Properties

Label 87.5.d.c.86.8
Level $87$
Weight $5$
Character 87.86
Analytic conductor $8.993$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [87,5,Mod(86,87)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(87, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 5, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("87.86"); S:= CuspForms(chi, 5); N := Newforms(S);
 
Level: \( N \) \(=\) \( 87 = 3 \cdot 29 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 87.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.99318678829\)
Analytic rank: \(0\)
Dimension: \(32\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 86.8
Character \(\chi\) \(=\) 87.86
Dual form 87.5.d.c.86.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.29093 q^{2} +(-7.78044 + 4.52380i) q^{3} +2.41206 q^{4} -28.6540i q^{5} +(33.3853 - 19.4113i) q^{6} +23.9440 q^{7} +58.3049 q^{8} +(40.0705 - 70.3943i) q^{9} +122.952i q^{10} -59.0487 q^{11} +(-18.7669 + 10.9117i) q^{12} -28.6931 q^{13} -102.742 q^{14} +(129.625 + 222.941i) q^{15} -288.775 q^{16} -333.946 q^{17} +(-171.940 + 302.057i) q^{18} -184.247i q^{19} -69.1152i q^{20} +(-186.295 + 108.318i) q^{21} +253.374 q^{22} +632.903i q^{23} +(-453.638 + 263.759i) q^{24} -196.051 q^{25} +123.120 q^{26} +(6.68323 + 728.969i) q^{27} +57.7544 q^{28} +(86.2163 + 836.569i) q^{29} +(-556.211 - 956.623i) q^{30} +461.077i q^{31} +306.235 q^{32} +(459.425 - 267.124i) q^{33} +1432.94 q^{34} -686.091i q^{35} +(96.6526 - 169.795i) q^{36} -351.914i q^{37} +790.590i q^{38} +(223.245 - 129.802i) q^{39} -1670.67i q^{40} -2020.92 q^{41} +(799.378 - 464.784i) q^{42} -26.2743i q^{43} -142.429 q^{44} +(-2017.08 - 1148.18i) q^{45} -2715.74i q^{46} +2574.36 q^{47} +(2246.80 - 1306.36i) q^{48} -1827.68 q^{49} +841.243 q^{50} +(2598.25 - 1510.71i) q^{51} -69.2095 q^{52} +4053.17i q^{53} +(-28.6773 - 3127.95i) q^{54} +1691.98i q^{55} +1396.05 q^{56} +(833.496 + 1433.52i) q^{57} +(-369.948 - 3589.66i) q^{58} +986.035i q^{59} +(312.663 + 537.747i) q^{60} +1531.87i q^{61} -1978.45i q^{62} +(959.448 - 1685.52i) q^{63} +3306.37 q^{64} +822.172i q^{65} +(-1971.36 + 1146.21i) q^{66} -5183.12 q^{67} -805.499 q^{68} +(-2863.12 - 4924.26i) q^{69} +2943.97i q^{70} +5463.33i q^{71} +(2336.31 - 4104.33i) q^{72} -2759.31i q^{73} +1510.04i q^{74} +(1525.37 - 886.897i) q^{75} -444.415i q^{76} -1413.86 q^{77} +(-957.928 + 556.970i) q^{78} +11511.4i q^{79} +8274.56i q^{80} +(-3349.71 - 5641.47i) q^{81} +8671.61 q^{82} -3854.87i q^{83} +(-449.355 + 261.269i) q^{84} +9568.90i q^{85} +112.741i q^{86} +(-4455.27 - 6118.85i) q^{87} -3442.82 q^{88} -12181.9 q^{89} +(8655.13 + 4926.76i) q^{90} -687.028 q^{91} +1526.60i q^{92} +(-2085.82 - 3587.38i) q^{93} -11046.4 q^{94} -5279.41 q^{95} +(-2382.64 + 1385.34i) q^{96} +15846.2i q^{97} +7842.46 q^{98} +(-2366.11 + 4156.69i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 188 q^{4} - 36 q^{6} - 84 q^{7} - 452 q^{9} - 224 q^{13} - 52 q^{16} - 4216 q^{22} - 832 q^{24} - 7684 q^{25} - 396 q^{28} + 3384 q^{30} - 3308 q^{33} + 9124 q^{34} - 3680 q^{36} + 19764 q^{42} + 44 q^{45}+ \cdots + 13884 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/87\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(59\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.29093 −1.07273 −0.536366 0.843986i \(-0.680203\pi\)
−0.536366 + 0.843986i \(0.680203\pi\)
\(3\) −7.78044 + 4.52380i −0.864493 + 0.502644i
\(4\) 2.41206 0.150754
\(5\) 28.6540i 1.14616i −0.819499 0.573080i \(-0.805748\pi\)
0.819499 0.573080i \(-0.194252\pi\)
\(6\) 33.3853 19.4113i 0.927370 0.539202i
\(7\) 23.9440 0.488653 0.244327 0.969693i \(-0.421433\pi\)
0.244327 + 0.969693i \(0.421433\pi\)
\(8\) 58.3049 0.911013
\(9\) 40.0705 70.3943i 0.494698 0.869065i
\(10\) 122.952i 1.22952i
\(11\) −59.0487 −0.488005 −0.244003 0.969775i \(-0.578461\pi\)
−0.244003 + 0.969775i \(0.578461\pi\)
\(12\) −18.7669 + 10.9117i −0.130326 + 0.0757756i
\(13\) −28.6931 −0.169782 −0.0848908 0.996390i \(-0.527054\pi\)
−0.0848908 + 0.996390i \(0.527054\pi\)
\(14\) −102.742 −0.524194
\(15\) 129.625 + 222.941i 0.576111 + 0.990848i
\(16\) −288.775 −1.12803
\(17\) −333.946 −1.15552 −0.577762 0.816205i \(-0.696074\pi\)
−0.577762 + 0.816205i \(0.696074\pi\)
\(18\) −171.940 + 302.057i −0.530678 + 0.932274i
\(19\) 184.247i 0.510379i −0.966891 0.255190i \(-0.917862\pi\)
0.966891 0.255190i \(-0.0821379\pi\)
\(20\) 69.1152i 0.172788i
\(21\) −186.295 + 108.318i −0.422437 + 0.245619i
\(22\) 253.374 0.523499
\(23\) 632.903i 1.19641i 0.801342 + 0.598207i \(0.204120\pi\)
−0.801342 + 0.598207i \(0.795880\pi\)
\(24\) −453.638 + 263.759i −0.787565 + 0.457916i
\(25\) −196.051 −0.313682
\(26\) 123.120 0.182130
\(27\) 6.68323 + 728.969i 0.00916767 + 0.999958i
\(28\) 57.7544 0.0736664
\(29\) 86.2163 + 836.569i 0.102516 + 0.994731i
\(30\) −556.211 956.623i −0.618012 1.06291i
\(31\) 461.077i 0.479789i 0.970799 + 0.239894i \(0.0771128\pi\)
−0.970799 + 0.239894i \(0.922887\pi\)
\(32\) 306.235 0.299057
\(33\) 459.425 267.124i 0.421877 0.245293i
\(34\) 1432.94 1.23957
\(35\) 686.091i 0.560075i
\(36\) 96.6526 169.795i 0.0745776 0.131015i
\(37\) 351.914i 0.257059i −0.991706 0.128529i \(-0.958974\pi\)
0.991706 0.128529i \(-0.0410257\pi\)
\(38\) 790.590i 0.547500i
\(39\) 223.245 129.802i 0.146775 0.0853398i
\(40\) 1670.67i 1.04417i
\(41\) −2020.92 −1.20221 −0.601106 0.799169i \(-0.705273\pi\)
−0.601106 + 0.799169i \(0.705273\pi\)
\(42\) 799.378 464.784i 0.453162 0.263483i
\(43\) 26.2743i 0.0142100i −0.999975 0.00710501i \(-0.997738\pi\)
0.999975 0.00710501i \(-0.00226161\pi\)
\(44\) −142.429 −0.0735687
\(45\) −2017.08 1148.18i −0.996088 0.567003i
\(46\) 2715.74i 1.28343i
\(47\) 2574.36 1.16540 0.582699 0.812688i \(-0.301997\pi\)
0.582699 + 0.812688i \(0.301997\pi\)
\(48\) 2246.80 1306.36i 0.975172 0.566996i
\(49\) −1827.68 −0.761218
\(50\) 841.243 0.336497
\(51\) 2598.25 1510.71i 0.998943 0.580817i
\(52\) −69.2095 −0.0255952
\(53\) 4053.17i 1.44292i 0.692454 + 0.721462i \(0.256529\pi\)
−0.692454 + 0.721462i \(0.743471\pi\)
\(54\) −28.6773 3127.95i −0.00983445 1.07269i
\(55\) 1691.98i 0.559332i
\(56\) 1396.05 0.445170
\(57\) 833.496 + 1433.52i 0.256539 + 0.441219i
\(58\) −369.948 3589.66i −0.109973 1.06708i
\(59\) 986.035i 0.283262i 0.989920 + 0.141631i \(0.0452347\pi\)
−0.989920 + 0.141631i \(0.954765\pi\)
\(60\) 312.663 + 537.747i 0.0868509 + 0.149374i
\(61\) 1531.87i 0.411683i 0.978585 + 0.205841i \(0.0659931\pi\)
−0.978585 + 0.205841i \(0.934007\pi\)
\(62\) 1978.45i 0.514685i
\(63\) 959.448 1685.52i 0.241736 0.424671i
\(64\) 3306.37 0.807219
\(65\) 822.172i 0.194597i
\(66\) −1971.36 + 1146.21i −0.452561 + 0.263134i
\(67\) −5183.12 −1.15463 −0.577313 0.816523i \(-0.695899\pi\)
−0.577313 + 0.816523i \(0.695899\pi\)
\(68\) −805.499 −0.174200
\(69\) −2863.12 4924.26i −0.601370 1.03429i
\(70\) 2943.97i 0.600810i
\(71\) 5463.33i 1.08378i 0.840450 + 0.541889i \(0.182291\pi\)
−0.840450 + 0.541889i \(0.817709\pi\)
\(72\) 2336.31 4104.33i 0.450676 0.791730i
\(73\) 2759.31i 0.517792i −0.965905 0.258896i \(-0.916641\pi\)
0.965905 0.258896i \(-0.0833586\pi\)
\(74\) 1510.04i 0.275755i
\(75\) 1525.37 886.897i 0.271176 0.157671i
\(76\) 444.415i 0.0769417i
\(77\) −1413.86 −0.238465
\(78\) −957.928 + 556.970i −0.157450 + 0.0915467i
\(79\) 11511.4i 1.84448i 0.386612 + 0.922242i \(0.373645\pi\)
−0.386612 + 0.922242i \(0.626355\pi\)
\(80\) 8274.56i 1.29290i
\(81\) −3349.71 5641.47i −0.510548 0.859849i
\(82\) 8671.61 1.28965
\(83\) 3854.87i 0.559569i −0.960063 0.279784i \(-0.909737\pi\)
0.960063 0.279784i \(-0.0902630\pi\)
\(84\) −449.355 + 261.269i −0.0636841 + 0.0370280i
\(85\) 9568.90i 1.32441i
\(86\) 112.741i 0.0152435i
\(87\) −4455.27 6118.85i −0.588621 0.808409i
\(88\) −3442.82 −0.444580
\(89\) −12181.9 −1.53792 −0.768961 0.639295i \(-0.779226\pi\)
−0.768961 + 0.639295i \(0.779226\pi\)
\(90\) 8655.13 + 4926.76i 1.06853 + 0.608242i
\(91\) −687.028 −0.0829643
\(92\) 1526.60i 0.180364i
\(93\) −2085.82 3587.38i −0.241163 0.414774i
\(94\) −11046.4 −1.25016
\(95\) −5279.41 −0.584976
\(96\) −2382.64 + 1385.34i −0.258533 + 0.150319i
\(97\) 15846.2i 1.68415i 0.539358 + 0.842076i \(0.318667\pi\)
−0.539358 + 0.842076i \(0.681333\pi\)
\(98\) 7842.46 0.816583
\(99\) −2366.11 + 4156.69i −0.241415 + 0.424109i
\(100\) −472.888 −0.0472888
\(101\) 1249.36 0.122474 0.0612370 0.998123i \(-0.480495\pi\)
0.0612370 + 0.998123i \(0.480495\pi\)
\(102\) −11148.9 + 6482.33i −1.07160 + 0.623061i
\(103\) 13962.3 1.31608 0.658039 0.752984i \(-0.271386\pi\)
0.658039 + 0.752984i \(0.271386\pi\)
\(104\) −1672.95 −0.154673
\(105\) 3103.74 + 5338.09i 0.281518 + 0.484181i
\(106\) 17391.9i 1.54787i
\(107\) 15955.1i 1.39358i −0.717275 0.696790i \(-0.754611\pi\)
0.717275 0.696790i \(-0.245389\pi\)
\(108\) 16.1204 + 1758.32i 0.00138206 + 0.150748i
\(109\) 544.299 0.0458126 0.0229063 0.999738i \(-0.492708\pi\)
0.0229063 + 0.999738i \(0.492708\pi\)
\(110\) 7260.16i 0.600014i
\(111\) 1591.99 + 2738.04i 0.129209 + 0.222226i
\(112\) −6914.43 −0.551214
\(113\) 14094.8 1.10383 0.551914 0.833901i \(-0.313898\pi\)
0.551914 + 0.833901i \(0.313898\pi\)
\(114\) −3576.47 6151.14i −0.275198 0.473310i
\(115\) 18135.2 1.37128
\(116\) 207.959 + 2017.86i 0.0154548 + 0.149960i
\(117\) −1149.75 + 2019.83i −0.0839906 + 0.147551i
\(118\) 4231.01i 0.303864i
\(119\) −7996.01 −0.564650
\(120\) 7557.76 + 12998.5i 0.524844 + 0.902676i
\(121\) −11154.3 −0.761851
\(122\) 6573.15i 0.441625i
\(123\) 15723.6 9142.22i 1.03930 0.604285i
\(124\) 1112.15i 0.0723300i
\(125\) 12291.1i 0.786630i
\(126\) −4116.92 + 7232.45i −0.259317 + 0.455559i
\(127\) 8801.98i 0.545724i −0.962053 0.272862i \(-0.912030\pi\)
0.962053 0.272862i \(-0.0879702\pi\)
\(128\) −19087.1 −1.16499
\(129\) 118.860 + 204.426i 0.00714258 + 0.0122845i
\(130\) 3527.88i 0.208750i
\(131\) 10443.3 0.608549 0.304275 0.952584i \(-0.401586\pi\)
0.304275 + 0.952584i \(0.401586\pi\)
\(132\) 1108.16 644.320i 0.0635997 0.0369789i
\(133\) 4411.61i 0.249398i
\(134\) 22240.4 1.23860
\(135\) 20887.9 191.501i 1.14611 0.0105076i
\(136\) −19470.7 −1.05270
\(137\) −3122.40 −0.166359 −0.0831797 0.996535i \(-0.526508\pi\)
−0.0831797 + 0.996535i \(0.526508\pi\)
\(138\) 12285.5 + 21129.7i 0.645109 + 1.10952i
\(139\) −9302.10 −0.481450 −0.240725 0.970593i \(-0.577385\pi\)
−0.240725 + 0.970593i \(0.577385\pi\)
\(140\) 1654.90i 0.0844334i
\(141\) −20029.7 + 11645.9i −1.00748 + 0.585780i
\(142\) 23442.7i 1.16260i
\(143\) 1694.29 0.0828544
\(144\) −11571.4 + 20328.1i −0.558032 + 0.980329i
\(145\) 23971.0 2470.44i 1.14012 0.117500i
\(146\) 11840.0i 0.555452i
\(147\) 14220.2 8268.08i 0.658068 0.382622i
\(148\) 848.838i 0.0387526i
\(149\) 38141.2i 1.71799i 0.511980 + 0.858997i \(0.328912\pi\)
−0.511980 + 0.858997i \(0.671088\pi\)
\(150\) −6545.24 + 3805.61i −0.290900 + 0.169138i
\(151\) −15274.1 −0.669889 −0.334945 0.942238i \(-0.608718\pi\)
−0.334945 + 0.942238i \(0.608718\pi\)
\(152\) 10742.5i 0.464962i
\(153\) −13381.4 + 23507.9i −0.571635 + 1.00423i
\(154\) 6066.78 0.255809
\(155\) 13211.7 0.549915
\(156\) 538.481 313.090i 0.0221269 0.0128653i
\(157\) 22784.1i 0.924340i −0.886791 0.462170i \(-0.847071\pi\)
0.886791 0.462170i \(-0.152929\pi\)
\(158\) 49394.7i 1.97864i
\(159\) −18335.7 31535.5i −0.725277 1.24740i
\(160\) 8774.85i 0.342768i
\(161\) 15154.2i 0.584631i
\(162\) 14373.4 + 24207.1i 0.547682 + 0.922388i
\(163\) 41262.0i 1.55301i −0.630110 0.776506i \(-0.716990\pi\)
0.630110 0.776506i \(-0.283010\pi\)
\(164\) −4874.58 −0.181238
\(165\) −7654.18 13164.4i −0.281145 0.483539i
\(166\) 16541.0i 0.600267i
\(167\) 30.0039i 0.00107583i −1.00000 0.000537916i \(-0.999829\pi\)
1.00000 0.000537916i \(-0.000171224\pi\)
\(168\) −10861.9 + 6315.46i −0.384846 + 0.223762i
\(169\) −27737.7 −0.971174
\(170\) 41059.4i 1.42074i
\(171\) −12969.9 7382.87i −0.443553 0.252483i
\(172\) 63.3753i 0.00214221i
\(173\) 3628.84i 0.121248i 0.998161 + 0.0606241i \(0.0193091\pi\)
−0.998161 + 0.0606241i \(0.980691\pi\)
\(174\) 19117.2 + 26255.5i 0.631432 + 0.867207i
\(175\) −4694.26 −0.153282
\(176\) 17051.8 0.550483
\(177\) −4460.62 7671.79i −0.142380 0.244878i
\(178\) 52271.6 1.64978
\(179\) 10638.6i 0.332032i 0.986123 + 0.166016i \(0.0530904\pi\)
−0.986123 + 0.166016i \(0.946910\pi\)
\(180\) −4865.32 2769.48i −0.150164 0.0854778i
\(181\) 40651.0 1.24084 0.620418 0.784271i \(-0.286963\pi\)
0.620418 + 0.784271i \(0.286963\pi\)
\(182\) 2947.99 0.0889985
\(183\) −6929.88 11918.6i −0.206930 0.355897i
\(184\) 36901.3i 1.08995i
\(185\) −10083.7 −0.294631
\(186\) 8950.10 + 15393.2i 0.258703 + 0.444942i
\(187\) 19719.1 0.563902
\(188\) 6209.53 0.175688
\(189\) 160.023 + 17454.4i 0.00447981 + 0.488633i
\(190\) 22653.6 0.627523
\(191\) 3937.08 0.107921 0.0539606 0.998543i \(-0.482815\pi\)
0.0539606 + 0.998543i \(0.482815\pi\)
\(192\) −25725.0 + 14957.3i −0.697835 + 0.405744i
\(193\) 51041.1i 1.37027i 0.728418 + 0.685133i \(0.240256\pi\)
−0.728418 + 0.685133i \(0.759744\pi\)
\(194\) 67994.9i 1.80664i
\(195\) −3719.34 6396.86i −0.0978130 0.168228i
\(196\) −4408.49 −0.114757
\(197\) 56908.7i 1.46638i −0.680024 0.733190i \(-0.738031\pi\)
0.680024 0.733190i \(-0.261969\pi\)
\(198\) 10152.8 17836.0i 0.258974 0.454955i
\(199\) −54939.8 −1.38733 −0.693666 0.720297i \(-0.744006\pi\)
−0.693666 + 0.720297i \(0.744006\pi\)
\(200\) −11430.8 −0.285769
\(201\) 40326.9 23447.4i 0.998166 0.580366i
\(202\) −5360.91 −0.131382
\(203\) 2064.36 + 20030.8i 0.0500950 + 0.486079i
\(204\) 6267.14 3643.92i 0.150594 0.0875605i
\(205\) 57907.4i 1.37793i
\(206\) −59911.1 −1.41180
\(207\) 44552.7 + 25360.7i 1.03976 + 0.591863i
\(208\) 8285.85 0.191518
\(209\) 10879.5i 0.249068i
\(210\) −13317.9 22905.4i −0.301994 0.519396i
\(211\) 9604.93i 0.215739i −0.994165 0.107870i \(-0.965597\pi\)
0.994165 0.107870i \(-0.0344029\pi\)
\(212\) 9776.50i 0.217526i
\(213\) −24715.0 42507.1i −0.544755 0.936919i
\(214\) 68462.2i 1.49494i
\(215\) −752.864 −0.0162869
\(216\) 389.665 + 42502.5i 0.00835187 + 0.910975i
\(217\) 11040.0i 0.234450i
\(218\) −2335.55 −0.0491446
\(219\) 12482.6 + 21468.7i 0.260265 + 0.447627i
\(220\) 4081.16i 0.0843215i
\(221\) 9581.96 0.196187
\(222\) −6831.10 11748.7i −0.138607 0.238389i
\(223\) −83733.8 −1.68380 −0.841901 0.539632i \(-0.818563\pi\)
−0.841901 + 0.539632i \(0.818563\pi\)
\(224\) 7332.49 0.146135
\(225\) −7855.88 + 13800.9i −0.155178 + 0.272610i
\(226\) −60479.6 −1.18411
\(227\) 74816.2i 1.45193i 0.687734 + 0.725963i \(0.258605\pi\)
−0.687734 + 0.725963i \(0.741395\pi\)
\(228\) 2010.44 + 3457.74i 0.0386743 + 0.0665156i
\(229\) 11165.8i 0.212921i 0.994317 + 0.106460i \(0.0339517\pi\)
−0.994317 + 0.106460i \(0.966048\pi\)
\(230\) −77816.8 −1.47102
\(231\) 11000.5 6396.02i 0.206152 0.119863i
\(232\) 5026.83 + 48776.0i 0.0933939 + 0.906214i
\(233\) 59855.5i 1.10253i 0.834329 + 0.551267i \(0.185856\pi\)
−0.834329 + 0.551267i \(0.814144\pi\)
\(234\) 4933.48 8666.94i 0.0900994 0.158283i
\(235\) 73765.8i 1.33573i
\(236\) 2378.38i 0.0427029i
\(237\) −52075.4 89564.0i −0.927120 1.59455i
\(238\) 34310.3 0.605718
\(239\) 48135.2i 0.842688i 0.906901 + 0.421344i \(0.138441\pi\)
−0.906901 + 0.421344i \(0.861559\pi\)
\(240\) −37432.4 64379.7i −0.649868 1.11770i
\(241\) −52874.3 −0.910354 −0.455177 0.890401i \(-0.650424\pi\)
−0.455177 + 0.890401i \(0.650424\pi\)
\(242\) 47862.1 0.817262
\(243\) 51583.1 + 28739.7i 0.873564 + 0.486710i
\(244\) 3694.97i 0.0620628i
\(245\) 52370.5i 0.872478i
\(246\) −67469.0 + 39228.6i −1.11489 + 0.648236i
\(247\) 5286.61i 0.0866530i
\(248\) 26883.0i 0.437094i
\(249\) 17438.6 + 29992.6i 0.281264 + 0.483744i
\(250\) 52740.2i 0.843843i
\(251\) −11928.2 −0.189333 −0.0946665 0.995509i \(-0.530178\pi\)
−0.0946665 + 0.995509i \(0.530178\pi\)
\(252\) 2314.25 4065.58i 0.0364426 0.0640209i
\(253\) 37372.1i 0.583856i
\(254\) 37768.7i 0.585415i
\(255\) −43287.8 74450.2i −0.665709 1.14495i
\(256\) 28999.7 0.442500
\(257\) 110094.i 1.66686i −0.552625 0.833430i \(-0.686374\pi\)
0.552625 0.833430i \(-0.313626\pi\)
\(258\) −510.018 877.176i −0.00766207 0.0131779i
\(259\) 8426.22i 0.125613i
\(260\) 1983.13i 0.0293362i
\(261\) 62344.4 + 27452.6i 0.915201 + 0.402998i
\(262\) −44811.5 −0.652810
\(263\) 98146.3 1.41893 0.709467 0.704738i \(-0.248936\pi\)
0.709467 + 0.704738i \(0.248936\pi\)
\(264\) 26786.7 15574.6i 0.384336 0.223465i
\(265\) 116140. 1.65382
\(266\) 18929.9i 0.267538i
\(267\) 94780.4 55108.4i 1.32952 0.773028i
\(268\) −12502.0 −0.174064
\(269\) −32067.8 −0.443163 −0.221582 0.975142i \(-0.571122\pi\)
−0.221582 + 0.975142i \(0.571122\pi\)
\(270\) −89628.4 + 821.718i −1.22947 + 0.0112719i
\(271\) 130168.i 1.77241i −0.463289 0.886207i \(-0.653331\pi\)
0.463289 0.886207i \(-0.346669\pi\)
\(272\) 96435.3 1.30346
\(273\) 5345.38 3107.97i 0.0717221 0.0417015i
\(274\) 13398.0 0.178459
\(275\) 11576.6 0.153079
\(276\) −6906.03 11877.6i −0.0906589 0.155923i
\(277\) 96915.3 1.26309 0.631543 0.775341i \(-0.282422\pi\)
0.631543 + 0.775341i \(0.282422\pi\)
\(278\) 39914.6 0.516467
\(279\) 32457.2 + 18475.6i 0.416968 + 0.237350i
\(280\) 40002.5i 0.510235i
\(281\) 10583.1i 0.134030i −0.997752 0.0670149i \(-0.978653\pi\)
0.997752 0.0670149i \(-0.0213475\pi\)
\(282\) 85945.9 49971.7i 1.08075 0.628385i
\(283\) 64072.7 0.800018 0.400009 0.916511i \(-0.369007\pi\)
0.400009 + 0.916511i \(0.369007\pi\)
\(284\) 13177.9i 0.163384i
\(285\) 41076.1 23883.0i 0.505708 0.294035i
\(286\) −7270.07 −0.0888805
\(287\) −48388.9 −0.587465
\(288\) 12271.0 21557.2i 0.147943 0.259900i
\(289\) 27999.2 0.335235
\(290\) −102858. + 10600.5i −1.22304 + 0.126046i
\(291\) −71685.0 123290.i −0.846530 1.45594i
\(292\) 6655.63i 0.0780591i
\(293\) −146649. −1.70822 −0.854109 0.520094i \(-0.825897\pi\)
−0.854109 + 0.520094i \(0.825897\pi\)
\(294\) −61017.8 + 35477.7i −0.705931 + 0.410451i
\(295\) 28253.8 0.324664
\(296\) 20518.3i 0.234184i
\(297\) −394.636 43044.7i −0.00447387 0.487985i
\(298\) 163661.i 1.84295i
\(299\) 18159.9i 0.203129i
\(300\) 3679.28 2139.25i 0.0408809 0.0237695i
\(301\) 629.112i 0.00694377i
\(302\) 65540.2 0.718611
\(303\) −9720.56 + 5651.84i −0.105878 + 0.0615609i
\(304\) 53205.9i 0.575722i
\(305\) 43894.2 0.471854
\(306\) 57418.6 100871.i 0.613211 1.07726i
\(307\) 27609.9i 0.292946i −0.989215 0.146473i \(-0.953208\pi\)
0.989215 0.146473i \(-0.0467922\pi\)
\(308\) −3410.32 −0.0359496
\(309\) −108633. + 63162.5i −1.13774 + 0.661519i
\(310\) −56690.5 −0.589911
\(311\) 129451. 1.33840 0.669200 0.743082i \(-0.266637\pi\)
0.669200 + 0.743082i \(0.266637\pi\)
\(312\) 13016.3 7568.07i 0.133714 0.0777457i
\(313\) −43255.8 −0.441525 −0.220763 0.975328i \(-0.570855\pi\)
−0.220763 + 0.975328i \(0.570855\pi\)
\(314\) 97764.8i 0.991569i
\(315\) −48296.9 27492.0i −0.486741 0.277068i
\(316\) 27766.3i 0.278063i
\(317\) −66527.1 −0.662034 −0.331017 0.943625i \(-0.607392\pi\)
−0.331017 + 0.943625i \(0.607392\pi\)
\(318\) 78677.3 + 135316.i 0.778028 + 1.33812i
\(319\) −5090.96 49398.3i −0.0500286 0.485434i
\(320\) 94740.7i 0.925202i
\(321\) 72177.6 + 124138.i 0.700475 + 1.20474i
\(322\) 65025.7i 0.627153i
\(323\) 61528.6i 0.589755i
\(324\) −8079.70 13607.6i −0.0769672 0.129626i
\(325\) 5625.32 0.0532575
\(326\) 177052.i 1.66597i
\(327\) −4234.89 + 2462.30i −0.0396047 + 0.0230274i
\(328\) −117829. −1.09523
\(329\) 61640.6 0.569475
\(330\) 32843.5 + 56487.3i 0.301593 + 0.518708i
\(331\) 77219.6i 0.704809i −0.935848 0.352404i \(-0.885364\pi\)
0.935848 0.352404i \(-0.114636\pi\)
\(332\) 9298.18i 0.0843572i
\(333\) −24772.7 14101.4i −0.223401 0.127166i
\(334\) 128.745i 0.00115408i
\(335\) 148517.i 1.32339i
\(336\) 53797.3 31279.5i 0.476521 0.277065i
\(337\) 138891.i 1.22296i 0.791259 + 0.611481i \(0.209426\pi\)
−0.791259 + 0.611481i \(0.790574\pi\)
\(338\) 119020. 1.04181
\(339\) −109664. + 63761.9i −0.954251 + 0.554832i
\(340\) 23080.8i 0.199661i
\(341\) 27226.0i 0.234140i
\(342\) 55653.0 + 31679.4i 0.475813 + 0.270847i
\(343\) −101252. −0.860625
\(344\) 1531.92i 0.0129455i
\(345\) −141100. + 82039.9i −1.18546 + 0.689266i
\(346\) 15571.1i 0.130067i
\(347\) 128832.i 1.06995i −0.844867 0.534977i \(-0.820320\pi\)
0.844867 0.534977i \(-0.179680\pi\)
\(348\) −10746.4 14759.0i −0.0887369 0.121871i
\(349\) −210819. −1.73085 −0.865425 0.501038i \(-0.832952\pi\)
−0.865425 + 0.501038i \(0.832952\pi\)
\(350\) 20142.7 0.164430
\(351\) −191.763 20916.4i −0.00155650 0.169775i
\(352\) −18082.7 −0.145942
\(353\) 63648.9i 0.510789i 0.966837 + 0.255395i \(0.0822053\pi\)
−0.966837 + 0.255395i \(0.917795\pi\)
\(354\) 19140.2 + 32919.1i 0.152736 + 0.262689i
\(355\) 156546. 1.24218
\(356\) −29383.5 −0.231848
\(357\) 62212.5 36172.3i 0.488136 0.283818i
\(358\) 45649.7i 0.356182i
\(359\) −159532. −1.23783 −0.618913 0.785460i \(-0.712426\pi\)
−0.618913 + 0.785460i \(0.712426\pi\)
\(360\) −117605. 66944.5i −0.907449 0.516547i
\(361\) 96374.1 0.739513
\(362\) −174431. −1.33108
\(363\) 86785.0 50459.6i 0.658615 0.382940i
\(364\) −1657.15 −0.0125072
\(365\) −79065.3 −0.593472
\(366\) 29735.6 + 51142.0i 0.221980 + 0.381782i
\(367\) 197925.i 1.46950i 0.678339 + 0.734749i \(0.262700\pi\)
−0.678339 + 0.734749i \(0.737300\pi\)
\(368\) 182766.i 1.34959i
\(369\) −80979.2 + 142261.i −0.594731 + 1.04480i
\(370\) 43268.6 0.316060
\(371\) 97049.2i 0.705089i
\(372\) −5031.13 8652.99i −0.0363563 0.0625288i
\(373\) −110399. −0.793498 −0.396749 0.917927i \(-0.629862\pi\)
−0.396749 + 0.917927i \(0.629862\pi\)
\(374\) −84613.2 −0.604916
\(375\) 55602.4 + 95630.1i 0.395395 + 0.680036i
\(376\) 150098. 1.06169
\(377\) −2473.81 24003.8i −0.0174054 0.168887i
\(378\) −686.649 74895.8i −0.00480564 0.524172i
\(379\) 140164.i 0.975792i 0.872902 + 0.487896i \(0.162236\pi\)
−0.872902 + 0.487896i \(0.837764\pi\)
\(380\) −12734.3 −0.0881874
\(381\) 39818.4 + 68483.3i 0.274305 + 0.471775i
\(382\) −16893.7 −0.115771
\(383\) 163063.i 1.11163i 0.831307 + 0.555813i \(0.187593\pi\)
−0.831307 + 0.555813i \(0.812407\pi\)
\(384\) 148506. 86346.4i 1.00712 0.585574i
\(385\) 40512.8i 0.273319i
\(386\) 219014.i 1.46993i
\(387\) −1849.56 1052.83i −0.0123494 0.00702966i
\(388\) 38222.0i 0.253893i
\(389\) −190261. −1.25733 −0.628666 0.777675i \(-0.716399\pi\)
−0.628666 + 0.777675i \(0.716399\pi\)
\(390\) 15959.4 + 27448.5i 0.104927 + 0.180463i
\(391\) 211356.i 1.38248i
\(392\) −106563. −0.693480
\(393\) −81253.6 + 47243.4i −0.526087 + 0.305884i
\(394\) 244191.i 1.57303i
\(395\) 329848. 2.11407
\(396\) −5707.20 + 10026.2i −0.0363943 + 0.0639360i
\(397\) 101185. 0.642001 0.321000 0.947079i \(-0.395981\pi\)
0.321000 + 0.947079i \(0.395981\pi\)
\(398\) 235743. 1.48824
\(399\) 19957.2 + 34324.3i 0.125359 + 0.215603i
\(400\) 56614.8 0.353842
\(401\) 266487.i 1.65725i −0.559806 0.828624i \(-0.689124\pi\)
0.559806 0.828624i \(-0.310876\pi\)
\(402\) −173040. + 100611.i −1.07076 + 0.622577i
\(403\) 13229.7i 0.0814594i
\(404\) 3013.53 0.0184634
\(405\) −161651. + 95982.5i −0.985524 + 0.585170i
\(406\) −8858.04 85950.8i −0.0537385 0.521432i
\(407\) 20780.0i 0.125446i
\(408\) 151491. 88081.5i 0.910050 0.529132i
\(409\) 190411.i 1.13827i 0.822243 + 0.569136i \(0.192722\pi\)
−0.822243 + 0.569136i \(0.807278\pi\)
\(410\) 248476.i 1.47815i
\(411\) 24293.6 14125.1i 0.143817 0.0836195i
\(412\) 33677.9 0.198404
\(413\) 23609.6i 0.138417i
\(414\) −191173. 108821.i −1.11539 0.634910i
\(415\) −110457. −0.641355
\(416\) −8786.82 −0.0507744
\(417\) 72374.4 42080.8i 0.416210 0.241998i
\(418\) 46683.3i 0.267183i
\(419\) 109918.i 0.626096i −0.949737 0.313048i \(-0.898650\pi\)
0.949737 0.313048i \(-0.101350\pi\)
\(420\) 7486.41 + 12875.8i 0.0424400 + 0.0729921i
\(421\) 15136.1i 0.0853984i −0.999088 0.0426992i \(-0.986404\pi\)
0.999088 0.0426992i \(-0.0135957\pi\)
\(422\) 41214.1i 0.231431i
\(423\) 103156. 181220.i 0.576520 1.01281i
\(424\) 236320.i 1.31452i
\(425\) 65470.7 0.362467
\(426\) 106050. + 182395.i 0.584376 + 1.00506i
\(427\) 36679.1i 0.201170i
\(428\) 38484.7i 0.210088i
\(429\) −13182.3 + 7664.62i −0.0716271 + 0.0416463i
\(430\) 3230.49 0.0174715
\(431\) 59722.0i 0.321499i −0.986995 0.160750i \(-0.948609\pi\)
0.986995 0.160750i \(-0.0513911\pi\)
\(432\) −1929.95 210508.i −0.0103414 1.12798i
\(433\) 177385.i 0.946111i −0.881033 0.473056i \(-0.843151\pi\)
0.881033 0.473056i \(-0.156849\pi\)
\(434\) 47372.0i 0.251502i
\(435\) −175330. + 127661.i −0.926566 + 0.674653i
\(436\) 1312.88 0.00690642
\(437\) 116610. 0.610625
\(438\) −53561.8 92120.4i −0.279194 0.480184i
\(439\) 149110. 0.773711 0.386856 0.922140i \(-0.373561\pi\)
0.386856 + 0.922140i \(0.373561\pi\)
\(440\) 98650.7i 0.509559i
\(441\) −73236.3 + 128659.i −0.376573 + 0.661548i
\(442\) −41115.5 −0.210456
\(443\) −170322. −0.867886 −0.433943 0.900940i \(-0.642878\pi\)
−0.433943 + 0.900940i \(0.642878\pi\)
\(444\) 3839.97 + 6604.33i 0.0194788 + 0.0335014i
\(445\) 349060.i 1.76270i
\(446\) 359296. 1.80627
\(447\) −172543. 296755.i −0.863540 1.48520i
\(448\) 79167.7 0.394450
\(449\) −267267. −1.32572 −0.662862 0.748742i \(-0.730658\pi\)
−0.662862 + 0.748742i \(0.730658\pi\)
\(450\) 33709.0 59218.7i 0.166464 0.292438i
\(451\) 119333. 0.586686
\(452\) 33997.5 0.166406
\(453\) 118840. 69097.1i 0.579115 0.336716i
\(454\) 321031.i 1.55753i
\(455\) 19686.1i 0.0950904i
\(456\) 48596.9 + 83581.3i 0.233711 + 0.401957i
\(457\) −212540. −1.01767 −0.508837 0.860863i \(-0.669924\pi\)
−0.508837 + 0.860863i \(0.669924\pi\)
\(458\) 47911.5i 0.228407i
\(459\) −2231.84 243437.i −0.0105935 1.15548i
\(460\) 43743.2 0.206726
\(461\) 90782.6 0.427170 0.213585 0.976924i \(-0.431486\pi\)
0.213585 + 0.976924i \(0.431486\pi\)
\(462\) −47202.2 + 27444.9i −0.221146 + 0.128581i
\(463\) −196899. −0.918504 −0.459252 0.888306i \(-0.651882\pi\)
−0.459252 + 0.888306i \(0.651882\pi\)
\(464\) −24897.1 241580.i −0.115641 1.12208i
\(465\) −102793. + 59767.1i −0.475398 + 0.276411i
\(466\) 256836.i 1.18272i
\(467\) −185037. −0.848447 −0.424223 0.905558i \(-0.639453\pi\)
−0.424223 + 0.905558i \(0.639453\pi\)
\(468\) −2773.26 + 4871.96i −0.0126619 + 0.0222439i
\(469\) −124105. −0.564212
\(470\) 316524.i 1.43288i
\(471\) 103071. + 177270.i 0.464614 + 0.799086i
\(472\) 57490.6i 0.258056i
\(473\) 1551.46i 0.00693456i
\(474\) 223452. + 384313.i 0.994551 + 1.71052i
\(475\) 36121.9i 0.160097i
\(476\) −19286.9 −0.0851232
\(477\) 285320. + 162413.i 1.25399 + 0.713811i
\(478\) 206544.i 0.903978i
\(479\) −180523. −0.786794 −0.393397 0.919369i \(-0.628700\pi\)
−0.393397 + 0.919369i \(0.628700\pi\)
\(480\) 39695.6 + 68272.2i 0.172290 + 0.296320i
\(481\) 10097.5i 0.0436439i
\(482\) 226880. 0.976566
\(483\) −68554.7 117907.i −0.293861 0.505410i
\(484\) −26904.8 −0.114852
\(485\) 454057. 1.93031
\(486\) −221339. 123320.i −0.937100 0.522109i
\(487\) 14658.4 0.0618058 0.0309029 0.999522i \(-0.490162\pi\)
0.0309029 + 0.999522i \(0.490162\pi\)
\(488\) 89315.6i 0.375049i
\(489\) 186661. + 321036.i 0.780613 + 1.34257i
\(490\) 224718.i 0.935935i
\(491\) −187436. −0.777480 −0.388740 0.921348i \(-0.627090\pi\)
−0.388740 + 0.921348i \(0.627090\pi\)
\(492\) 37926.4 22051.6i 0.156679 0.0910983i
\(493\) −28791.6 279369.i −0.118460 1.14944i
\(494\) 22684.5i 0.0929555i
\(495\) 119106. + 67798.5i 0.486096 + 0.276700i
\(496\) 133148.i 0.541215i
\(497\) 130814.i 0.529592i
\(498\) −74828.0 128696.i −0.301721 0.518927i
\(499\) 202059. 0.811478 0.405739 0.913989i \(-0.367014\pi\)
0.405739 + 0.913989i \(0.367014\pi\)
\(500\) 29646.9i 0.118587i
\(501\) 135.732 + 233.444i 0.000540761 + 0.000930051i
\(502\) 51182.9 0.203103
\(503\) 140653. 0.555920 0.277960 0.960593i \(-0.410342\pi\)
0.277960 + 0.960593i \(0.410342\pi\)
\(504\) 55940.5 98274.1i 0.220224 0.386881i
\(505\) 35799.1i 0.140375i
\(506\) 160361.i 0.626321i
\(507\) 215812. 125480.i 0.839574 0.488155i
\(508\) 21230.9i 0.0822700i
\(509\) 144771.i 0.558785i −0.960177 0.279393i \(-0.909867\pi\)
0.960177 0.279393i \(-0.0901331\pi\)
\(510\) 185745. + 319461.i 0.714128 + 1.22822i
\(511\) 66069.0i 0.253020i
\(512\) 180959. 0.690303
\(513\) 134310. 1231.36i 0.510358 0.00467899i
\(514\) 472407.i 1.78809i
\(515\) 400075.i 1.50844i
\(516\) 286.697 + 493.088i 0.00107677 + 0.00185193i
\(517\) −152013. −0.568721
\(518\) 36156.3i 0.134749i
\(519\) −16416.1 28234.0i −0.0609447 0.104818i
\(520\) 47936.6i 0.177280i
\(521\) 162019.i 0.596885i −0.954428 0.298442i \(-0.903533\pi\)
0.954428 0.298442i \(-0.0964671\pi\)
\(522\) −267515. 117797.i −0.981765 0.432309i
\(523\) 422145. 1.54333 0.771665 0.636029i \(-0.219424\pi\)
0.771665 + 0.636029i \(0.219424\pi\)
\(524\) 25189.9 0.0917411
\(525\) 36523.4 21235.9i 0.132511 0.0770462i
\(526\) −421139. −1.52214
\(527\) 153975.i 0.554407i
\(528\) −132670. + 77138.8i −0.475889 + 0.276697i
\(529\) −120725. −0.431405
\(530\) −498347. −1.77411
\(531\) 69411.2 + 39510.9i 0.246173 + 0.140129i
\(532\) 10641.1i 0.0375978i
\(533\) 57986.4 0.204114
\(534\) −406696. + 236466.i −1.42622 + 0.829252i
\(535\) −457177. −1.59727
\(536\) −302201. −1.05188
\(537\) −48127.1 82773.3i −0.166894 0.287040i
\(538\) 137600. 0.475396
\(539\) 107922. 0.371479
\(540\) 50382.9 461.913i 0.172781 0.00158406i
\(541\) 46793.7i 0.159879i 0.996800 + 0.0799397i \(0.0254728\pi\)
−0.996800 + 0.0799397i \(0.974527\pi\)
\(542\) 558541.i 1.90133i
\(543\) −316283. + 183897.i −1.07269 + 0.623699i
\(544\) −102266. −0.345568
\(545\) 15596.3i 0.0525085i
\(546\) −22936.6 + 13336.1i −0.0769386 + 0.0447346i
\(547\) 392202. 1.31080 0.655398 0.755284i \(-0.272501\pi\)
0.655398 + 0.755284i \(0.272501\pi\)
\(548\) −7531.42 −0.0250793
\(549\) 107835. + 61382.9i 0.357779 + 0.203658i
\(550\) −49674.3 −0.164212
\(551\) 154135. 15885.1i 0.507690 0.0523223i
\(552\) −166934. 287108.i −0.547856 0.942254i
\(553\) 275630.i 0.901313i
\(554\) −415857. −1.35495
\(555\) 78455.9 45616.8i 0.254706 0.148094i
\(556\) −22437.2 −0.0725805
\(557\) 319490.i 1.02979i −0.857254 0.514893i \(-0.827832\pi\)
0.857254 0.514893i \(-0.172168\pi\)
\(558\) −139271. 79277.5i −0.447295 0.254613i
\(559\) 753.891i 0.00241260i
\(560\) 198126.i 0.631779i
\(561\) −153423. + 89205.1i −0.487489 + 0.283442i
\(562\) 45411.4i 0.143778i
\(563\) 191137. 0.603014 0.301507 0.953464i \(-0.402510\pi\)
0.301507 + 0.953464i \(0.402510\pi\)
\(564\) −48312.9 + 28090.6i −0.151881 + 0.0883087i
\(565\) 403871.i 1.26516i
\(566\) −274931. −0.858205
\(567\) −80205.4 135079.i −0.249481 0.420168i
\(568\) 318539.i 0.987337i
\(569\) 429862. 1.32771 0.663857 0.747860i \(-0.268918\pi\)
0.663857 + 0.747860i \(0.268918\pi\)
\(570\) −176255. + 102480.i −0.542489 + 0.315421i
\(571\) 225577. 0.691866 0.345933 0.938259i \(-0.387562\pi\)
0.345933 + 0.938259i \(0.387562\pi\)
\(572\) 4086.73 0.0124906
\(573\) −30632.2 + 17810.5i −0.0932972 + 0.0542460i
\(574\) 207633. 0.630192
\(575\) 124082.i 0.375294i
\(576\) 132488. 232749.i 0.399329 0.701526i
\(577\) 13815.4i 0.0414967i 0.999785 + 0.0207483i \(0.00660487\pi\)
−0.999785 + 0.0207483i \(0.993395\pi\)
\(578\) −120142. −0.359617
\(579\) −230899. 397122.i −0.688757 1.18459i
\(580\) 57819.7 5958.86i 0.171878 0.0177136i
\(581\) 92301.0i 0.273435i
\(582\) 307595. + 529030.i 0.908099 + 1.56183i
\(583\) 239334.i 0.704155i
\(584\) 160881.i 0.471715i
\(585\) 57876.2 + 32944.8i 0.169117 + 0.0962666i
\(586\) 629259. 1.83246
\(587\) 632828.i 1.83658i 0.395910 + 0.918289i \(0.370429\pi\)
−0.395910 + 0.918289i \(0.629571\pi\)
\(588\) 34300.0 19943.1i 0.0992063 0.0576817i
\(589\) 84952.0 0.244874
\(590\) −121235. −0.348277
\(591\) 257444. + 442775.i 0.737067 + 1.26768i
\(592\) 101624.i 0.289969i
\(593\) 370627.i 1.05397i −0.849875 0.526984i \(-0.823323\pi\)
0.849875 0.526984i \(-0.176677\pi\)
\(594\) 1693.35 + 184702.i 0.00479927 + 0.523477i
\(595\) 229118.i 0.647179i
\(596\) 91998.9i 0.258994i
\(597\) 427455. 248536.i 1.19934 0.697335i
\(598\) 77923.0i 0.217903i
\(599\) 399602. 1.11371 0.556857 0.830608i \(-0.312007\pi\)
0.556857 + 0.830608i \(0.312007\pi\)
\(600\) 88936.3 51710.4i 0.247045 0.143640i
\(601\) 24873.1i 0.0688621i −0.999407 0.0344311i \(-0.989038\pi\)
0.999407 0.0344311i \(-0.0109619\pi\)
\(602\) 2699.48i 0.00744880i
\(603\) −207690. + 364862.i −0.571191 + 1.00345i
\(604\) −36842.2 −0.100988
\(605\) 319614.i 0.873203i
\(606\) 41710.2 24251.7i 0.113579 0.0660383i
\(607\) 219241.i 0.595037i −0.954716 0.297518i \(-0.903841\pi\)
0.954716 0.297518i \(-0.0961590\pi\)
\(608\) 56422.8i 0.152633i
\(609\) −106677. 146510.i −0.287631 0.395032i
\(610\) −188347. −0.506173
\(611\) −73866.5 −0.197863
\(612\) −32276.8 + 56702.5i −0.0861762 + 0.151391i
\(613\) −224.775 −0.000598174 −0.000299087 1.00000i \(-0.500095\pi\)
−0.000299087 1.00000i \(0.500095\pi\)
\(614\) 118472.i 0.314253i
\(615\) −261961. 450545.i −0.692607 1.19121i
\(616\) −82435.0 −0.217245
\(617\) −610605. −1.60395 −0.801973 0.597360i \(-0.796216\pi\)
−0.801973 + 0.597360i \(0.796216\pi\)
\(618\) 466135. 271026.i 1.22049 0.709633i
\(619\) 157766.i 0.411748i 0.978579 + 0.205874i \(0.0660037\pi\)
−0.978579 + 0.205874i \(0.933996\pi\)
\(620\) 31867.4 0.0829018
\(621\) −461367. + 4229.84i −1.19636 + 0.0109683i
\(622\) −555467. −1.43574
\(623\) −291683. −0.751511
\(624\) −64467.5 + 37483.5i −0.165566 + 0.0962656i
\(625\) −474721. −1.21529
\(626\) 185607. 0.473638
\(627\) −49216.8 84647.6i −0.125193 0.215318i
\(628\) 54956.6i 0.139348i
\(629\) 117520.i 0.297038i
\(630\) 207239. + 117966.i 0.522143 + 0.297219i
\(631\) 113226. 0.284373 0.142186 0.989840i \(-0.454587\pi\)
0.142186 + 0.989840i \(0.454587\pi\)
\(632\) 671172.i 1.68035i
\(633\) 43450.8 + 74730.6i 0.108440 + 0.186505i
\(634\) 285463. 0.710185
\(635\) −252212. −0.625487
\(636\) −44226.9 76065.5i −0.109338 0.188050i
\(637\) 52441.9 0.129241
\(638\) 21844.9 + 211964.i 0.0536673 + 0.520741i
\(639\) 384587. + 218918.i 0.941874 + 0.536143i
\(640\) 546923.i 1.33526i
\(641\) −734203. −1.78690 −0.893450 0.449162i \(-0.851723\pi\)
−0.893450 + 0.449162i \(0.851723\pi\)
\(642\) −309709. 532666.i −0.751422 1.29236i
\(643\) 455201. 1.10099 0.550493 0.834840i \(-0.314440\pi\)
0.550493 + 0.834840i \(0.314440\pi\)
\(644\) 36552.9i 0.0881354i
\(645\) 5857.61 3405.80i 0.0140800 0.00818654i
\(646\) 264015.i 0.632649i
\(647\) 796438.i 1.90258i 0.308293 + 0.951291i \(0.400242\pi\)
−0.308293 + 0.951291i \(0.599758\pi\)
\(648\) −195304. 328925.i −0.465117 0.783334i
\(649\) 58224.1i 0.138233i
\(650\) −24137.9 −0.0571310
\(651\) −49942.9 85896.3i −0.117845 0.202681i
\(652\) 99526.5i 0.234123i
\(653\) 256299. 0.601064 0.300532 0.953772i \(-0.402836\pi\)
0.300532 + 0.953772i \(0.402836\pi\)
\(654\) 18171.6 10565.5i 0.0424852 0.0247022i
\(655\) 299243.i 0.697494i
\(656\) 583591. 1.35613
\(657\) −194240. 110567.i −0.449995 0.256150i
\(658\) −264495. −0.610894
\(659\) 286452. 0.659601 0.329801 0.944051i \(-0.393018\pi\)
0.329801 + 0.944051i \(0.393018\pi\)
\(660\) −18462.3 31753.2i −0.0423837 0.0728954i
\(661\) 131899. 0.301884 0.150942 0.988543i \(-0.451769\pi\)
0.150942 + 0.988543i \(0.451769\pi\)
\(662\) 331344.i 0.756071i
\(663\) −74551.8 + 43346.8i −0.169602 + 0.0986121i
\(664\) 224758.i 0.509775i
\(665\) −126410. −0.285850
\(666\) 106298. + 60507.9i 0.239649 + 0.136416i
\(667\) −529467. + 54566.6i −1.19011 + 0.122652i
\(668\) 72.3713i 0.000162186i
\(669\) 651486. 378795.i 1.45564 0.846353i
\(670\) 637276.i 1.41964i
\(671\) 90455.0i 0.200903i
\(672\) −57050.0 + 33170.7i −0.126333 + 0.0734541i
\(673\) −713133. −1.57449 −0.787246 0.616639i \(-0.788494\pi\)
−0.787246 + 0.616639i \(0.788494\pi\)
\(674\) 595970.i 1.31191i
\(675\) −1310.26 142916.i −0.00287574 0.313669i
\(676\) −66905.1 −0.146408
\(677\) 825670. 1.80148 0.900739 0.434361i \(-0.143026\pi\)
0.900739 + 0.434361i \(0.143026\pi\)
\(678\) 470558. 273598.i 1.02366 0.595186i
\(679\) 379421.i 0.822967i
\(680\) 557913.i 1.20656i
\(681\) −338454. 582103.i −0.729802 1.25518i
\(682\) 116825.i 0.251169i
\(683\) 264646.i 0.567315i −0.958926 0.283657i \(-0.908452\pi\)
0.958926 0.283657i \(-0.0915478\pi\)
\(684\) −31284.3 17807.9i −0.0668673 0.0380629i
\(685\) 89469.2i 0.190674i
\(686\) 434463. 0.923220
\(687\) −50511.7 86874.6i −0.107023 0.184068i
\(688\) 7587.36i 0.0160293i
\(689\) 116298.i 0.244982i
\(690\) 605449. 352027.i 1.27168 0.739398i
\(691\) −715631. −1.49876 −0.749382 0.662138i \(-0.769649\pi\)
−0.749382 + 0.662138i \(0.769649\pi\)
\(692\) 8752.98i 0.0182786i
\(693\) −56654.1 + 99527.7i −0.117968 + 0.207242i
\(694\) 552809.i 1.14777i
\(695\) 266542.i 0.551819i
\(696\) −259764. 356759.i −0.536241 0.736472i
\(697\) 674878. 1.38918
\(698\) 904610. 1.85674
\(699\) −270774. 465702.i −0.554183 0.953134i
\(700\) −11322.8 −0.0231078
\(701\) 30161.6i 0.0613787i −0.999529 0.0306894i \(-0.990230\pi\)
0.999529 0.0306894i \(-0.00977027\pi\)
\(702\) 822.840 + 89750.7i 0.00166971 + 0.182123i
\(703\) −64839.0 −0.131198
\(704\) −195237. −0.393927
\(705\) 333702. + 573931.i 0.671398 + 1.15473i
\(706\) 273113.i 0.547940i
\(707\) 29914.6 0.0598473
\(708\) −10759.3 18504.8i −0.0214643 0.0369163i
\(709\) 415024. 0.825621 0.412811 0.910817i \(-0.364547\pi\)
0.412811 + 0.910817i \(0.364547\pi\)
\(710\) −671728. −1.33253
\(711\) 810339. + 461269.i 1.60298 + 0.912462i
\(712\) −710263. −1.40107
\(713\) −291817. −0.574026
\(714\) −266949. + 155213.i −0.523640 + 0.304461i
\(715\) 48548.1i 0.0949644i
\(716\) 25661.1i 0.0500551i
\(717\) −217754. 374513.i −0.423572 0.728498i
\(718\) 684541. 1.32785
\(719\) 505661.i 0.978141i −0.872244 0.489070i \(-0.837336\pi\)
0.872244 0.489070i \(-0.162664\pi\)
\(720\) 582481. + 331566.i 1.12361 + 0.639594i
\(721\) 334313. 0.643106
\(722\) −413534. −0.793299
\(723\) 411385. 239193.i 0.786995 0.457584i
\(724\) 98052.8 0.187061
\(725\) −16902.8 164011.i −0.0321576 0.312030i
\(726\) −372388. + 216518.i −0.706517 + 0.410792i
\(727\) 697013.i 1.31878i 0.751802 + 0.659389i \(0.229185\pi\)
−0.751802 + 0.659389i \(0.770815\pi\)
\(728\) −40057.1 −0.0755816
\(729\) −531352. + 9743.74i −0.999832 + 0.0183346i
\(730\) 339263. 0.636636
\(731\) 8774.21i 0.0164200i
\(732\) −16715.3 28748.5i −0.0311955 0.0536529i
\(733\) 880230.i 1.63828i −0.573593 0.819141i \(-0.694451\pi\)
0.573593 0.819141i \(-0.305549\pi\)
\(734\) 849283.i 1.57638i
\(735\) −236913. 407465.i −0.438546 0.754251i
\(736\) 193817.i 0.357796i
\(737\) 306056. 0.563464
\(738\) 347476. 610432.i 0.637987 1.12079i
\(739\) 876649.i 1.60523i 0.596499 + 0.802614i \(0.296558\pi\)
−0.596499 + 0.802614i \(0.703442\pi\)
\(740\) −24322.6 −0.0444167
\(741\) −23915.6 41132.2i −0.0435556 0.0749110i
\(742\) 416431.i 0.756372i
\(743\) −6796.65 −0.0123117 −0.00615584 0.999981i \(-0.501959\pi\)
−0.00615584 + 0.999981i \(0.501959\pi\)
\(744\) −121613. 209162.i −0.219703 0.377865i
\(745\) 1.09290e6 1.96910
\(746\) 473712. 0.851211
\(747\) −271361. 154467.i −0.486302 0.276817i
\(748\) 47563.7 0.0850104
\(749\) 382029.i 0.680977i
\(750\) −238586. 410342.i −0.424153 0.729497i
\(751\) 187486.i 0.332421i −0.986090 0.166211i \(-0.946847\pi\)
0.986090 0.166211i \(-0.0531531\pi\)
\(752\) −743412. −1.31460
\(753\) 92806.4 53960.6i 0.163677 0.0951671i
\(754\) 10615.0 + 102998.i 0.0186713 + 0.181171i
\(755\) 437665.i 0.767800i
\(756\) 385.986 + 42101.2i 0.000675349 + 0.0736633i
\(757\) 71328.3i 0.124472i −0.998061 0.0622358i \(-0.980177\pi\)
0.998061 0.0622358i \(-0.0198231\pi\)
\(758\) 601433.i 1.04676i
\(759\) 169064. + 290771.i 0.293472 + 0.504740i
\(760\) −307815. −0.532921
\(761\) 803433.i 1.38733i −0.720297 0.693666i \(-0.755995\pi\)
0.720297 0.693666i \(-0.244005\pi\)
\(762\) −170858. 293857.i −0.294256 0.506088i
\(763\) 13032.7 0.0223864
\(764\) 9496.47 0.0162696
\(765\) 673596. + 383431.i 1.15100 + 0.655185i
\(766\) 699693.i 1.19248i
\(767\) 28292.4i 0.0480927i
\(768\) −225630. + 131189.i −0.382538 + 0.222420i
\(769\) 108583.i 0.183616i 0.995777 + 0.0918078i \(0.0292645\pi\)
−0.995777 + 0.0918078i \(0.970735\pi\)
\(770\) 173837.i 0.293199i
\(771\) 498045. + 856583.i 0.837838 + 1.44099i
\(772\) 123114.i 0.206573i
\(773\) 161657. 0.270542 0.135271 0.990809i \(-0.456809\pi\)
0.135271 + 0.990809i \(0.456809\pi\)
\(774\) 7936.33 + 4517.60i 0.0132476 + 0.00754094i
\(775\) 90394.9i 0.150501i
\(776\) 923910.i 1.53429i
\(777\) 38118.5 + 65559.7i 0.0631385 + 0.108591i
\(778\) 816395. 1.34878
\(779\) 372348.i 0.613584i
\(780\) −8971.28 15429.6i −0.0147457 0.0253610i
\(781\) 322602.i 0.528890i
\(782\) 906911.i 1.48303i
\(783\) −609257. + 68440.1i −0.993750 + 0.111632i
\(784\) 527790. 0.858675
\(785\) −652855. −1.05944
\(786\) 348653. 202718.i 0.564350 0.328131i
\(787\) 142643. 0.230304 0.115152 0.993348i \(-0.463264\pi\)
0.115152 + 0.993348i \(0.463264\pi\)
\(788\) 137267.i 0.221062i
\(789\) −763621. + 443994.i −1.22666 + 0.713219i
\(790\) −1.41536e6 −2.26784
\(791\) 337485. 0.539389
\(792\) −137956. + 242355.i −0.219932 + 0.386369i
\(793\) 43954.1i 0.0698962i
\(794\) −434178. −0.688695
\(795\) −903617. + 525392.i −1.42972 + 0.831284i
\(796\) −132518. −0.209146
\(797\) 1.11465e6 1.75477 0.877387 0.479784i \(-0.159285\pi\)
0.877387 + 0.479784i \(0.159285\pi\)
\(798\) −85635.0 147283.i −0.134476 0.231285i
\(799\) −859699. −1.34664
\(800\) −60037.8 −0.0938090
\(801\) −488134. + 857535.i −0.760807 + 1.33655i
\(802\) 1.14348e6i 1.77778i
\(803\) 162934.i 0.252685i
\(804\) 97271.0 56556.5i 0.150477 0.0874924i
\(805\) 434229. 0.670081
\(806\) 56767.8i 0.0873841i
\(807\) 249501. 145068.i 0.383112 0.222754i
\(808\) 72843.7 0.111576
\(809\) −126139. −0.192731 −0.0963657 0.995346i \(-0.530722\pi\)
−0.0963657 + 0.995346i \(0.530722\pi\)
\(810\) 693631. 411854.i 1.05720 0.627731i
\(811\) −705180. −1.07216 −0.536078 0.844168i \(-0.680095\pi\)
−0.536078 + 0.844168i \(0.680095\pi\)
\(812\) 4979.38 + 48315.6i 0.00755201 + 0.0732782i
\(813\) 588853. + 1.01276e6i 0.890894 + 1.53224i
\(814\) 89165.6i 0.134570i
\(815\) −1.18232e6 −1.78000
\(816\) −750309. + 436254.i −1.12683 + 0.655178i
\(817\) −4840.96 −0.00725249
\(818\) 817042.i 1.22106i
\(819\) −27529.5 + 48362.8i −0.0410423 + 0.0721014i
\(820\) 139676.i 0.207728i
\(821\) 25388.7i 0.0376664i 0.999823 + 0.0188332i \(0.00599516\pi\)
−0.999823 + 0.0188332i \(0.994005\pi\)
\(822\) −104242. + 60609.8i −0.154277 + 0.0897014i
\(823\) 1.33438e6i 1.97006i 0.172370 + 0.985032i \(0.444857\pi\)
−0.172370 + 0.985032i \(0.555143\pi\)
\(824\) 814069. 1.19897
\(825\) −90070.9 + 52370.1i −0.132336 + 0.0769441i
\(826\) 101307.i 0.148484i
\(827\) −647656. −0.946964 −0.473482 0.880803i \(-0.657003\pi\)
−0.473482 + 0.880803i \(0.657003\pi\)
\(828\) 107464. + 61171.7i 0.156748 + 0.0892256i
\(829\) 598022.i 0.870178i 0.900387 + 0.435089i \(0.143283\pi\)
−0.900387 + 0.435089i \(0.856717\pi\)
\(830\) 473965. 0.688002
\(831\) −754044. + 438425.i −1.09193 + 0.634883i
\(832\) −94869.9 −0.137051
\(833\) 610349. 0.879606
\(834\) −310553. + 180566.i −0.446482 + 0.259599i
\(835\) −859.732 −0.00123308
\(836\) 26242.1i 0.0375479i
\(837\) −336111. + 3081.49i −0.479769 + 0.00439855i
\(838\) 471650.i 0.671633i
\(839\) −1.01661e6 −1.44421 −0.722106 0.691783i \(-0.756826\pi\)
−0.722106 + 0.691783i \(0.756826\pi\)
\(840\) 180963. + 311237.i 0.256467 + 0.441095i
\(841\) −692414. + 144252.i −0.978981 + 0.203953i
\(842\) 64947.9i 0.0916096i
\(843\) 47875.9 + 82341.4i 0.0673693 + 0.115868i
\(844\) 23167.7i 0.0325236i
\(845\) 794796.i 1.11312i
\(846\) −442635. + 777604.i −0.618451 + 1.08647i
\(847\) −267078. −0.372281
\(848\) 1.17045e6i 1.62766i
\(849\) −498514. + 289852.i −0.691611 + 0.402125i
\(850\) −280930. −0.388830
\(851\) 222727. 0.307549
\(852\) −59614.1 102530.i −0.0821239 0.141244i
\(853\) 1.14072e6i 1.56777i −0.620907 0.783885i \(-0.713235\pi\)
0.620907 0.783885i \(-0.286765\pi\)
\(854\) 157388.i 0.215802i
\(855\) −211549. + 371640.i −0.289386 + 0.508382i
\(856\) 930260.i 1.26957i
\(857\) 983521.i 1.33913i −0.742755 0.669564i \(-0.766481\pi\)
0.742755 0.669564i \(-0.233519\pi\)
\(858\) 56564.4 32888.3i 0.0768366 0.0446753i
\(859\) 476850.i 0.646242i −0.946358 0.323121i \(-0.895268\pi\)
0.946358 0.323121i \(-0.104732\pi\)
\(860\) −1815.95 −0.00245532
\(861\) 376487. 218901.i 0.507859 0.295286i
\(862\) 256263.i 0.344882i
\(863\) 804061.i 1.07961i 0.841790 + 0.539806i \(0.181502\pi\)
−0.841790 + 0.539806i \(0.818498\pi\)
\(864\) 2046.64 + 223236.i 0.00274166 + 0.299045i
\(865\) 103981. 0.138970
\(866\) 761148.i 1.01492i
\(867\) −217846. + 126663.i −0.289808 + 0.168504i
\(868\) 26629.2i 0.0353443i
\(869\) 679735.i 0.900119i
\(870\) 752326. 547785.i 0.993957 0.723722i
\(871\) 148720. 0.196034
\(872\) 31735.3 0.0417359
\(873\) 1.11548e6 + 634965.i 1.46364 + 0.833146i
\(874\) −500367. −0.655037
\(875\) 294298.i 0.384389i
\(876\) 30108.7 + 51783.7i 0.0392359 + 0.0674816i
\(877\) 9236.02 0.0120084 0.00600421 0.999982i \(-0.498089\pi\)
0.00600421 + 0.999982i \(0.498089\pi\)
\(878\) −639822. −0.829985
\(879\) 1.14099e6 663409.i 1.47674 0.858626i
\(880\) 488601.i 0.630942i
\(881\) 137677. 0.177382 0.0886911 0.996059i \(-0.471732\pi\)
0.0886911 + 0.996059i \(0.471732\pi\)
\(882\) 314252. 552065.i 0.403962 0.709664i
\(883\) −92524.8 −0.118669 −0.0593344 0.998238i \(-0.518898\pi\)
−0.0593344 + 0.998238i \(0.518898\pi\)
\(884\) 23112.3 0.0295759
\(885\) −219827. + 127815.i −0.280670 + 0.163190i
\(886\) 730838. 0.931009
\(887\) −430783. −0.547534 −0.273767 0.961796i \(-0.588270\pi\)
−0.273767 + 0.961796i \(0.588270\pi\)
\(888\) 92820.5 + 159641.i 0.117711 + 0.202451i
\(889\) 210755.i 0.266670i
\(890\) 1.49779e6i 1.89091i
\(891\) 197796. + 333121.i 0.249150 + 0.419611i
\(892\) −201971. −0.253840
\(893\) 474319.i 0.594795i
\(894\) 740370. + 1.27336e6i 0.926347 + 1.59322i
\(895\) 304840. 0.380562
\(896\) −457023. −0.569274
\(897\) 82151.9 + 141292.i 0.102102 + 0.175604i
\(898\) 1.14682e6 1.42215
\(899\) −385723. + 39752.4i −0.477261 + 0.0491863i
\(900\) −18948.9 + 33288.6i −0.0233937 + 0.0410971i
\(901\) 1.35354e6i 1.66733i
\(902\) −512047. −0.629357
\(903\) 2845.98 + 4894.77i 0.00349024 + 0.00600284i
\(904\) 821793. 1.00560
\(905\) 1.16481e6i 1.42220i
\(906\) −509932. + 296491.i −0.621235 + 0.361206i
\(907\) 168211.i 0.204475i −0.994760 0.102238i \(-0.967400\pi\)
0.994760 0.102238i \(-0.0326002\pi\)
\(908\) 180461.i 0.218883i
\(909\) 50062.4 87947.7i 0.0605876 0.106438i
\(910\) 84471.6i 0.102006i
\(911\) 205670. 0.247819 0.123909 0.992294i \(-0.460457\pi\)
0.123909 + 0.992294i \(0.460457\pi\)
\(912\) −240693. 413965.i −0.289383 0.497708i
\(913\) 227625.i 0.273073i
\(914\) 911994. 1.09169
\(915\) −341517. + 198569.i −0.407915 + 0.237175i
\(916\) 26932.5i 0.0320986i
\(917\) 250055. 0.297369
\(918\) 9576.67 + 1.04457e6i 0.0113639 + 1.23952i
\(919\) −980095. −1.16048 −0.580239 0.814446i \(-0.697041\pi\)
−0.580239 + 0.814446i \(0.697041\pi\)
\(920\) 1.05737e6 1.24926
\(921\) 124902. + 214817.i 0.147248 + 0.253250i
\(922\) −389541. −0.458239
\(923\) 156760.i 0.184006i
\(924\) 26533.8 15427.6i 0.0310782 0.0180699i
\(925\) 68993.2i 0.0806349i
\(926\) 844878. 0.985308
\(927\) 559476. 982865.i 0.651061 1.14376i
\(928\) 26402.4 + 256186.i 0.0306583 + 0.297482i
\(929\) 373925.i 0.433265i 0.976253 + 0.216633i \(0.0695073\pi\)
−0.976253 + 0.216633i \(0.930493\pi\)
\(930\) 441077. 256456.i 0.509974 0.296515i
\(931\) 336745.i 0.388510i
\(932\) 144375.i 0.166211i
\(933\) −1.00719e6 + 585612.i −1.15704 + 0.672739i
\(934\) 793980. 0.910156
\(935\) 565031.i 0.646322i
\(936\) −67035.8 + 117766.i −0.0765166 + 0.134421i
\(937\) 1.17888e6 1.34273 0.671365 0.741126i \(-0.265708\pi\)
0.671365 + 0.741126i \(0.265708\pi\)
\(938\) 532524. 0.605248
\(939\) 336549. 195680.i 0.381696 0.221930i
\(940\) 177928.i 0.201367i
\(941\) 683086.i 0.771430i −0.922618 0.385715i \(-0.873955\pi\)
0.922618 0.385715i \(-0.126045\pi\)
\(942\) −442268. 760653.i −0.498407 0.857205i
\(943\) 1.27904e6i 1.43834i
\(944\) 284742.i 0.319527i
\(945\) 500140. 4585.31i 0.560051 0.00513458i
\(946\) 6657.22i 0.00743893i
\(947\) 104514. 0.116540 0.0582700 0.998301i \(-0.481442\pi\)
0.0582700 + 0.998301i \(0.481442\pi\)
\(948\) −125609. 216034.i −0.139767 0.240384i
\(949\) 79173.2i 0.0879115i
\(950\) 154996.i 0.171741i
\(951\) 517610. 300955.i 0.572324 0.332768i
\(952\) −466206. −0.514404
\(953\) 213724.i 0.235325i −0.993054 0.117663i \(-0.962460\pi\)
0.993054 0.117663i \(-0.0375401\pi\)
\(954\) −1.22429e6 696901.i −1.34520 0.765728i
\(955\) 112813.i 0.123695i
\(956\) 116105.i 0.127038i
\(957\) 263078. + 361310.i 0.287250 + 0.394508i
\(958\) 774610. 0.844019
\(959\) −74762.7 −0.0812920
\(960\) 428588. + 737124.i 0.465047 + 0.799831i
\(961\) 710929. 0.769803
\(962\) 43327.6i 0.0468182i
\(963\) −1.12315e6 639329.i −1.21111 0.689401i
\(964\) −127536. −0.137239
\(965\) 1.46253e6 1.57054
\(966\) 294163. + 505929.i 0.315235 + 0.542169i
\(967\) 1.36465e6i 1.45938i 0.683777 + 0.729691i \(0.260336\pi\)
−0.683777 + 0.729691i \(0.739664\pi\)
\(968\) −650347. −0.694056
\(969\) −278343. 478719.i −0.296437 0.509840i
\(970\) −1.94832e6 −2.07070
\(971\) −1.18833e6 −1.26037 −0.630187 0.776443i \(-0.717022\pi\)
−0.630187 + 0.776443i \(0.717022\pi\)
\(972\) 124422. + 69322.0i 0.131693 + 0.0733734i
\(973\) −222729. −0.235262
\(974\) −62898.2 −0.0663011
\(975\) −43767.5 + 25447.8i −0.0460408 + 0.0267696i
\(976\) 442366.i 0.464389i
\(977\) 1.70862e6i 1.79001i 0.446054 + 0.895006i \(0.352829\pi\)
−0.446054 + 0.895006i \(0.647171\pi\)
\(978\) −800948. 1.37754e6i −0.837388 1.44022i
\(979\) 719324. 0.750515
\(980\) 126321.i 0.131529i
\(981\) 21810.3 38315.5i 0.0226634 0.0398141i
\(982\) 804273. 0.834027
\(983\) 1.09990e6 1.13828 0.569139 0.822242i \(-0.307277\pi\)
0.569139 + 0.822242i \(0.307277\pi\)
\(984\) 916764. 533036.i 0.946820 0.550512i
\(985\) −1.63066e6 −1.68071
\(986\) 123543. + 1.19875e6i 0.127076 + 1.23304i
\(987\) −479591. + 278850.i −0.492308 + 0.286243i
\(988\) 12751.6i 0.0130633i
\(989\) 16629.1 0.0170010
\(990\) −511074. 290918.i −0.521451 0.296825i
\(991\) 575548. 0.586050 0.293025 0.956105i \(-0.405338\pi\)
0.293025 + 0.956105i \(0.405338\pi\)
\(992\) 141198.i 0.143484i
\(993\) 349326. + 600802.i 0.354268 + 0.609303i
\(994\) 561313.i 0.568110i
\(995\) 1.57424e6i 1.59010i
\(996\) 42063.1 + 72344.0i 0.0424016 + 0.0729262i
\(997\) 1.13198e6i 1.13881i −0.822058 0.569403i \(-0.807174\pi\)
0.822058 0.569403i \(-0.192826\pi\)
\(998\) −867019. −0.870498
\(999\) 256534. 2351.92i 0.257048 0.00235663i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 87.5.d.c.86.8 yes 32
3.2 odd 2 inner 87.5.d.c.86.26 yes 32
29.28 even 2 inner 87.5.d.c.86.25 yes 32
87.86 odd 2 inner 87.5.d.c.86.7 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
87.5.d.c.86.7 32 87.86 odd 2 inner
87.5.d.c.86.8 yes 32 1.1 even 1 trivial
87.5.d.c.86.25 yes 32 29.28 even 2 inner
87.5.d.c.86.26 yes 32 3.2 odd 2 inner