810252.i 2.26578i
\(599\) 123316. 0.343690 0.171845 0.985124i \(-0.445027\pi\)
0.171845 + 0.985124i \(0.445027\pi\)
\(600\) 233074. 234476.i 0.647428 0.651322i
\(601\) 283900.i 0.785989i −0.919541 0.392994i \(-0.871439\pi\)
0.919541 0.392994i \(-0.128561\pi\)
\(602\) 67410.0i 0.186008i
\(603\) −2492.68 415721.i −0.00685538 1.14332i
\(604\) 5645.05 0.0154737
\(605\) 40860.0i 0.111632i
\(606\) −53582.3 + 53904.5i −0.145907 + 0.146784i
\(607\) 323187.i 0.877156i 0.898693 + 0.438578i \(0.144518\pi\)
−0.898693 + 0.438578i \(0.855482\pi\)
\(608\) 23011.2i 0.0622490i
\(609\) −2104.68 + 140477.i −0.00567481 + 0.378764i
\(610\) 133882. 0.359802
\(611\) −383487. −1.02723
\(612\) 7.06634 + 1178.50i 1.88665e−5 + 0.00314650i
\(613\) 714415. 1.90121 0.950604 0.310407i \(-0.100465\pi\)
0.950604 + 0.310407i \(0.100465\pi\)
\(614\) 233174.i 0.618505i
\(615\) 84788.8 + 84281.9i 0.224176 + 0.222835i
\(616\) 169897. 0.447737
\(617\) −80086.4 −0.210372 −0.105186 0.994453i \(-0.533544\pi\)
−0.105186 + 0.994453i \(0.533544\pi\)
\(618\) 106604. 107245.i 0.279124 0.280803i
\(619\) 419531.i 1.09492i −0.836831 0.547461i \(-0.815594\pi\)
0.836831 0.547461i \(-0.184406\pi\)
\(620\) −2888.33 −0.00751387
\(621\) −458778. + 467105.i −1.18965 + 1.21124i
\(622\) 111941. 0.289340
\(623\) 103427. 0.266476
\(624\) 362935. 365118.i 0.932094 0.937699i
\(625\) 288759. 0.739223
\(626\) −283619. −0.723748
\(627\) −568424. 565026.i −1.44590 1.43725i
\(628\) 6268.42i 0.0158942i
\(629\) 27980.1i 0.0707208i
\(630\) −44599.4 + 267.420i −0.112369 + 0.000673771i
\(631\) −459198. −1.15330 −0.576649 0.816992i \(-0.695640\pi\)
−0.576649 + 0.816992i \(0.695640\pi\)
\(632\) 122703.i 0.307201i
\(633\) 194321. + 193159.i 0.484966 + 0.482067i
\(634\) −430473. −1.07095
\(635\) 83731.2 0.207654
\(636\) −4553.71 4526.49i −0.0112577 0.0111904i
\(637\) 468027. 1.15343
\(638\) 340173. 328156.i 0.835716 0.806193i
\(639\) −365475. + 2191.40i −0.895067 + 0.00536686i
\(640\) 119215.i 0.291052i
\(641\) 273881. 0.666571 0.333286 0.942826i \(-0.391843\pi\)
0.333286 + 0.942826i \(0.391843\pi\)
\(642\) −50676.3 50373.4i −0.122952 0.122217i
\(643\) 350395. 0.847492 0.423746 0.905781i \(-0.360715\pi\)
0.423746 + 0.905781i \(0.360715\pi\)
\(644\) 4771.89i 0.0115059i
\(645\) 43500.1 43761.7i 0.104561 0.105190i
\(646\) 126556.i 0.303263i
\(647\) 328068.i 0.783711i −0.920027 0.391855i \(-0.871833\pi\)
0.920027 0.391855i \(-0.128167\pi\)
\(648\) −423545. + 5079.37i −1.00867 + 0.0120965i
\(649\) 446070.i 1.05904i
\(650\) 513334. 1.21499
\(651\) −159751. 158796.i −0.376948 0.374695i
\(652\) 814.069i 0.00191499i
\(653\) −703894. −1.65075 −0.825374 0.564587i \(-0.809036\pi\)
−0.825374 + 0.564587i \(0.809036\pi\)
\(654\) 346320. 348402.i 0.809695 0.814565i
\(655\) 51209.9i 0.119364i
\(656\) −446142. −1.03673
\(657\) −582459. + 3492.45i −1.34938 + 0.00809094i
\(658\) −123981. −0.286354
\(659\) 251723. 0.579631 0.289815 0.957083i \(-0.406406\pi\)
0.289815 + 0.957083i \(0.406406\pi\)
\(660\) −1938.56 1926.97i −0.00445032 0.00442371i
\(661\) −269075. −0.615845 −0.307922 0.951412i \(-0.599634\pi\)
−0.307922 + 0.951412i \(0.599634\pi\)
\(662\) 202349.i 0.461726i
\(663\) −73397.0 + 73838.4i −0.166975 + 0.167979i
\(664\) 107673.i 0.244214i
\(665\) 87246.7 0.197290
\(666\) −176749. + 1059.80i −0.398483 + 0.00238932i
\(667\) 524399. + 543603.i 1.17872 + 1.22188i
\(668\) 15294.7i 0.0342757i
\(669\) 297439. 299228.i 0.664578 0.668575i
\(670\) 152252.i 0.339167i
\(671\) 639875.i 1.42118i
\(672\) −4314.58 + 4340.52i −0.00955432 + 0.00961178i
\(673\) 486318. 1.07372 0.536859 0.843672i \(-0.319611\pi\)
0.536859 + 0.843672i \(0.319611\pi\)
\(674\) 830357.i 1.82787i
\(675\) −295934. 290658.i −0.649513 0.637933i
\(676\) −6651.06 −0.0145545
\(677\) −184479. −0.402503 −0.201251 0.979540i \(-0.564501\pi\)
−0.201251 + 0.979540i \(0.564501\pi\)
\(678\) −334771. + 336784.i −0.728264 + 0.732643i
\(679\) 268924.i 0.583297i
\(680\) 24556.5i 0.0531067i
\(681\) 622140. + 618421.i 1.34151 + 1.33349i
\(682\) 757798.i 1.62924i
\(683\) 707110.i 1.51581i 0.652363 + 0.757907i \(0.273778\pi\)
−0.652363 + 0.757907i \(0.726222\pi\)
\(684\) 14563.3 87.3220i 0.0311277 0.000186643i
\(685\) 38599.5i 0.0822623i
\(686\) 327976. 0.696938
\(687\) −314490. 312610.i −0.666337 0.662353i
\(688\) 230266.i 0.486465i
\(689\) 567210.i 1.19483i
\(690\) −169041. + 170057.i −0.355053 + 0.357188i
\(691\) −740845. −1.55157 −0.775785 0.630998i \(-0.782646\pi\)
−0.775785 + 0.630998i \(0.782646\pi\)
\(692\) 2855.51i 0.00596309i
\(693\) −1278.10 213158.i −0.00266133 0.443848i
\(694\) 53674.2i 0.111441i
\(695\) 276325.i 0.572073i
\(696\) −7320.37 + 488597.i −0.0151117 + 1.00863i
\(697\) 90224.1 0.185719
\(698\) −337558. −0.692847
\(699\) 400183. + 397791.i 0.819039 + 0.814143i
\(700\) −3023.23 −0.00616985
\(701\) 538341.i 1.09552i −0.836635 0.547761i \(-0.815480\pi\)
0.836635 0.547761i \(-0.184520\pi\)
\(702\) −469216. 460850.i −0.952134 0.935160i
\(703\) 345762. 0.699628
\(704\) 590738. 1.19193
\(705\) 80486.9 + 80005.8i 0.161937 + 0.160969i
\(706\) 407913.i 0.818385i
\(707\) 39543.4 0.0791106
\(708\) −5748.62 5714.26i −0.0114683 0.0113997i
\(709\) 218109. 0.433892 0.216946 0.976184i \(-0.430390\pi\)
0.216946 + 0.976184i \(0.430390\pi\)
\(710\) −133850. −0.265523
\(711\) 153948. 923.076i 0.304533 0.00182599i
\(712\) 359734. 0.709613
\(713\) −1.21098e6 −2.38208
\(714\) −23729.2 + 23871.9i −0.0465465 + 0.0468264i
\(715\) 241466.i 0.472329i
\(716\) 1192.41i 0.00232594i
\(717\) −492053. 489111.i −0.957135 0.951413i
\(718\) 770630. 1.49485
\(719\) 193372.i 0.374055i 0.982355 + 0.187027i \(0.0598853\pi\)
−0.982355 + 0.187027i \(0.940115\pi\)
\(720\) −152347. + 913.478i −0.293879 + 0.00176211i
\(721\) −78673.2 −0.151341
\(722\) 1.04732e6 2.00911
\(723\) 437746. 440378.i 0.837424 0.842460i
\(724\) 13713.1 0.0261612
\(725\) −344399. + 332232.i −0.655218 + 0.632071i
\(726\) −137329. + 138155.i −0.260548 + 0.262115i
\(727\) 262302.i 0.496286i −0.968723 0.248143i \(-0.920180\pi\)
0.968723 0.248143i \(-0.0798204\pi\)
\(728\) −272724. −0.514590
\(729\) 9558.99 + 531355.i 0.0179869 + 0.999838i
\(730\) −213317. −0.400295
\(731\) 46567.0i 0.0871452i
\(732\) −8246.25 8196.95i −0.0153898 0.0152978i
\(733\) 870273.i 1.61975i 0.586604 + 0.809874i \(0.300464\pi\)
−0.586604 + 0.809874i \(0.699536\pi\)
\(734\) 99410.6i 0.184519i
\(735\) −98230.4 97643.2i −0.181832 0.180745i
\(736\) 32902.9i 0.0607405i
\(737\) 727670. 1.33968
\(738\) 3417.40 + 569944.i 0.00627457 + 1.04645i
\(739\) 489851.i 0.896964i 0.893792 + 0.448482i \(0.148035\pi\)
−0.893792 + 0.448482i \(0.851965\pi\)
\(740\) 1179.19 0.00215338
\(741\) 912455. + 907000.i 1.66179 + 1.65185i
\(742\) 183379.i 0.333074i
\(743\) −11606.1 −0.0210236 −0.0105118 0.999945i \(-0.503346\pi\)
−0.0105118 + 0.999945i \(0.503346\pi\)
\(744\) −555636. 552315.i −1.00379 0.997793i
\(745\) 132934. 0.239509
\(746\) −233185. −0.419009
\(747\) −135090. + 810.005i −0.242093 + 0.00145160i
\(748\) −2062.83 −0.00368688
\(749\) 37175.2i 0.0662659i
\(750\) −226083. 224731.i −0.401925 0.399522i
\(751\) 350136.i 0.620807i −0.950605 0.310403i \(-0.899536\pi\)
0.950605 0.310403i \(-0.100464\pi\)
\(752\) −423506. −0.748901
\(753\) 140688. 141534.i 0.248123 0.249616i
\(754\) −546059. + 526768.i −0.960498 + 0.926567i
\(755\) 147578.i 0.258897i
\(756\) 2763.39 + 2714.13i 0.00483503 + 0.00474883i
\(757\) 250011.i 0.436282i −0.975917 0.218141i \(-0.930001\pi\)
0.975917 0.218141i \(-0.0699993\pi\)
\(758\) 1.06224e6i 1.84878i
\(759\) −812768. 807910.i −1.41086 1.40242i
\(760\) 303456. 0.525374
\(761\) 477243.i 0.824081i −0.911165 0.412041i \(-0.864816\pi\)
0.911165 0.412041i \(-0.135184\pi\)
\(762\) 283110. + 281417.i 0.487579 + 0.484664i
\(763\) −255582. −0.439016
\(764\) −1466.14 −0.00251181
\(765\) 30809.4 184.734i 0.0526454 0.000315664i
\(766\) 9125.43i 0.0155523i
\(767\) 716048.i 1.21717i
\(768\) −22310.4 + 22444.6i −0.0378256 + 0.0380531i
\(769\) 79299.9i 0.134097i −0.997750 0.0670487i \(-0.978642\pi\)
0.997750 0.0670487i \(-0.0213583\pi\)
\(770\) 78066.0i 0.131668i
\(771\) 583183. + 579697.i 0.981062 + 0.975197i
\(772\) 6788.30i 0.0113901i
\(773\) 677150. 1.13325 0.566625 0.823976i \(-0.308249\pi\)
0.566625 + 0.823976i \(0.308249\pi\)
\(774\) 294163. 1763.81i 0.491028 0.00294422i
\(775\) 767212.i 1.27736i
\(776\) 935355.i 1.55329i
\(777\) 65220.0 + 64830.1i 0.108029 + 0.107383i
\(778\) −866946. −1.43230
\(779\) 1.11494e6i 1.83729i
\(780\) 3111.84 + 3093.24i 0.00511480 + 0.00508422i
\(781\) 639720.i 1.04879i
\(782\) 180958.i 0.295914i
\(783\) 613064. + 5508.74i 0.999960 + 0.00898522i
\(784\) 516869. 0.840908
\(785\) −163874. −0.265933
\(786\) 172115. 173150.i 0.278595 0.280270i
\(787\) 9089.46 0.0146754 0.00733768 0.999973i \(-0.497664\pi\)
0.00733768 + 0.999973i \(0.497664\pi\)
\(788\) 496.573i 0.000799706i
\(789\) −89162.8 + 89699.1i −0.143229 + 0.144090i
\(790\) 56381.1 0.0903399
\(791\) 247059. 0.394864
\(792\) −4445.42 741392.i −0.00708699 1.18195i
\(793\) 1.02715e6i 1.63338i
\(794\) −318291. −0.504874
\(795\) −118335. + 119047.i −0.187232 + 0.188358i
\(796\) −5953.32 −0.00939579
\(797\) −257197. −0.404901 −0.202451 0.979292i \(-0.564891\pi\)
−0.202451 + 0.979292i \(0.564891\pi\)
\(798\) 294996. + 293233.i 0.463245 + 0.460476i
\(799\) 85646.4 0.134158
\(800\) −20845.6 −0.0325712
\(801\) −2706.22 451334.i −0.00421791 0.703450i
\(802\) 867777.i 1.34915i
\(803\) 1.01953e6i 1.58113i
\(804\) −9321.62 + 9377.68i −0.0144205 + 0.0145072i
\(805\) 124751. 0.192509
\(806\) 1.21645e6i 1.87250i
\(807\) 842935. 848004.i 1.29434 1.30212i
\(808\) 137537. 0.210668
\(809\) −364643. −0.557148 −0.278574 0.960415i \(-0.589862\pi\)
−0.278574 + 0.960415i \(0.589862\pi\)
\(810\) 2333.92 + 194615.i 0.00355727 + 0.296624i
\(811\) −545176. −0.828886 −0.414443 0.910075i \(-0.636024\pi\)
−0.414443 + 0.910075i \(0.636024\pi\)
\(812\) 3215.95 3102.34i 0.00487750 0.00470520i
\(813\) 20276.6 + 20155.3i 0.0306770 + 0.0304936i
\(814\) 309379.i 0.466919i
\(815\) −21282.1 −0.0320405
\(816\) −81056.4 + 81543.9i −0.121733 + 0.122465i
\(817\) −575450. −0.862111
\(818\) 286010.i 0.427439i
\(819\) 2051.66 + 342169.i 0.00305870 + 0.510120i
\(820\) 3802.40i 0.00565497i
\(821\) 143771.i 0.213296i 0.994297 + 0.106648i \(0.0340119\pi\)
−0.994297 + 0.106648i \(0.965988\pi\)
\(822\) 129731. 130512.i 0.192000 0.193155i
\(823\) 1.14960e6i 1.69725i −0.528993 0.848626i \(-0.677430\pi\)
0.528993 0.848626i \(-0.322570\pi\)
\(824\) −273637. −0.403014
\(825\) 511850. 514928.i 0.752030 0.756552i
\(826\) 231498.i 0.339302i
\(827\) 625204. 0.914135 0.457068 0.889432i \(-0.348900\pi\)
0.457068 + 0.889432i \(0.348900\pi\)
\(828\) 20823.5 124.858i 0.0303734 0.000182120i
\(829\) 194809.i 0.283465i 0.989905 + 0.141733i \(0.0452673\pi\)
−0.989905 + 0.141733i \(0.954733\pi\)
\(830\) −49474.8 −0.0718171
\(831\) −423648. + 426196.i −0.613484 + 0.617174i
\(832\) −948275. −1.36990
\(833\) −104527. −0.150640
\(834\) −928719. + 934304.i −1.33522 + 1.34325i
\(835\) −399846. −0.573482
\(836\) 25491.3i 0.0364736i
\(837\) −688771. + 701274.i −0.983160 + 1.00101i
\(838\) 932125.i 1.32735i
\(839\) −905638. −1.28656 −0.643281 0.765630i \(-0.722427\pi\)
−0.643281 + 0.765630i \(0.722427\pi\)
\(840\) 57239.9 + 56897.7i 0.0811223 + 0.0806373i
\(841\) 25427.3 706824.i 0.0359508 0.999354i
\(842\) 224119.i 0.316121i
\(843\) 536452. + 533245.i 0.754877 + 0.750364i
\(844\) 8714.41i 0.0122336i
\(845\) 173878.i 0.243518i
\(846\) 3244.02 + 541027.i 0.00453255 + 0.755924i
\(847\) 101348. 0.141269
\(848\) 626402.i 0.871087i
\(849\) 162773. 163752.i 0.225823 0.227181i
\(850\) −114646. −0.158680
\(851\) 494393. 0.682674
\(852\) 8244.25 + 8194.96i 0.0113572 + 0.0112893i
\(853\) 958778.i 1.31771i 0.752270 + 0.658855i \(0.228959\pi\)
−0.752270 + 0.658855i \(0.771041\pi\)
\(854\) 332078.i 0.455327i
\(855\) −2282.85 380726.i −0.00312280 0.520811i
\(856\) 129301.i 0.176463i
\(857\) 417813.i 0.568879i 0.958694 + 0.284440i \(0.0918075\pi\)
−0.958694 + 0.284440i \(0.908192\pi\)
\(858\) 811559. 816440.i 1.10242 1.10905i
\(859\) 31309.1i 0.0424311i −0.999775 0.0212155i \(-0.993246\pi\)
0.999775 0.0212155i \(-0.00675362\pi\)
\(860\) −1962.52 −0.00265349
\(861\) 209050. 210307.i 0.281997 0.283693i
\(862\) 942834.i 1.26888i
\(863\) 630699.i 0.846838i −0.905934 0.423419i \(-0.860830\pi\)
0.905934 0.423419i \(-0.139170\pi\)
\(864\) 19054.0 + 18714.3i 0.0255246 + 0.0250695i
\(865\) −74651.2 −0.0997711
\(866\) 845106.i 1.12687i
\(867\) −513536. + 516625.i −0.683177 + 0.687285i
\(868\) 7164.12i 0.00950875i
\(869\) 269467.i 0.356834i
\(870\) 224506. + 3363.64i 0.296612 + 0.00444397i
\(871\) −1.16808e6 −1.53970
\(872\) −888949. −1.16908
\(873\) 1.17353e6 7036.51i 1.53980 0.00923270i
\(874\) 2.23619e6 2.92742
\(875\) 165850.i 0.216621i
\(876\) 13138.9 + 13060.3i 0.0171218 + 0.0170195i
\(877\) 726795. 0.944959 0.472479 0.881342i \(-0.343359\pi\)
0.472479 + 0.881342i \(0.343359\pi\)
\(878\) 677147. 0.878403
\(879\) −338333. + 340368.i −0.437892 + 0.440526i
\(880\) 266665.i 0.344351i
\(881\) −948050. −1.22146 −0.610730 0.791839i \(-0.709124\pi\)
−0.610730 + 0.791839i \(0.709124\pi\)
\(882\) −3959.17 660297.i −0.00508940 0.848794i
\(883\) −1.41990e6 −1.82111 −0.910556 0.413386i \(-0.864346\pi\)
−0.910556 + 0.413386i \(0.864346\pi\)
\(884\) 3311.32 0.00423738
\(885\) −149387. + 150285.i −0.190733 + 0.191880i
\(886\) −437394. −0.557192
\(887\) 471163. 0.598859 0.299429 0.954118i \(-0.403204\pi\)
0.299429 + 0.954118i \(0.403204\pi\)
\(888\) 226844. + 225488.i 0.287675 + 0.285955i
\(889\) 207684.i 0.262785i
\(890\) 165295.i 0.208679i
\(891\) −930141. + 11154.7i −1.17164 + 0.0140509i
\(892\) −13419.0 −0.0168652
\(893\) 1.05837e6i 1.32720i
\(894\) 449472. + 446785.i 0.562377 + 0.559015i
\(895\) −31173.0 −0.0389164
\(896\) −295697. −0.368324
\(897\) 1.30469e6 + 1.29689e6i 1.62151 + 1.61182i
\(898\) 811239. 1.00600
\(899\) 787290. + 816121.i 0.974126 + 1.00980i
\(900\) 79.1039 + 13192.7i 9.76592e−5 + 0.0162873i
\(901\) 126678.i 0.156046i
\(902\) −997619. −1.22617
\(903\) −108545. 107896.i −0.133117 0.132322i
\(904\) 859305. 1.05150
\(905\) 358499.i 0.437714i
\(906\) 496003. 498986.i 0.604265 0.607899i
\(907\) 1.02103e6i 1.24115i −0.784149 0.620573i \(-0.786900\pi\)
0.784149 0.620573i \(-0.213100\pi\)
\(908\) 27900.2i 0.0338404i
\(909\) −1034.67 172559.i −0.00125220 0.208838i
\(910\) 125314.i 0.151328i
\(911\) 827126. 0.996632 0.498316 0.866995i \(-0.333952\pi\)
0.498316 + 0.866995i \(0.333952\pi\)
\(912\) 1.00768e6 + 1.00165e6i 1.21152 + 1.20428i
\(913\) 236459.i 0.283671i
\(914\) −377076. −0.451374
\(915\) −214292. + 215580.i −0.255955 + 0.257494i
\(916\) 14103.5i 0.0168088i
\(917\) −127019. −0.151054
\(918\) 104793. + 102924.i 0.124350 + 0.122133i
\(919\) −420286. −0.497638 −0.248819 0.968550i \(-0.580043\pi\)
−0.248819 + 0.968550i \(0.580043\pi\)
\(920\) 433901. 0.512643
\(921\) −375462. 373217.i −0.442635 0.439989i
\(922\) −158123. −0.186009
\(923\) 1.02690e6i 1.20538i
\(924\) −4779.59 + 4808.33i −0.00559818 + 0.00563184i
\(925\) 313222.i 0.366074i
\(926\) −283138. −0.330200
\(927\) 2058.52 + 343313.i 0.00239549 + 0.399513i
\(928\) 22174.5 21391.1i 0.0257488 0.0248392i
\(929\) 1.11924e6i 1.29685i 0.761278 + 0.648425i \(0.224572\pi\)
−0.761278 + 0.648425i \(0.775428\pi\)
\(930\) −253784. + 255310.i −0.293425 + 0.295190i
\(931\) 1.29169e6i 1.49025i
\(932\) 17946.4i 0.0206608i
\(933\) −179173. + 180250.i −0.205830 + 0.207068i
\(934\) −475478. −0.545051
\(935\) 53928.2i 0.0616868i
\(936\) 7135.94 + 1.19011e6i 0.00814516 + 1.35842i
\(937\) −542618. −0.618038 −0.309019 0.951056i \(-0.600001\pi\)
−0.309019 + 0.951056i \(0.600001\pi\)
\(938\) −377641. −0.429213
\(939\) 453960. 456690.i 0.514857 0.517953i
\(940\) 3609.48i 0.00408497i
\(941\) 556077.i 0.627994i 0.949424 + 0.313997i \(0.101668\pi\)
−0.949424 + 0.313997i \(0.898332\pi\)
\(942\) −554088. 550775.i −0.624420 0.620687i
\(943\) 1.59421e6i 1.79276i
\(944\) 790772.i 0.887375i
\(945\) 70955.0 72243.0i 0.0794547 0.0808969i
\(946\) 514897.i 0.575358i
\(947\) 70866.5 0.0790207 0.0395104 0.999219i \(-0.487420\pi\)
0.0395104 + 0.999219i \(0.487420\pi\)
\(948\) −3472.69 3451.93i −0.00386411 0.00384101i
\(949\) 1.63658e6i 1.81721i
\(950\) 1.41673e6i 1.56979i
\(951\) 689014. 693157.i 0.761845 0.766427i
\(952\) 60909.2 0.0672061
\(953\) 23783.2i 0.0261869i −0.999914 0.0130934i \(-0.995832\pi\)
0.999914 0.0130934i \(-0.00416789\pi\)
\(954\) −800225. + 4798.18i −0.879256 + 0.00527205i
\(955\) 38329.0i 0.0420262i
\(956\) 22066.4i 0.0241443i
\(957\) −16076.1 + 1.07300e6i −0.0175533 + 1.17159i
\(958\) −871487. −0.949576
\(959\) −95741.0 −0.104102
\(960\) 199026. + 197836.i 0.215957 + 0.214666i
\(961\) −894537. −0.968616
\(962\) 496626.i 0.536636i
\(963\) 162225. 972.705i 0.174930 0.00104889i
\(964\) −19749.0 −0.0212516
\(965\) −177466. −0.190572
\(966\) 421804. + 419283.i 0.452019 + 0.449317i
\(967\) 1.37267e6i 1.46796i 0.679170 + 0.733981i \(0.262340\pi\)
−0.679170 + 0.733981i \(0.737660\pi\)
\(968\) 352502. 0.376193
\(969\) −203784. 202566.i −0.217031 0.215734i
\(970\) 429787. 0.456783
\(971\) −371550. −0.394075 −0.197038 0.980396i \(-0.563132\pi\)
−0.197038 + 0.980396i \(0.563132\pi\)
\(972\) 11771.6 12129.9i 0.0124595 0.0128388i
\(973\) 685388. 0.723954
\(974\) −1.09114e6 −1.15018
\(975\) −821641. + 826582.i −0.864316 + 0.869514i
\(976\) 1.13434e6i 1.19081i
\(977\) 1.14608e6i 1.20068i −0.799746 0.600338i \(-0.795033\pi\)
0.799746 0.600338i \(-0.204967\pi\)
\(978\) −71958.4 71528.3i −0.0752322 0.0747825i
\(979\) 790006. 0.824262
\(980\) 4405.20i 0.00458684i
\(981\) 6687.40 + 1.11530e6i 0.00694895 + 1.15892i
\(982\) 1.45275e6 1.50650
\(983\) 1.30592e6 1.35148 0.675739 0.737141i \(-0.263825\pi\)
0.675739 + 0.737141i \(0.263825\pi\)
\(984\) 727106. 731478.i 0.750944 0.755460i
\(985\) 12981.8 0.0133802
\(986\) 121955. 117646.i 0.125442 0.121011i
\(987\) 198444. 199637.i 0.203706 0.204931i
\(988\) 40919.5i 0.0419196i
\(989\) −822815. −0.841220
\(990\) −340663. + 2042.63i −0.347580 + 0.00208410i
\(991\) 890092. 0.906333 0.453166 0.891426i \(-0.350294\pi\)
0.453166 + 0.891426i \(0.350294\pi\)
\(992\) 49397.7i 0.0501976i
\(993\) −325826. 323879.i −0.330436 0.328461i
\(994\) 331997.i 0.336017i
\(995\) 155637.i 0.157205i
\(996\) 3047.31 + 3029.09i 0.00307184 + 0.00305347i
\(997\) 1.17021e6i 1.17726i 0.808401 + 0.588632i \(0.200333\pi\)
−0.808401 + 0.588632i \(0.799667\pi\)
\(998\) −1.11272e6 −1.11719
\(999\) 281198. 286302.i 0.281761 0.286876i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 87.5.d.c.86.9 32
3.2 odd 2 inner 87.5.d.c.86.23 yes 32
29.28 even 2 inner 87.5.d.c.86.24 yes 32
87.86 odd 2 inner 87.5.d.c.86.10 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
87.5.d.c.86.9 32 1.1 even 1 trivial
87.5.d.c.86.10 yes 32 87.86 odd 2 inner
87.5.d.c.86.23 yes 32 3.2 odd 2 inner
87.5.d.c.86.24 yes 32 29.28 even 2 inner