Properties

Label 87.5.d.c.86.20
Level $87$
Weight $5$
Character 87.86
Analytic conductor $8.993$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [87,5,Mod(86,87)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("87.86"); S:= CuspForms(chi, 5); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(87, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 5, names="a")
 
Level: \( N \) \(=\) \( 87 = 3 \cdot 29 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 87.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.99318678829\)
Analytic rank: \(0\)
Dimension: \(32\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 86.20
Character \(\chi\) \(=\) 87.86
Dual form 87.5.d.c.86.19

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.36205 q^{2} +(-1.79151 + 8.81989i) q^{3} -14.1448 q^{4} -35.6756i q^{5} +(-2.44013 + 12.0132i) q^{6} +75.8945 q^{7} -41.0588 q^{8} +(-74.5810 - 31.6018i) q^{9} -48.5920i q^{10} +182.873 q^{11} +(25.3405 - 124.756i) q^{12} -13.7616 q^{13} +103.372 q^{14} +(314.655 + 63.9130i) q^{15} +170.393 q^{16} +243.546 q^{17} +(-101.583 - 43.0433i) q^{18} -193.045i q^{19} +504.624i q^{20} +(-135.965 + 669.381i) q^{21} +249.083 q^{22} -143.864i q^{23} +(73.5571 - 362.135i) q^{24} -647.746 q^{25} -18.7440 q^{26} +(412.336 - 601.182i) q^{27} -1073.51 q^{28} +(127.631 - 831.259i) q^{29} +(428.576 + 87.0528i) q^{30} -1004.52i q^{31} +889.025 q^{32} +(-327.618 + 1612.92i) q^{33} +331.723 q^{34} -2707.58i q^{35} +(1054.93 + 447.001i) q^{36} +314.802i q^{37} -262.938i q^{38} +(24.6539 - 121.376i) q^{39} +1464.80i q^{40} -2741.44 q^{41} +(-185.192 + 911.733i) q^{42} +1422.67i q^{43} -2586.70 q^{44} +(-1127.41 + 2660.72i) q^{45} -195.951i q^{46} +1966.47 q^{47} +(-305.259 + 1502.85i) q^{48} +3358.98 q^{49} -882.264 q^{50} +(-436.315 + 2148.05i) q^{51} +194.655 q^{52} -2903.41i q^{53} +(561.624 - 818.842i) q^{54} -6524.09i q^{55} -3116.14 q^{56} +(1702.64 + 345.842i) q^{57} +(173.840 - 1132.22i) q^{58} +4802.46i q^{59} +(-4450.73 - 904.037i) q^{60} +5904.75i q^{61} -1368.21i q^{62} +(-5660.29 - 2398.40i) q^{63} -1515.38 q^{64} +490.952i q^{65} +(-446.233 + 2196.88i) q^{66} +134.327 q^{67} -3444.92 q^{68} +(1268.87 + 257.734i) q^{69} -3687.87i q^{70} -6138.08i q^{71} +(3062.21 + 1297.53i) q^{72} +3852.80i q^{73} +428.777i q^{74} +(1160.44 - 5713.05i) q^{75} +2730.59i q^{76} +13879.0 q^{77} +(33.5800 - 165.320i) q^{78} +11276.2i q^{79} -6078.85i q^{80} +(4563.66 + 4713.78i) q^{81} -3733.99 q^{82} -265.544i q^{83} +(1923.20 - 9468.27i) q^{84} -8688.65i q^{85} +1937.76i q^{86} +(7102.96 + 2614.90i) q^{87} -7508.55 q^{88} -1093.81 q^{89} +(-1535.59 + 3624.04i) q^{90} -1044.43 q^{91} +2034.94i q^{92} +(8859.74 + 1799.60i) q^{93} +2678.43 q^{94} -6887.01 q^{95} +(-1592.69 + 7841.11i) q^{96} -11224.8i q^{97} +4575.10 q^{98} +(-13638.8 - 5779.10i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 188 q^{4} - 36 q^{6} - 84 q^{7} - 452 q^{9} - 224 q^{13} - 52 q^{16} - 4216 q^{22} - 832 q^{24} - 7684 q^{25} - 396 q^{28} + 3384 q^{30} - 3308 q^{33} + 9124 q^{34} - 3680 q^{36} + 19764 q^{42} + 44 q^{45}+ \cdots + 13884 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/87\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(59\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.36205 0.340513 0.170257 0.985400i \(-0.445540\pi\)
0.170257 + 0.985400i \(0.445540\pi\)
\(3\) −1.79151 + 8.81989i −0.199056 + 0.979988i
\(4\) −14.1448 −0.884051
\(5\) 35.6756i 1.42702i −0.700644 0.713511i \(-0.747104\pi\)
0.700644 0.713511i \(-0.252896\pi\)
\(6\) −2.44013 + 12.0132i −0.0677813 + 0.333699i
\(7\) 75.8945 1.54887 0.774434 0.632655i \(-0.218035\pi\)
0.774434 + 0.632655i \(0.218035\pi\)
\(8\) −41.0588 −0.641544
\(9\) −74.5810 31.6018i −0.920753 0.390145i
\(10\) 48.5920i 0.485920i
\(11\) 182.873 1.51135 0.755673 0.654949i \(-0.227310\pi\)
0.755673 + 0.654949i \(0.227310\pi\)
\(12\) 25.3405 124.756i 0.175976 0.866359i
\(13\) −13.7616 −0.0814295 −0.0407147 0.999171i \(-0.512963\pi\)
−0.0407147 + 0.999171i \(0.512963\pi\)
\(14\) 103.372 0.527410
\(15\) 314.655 + 63.9130i 1.39847 + 0.284058i
\(16\) 170.393 0.665596
\(17\) 243.546 0.842721 0.421360 0.906893i \(-0.361553\pi\)
0.421360 + 0.906893i \(0.361553\pi\)
\(18\) −101.583 43.0433i −0.313529 0.132850i
\(19\) 193.045i 0.534752i −0.963592 0.267376i \(-0.913843\pi\)
0.963592 0.267376i \(-0.0861566\pi\)
\(20\) 504.624i 1.26156i
\(21\) −135.965 + 669.381i −0.308312 + 1.51787i
\(22\) 249.083 0.514633
\(23\) 143.864i 0.271956i −0.990712 0.135978i \(-0.956582\pi\)
0.990712 0.135978i \(-0.0434176\pi\)
\(24\) 73.5571 362.135i 0.127703 0.628706i
\(25\) −647.746 −1.03639
\(26\) −18.7440 −0.0277278
\(27\) 412.336 601.182i 0.565619 0.824666i
\(28\) −1073.51 −1.36928
\(29\) 127.631 831.259i 0.151761 0.988417i
\(30\) 428.576 + 87.0528i 0.476196 + 0.0967254i
\(31\) 1004.52i 1.04528i −0.852552 0.522642i \(-0.824947\pi\)
0.852552 0.522642i \(-0.175053\pi\)
\(32\) 889.025 0.868189
\(33\) −327.618 + 1612.92i −0.300843 + 1.48110i
\(34\) 331.723 0.286958
\(35\) 2707.58i 2.21027i
\(36\) 1054.93 + 447.001i 0.813993 + 0.344908i
\(37\) 314.802i 0.229951i 0.993368 + 0.114975i \(0.0366789\pi\)
−0.993368 + 0.114975i \(0.963321\pi\)
\(38\) 262.938i 0.182090i
\(39\) 24.6539 121.376i 0.0162090 0.0797999i
\(40\) 1464.80i 0.915498i
\(41\) −2741.44 −1.63084 −0.815420 0.578870i \(-0.803494\pi\)
−0.815420 + 0.578870i \(0.803494\pi\)
\(42\) −185.192 + 911.733i −0.104984 + 0.516855i
\(43\) 1422.67i 0.769429i 0.923036 + 0.384715i \(0.125700\pi\)
−0.923036 + 0.384715i \(0.874300\pi\)
\(44\) −2586.70 −1.33611
\(45\) −1127.41 + 2660.72i −0.556746 + 1.31394i
\(46\) 195.951i 0.0926045i
\(47\) 1966.47 0.890208 0.445104 0.895479i \(-0.353167\pi\)
0.445104 + 0.895479i \(0.353167\pi\)
\(48\) −305.259 + 1502.85i −0.132491 + 0.652277i
\(49\) 3358.98 1.39899
\(50\) −882.264 −0.352906
\(51\) −436.315 + 2148.05i −0.167749 + 0.825857i
\(52\) 194.655 0.0719878
\(53\) 2903.41i 1.03361i −0.856103 0.516805i \(-0.827121\pi\)
0.856103 0.516805i \(-0.172879\pi\)
\(54\) 561.624 818.842i 0.192601 0.280810i
\(55\) 6524.09i 2.15672i
\(56\) −3116.14 −0.993667
\(57\) 1702.64 + 345.842i 0.524051 + 0.106446i
\(58\) 173.840 1132.22i 0.0516767 0.336569i
\(59\) 4802.46i 1.37962i 0.723989 + 0.689811i \(0.242306\pi\)
−0.723989 + 0.689811i \(0.757694\pi\)
\(60\) −4450.73 904.037i −1.23631 0.251121i
\(61\) 5904.75i 1.58687i 0.608653 + 0.793436i \(0.291710\pi\)
−0.608653 + 0.793436i \(0.708290\pi\)
\(62\) 1368.21i 0.355933i
\(63\) −5660.29 2398.40i −1.42612 0.604283i
\(64\) −1515.38 −0.369967
\(65\) 490.952i 0.116202i
\(66\) −446.233 + 2196.88i −0.102441 + 0.504334i
\(67\) 134.327 0.0299236 0.0149618 0.999888i \(-0.495237\pi\)
0.0149618 + 0.999888i \(0.495237\pi\)
\(68\) −3444.92 −0.745008
\(69\) 1268.87 + 257.734i 0.266513 + 0.0541344i
\(70\) 3687.87i 0.752626i
\(71\) 6138.08i 1.21763i −0.793312 0.608816i \(-0.791645\pi\)
0.793312 0.608816i \(-0.208355\pi\)
\(72\) 3062.21 + 1297.53i 0.590704 + 0.250295i
\(73\) 3852.80i 0.722988i 0.932374 + 0.361494i \(0.117733\pi\)
−0.932374 + 0.361494i \(0.882267\pi\)
\(74\) 428.777i 0.0783012i
\(75\) 1160.44 5713.05i 0.206300 1.01565i
\(76\) 2730.59i 0.472748i
\(77\) 13879.0 2.34087
\(78\) 33.5800 165.320i 0.00551939 0.0271729i
\(79\) 11276.2i 1.80680i 0.428799 + 0.903400i \(0.358937\pi\)
−0.428799 + 0.903400i \(0.641063\pi\)
\(80\) 6078.85i 0.949821i
\(81\) 4563.66 + 4713.78i 0.695573 + 0.718455i
\(82\) −3733.99 −0.555323
\(83\) 265.544i 0.0385462i −0.999814 0.0192731i \(-0.993865\pi\)
0.999814 0.0192731i \(-0.00613519\pi\)
\(84\) 1923.20 9468.27i 0.272563 1.34188i
\(85\) 8688.65i 1.20258i
\(86\) 1937.76i 0.262001i
\(87\) 7102.96 + 2614.90i 0.938428 + 0.345475i
\(88\) −7508.55 −0.969595
\(89\) −1093.81 −0.138090 −0.0690449 0.997614i \(-0.521995\pi\)
−0.0690449 + 0.997614i \(0.521995\pi\)
\(90\) −1535.59 + 3624.04i −0.189579 + 0.447413i
\(91\) −1044.43 −0.126123
\(92\) 2034.94i 0.240423i
\(93\) 8859.74 + 1799.60i 1.02437 + 0.208070i
\(94\) 2678.43 0.303128
\(95\) −6887.01 −0.763103
\(96\) −1592.69 + 7841.11i −0.172818 + 0.850815i
\(97\) 11224.8i 1.19299i −0.802617 0.596495i \(-0.796560\pi\)
0.802617 0.596495i \(-0.203440\pi\)
\(98\) 4575.10 0.476375
\(99\) −13638.8 5779.10i −1.39158 0.589644i
\(100\) 9162.24 0.916224
\(101\) 4676.67 0.458452 0.229226 0.973373i \(-0.426381\pi\)
0.229226 + 0.973373i \(0.426381\pi\)
\(102\) −594.284 + 2925.76i −0.0571207 + 0.281215i
\(103\) 5318.66 0.501334 0.250667 0.968073i \(-0.419350\pi\)
0.250667 + 0.968073i \(0.419350\pi\)
\(104\) 565.035 0.0522406
\(105\) 23880.6 + 4850.64i 2.16604 + 0.439968i
\(106\) 3954.60i 0.351958i
\(107\) 8311.79i 0.725984i −0.931792 0.362992i \(-0.881755\pi\)
0.931792 0.362992i \(-0.118245\pi\)
\(108\) −5832.42 + 8503.60i −0.500036 + 0.729047i
\(109\) −19661.6 −1.65488 −0.827438 0.561557i \(-0.810202\pi\)
−0.827438 + 0.561557i \(0.810202\pi\)
\(110\) 8886.16i 0.734393i
\(111\) −2776.52 563.970i −0.225349 0.0457731i
\(112\) 12931.9 1.03092
\(113\) 14929.8 1.16922 0.584612 0.811313i \(-0.301247\pi\)
0.584612 + 0.811313i \(0.301247\pi\)
\(114\) 2319.09 + 471.055i 0.178446 + 0.0362462i
\(115\) −5132.45 −0.388087
\(116\) −1805.32 + 11758.0i −0.134164 + 0.873811i
\(117\) 1026.35 + 434.890i 0.0749765 + 0.0317693i
\(118\) 6541.21i 0.469780i
\(119\) 18483.8 1.30526
\(120\) −12919.4 2624.19i −0.897177 0.182236i
\(121\) 18801.5 1.28417
\(122\) 8042.59i 0.540351i
\(123\) 4911.31 24179.2i 0.324629 1.59820i
\(124\) 14208.7i 0.924084i
\(125\) 811.465i 0.0519338i
\(126\) −7709.61 3266.75i −0.485614 0.205766i
\(127\) 2951.73i 0.183007i 0.995805 + 0.0915037i \(0.0291673\pi\)
−0.995805 + 0.0915037i \(0.970833\pi\)
\(128\) −16288.4 −0.994167
\(129\) −12547.8 2548.73i −0.754032 0.153160i
\(130\) 668.703i 0.0395682i
\(131\) −24361.2 −1.41957 −0.709784 0.704420i \(-0.751207\pi\)
−0.709784 + 0.704420i \(0.751207\pi\)
\(132\) 4634.09 22814.4i 0.265960 1.30937i
\(133\) 14651.1i 0.828260i
\(134\) 182.960 0.0101894
\(135\) −21447.5 14710.3i −1.17682 0.807151i
\(136\) −9999.73 −0.540643
\(137\) −19427.0 −1.03506 −0.517529 0.855665i \(-0.673148\pi\)
−0.517529 + 0.855665i \(0.673148\pi\)
\(138\) 1728.27 + 351.047i 0.0907513 + 0.0184335i
\(139\) 8092.40 0.418839 0.209420 0.977826i \(-0.432843\pi\)
0.209420 + 0.977826i \(0.432843\pi\)
\(140\) 38298.2i 1.95399i
\(141\) −3522.94 + 17344.0i −0.177201 + 0.872393i
\(142\) 8360.39i 0.414620i
\(143\) −2516.62 −0.123068
\(144\) −12708.1 5384.71i −0.612850 0.259679i
\(145\) −29655.6 4553.31i −1.41049 0.216566i
\(146\) 5247.72i 0.246187i
\(147\) −6017.62 + 29625.8i −0.278478 + 1.37099i
\(148\) 4452.82i 0.203288i
\(149\) 4899.80i 0.220702i 0.993893 + 0.110351i \(0.0351975\pi\)
−0.993893 + 0.110351i \(0.964803\pi\)
\(150\) 1580.58 7781.47i 0.0702480 0.345843i
\(151\) 19041.4 0.835112 0.417556 0.908651i \(-0.362887\pi\)
0.417556 + 0.908651i \(0.362887\pi\)
\(152\) 7926.22i 0.343067i
\(153\) −18163.9 7696.50i −0.775938 0.328784i
\(154\) 18904.0 0.797099
\(155\) −35836.7 −1.49164
\(156\) −348.725 + 1716.84i −0.0143296 + 0.0705472i
\(157\) 27695.6i 1.12360i 0.827274 + 0.561799i \(0.189891\pi\)
−0.827274 + 0.561799i \(0.810109\pi\)
\(158\) 15358.8i 0.615239i
\(159\) 25607.7 + 5201.47i 1.01292 + 0.205746i
\(160\) 31716.5i 1.23892i
\(161\) 10918.5i 0.421223i
\(162\) 6215.94 + 6420.42i 0.236852 + 0.244643i
\(163\) 41717.9i 1.57017i 0.619386 + 0.785086i \(0.287381\pi\)
−0.619386 + 0.785086i \(0.712619\pi\)
\(164\) 38777.2 1.44175
\(165\) 57541.8 + 11687.9i 2.11356 + 0.429309i
\(166\) 361.686i 0.0131255i
\(167\) 34720.9i 1.24497i 0.782633 + 0.622484i \(0.213876\pi\)
−0.782633 + 0.622484i \(0.786124\pi\)
\(168\) 5582.58 27484.0i 0.197796 0.973782i
\(169\) −28371.6 −0.993369
\(170\) 11834.4i 0.409495i
\(171\) −6100.58 + 14397.5i −0.208631 + 0.492375i
\(172\) 20123.5i 0.680214i
\(173\) 29747.3i 0.993928i −0.867771 0.496964i \(-0.834448\pi\)
0.867771 0.496964i \(-0.165552\pi\)
\(174\) 9674.61 + 3561.63i 0.319547 + 0.117639i
\(175\) −49160.3 −1.60524
\(176\) 31160.2 1.00595
\(177\) −42357.2 8603.64i −1.35201 0.274622i
\(178\) −1489.83 −0.0470214
\(179\) 44986.2i 1.40402i 0.712167 + 0.702010i \(0.247714\pi\)
−0.712167 + 0.702010i \(0.752286\pi\)
\(180\) 15947.0 37635.4i 0.492192 1.16159i
\(181\) 16257.7 0.496253 0.248127 0.968728i \(-0.420185\pi\)
0.248127 + 0.968728i \(0.420185\pi\)
\(182\) −1422.57 −0.0429467
\(183\) −52079.3 10578.4i −1.55512 0.315877i
\(184\) 5906.91i 0.174472i
\(185\) 11230.7 0.328145
\(186\) 12067.4 + 2451.15i 0.348810 + 0.0708506i
\(187\) 44538.0 1.27364
\(188\) −27815.3 −0.786989
\(189\) 31294.1 45626.4i 0.876069 1.27730i
\(190\) −9380.47 −0.259847
\(191\) −10450.1 −0.286452 −0.143226 0.989690i \(-0.545748\pi\)
−0.143226 + 0.989690i \(0.545748\pi\)
\(192\) 2714.82 13365.5i 0.0736441 0.362563i
\(193\) 53264.0i 1.42995i −0.699152 0.714973i \(-0.746439\pi\)
0.699152 0.714973i \(-0.253561\pi\)
\(194\) 15288.8i 0.406229i
\(195\) −4330.15 879.543i −0.113876 0.0231307i
\(196\) −47512.1 −1.23678
\(197\) 24417.2i 0.629163i 0.949230 + 0.314581i \(0.101864\pi\)
−0.949230 + 0.314581i \(0.898136\pi\)
\(198\) −18576.8 7871.45i −0.473850 0.200782i
\(199\) 56691.7 1.43157 0.715787 0.698319i \(-0.246068\pi\)
0.715787 + 0.698319i \(0.246068\pi\)
\(200\) 26595.7 0.664892
\(201\) −240.647 + 1184.75i −0.00595647 + 0.0293247i
\(202\) 6369.87 0.156109
\(203\) 9686.49 63088.0i 0.235058 1.53093i
\(204\) 6171.59 30383.8i 0.148298 0.730099i
\(205\) 97802.5i 2.32725i
\(206\) 7244.29 0.170711
\(207\) −4546.37 + 10729.6i −0.106102 + 0.250404i
\(208\) −2344.87 −0.0541992
\(209\) 35302.8i 0.808195i
\(210\) 32526.6 + 6606.83i 0.737564 + 0.149815i
\(211\) 38887.0i 0.873453i −0.899594 0.436726i \(-0.856138\pi\)
0.899594 0.436726i \(-0.143862\pi\)
\(212\) 41068.2i 0.913763i
\(213\) 54137.2 + 10996.4i 1.19326 + 0.242377i
\(214\) 11321.1i 0.247207i
\(215\) 50754.7 1.09799
\(216\) −16930.1 + 24683.8i −0.362870 + 0.529060i
\(217\) 76237.4i 1.61901i
\(218\) −26780.1 −0.563507
\(219\) −33981.3 6902.32i −0.708520 0.143915i
\(220\) 92282.0i 1.90665i
\(221\) −3351.58 −0.0686223
\(222\) −3781.77 768.157i −0.0767343 0.0155863i
\(223\) −2744.25 −0.0551841 −0.0275921 0.999619i \(-0.508784\pi\)
−0.0275921 + 0.999619i \(0.508784\pi\)
\(224\) 67472.1 1.34471
\(225\) 48309.5 + 20469.9i 0.954262 + 0.404344i
\(226\) 20335.2 0.398137
\(227\) 4950.36i 0.0960694i −0.998846 0.0480347i \(-0.984704\pi\)
0.998846 0.0480347i \(-0.0152958\pi\)
\(228\) −24083.5 4891.87i −0.463287 0.0941034i
\(229\) 55790.9i 1.06388i 0.846782 + 0.531940i \(0.178537\pi\)
−0.846782 + 0.531940i \(0.821463\pi\)
\(230\) −6990.66 −0.132149
\(231\) −24864.4 + 122412.i −0.465965 + 2.29403i
\(232\) −5240.38 + 34130.5i −0.0973614 + 0.634113i
\(233\) 102717.i 1.89204i 0.324106 + 0.946021i \(0.394936\pi\)
−0.324106 + 0.946021i \(0.605064\pi\)
\(234\) 1397.95 + 592.344i 0.0255305 + 0.0108179i
\(235\) 70154.9i 1.27035i
\(236\) 67930.0i 1.21966i
\(237\) −99455.2 20201.4i −1.77064 0.359655i
\(238\) 25176.0 0.444459
\(239\) 36491.8i 0.638852i −0.947611 0.319426i \(-0.896510\pi\)
0.947611 0.319426i \(-0.103490\pi\)
\(240\) 53614.8 + 10890.3i 0.930813 + 0.189068i
\(241\) 28426.5 0.489428 0.244714 0.969595i \(-0.421306\pi\)
0.244714 + 0.969595i \(0.421306\pi\)
\(242\) 25608.6 0.437276
\(243\) −49750.9 + 31806.2i −0.842536 + 0.538641i
\(244\) 83521.6i 1.40288i
\(245\) 119833.i 1.99639i
\(246\) 6689.46 32933.4i 0.110540 0.544210i
\(247\) 2656.61i 0.0435446i
\(248\) 41244.3i 0.670596i
\(249\) 2342.07 + 475.724i 0.0377748 + 0.00767285i
\(250\) 1105.26i 0.0176841i
\(251\) −100292. −1.59191 −0.795953 0.605359i \(-0.793030\pi\)
−0.795953 + 0.605359i \(0.793030\pi\)
\(252\) 80063.7 + 33924.9i 1.26077 + 0.534217i
\(253\) 26308.9i 0.411019i
\(254\) 4020.41i 0.0623164i
\(255\) 76633.0 + 15565.8i 1.17852 + 0.239381i
\(256\) 2060.42 0.0314395
\(257\) 59922.5i 0.907243i −0.891194 0.453621i \(-0.850132\pi\)
0.891194 0.453621i \(-0.149868\pi\)
\(258\) −17090.8 3471.50i −0.256758 0.0521529i
\(259\) 23891.8i 0.356163i
\(260\) 6944.43i 0.102728i
\(261\) −35788.1 + 57962.8i −0.525361 + 0.850880i
\(262\) −33181.2 −0.483382
\(263\) 24022.7 0.347304 0.173652 0.984807i \(-0.444443\pi\)
0.173652 + 0.984807i \(0.444443\pi\)
\(264\) 13451.6 66224.6i 0.193004 0.950192i
\(265\) −103581. −1.47498
\(266\) 19955.6i 0.282034i
\(267\) 1959.57 9647.29i 0.0274876 0.135326i
\(268\) −1900.03 −0.0264540
\(269\) 1092.97 0.0151045 0.00755224 0.999971i \(-0.497596\pi\)
0.00755224 + 0.999971i \(0.497596\pi\)
\(270\) −29212.6 20036.3i −0.400722 0.274846i
\(271\) 51618.0i 0.702849i 0.936216 + 0.351425i \(0.114303\pi\)
−0.936216 + 0.351425i \(0.885697\pi\)
\(272\) 41498.5 0.560912
\(273\) 1871.10 9211.75i 0.0251057 0.123600i
\(274\) −26460.6 −0.352451
\(275\) −118455. −1.56635
\(276\) −17947.9 3645.60i −0.235611 0.0478576i
\(277\) 83749.6 1.09150 0.545750 0.837948i \(-0.316245\pi\)
0.545750 + 0.837948i \(0.316245\pi\)
\(278\) 11022.3 0.142620
\(279\) −31744.5 + 74917.9i −0.407812 + 0.962448i
\(280\) 111170.i 1.41799i
\(281\) 56013.8i 0.709386i −0.934983 0.354693i \(-0.884585\pi\)
0.934983 0.354693i \(-0.115415\pi\)
\(282\) −4798.43 + 23623.5i −0.0603394 + 0.297061i
\(283\) −108561. −1.35551 −0.677753 0.735290i \(-0.737046\pi\)
−0.677753 + 0.735290i \(0.737046\pi\)
\(284\) 86822.0i 1.07645i
\(285\) 12338.1 60742.7i 0.151900 0.747832i
\(286\) −3427.77 −0.0419063
\(287\) −208060. −2.52596
\(288\) −66304.4 28094.8i −0.799388 0.338720i
\(289\) −24206.2 −0.289821
\(290\) −40392.5 6201.85i −0.480292 0.0737437i
\(291\) 99001.9 + 20109.4i 1.16912 + 0.237472i
\(292\) 54497.2i 0.639158i
\(293\) −69709.4 −0.812000 −0.406000 0.913873i \(-0.633077\pi\)
−0.406000 + 0.913873i \(0.633077\pi\)
\(294\) −8196.32 + 40351.9i −0.0948253 + 0.466842i
\(295\) 171331. 1.96875
\(296\) 12925.4i 0.147523i
\(297\) 75405.1 109940.i 0.854846 1.24636i
\(298\) 6673.79i 0.0751519i
\(299\) 1979.80i 0.0221452i
\(300\) −16414.2 + 80810.0i −0.182380 + 0.897889i
\(301\) 107973.i 1.19174i
\(302\) 25935.4 0.284367
\(303\) −8378.27 + 41247.7i −0.0912576 + 0.449277i
\(304\) 32893.5i 0.355929i
\(305\) 210655. 2.26450
\(306\) −24740.2 10483.0i −0.264217 0.111955i
\(307\) 6168.44i 0.0654484i 0.999464 + 0.0327242i \(0.0104183\pi\)
−0.999464 + 0.0327242i \(0.989582\pi\)
\(308\) −196316. −2.06945
\(309\) −9528.40 + 46910.0i −0.0997937 + 0.491302i
\(310\) −48811.5 −0.507924
\(311\) 26520.8 0.274199 0.137099 0.990557i \(-0.456222\pi\)
0.137099 + 0.990557i \(0.456222\pi\)
\(312\) −1012.26 + 4983.54i −0.0103988 + 0.0511952i
\(313\) −66317.5 −0.676923 −0.338462 0.940980i \(-0.609907\pi\)
−0.338462 + 0.940980i \(0.609907\pi\)
\(314\) 37722.9i 0.382600i
\(315\) −85564.3 + 201934.i −0.862326 + 2.03511i
\(316\) 159500.i 1.59730i
\(317\) 122227. 1.21633 0.608163 0.793812i \(-0.291907\pi\)
0.608163 + 0.793812i \(0.291907\pi\)
\(318\) 34879.1 + 7084.68i 0.344914 + 0.0700593i
\(319\) 23340.3 152015.i 0.229363 1.49384i
\(320\) 54062.1i 0.527951i
\(321\) 73309.1 + 14890.6i 0.711456 + 0.144512i
\(322\) 14871.6i 0.143432i
\(323\) 47015.5i 0.450647i
\(324\) −64552.1 66675.6i −0.614922 0.635151i
\(325\) 8914.01 0.0843930
\(326\) 56822.0i 0.534665i
\(327\) 35223.8 173413.i 0.329413 1.62176i
\(328\) 112560. 1.04626
\(329\) 149244. 1.37881
\(330\) 78375.0 + 15919.6i 0.719697 + 0.146185i
\(331\) 94844.4i 0.865677i −0.901472 0.432838i \(-0.857512\pi\)
0.901472 0.432838i \(-0.142488\pi\)
\(332\) 3756.08i 0.0340768i
\(333\) 9948.31 23478.3i 0.0897141 0.211728i
\(334\) 47291.7i 0.423928i
\(335\) 4792.19i 0.0427016i
\(336\) −23167.5 + 114058.i −0.205211 + 1.01029i
\(337\) 91228.7i 0.803289i 0.915796 + 0.401644i \(0.131561\pi\)
−0.915796 + 0.401644i \(0.868439\pi\)
\(338\) −38643.7 −0.338255
\(339\) −26746.9 + 131679.i −0.232741 + 1.14583i
\(340\) 122899.i 1.06314i
\(341\) 183699.i 1.57979i
\(342\) −8309.31 + 19610.2i −0.0710416 + 0.167660i
\(343\) 72705.0 0.617983
\(344\) 58413.4i 0.493623i
\(345\) 9194.80 45267.6i 0.0772510 0.380320i
\(346\) 40517.4i 0.338446i
\(347\) 195509.i 1.62370i −0.583864 0.811852i \(-0.698460\pi\)
0.583864 0.811852i \(-0.301540\pi\)
\(348\) −100470. 36987.2i −0.829618 0.305417i
\(349\) −159382. −1.30854 −0.654271 0.756260i \(-0.727024\pi\)
−0.654271 + 0.756260i \(0.727024\pi\)
\(350\) −66959.0 −0.546604
\(351\) −5674.40 + 8273.21i −0.0460581 + 0.0671522i
\(352\) 162579. 1.31213
\(353\) 136025.i 1.09162i 0.837910 + 0.545808i \(0.183777\pi\)
−0.837910 + 0.545808i \(0.816223\pi\)
\(354\) −57692.8 11718.6i −0.460378 0.0935125i
\(355\) −218979. −1.73759
\(356\) 15471.7 0.122078
\(357\) −33113.9 + 163025.i −0.259821 + 1.27914i
\(358\) 61273.6i 0.478087i
\(359\) −114459. −0.888095 −0.444047 0.896003i \(-0.646458\pi\)
−0.444047 + 0.896003i \(0.646458\pi\)
\(360\) 46290.2 109246.i 0.357177 0.842948i
\(361\) 93054.4 0.714040
\(362\) 22143.9 0.168981
\(363\) −33682.9 + 165827.i −0.255621 + 1.25847i
\(364\) 14773.2 0.111500
\(365\) 137451. 1.03172
\(366\) −70934.8 14408.3i −0.529538 0.107560i
\(367\) 149962.i 1.11339i 0.830716 + 0.556696i \(0.187931\pi\)
−0.830716 + 0.556696i \(0.812069\pi\)
\(368\) 24513.5i 0.181013i
\(369\) 204460. + 86634.4i 1.50160 + 0.636265i
\(370\) 15296.9 0.111738
\(371\) 220353.i 1.60092i
\(372\) −125319. 25455.0i −0.905591 0.183945i
\(373\) 172008. 1.23632 0.618161 0.786051i \(-0.287878\pi\)
0.618161 + 0.786051i \(0.287878\pi\)
\(374\) 60663.1 0.433692
\(375\) −7157.03 1453.74i −0.0508945 0.0103377i
\(376\) −80740.9 −0.571108
\(377\) −1756.41 + 11439.4i −0.0123578 + 0.0804863i
\(378\) 42624.2 62145.6i 0.298313 0.434937i
\(379\) 13988.3i 0.0973838i 0.998814 + 0.0486919i \(0.0155052\pi\)
−0.998814 + 0.0486919i \(0.984495\pi\)
\(380\) 97415.4 0.674622
\(381\) −26033.9 5288.03i −0.179345 0.0364287i
\(382\) −14233.5 −0.0975408
\(383\) 186557.i 1.27179i 0.771777 + 0.635893i \(0.219368\pi\)
−0.771777 + 0.635893i \(0.780632\pi\)
\(384\) 29180.8 143662.i 0.197895 0.974272i
\(385\) 495143.i 3.34048i
\(386\) 72548.4i 0.486915i
\(387\) 44959.0 106105.i 0.300189 0.708455i
\(388\) 158773.i 1.05466i
\(389\) 10807.0 0.0714178 0.0357089 0.999362i \(-0.488631\pi\)
0.0357089 + 0.999362i \(0.488631\pi\)
\(390\) −5897.89 1197.98i −0.0387764 0.00787630i
\(391\) 35037.7i 0.229183i
\(392\) −137916. −0.897514
\(393\) 43643.2 214863.i 0.282574 1.39116i
\(394\) 33257.5i 0.214238i
\(395\) 402286. 2.57834
\(396\) 192919. + 81744.3i 1.23022 + 0.521276i
\(397\) −147468. −0.935658 −0.467829 0.883819i \(-0.654964\pi\)
−0.467829 + 0.883819i \(0.654964\pi\)
\(398\) 77217.2 0.487470
\(399\) 129221. + 26247.5i 0.811685 + 0.164870i
\(400\) −110371. −0.689819
\(401\) 209902.i 1.30535i 0.757638 + 0.652675i \(0.226353\pi\)
−0.757638 + 0.652675i \(0.773647\pi\)
\(402\) −327.774 + 1613.69i −0.00202826 + 0.00998546i
\(403\) 13823.8i 0.0851169i
\(404\) −66150.6 −0.405295
\(405\) 168167. 162811.i 1.02525 0.992599i
\(406\) 13193.5 85929.2i 0.0800403 0.521301i
\(407\) 57568.8i 0.347535i
\(408\) 17914.6 88196.5i 0.107618 0.529824i
\(409\) 267299.i 1.59791i −0.601394 0.798953i \(-0.705388\pi\)
0.601394 0.798953i \(-0.294612\pi\)
\(410\) 133212.i 0.792458i
\(411\) 34803.6 171344.i 0.206035 1.01435i
\(412\) −75231.4 −0.443205
\(413\) 364481.i 2.13685i
\(414\) −6192.40 + 14614.2i −0.0361292 + 0.0852659i
\(415\) −9473.45 −0.0550062
\(416\) −12234.4 −0.0706962
\(417\) −14497.6 + 71374.1i −0.0833726 + 0.410458i
\(418\) 48084.3i 0.275201i
\(419\) 28344.6i 0.161451i −0.996736 0.0807257i \(-0.974276\pi\)
0.996736 0.0807257i \(-0.0257238\pi\)
\(420\) −337786. 68611.4i −1.91489 0.388954i
\(421\) 194730.i 1.09867i 0.835601 + 0.549337i \(0.185120\pi\)
−0.835601 + 0.549337i \(0.814880\pi\)
\(422\) 52966.1i 0.297422i
\(423\) −146661. 62143.9i −0.819662 0.347310i
\(424\) 119211.i 0.663106i
\(425\) −157756. −0.873390
\(426\) 73737.8 + 14977.7i 0.406322 + 0.0825326i
\(427\) 448138.i 2.45786i
\(428\) 117569.i 0.641807i
\(429\) 4508.54 22196.3i 0.0244975 0.120605i
\(430\) 69130.6 0.373881
\(431\) 139802.i 0.752593i 0.926499 + 0.376296i \(0.122803\pi\)
−0.926499 + 0.376296i \(0.877197\pi\)
\(432\) 70259.1 102437.i 0.376474 0.548895i
\(433\) 76893.1i 0.410121i 0.978749 + 0.205060i \(0.0657391\pi\)
−0.978749 + 0.205060i \(0.934261\pi\)
\(434\) 103839.i 0.551293i
\(435\) 93287.9 253402.i 0.493000 1.33916i
\(436\) 278109. 1.46299
\(437\) −27772.4 −0.145429
\(438\) −46284.4 9401.32i −0.241260 0.0490050i
\(439\) 171807. 0.891478 0.445739 0.895163i \(-0.352941\pi\)
0.445739 + 0.895163i \(0.352941\pi\)
\(440\) 267872.i 1.38363i
\(441\) −250516. 106150.i −1.28812 0.545809i
\(442\) −4565.03 −0.0233668
\(443\) −212396. −1.08228 −0.541140 0.840933i \(-0.682007\pi\)
−0.541140 + 0.840933i \(0.682007\pi\)
\(444\) 39273.4 + 7977.25i 0.199220 + 0.0404657i
\(445\) 39022.3i 0.197057i
\(446\) −3737.82 −0.0187909
\(447\) −43215.7 8778.02i −0.216285 0.0439321i
\(448\) −115009. −0.573029
\(449\) 375838. 1.86427 0.932134 0.362114i \(-0.117945\pi\)
0.932134 + 0.362114i \(0.117945\pi\)
\(450\) 65800.1 + 27881.1i 0.324939 + 0.137684i
\(451\) −501335. −2.46476
\(452\) −211180. −1.03365
\(453\) −34112.7 + 167943.i −0.166234 + 0.818399i
\(454\) 6742.65i 0.0327129i
\(455\) 37260.6i 0.179981i
\(456\) −69908.4 14199.9i −0.336202 0.0682896i
\(457\) 286801. 1.37325 0.686624 0.727013i \(-0.259092\pi\)
0.686624 + 0.727013i \(0.259092\pi\)
\(458\) 75990.2i 0.362265i
\(459\) 100423. 146416.i 0.476659 0.694964i
\(460\) 72597.5 0.343088
\(461\) −68070.5 −0.320300 −0.160150 0.987093i \(-0.551198\pi\)
−0.160150 + 0.987093i \(0.551198\pi\)
\(462\) −33866.6 + 166731.i −0.158667 + 0.781147i
\(463\) 64690.2 0.301770 0.150885 0.988551i \(-0.451788\pi\)
0.150885 + 0.988551i \(0.451788\pi\)
\(464\) 21747.4 141640.i 0.101012 0.657887i
\(465\) 64201.7 316076.i 0.296921 1.46179i
\(466\) 139906.i 0.644265i
\(467\) −224909. −1.03127 −0.515636 0.856807i \(-0.672444\pi\)
−0.515636 + 0.856807i \(0.672444\pi\)
\(468\) −14517.6 6151.44i −0.0662830 0.0280857i
\(469\) 10194.7 0.0463476
\(470\) 95554.7i 0.432570i
\(471\) −244272. 49616.8i −1.10111 0.223659i
\(472\) 197184.i 0.885089i
\(473\) 260169.i 1.16287i
\(474\) −135463. 27515.4i −0.602927 0.122467i
\(475\) 125044.i 0.554213i
\(476\) −261450. −1.15392
\(477\) −91752.8 + 216539.i −0.403258 + 0.951699i
\(478\) 49703.8i 0.217537i
\(479\) 96339.8 0.419889 0.209945 0.977713i \(-0.432672\pi\)
0.209945 + 0.977713i \(0.432672\pi\)
\(480\) 279736. + 56820.2i 1.21413 + 0.246616i
\(481\) 4332.18i 0.0187248i
\(482\) 38718.3 0.166657
\(483\) 96300.2 + 19560.6i 0.412794 + 0.0838470i
\(484\) −265943. −1.13527
\(485\) −400452. −1.70242
\(486\) −67763.3 + 43321.7i −0.286895 + 0.183414i
\(487\) −221881. −0.935539 −0.467769 0.883851i \(-0.654942\pi\)
−0.467769 + 0.883851i \(0.654942\pi\)
\(488\) 242442.i 1.01805i
\(489\) −367948. 74737.9i −1.53875 0.312552i
\(490\) 163219.i 0.679797i
\(491\) 89492.1 0.371212 0.185606 0.982624i \(-0.440575\pi\)
0.185606 + 0.982624i \(0.440575\pi\)
\(492\) −69469.5 + 342011.i −0.286988 + 1.41289i
\(493\) 31084.1 202450.i 0.127892 0.832960i
\(494\) 3618.45i 0.0148275i
\(495\) −206173. + 486573.i −0.841436 + 1.98581i
\(496\) 171162.i 0.695737i
\(497\) 465847.i 1.88595i
\(498\) 3190.03 + 647.962i 0.0128628 + 0.00261271i
\(499\) 332788. 1.33649 0.668246 0.743940i \(-0.267045\pi\)
0.668246 + 0.743940i \(0.267045\pi\)
\(500\) 11478.0i 0.0459121i
\(501\) −306235. 62202.7i −1.22005 0.247818i
\(502\) −136603. −0.542065
\(503\) −266566. −1.05358 −0.526792 0.849994i \(-0.676605\pi\)
−0.526792 + 0.849994i \(0.676605\pi\)
\(504\) 232405. + 98475.5i 0.914922 + 0.387674i
\(505\) 166843.i 0.654221i
\(506\) 35834.1i 0.139957i
\(507\) 50827.9 250235.i 0.197736 0.973490i
\(508\) 41751.6i 0.161788i
\(509\) 235686.i 0.909702i 0.890568 + 0.454851i \(0.150307\pi\)
−0.890568 + 0.454851i \(0.849693\pi\)
\(510\) 104378. + 21201.4i 0.401300 + 0.0815125i
\(511\) 292407.i 1.11981i
\(512\) 263421. 1.00487
\(513\) −116055. 79599.7i −0.440992 0.302466i
\(514\) 81617.6i 0.308928i
\(515\) 189746.i 0.715416i
\(516\) 177487. + 36051.3i 0.666602 + 0.135401i
\(517\) 359614. 1.34541
\(518\) 32541.8i 0.121278i
\(519\) 262368. + 53292.4i 0.974038 + 0.197847i
\(520\) 20157.9i 0.0745485i
\(521\) 349903.i 1.28906i 0.764580 + 0.644529i \(0.222947\pi\)
−0.764580 + 0.644529i \(0.777053\pi\)
\(522\) −48745.3 + 78948.4i −0.178892 + 0.289736i
\(523\) 195801. 0.715833 0.357917 0.933754i \(-0.383487\pi\)
0.357917 + 0.933754i \(0.383487\pi\)
\(524\) 344585. 1.25497
\(525\) 88071.0 433589.i 0.319532 1.57311i
\(526\) 32720.2 0.118262
\(527\) 244647.i 0.880883i
\(528\) −55823.6 + 274830.i −0.200240 + 0.985815i
\(529\) 259144. 0.926040
\(530\) −141082. −0.502251
\(531\) 151766. 358173.i 0.538253 1.27029i
\(532\) 207237.i 0.732224i
\(533\) 37726.6 0.132798
\(534\) 2669.03 13140.1i 0.00935991 0.0460805i
\(535\) −296528. −1.03600
\(536\) −5515.31 −0.0191973
\(537\) −396773. 80593.0i −1.37592 0.279479i
\(538\) 1488.69 0.00514327
\(539\) 614265. 2.11436
\(540\) 303371. + 208075.i 1.04037 + 0.713563i
\(541\) 82978.2i 0.283511i −0.989902 0.141755i \(-0.954725\pi\)
0.989902 0.141755i \(-0.0452746\pi\)
\(542\) 70306.4i 0.239330i
\(543\) −29125.8 + 143392.i −0.0987822 + 0.486322i
\(544\) 216519. 0.731641
\(545\) 701438.i 2.36154i
\(546\) 2548.54 12546.9i 0.00854881 0.0420873i
\(547\) −391364. −1.30800 −0.653998 0.756496i \(-0.726910\pi\)
−0.653998 + 0.756496i \(0.726910\pi\)
\(548\) 274792. 0.915045
\(549\) 186601. 440383.i 0.619111 1.46112i
\(550\) −161342. −0.533362
\(551\) −160471. 24638.6i −0.528558 0.0811545i
\(552\) −52098.3 10582.3i −0.170980 0.0347296i
\(553\) 855805.i 2.79849i
\(554\) 114071. 0.371670
\(555\) −20119.9 + 99054.0i −0.0653192 + 0.321578i
\(556\) −114465. −0.370275
\(557\) 675.650i 0.00217777i −0.999999 0.00108888i \(-0.999653\pi\)
0.999999 0.00108888i \(-0.000346602\pi\)
\(558\) −43237.7 + 102042.i −0.138866 + 0.327726i
\(559\) 19578.3i 0.0626542i
\(560\) 461352.i 1.47115i
\(561\) −79790.1 + 392821.i −0.253526 + 1.24815i
\(562\) 76293.8i 0.241555i
\(563\) −525405. −1.65759 −0.828795 0.559552i \(-0.810973\pi\)
−0.828795 + 0.559552i \(0.810973\pi\)
\(564\) 49831.3 245328.i 0.156655 0.771240i
\(565\) 532630.i 1.66851i
\(566\) −147866. −0.461568
\(567\) 346356. + 357750.i 1.07735 + 1.11279i
\(568\) 252022.i 0.781165i
\(569\) 316924. 0.978882 0.489441 0.872036i \(-0.337201\pi\)
0.489441 + 0.872036i \(0.337201\pi\)
\(570\) 16805.2 82734.7i 0.0517241 0.254647i
\(571\) 143325. 0.439592 0.219796 0.975546i \(-0.429461\pi\)
0.219796 + 0.975546i \(0.429461\pi\)
\(572\) 35597.1 0.108798
\(573\) 18721.3 92168.5i 0.0570201 0.280720i
\(574\) −283389. −0.860121
\(575\) 93187.6i 0.281853i
\(576\) 113019. + 47888.8i 0.340648 + 0.144341i
\(577\) 94297.7i 0.283237i −0.989921 0.141618i \(-0.954769\pi\)
0.989921 0.141618i \(-0.0452305\pi\)
\(578\) −32970.1 −0.0986880
\(579\) 469783. + 95422.8i 1.40133 + 0.284639i
\(580\) 419473. + 64405.7i 1.24695 + 0.191456i
\(581\) 20153.4i 0.0597029i
\(582\) 134846. + 27390.0i 0.398099 + 0.0808623i
\(583\) 530954.i 1.56214i
\(584\) 158192.i 0.463829i
\(585\) 15515.0 36615.7i 0.0453355 0.106993i
\(586\) −94947.9 −0.276497
\(587\) 447749.i 1.29945i −0.760170 0.649724i \(-0.774885\pi\)
0.760170 0.649724i \(-0.225115\pi\)
\(588\) 85118.1 419051.i 0.246188 1.21203i
\(589\) −193918. −0.558968
\(590\) 233361. 0.670386
\(591\) −215357. 43743.5i −0.616572 0.125239i
\(592\) 53640.0i 0.153054i
\(593\) 31495.2i 0.0895644i 0.998997 + 0.0447822i \(0.0142594\pi\)
−0.998997 + 0.0447822i \(0.985741\pi\)
\(594\) 102706. 149744.i 0.291087 0.424401i
\(595\) 659421.i 1.86264i
\(596\) 69306.8i 0.195112i
\(597\) −101564. + 500015.i −0.284963 + 1.40293i
\(598\) 2696.60i 0.00754073i
\(599\) 112532. 0.313632 0.156816 0.987628i \(-0.449877\pi\)
0.156816 + 0.987628i \(0.449877\pi\)
\(600\) −47646.3 + 234571.i −0.132351 + 0.651586i
\(601\) 201583.i 0.558092i 0.960278 + 0.279046i \(0.0900182\pi\)
−0.960278 + 0.279046i \(0.909982\pi\)
\(602\) 147065.i 0.405805i
\(603\) −10018.2 4244.97i −0.0275522 0.0116745i
\(604\) −269337. −0.738281
\(605\) 670753.i 1.83253i
\(606\) −11411.6 + 56181.5i −0.0310744 + 0.152985i
\(607\) 221596.i 0.601429i −0.953714 0.300714i \(-0.902775\pi\)
0.953714 0.300714i \(-0.0972251\pi\)
\(608\) 171622.i 0.464266i
\(609\) 539076. + 198456.i 1.45350 + 0.535094i
\(610\) 286924. 0.771093
\(611\) −27061.7 −0.0724891
\(612\) 256925. + 108865.i 0.685969 + 0.290661i
\(613\) −213080. −0.567049 −0.283525 0.958965i \(-0.591504\pi\)
−0.283525 + 0.958965i \(0.591504\pi\)
\(614\) 8401.75i 0.0222860i
\(615\) −862607. 175214.i −2.28067 0.463252i
\(616\) −569857. −1.50177
\(617\) 224424. 0.589522 0.294761 0.955571i \(-0.404760\pi\)
0.294761 + 0.955571i \(0.404760\pi\)
\(618\) −12978.2 + 63893.9i −0.0339811 + 0.167295i
\(619\) 124945.i 0.326091i 0.986619 + 0.163045i \(0.0521317\pi\)
−0.986619 + 0.163045i \(0.947868\pi\)
\(620\) 506904. 1.31869
\(621\) −86488.7 59320.6i −0.224273 0.153823i
\(622\) 36122.7 0.0933683
\(623\) −83014.2 −0.213883
\(624\) 4200.85 20681.5i 0.0107887 0.0531145i
\(625\) −375892. −0.962282
\(626\) −90328.0 −0.230501
\(627\) 311367. + 63245.1i 0.792022 + 0.160876i
\(628\) 391749.i 0.993318i
\(629\) 76669.0i 0.193784i
\(630\) −116543. + 275045.i −0.293633 + 0.692983i
\(631\) 541414. 1.35979 0.679893 0.733312i \(-0.262026\pi\)
0.679893 + 0.733312i \(0.262026\pi\)
\(632\) 462989.i 1.15914i
\(633\) 342979. + 69666.2i 0.855973 + 0.173866i
\(634\) 166480. 0.414175
\(635\) 105304. 0.261156
\(636\) −362217. 73573.8i −0.895477 0.181890i
\(637\) −46224.8 −0.113919
\(638\) 31790.7 207052.i 0.0781013 0.508672i
\(639\) −193974. + 457784.i −0.475053 + 1.12114i
\(640\) 581099.i 1.41870i
\(641\) −350348. −0.852674 −0.426337 0.904564i \(-0.640196\pi\)
−0.426337 + 0.904564i \(0.640196\pi\)
\(642\) 99850.9 + 20281.8i 0.242260 + 0.0492081i
\(643\) −20695.6 −0.0500560 −0.0250280 0.999687i \(-0.507967\pi\)
−0.0250280 + 0.999687i \(0.507967\pi\)
\(644\) 154440.i 0.372383i
\(645\) −90927.3 + 447651.i −0.218562 + 1.07602i
\(646\) 64037.6i 0.153451i
\(647\) 102590.i 0.245073i −0.992464 0.122537i \(-0.960897\pi\)
0.992464 0.122537i \(-0.0391029\pi\)
\(648\) −187378. 193542.i −0.446241 0.460921i
\(649\) 878240.i 2.08509i
\(650\) 12141.3 0.0287369
\(651\) 672405. + 136580.i 1.58661 + 0.322273i
\(652\) 590092.i 1.38811i
\(653\) −125065. −0.293298 −0.146649 0.989189i \(-0.546849\pi\)
−0.146649 + 0.989189i \(0.546849\pi\)
\(654\) 47976.7 236198.i 0.112170 0.552230i
\(655\) 869099.i 2.02575i
\(656\) −467122. −1.08548
\(657\) 121755. 287346.i 0.282070 0.665694i
\(658\) 203278. 0.469504
\(659\) −68769.7 −0.158353 −0.0791765 0.996861i \(-0.525229\pi\)
−0.0791765 + 0.996861i \(0.525229\pi\)
\(660\) −813918. 165324.i −1.86850 0.379531i
\(661\) 394976. 0.903998 0.451999 0.892018i \(-0.350711\pi\)
0.451999 + 0.892018i \(0.350711\pi\)
\(662\) 129183.i 0.294774i
\(663\) 6004.38 29560.6i 0.0136597 0.0672491i
\(664\) 10902.9i 0.0247291i
\(665\) −522686. −1.18195
\(666\) 13550.1 31978.7i 0.0305488 0.0720961i
\(667\) −119589. 18361.6i −0.268806 0.0412723i
\(668\) 491120.i 1.10061i
\(669\) 4916.34 24204.0i 0.0109847 0.0540798i
\(670\) 6527.21i 0.0145405i
\(671\) 1.07982e6i 2.39831i
\(672\) −120877. + 595097.i −0.267673 + 1.31780i
\(673\) 474542. 1.04772 0.523860 0.851805i \(-0.324492\pi\)
0.523860 + 0.851805i \(0.324492\pi\)
\(674\) 124258.i 0.273530i
\(675\) −267089. + 389413.i −0.586204 + 0.854679i
\(676\) 401311. 0.878189
\(677\) −472531. −1.03099 −0.515493 0.856894i \(-0.672391\pi\)
−0.515493 + 0.856894i \(0.672391\pi\)
\(678\) −36430.7 + 179354.i −0.0792515 + 0.390169i
\(679\) 851903.i 1.84778i
\(680\) 356746.i 0.771509i
\(681\) 43661.6 + 8868.59i 0.0941469 + 0.0191232i
\(682\) 250208.i 0.537938i
\(683\) 230478.i 0.494069i 0.969007 + 0.247035i \(0.0794561\pi\)
−0.969007 + 0.247035i \(0.920544\pi\)
\(684\) 86291.5 203650.i 0.184440 0.435284i
\(685\) 693070.i 1.47705i
\(686\) 99028.1 0.210431
\(687\) −492070. 99949.8i −1.04259 0.211772i
\(688\) 242413.i 0.512129i
\(689\) 39955.5i 0.0841663i
\(690\) 12523.8 61656.9i 0.0263050 0.129504i
\(691\) −185295. −0.388067 −0.194034 0.980995i \(-0.562157\pi\)
−0.194034 + 0.980995i \(0.562157\pi\)
\(692\) 420770.i 0.878683i
\(693\) −1.03511e6 438602.i −2.15537 0.913281i
\(694\) 266293.i 0.552893i
\(695\) 288701.i 0.597693i
\(696\) −291639. 107365.i −0.602043 0.221637i
\(697\) −667668. −1.37434
\(698\) −217086. −0.445576
\(699\) −905953. 184018.i −1.85418 0.376622i
\(700\) 695364. 1.41911
\(701\) 536002.i 1.09076i −0.838188 0.545381i \(-0.816385\pi\)
0.838188 0.545381i \(-0.183615\pi\)
\(702\) −7728.84 + 11268.6i −0.0156834 + 0.0228662i
\(703\) 60771.2 0.122967
\(704\) −277122. −0.559147
\(705\) 618758. + 125683.i 1.24492 + 0.252870i
\(706\) 185274.i 0.371710i
\(707\) 354933. 0.710081
\(708\) 599135. + 121697.i 1.19525 + 0.242780i
\(709\) −236313. −0.470106 −0.235053 0.971983i \(-0.575526\pi\)
−0.235053 + 0.971983i \(0.575526\pi\)
\(710\) −298262. −0.591672
\(711\) 356349. 840993.i 0.704915 1.66362i
\(712\) 44910.6 0.0885908
\(713\) −144514. −0.284271
\(714\) −45102.9 + 222049.i −0.0884724 + 0.435565i
\(715\) 89781.8i 0.175621i
\(716\) 636321.i 1.24122i
\(717\) 321854. + 65375.3i 0.626067 + 0.127167i
\(718\) −155899. −0.302408
\(719\) 711787.i 1.37687i −0.725299 0.688434i \(-0.758299\pi\)
0.725299 0.688434i \(-0.241701\pi\)
\(720\) −192103. + 453367.i −0.370568 + 0.874551i
\(721\) 403657. 0.776501
\(722\) 126745. 0.243140
\(723\) −50926.1 + 250718.i −0.0974236 + 0.479633i
\(724\) −229963. −0.438713
\(725\) −82672.5 + 538444.i −0.157284 + 1.02439i
\(726\) −45877.9 + 225865.i −0.0870424 + 0.428525i
\(727\) 61413.5i 0.116197i 0.998311 + 0.0580985i \(0.0185038\pi\)
−0.998311 + 0.0580985i \(0.981496\pi\)
\(728\) 42883.0 0.0809138
\(729\) −191398. 495778.i −0.360150 0.932895i
\(730\) 187215. 0.351314
\(731\) 346487.i 0.648414i
\(732\) 736652. + 149629.i 1.37480 + 0.279251i
\(733\) 347280.i 0.646355i 0.946338 + 0.323178i \(0.104751\pi\)
−0.946338 + 0.323178i \(0.895249\pi\)
\(734\) 204256.i 0.379125i
\(735\) 1.05692e6 + 214682.i 1.95644 + 0.397394i
\(736\) 127899.i 0.236109i
\(737\) 24564.7 0.0452249
\(738\) 278485. + 118001.i 0.511315 + 0.216657i
\(739\) 68601.3i 0.125616i −0.998026 0.0628078i \(-0.979994\pi\)
0.998026 0.0628078i \(-0.0200055\pi\)
\(740\) −158857. −0.290096
\(741\) −23431.0 4759.33i −0.0426732 0.00866782i
\(742\) 300132.i 0.545136i
\(743\) −358973. −0.650255 −0.325127 0.945670i \(-0.605407\pi\)
−0.325127 + 0.945670i \(0.605407\pi\)
\(744\) −363770. 73889.4i −0.657176 0.133486i
\(745\) 174803. 0.314947
\(746\) 234285. 0.420984
\(747\) −8391.67 + 19804.6i −0.0150386 + 0.0354915i
\(748\) −629982. −1.12596
\(749\) 630819.i 1.12445i
\(750\) −9748.26 1980.08i −0.0173302 0.00352014i
\(751\) 689652.i 1.22278i −0.791328 0.611392i \(-0.790610\pi\)
0.791328 0.611392i \(-0.209390\pi\)
\(752\) 335072. 0.592519
\(753\) 179673. 884562.i 0.316879 1.56005i
\(754\) −2392.32 + 15581.1i −0.00420800 + 0.0274067i
\(755\) 679312.i 1.19172i
\(756\) −442649. + 645377.i −0.774490 + 1.12920i
\(757\) 163123.i 0.284657i −0.989819 0.142329i \(-0.954541\pi\)
0.989819 0.142329i \(-0.0454590\pi\)
\(758\) 19052.8i 0.0331605i
\(759\) 232042. + 47132.5i 0.402794 + 0.0818158i
\(760\) 282772. 0.489564
\(761\) 393303.i 0.679139i 0.940581 + 0.339569i \(0.110281\pi\)
−0.940581 + 0.339569i \(0.889719\pi\)
\(762\) −35459.6 7202.58i −0.0610694 0.0124045i
\(763\) −1.49221e6 −2.56318
\(764\) 147814. 0.253238
\(765\) −274577. + 648009.i −0.469182 + 1.10728i
\(766\) 254101.i 0.433060i
\(767\) 66089.5i 0.112342i
\(768\) −3691.25 + 18172.7i −0.00625823 + 0.0308103i
\(769\) 486149.i 0.822085i 0.911616 + 0.411042i \(0.134835\pi\)
−0.911616 + 0.411042i \(0.865165\pi\)
\(770\) 674411.i 1.13748i
\(771\) 528510. + 107351.i 0.889087 + 0.180592i
\(772\) 753410.i 1.26414i
\(773\) −420711. −0.704085 −0.352042 0.935984i \(-0.614513\pi\)
−0.352042 + 0.935984i \(0.614513\pi\)
\(774\) 61236.6 144520.i 0.102218 0.241238i
\(775\) 650672.i 1.08332i
\(776\) 460879.i 0.765355i
\(777\) −210723. 42802.2i −0.349035 0.0708964i
\(778\) 14719.7 0.0243187
\(779\) 529223.i 0.872095i
\(780\) 61249.1 + 12441.0i 0.100672 + 0.0204487i
\(781\) 1.12249e6i 1.84026i
\(782\) 47723.2i 0.0780397i
\(783\) −447111. 419488.i −0.729276 0.684220i
\(784\) 572345. 0.931163
\(785\) 988055. 1.60340
\(786\) 59444.4 292655.i 0.0962201 0.473708i
\(787\) −387504. −0.625643 −0.312822 0.949812i \(-0.601274\pi\)
−0.312822 + 0.949812i \(0.601274\pi\)
\(788\) 345377.i 0.556212i
\(789\) −43036.7 + 211877.i −0.0691330 + 0.340354i
\(790\) 547935. 0.877960
\(791\) 1.13309e6 1.81097
\(792\) 559995. + 237283.i 0.892758 + 0.378283i
\(793\) 81258.8i 0.129218i
\(794\) −200859. −0.318604
\(795\) 185565. 913571.i 0.293605 1.44547i
\(796\) −801894. −1.26558
\(797\) −649072. −1.02182 −0.510912 0.859633i \(-0.670692\pi\)
−0.510912 + 0.859633i \(0.670692\pi\)
\(798\) 176006. + 35750.5i 0.276389 + 0.0561405i
\(799\) 478926. 0.750197
\(800\) −575862. −0.899785
\(801\) 81577.5 + 34566.3i 0.127147 + 0.0538751i
\(802\) 285897.i 0.444489i
\(803\) 704573.i 1.09269i
\(804\) 3403.91 16758.1i 0.00526582 0.0259246i
\(805\) −389524. −0.601095
\(806\) 18828.7i 0.0289834i
\(807\) −1958.07 + 9639.92i −0.00300664 + 0.0148022i
\(808\) −192018. −0.294117
\(809\) −285520. −0.436254 −0.218127 0.975920i \(-0.569995\pi\)
−0.218127 + 0.975920i \(0.569995\pi\)
\(810\) 229052. 221757.i 0.349112 0.337993i
\(811\) −206731. −0.314314 −0.157157 0.987574i \(-0.550233\pi\)
−0.157157 + 0.987574i \(0.550233\pi\)
\(812\) −137014. + 892368.i −0.207803 + 1.35342i
\(813\) −455265. 92473.9i −0.688784 0.139906i
\(814\) 78411.7i 0.118340i
\(815\) 1.48831e6 2.24067
\(816\) −74344.8 + 366012.i −0.111653 + 0.549687i
\(817\) 274641. 0.411454
\(818\) 364076.i 0.544108i
\(819\) 77894.5 + 33005.8i 0.116129 + 0.0492065i
\(820\) 1.38340e6i 2.05740i
\(821\) 542980.i 0.805559i 0.915297 + 0.402780i \(0.131956\pi\)
−0.915297 + 0.402780i \(0.868044\pi\)
\(822\) 47404.4 233380.i 0.0701576 0.345398i
\(823\) 336410.i 0.496672i −0.968674 0.248336i \(-0.920116\pi\)
0.968674 0.248336i \(-0.0798837\pi\)
\(824\) −218378. −0.321628
\(825\) 212213. 1.04476e6i 0.311791 1.53500i
\(826\) 496442.i 0.727626i
\(827\) 795389. 1.16297 0.581485 0.813557i \(-0.302472\pi\)
0.581485 + 0.813557i \(0.302472\pi\)
\(828\) 64307.6 151768.i 0.0937997 0.221370i
\(829\) 408766.i 0.594793i −0.954754 0.297397i \(-0.903882\pi\)
0.954754 0.297397i \(-0.0961184\pi\)
\(830\) −12903.3 −0.0187304
\(831\) −150038. + 738663.i −0.217270 + 1.06966i
\(832\) 20854.1 0.0301262
\(833\) 818066. 1.17896
\(834\) −19746.5 + 97215.3i −0.0283895 + 0.139766i
\(835\) 1.23869e6 1.77660
\(836\) 499351.i 0.714486i
\(837\) −603898. 414199.i −0.862010 0.591233i
\(838\) 38606.8i 0.0549764i
\(839\) 325659. 0.462635 0.231318 0.972878i \(-0.425696\pi\)
0.231318 + 0.972878i \(0.425696\pi\)
\(840\) −980508. 199162.i −1.38961 0.282259i
\(841\) −674702. 212189.i −0.953937 0.300006i
\(842\) 265233.i 0.374113i
\(843\) 494036. + 100349.i 0.695190 + 0.141208i
\(844\) 550049.i 0.772176i
\(845\) 1.01217e6i 1.41756i
\(846\) −199760. 84643.3i −0.279106 0.118264i
\(847\) 1.42693e6 1.98900
\(848\) 494719.i 0.687967i
\(849\) 194488. 957497.i 0.269822 1.32838i
\(850\) −214872. −0.297401
\(851\) 45288.9 0.0625363
\(852\) −765761. 155542.i −1.05491 0.214274i
\(853\) 660217.i 0.907378i −0.891160 0.453689i \(-0.850108\pi\)
0.891160 0.453689i \(-0.149892\pi\)
\(854\) 610388.i 0.836932i
\(855\) 513640. + 217642.i 0.702630 + 0.297721i
\(856\) 341272.i 0.465751i
\(857\) 158040.i 0.215182i 0.994195 + 0.107591i \(0.0343137\pi\)
−0.994195 + 0.107591i \(0.965686\pi\)
\(858\) 6140.87 30232.6i 0.00834171 0.0410677i
\(859\) 322395.i 0.436919i 0.975846 + 0.218460i \(0.0701032\pi\)
−0.975846 + 0.218460i \(0.929897\pi\)
\(860\) −717916. −0.970681
\(861\) 372741. 1.83507e6i 0.502807 2.47541i
\(862\) 190418.i 0.256268i
\(863\) 682045.i 0.915781i −0.889009 0.457891i \(-0.848605\pi\)
0.889009 0.457891i \(-0.151395\pi\)
\(864\) 366578. 534466.i 0.491064 0.715966i
\(865\) −1.06125e6 −1.41836
\(866\) 104733.i 0.139652i
\(867\) 43365.5 213496.i 0.0576907 0.284021i
\(868\) 1.07836e6i 1.43128i
\(869\) 2.06212e6i 2.73070i
\(870\) 127063. 345147.i 0.167873 0.456001i
\(871\) −1848.55 −0.00243666
\(872\) 807281. 1.06168
\(873\) −354725. + 837160.i −0.465439 + 1.09845i
\(874\) −37827.5 −0.0495204
\(875\) 61585.7i 0.0804385i
\(876\) 480659. + 97632.0i 0.626367 + 0.127228i
\(877\) −142648. −0.185466 −0.0927332 0.995691i \(-0.529560\pi\)
−0.0927332 + 0.995691i \(0.529560\pi\)
\(878\) 234010. 0.303560
\(879\) 124885. 614830.i 0.161634 0.795751i
\(880\) 1.11166e6i 1.43551i
\(881\) 651206. 0.839009 0.419505 0.907753i \(-0.362204\pi\)
0.419505 + 0.907753i \(0.362204\pi\)
\(882\) −341216. 144581.i −0.438624 0.185855i
\(883\) 204565. 0.262367 0.131183 0.991358i \(-0.458122\pi\)
0.131183 + 0.991358i \(0.458122\pi\)
\(884\) 47407.5 0.0606656
\(885\) −306940. + 1.51112e6i −0.391892 + 1.92935i
\(886\) −289295. −0.368531
\(887\) 387335. 0.492311 0.246156 0.969230i \(-0.420833\pi\)
0.246156 + 0.969230i \(0.420833\pi\)
\(888\) 114001. + 23155.9i 0.144571 + 0.0293654i
\(889\) 224020.i 0.283454i
\(890\) 53150.4i 0.0671007i
\(891\) 834569. + 862023.i 1.05125 + 1.08583i
\(892\) 38816.9 0.0487856
\(893\) 379618.i 0.476040i
\(894\) −58862.1 11956.1i −0.0736480 0.0149595i
\(895\) 1.60491e6 2.00357
\(896\) −1.23620e6 −1.53983
\(897\) −17461.7 3546.83i −0.0217020 0.00440814i
\(898\) 511912. 0.634808
\(899\) −835014. 128208.i −1.03318 0.158633i
\(900\) −683329. 289543.i −0.843616 0.357460i
\(901\) 707115.i 0.871044i
\(902\) −682845. −0.839285
\(903\) −952312. 193435.i −1.16789 0.237224i
\(904\) −613001. −0.750109
\(905\) 580004.i 0.708164i
\(906\) −46463.3 + 228747.i −0.0566049 + 0.278676i
\(907\) 470466.i 0.571892i 0.958246 + 0.285946i \(0.0923077\pi\)
−0.958246 + 0.285946i \(0.907692\pi\)
\(908\) 70021.9i 0.0849302i
\(909\) −348790. 147791.i −0.422121 0.178863i
\(910\) 50750.9i 0.0612859i
\(911\) 1.62568e6 1.95883 0.979417 0.201848i \(-0.0646948\pi\)
0.979417 + 0.201848i \(0.0646948\pi\)
\(912\) 290117. + 58928.9i 0.348806 + 0.0708499i
\(913\) 48560.9i 0.0582566i
\(914\) 390639. 0.467609
\(915\) −377390. + 1.85796e6i −0.450763 + 2.21919i
\(916\) 789152.i 0.940524i
\(917\) −1.84888e6 −2.19872
\(918\) 136782. 199426.i 0.162309 0.236644i
\(919\) 729069. 0.863253 0.431626 0.902053i \(-0.357940\pi\)
0.431626 + 0.902053i \(0.357940\pi\)
\(920\) 210732. 0.248975
\(921\) −54405.0 11050.8i −0.0641386 0.0130279i
\(922\) −92715.6 −0.109066
\(923\) 84469.7i 0.0991511i
\(924\) 351702. 1.73149e6i 0.411937 2.02804i
\(925\) 203912.i 0.238319i
\(926\) 88111.5 0.102757
\(927\) −396671. 168079.i −0.461605 0.195593i
\(928\) 113467. 739010.i 0.131757 0.858133i
\(929\) 583266.i 0.675827i 0.941177 + 0.337914i \(0.109721\pi\)
−0.941177 + 0.337914i \(0.890279\pi\)
\(930\) 87446.1 430512.i 0.101105 0.497760i
\(931\) 648435.i 0.748113i
\(932\) 1.45291e6i 1.67266i
\(933\) −47512.1 + 233910.i −0.0545809 + 0.268711i
\(934\) −306338. −0.351162
\(935\) 1.58892e6i 1.81752i
\(936\) −42140.9 17856.1i −0.0481007 0.0203814i
\(937\) −1.13702e6 −1.29506 −0.647529 0.762041i \(-0.724198\pi\)
−0.647529 + 0.762041i \(0.724198\pi\)
\(938\) 13885.7 0.0157820
\(939\) 118808. 584913.i 0.134746 0.663377i
\(940\) 992327.i 1.12305i
\(941\) 581978.i 0.657245i −0.944461 0.328623i \(-0.893416\pi\)
0.944461 0.328623i \(-0.106584\pi\)
\(942\) −332712. 67580.7i −0.374944 0.0761589i
\(943\) 394396.i 0.443516i
\(944\) 818305.i 0.918271i
\(945\) −1.62775e6 1.11643e6i −1.82273 1.25017i
\(946\) 354363.i 0.395974i
\(947\) −400856. −0.446981 −0.223490 0.974706i \(-0.571745\pi\)
−0.223490 + 0.974706i \(0.571745\pi\)
\(948\) 1.40678e6 + 285746.i 1.56534 + 0.317953i
\(949\) 53020.7i 0.0588726i
\(950\) 170317.i 0.188717i
\(951\) −218971. + 1.07803e6i −0.242117 + 1.19199i
\(952\) −758924. −0.837384
\(953\) 305454.i 0.336326i 0.985759 + 0.168163i \(0.0537834\pi\)
−0.985759 + 0.168163i \(0.946217\pi\)
\(954\) −124972. + 294938.i −0.137315 + 0.324066i
\(955\) 372812.i 0.408774i
\(956\) 516170.i 0.564777i
\(957\) 1.29894e6 + 478194.i 1.41829 + 0.522131i
\(958\) 131220. 0.142978
\(959\) −1.47440e6 −1.60317
\(960\) −476822. 96852.6i −0.517385 0.105092i
\(961\) −85534.7 −0.0926180
\(962\) 5900.66i 0.00637603i
\(963\) −262667. + 619902.i −0.283239 + 0.668452i
\(964\) −402087. −0.432679
\(965\) −1.90022e6 −2.04056
\(966\) 131166. + 26642.6i 0.140562 + 0.0285510i
\(967\) 125843.i 0.134578i 0.997734 + 0.0672891i \(0.0214350\pi\)
−0.997734 + 0.0672891i \(0.978565\pi\)
\(968\) −771967. −0.823849
\(969\) 414672. + 84228.6i 0.441628 + 0.0897040i
\(970\) −545437. −0.579697
\(971\) −873471. −0.926424 −0.463212 0.886247i \(-0.653303\pi\)
−0.463212 + 0.886247i \(0.653303\pi\)
\(972\) 703717. 449893.i 0.744844 0.476186i
\(973\) 614168. 0.648727
\(974\) −302213. −0.318563
\(975\) −15969.5 + 78620.6i −0.0167989 + 0.0827041i
\(976\) 1.00613e6i 1.05622i
\(977\) 557751.i 0.584321i 0.956369 + 0.292160i \(0.0943741\pi\)
−0.956369 + 0.292160i \(0.905626\pi\)
\(978\) −501164. 101797.i −0.523965 0.106428i
\(979\) −200028. −0.208702
\(980\) 1.69502e6i 1.76491i
\(981\) 1.46638e6 + 621341.i 1.52373 + 0.645642i
\(982\) 121893. 0.126403
\(983\) 794671. 0.822395 0.411197 0.911546i \(-0.365111\pi\)
0.411197 + 0.911546i \(0.365111\pi\)
\(984\) −201653. + 992771.i −0.208264 + 1.02532i
\(985\) 871097. 0.897830
\(986\) 42338.2 275748.i 0.0435490 0.283634i
\(987\) −267372. + 1.31632e6i −0.274461 + 1.35122i
\(988\) 37577.3i 0.0384956i
\(989\) 204672. 0.209251
\(990\) −280818. + 662739.i −0.286520 + 0.676195i
\(991\) 276418. 0.281462 0.140731 0.990048i \(-0.455055\pi\)
0.140731 + 0.990048i \(0.455055\pi\)
\(992\) 893041.i 0.907503i
\(993\) 836518. + 169914.i 0.848353 + 0.172318i
\(994\) 634508.i 0.642191i
\(995\) 2.02251e6i 2.04289i
\(996\) −33128.2 6729.03i −0.0333948 0.00678319i
\(997\) 1.39752e6i 1.40595i 0.711217 + 0.702973i \(0.248144\pi\)
−0.711217 + 0.702973i \(0.751856\pi\)
\(998\) 453275. 0.455094
\(999\) 189253. + 129804.i 0.189633 + 0.130064i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 87.5.d.c.86.20 yes 32
3.2 odd 2 inner 87.5.d.c.86.14 yes 32
29.28 even 2 inner 87.5.d.c.86.13 32
87.86 odd 2 inner 87.5.d.c.86.19 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
87.5.d.c.86.13 32 29.28 even 2 inner
87.5.d.c.86.14 yes 32 3.2 odd 2 inner
87.5.d.c.86.19 yes 32 87.86 odd 2 inner
87.5.d.c.86.20 yes 32 1.1 even 1 trivial