Properties

Label 87.5.d.c.86.16
Level $87$
Weight $5$
Character 87.86
Analytic conductor $8.993$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [87,5,Mod(86,87)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(87, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 5, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("87.86"); S:= CuspForms(chi, 5); N := Newforms(S);
 
Level: \( N \) \(=\) \( 87 = 3 \cdot 29 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 87.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.99318678829\)
Analytic rank: \(0\)
Dimension: \(32\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 86.16
Character \(\chi\) \(=\) 87.86
Dual form 87.5.d.c.86.15

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.630141 q^{2} +(-7.48299 + 5.00048i) q^{3} -15.6029 q^{4} +33.7696i q^{5} +(4.71534 - 3.15101i) q^{6} -48.1347 q^{7} +19.9143 q^{8} +(30.9904 - 74.8371i) q^{9} -21.2796i q^{10} +157.719 q^{11} +(116.757 - 78.0221i) q^{12} -194.493 q^{13} +30.3316 q^{14} +(-168.864 - 252.698i) q^{15} +237.098 q^{16} -111.468 q^{17} +(-19.5283 + 47.1580i) q^{18} -542.924i q^{19} -526.905i q^{20} +(360.191 - 240.697i) q^{21} -99.3854 q^{22} +419.833i q^{23} +(-149.019 + 99.5811i) q^{24} -515.387 q^{25} +122.558 q^{26} +(142.321 + 714.973i) q^{27} +751.042 q^{28} +(357.228 - 761.360i) q^{29} +(106.408 + 159.235i) q^{30} +340.678i q^{31} -468.034 q^{32} +(-1180.21 + 788.672i) q^{33} +70.2405 q^{34} -1625.49i q^{35} +(-483.540 + 1167.68i) q^{36} -1476.51i q^{37} +342.118i q^{38} +(1455.39 - 972.561i) q^{39} +672.498i q^{40} +205.263 q^{41} +(-226.971 + 151.673i) q^{42} +2137.37i q^{43} -2460.88 q^{44} +(2527.22 + 1046.53i) q^{45} -264.554i q^{46} -2204.79 q^{47} +(-1774.20 + 1185.60i) q^{48} -84.0530 q^{49} +324.767 q^{50} +(834.113 - 557.393i) q^{51} +3034.66 q^{52} -1418.53i q^{53} +(-89.6824 - 450.534i) q^{54} +5326.12i q^{55} -958.568 q^{56} +(2714.88 + 4062.69i) q^{57} +(-225.104 + 479.764i) q^{58} +44.2369i q^{59} +(2634.78 + 3942.82i) q^{60} -1309.06i q^{61} -214.675i q^{62} +(-1491.71 + 3602.26i) q^{63} -3498.64 q^{64} -6567.97i q^{65} +(743.700 - 496.975i) q^{66} -3054.68 q^{67} +1739.22 q^{68} +(-2099.37 - 3141.61i) q^{69} +1024.29i q^{70} +350.225i q^{71} +(617.151 - 1490.33i) q^{72} -10245.9i q^{73} +930.411i q^{74} +(3856.64 - 2577.19i) q^{75} +8471.19i q^{76} -7591.76 q^{77} +(-917.103 + 612.850i) q^{78} -4691.27i q^{79} +8006.71i q^{80} +(-4640.20 - 4638.46i) q^{81} -129.345 q^{82} -3227.89i q^{83} +(-5620.04 + 3755.57i) q^{84} -3764.23i q^{85} -1346.84i q^{86} +(1134.04 + 7483.56i) q^{87} +3140.87 q^{88} +12721.8 q^{89} +(-1592.51 - 659.463i) q^{90} +9361.87 q^{91} -6550.63i q^{92} +(-1703.55 - 2549.29i) q^{93} +1389.33 q^{94} +18334.3 q^{95} +(3502.29 - 2340.40i) q^{96} -14053.2i q^{97} +52.9653 q^{98} +(4887.78 - 11803.3i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 188 q^{4} - 36 q^{6} - 84 q^{7} - 452 q^{9} - 224 q^{13} - 52 q^{16} - 4216 q^{22} - 832 q^{24} - 7684 q^{25} - 396 q^{28} + 3384 q^{30} - 3308 q^{33} + 9124 q^{34} - 3680 q^{36} + 19764 q^{42} + 44 q^{45}+ \cdots + 13884 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/87\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(59\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.630141 −0.157535 −0.0787676 0.996893i \(-0.525099\pi\)
−0.0787676 + 0.996893i \(0.525099\pi\)
\(3\) −7.48299 + 5.00048i −0.831444 + 0.555609i
\(4\) −15.6029 −0.975183
\(5\) 33.7696i 1.35078i 0.737458 + 0.675392i \(0.236026\pi\)
−0.737458 + 0.675392i \(0.763974\pi\)
\(6\) 4.71534 3.15101i 0.130982 0.0875280i
\(7\) −48.1347 −0.982340 −0.491170 0.871064i \(-0.663431\pi\)
−0.491170 + 0.871064i \(0.663431\pi\)
\(8\) 19.9143 0.311161
\(9\) 30.9904 74.8371i 0.382597 0.923915i
\(10\) 21.2796i 0.212796i
\(11\) 157.719 1.30346 0.651732 0.758449i \(-0.274043\pi\)
0.651732 + 0.758449i \(0.274043\pi\)
\(12\) 116.757 78.0221i 0.810809 0.541820i
\(13\) −194.493 −1.15085 −0.575424 0.817855i \(-0.695163\pi\)
−0.575424 + 0.817855i \(0.695163\pi\)
\(14\) 30.3316 0.154753
\(15\) −168.864 252.698i −0.750508 1.12310i
\(16\) 237.098 0.926164
\(17\) −111.468 −0.385702 −0.192851 0.981228i \(-0.561773\pi\)
−0.192851 + 0.981228i \(0.561773\pi\)
\(18\) −19.5283 + 47.1580i −0.0602725 + 0.145549i
\(19\) 542.924i 1.50394i −0.659195 0.751972i \(-0.729103\pi\)
0.659195 0.751972i \(-0.270897\pi\)
\(20\) 526.905i 1.31726i
\(21\) 360.191 240.697i 0.816761 0.545797i
\(22\) −99.3854 −0.205342
\(23\) 419.833i 0.793636i 0.917897 + 0.396818i \(0.129886\pi\)
−0.917897 + 0.396818i \(0.870114\pi\)
\(24\) −149.019 + 99.5811i −0.258713 + 0.172884i
\(25\) −515.387 −0.824620
\(26\) 122.558 0.181299
\(27\) 142.321 + 714.973i 0.195228 + 0.980758i
\(28\) 751.042 0.957961
\(29\) 357.228 761.360i 0.424765 0.905303i
\(30\) 106.408 + 159.235i 0.118232 + 0.176928i
\(31\) 340.678i 0.354504i 0.984166 + 0.177252i \(0.0567207\pi\)
−0.984166 + 0.177252i \(0.943279\pi\)
\(32\) −468.034 −0.457064
\(33\) −1180.21 + 788.672i −1.08376 + 0.724217i
\(34\) 70.2405 0.0607616
\(35\) 1625.49i 1.32693i
\(36\) −483.540 + 1167.68i −0.373102 + 0.900986i
\(37\) 1476.51i 1.07853i −0.842135 0.539267i \(-0.818702\pi\)
0.842135 0.539267i \(-0.181298\pi\)
\(38\) 342.118i 0.236924i
\(39\) 1455.39 972.561i 0.956865 0.639422i
\(40\) 672.498i 0.420311i
\(41\) 205.263 0.122108 0.0610538 0.998134i \(-0.480554\pi\)
0.0610538 + 0.998134i \(0.480554\pi\)
\(42\) −226.971 + 151.673i −0.128669 + 0.0859823i
\(43\) 2137.37i 1.15596i 0.816052 + 0.577979i \(0.196158\pi\)
−0.816052 + 0.577979i \(0.803842\pi\)
\(44\) −2460.88 −1.27112
\(45\) 2527.22 + 1046.53i 1.24801 + 0.516806i
\(46\) 264.554i 0.125026i
\(47\) −2204.79 −0.998095 −0.499047 0.866575i \(-0.666317\pi\)
−0.499047 + 0.866575i \(0.666317\pi\)
\(48\) −1774.20 + 1185.60i −0.770053 + 0.514585i
\(49\) −84.0530 −0.0350075
\(50\) 324.767 0.129907
\(51\) 834.113 557.393i 0.320689 0.214299i
\(52\) 3034.66 1.12229
\(53\) 1418.53i 0.504994i −0.967598 0.252497i \(-0.918748\pi\)
0.967598 0.252497i \(-0.0812517\pi\)
\(54\) −89.6824 450.534i −0.0307553 0.154504i
\(55\) 5326.12i 1.76070i
\(56\) −958.568 −0.305666
\(57\) 2714.88 + 4062.69i 0.835605 + 1.25044i
\(58\) −225.104 + 479.764i −0.0669155 + 0.142617i
\(59\) 44.2369i 0.0127081i 0.999980 + 0.00635405i \(0.00202257\pi\)
−0.999980 + 0.00635405i \(0.997977\pi\)
\(60\) 2634.78 + 3942.82i 0.731883 + 1.09523i
\(61\) 1309.06i 0.351804i −0.984408 0.175902i \(-0.943716\pi\)
0.984408 0.175902i \(-0.0562842\pi\)
\(62\) 214.675i 0.0558468i
\(63\) −1491.71 + 3602.26i −0.375840 + 0.907599i
\(64\) −3498.64 −0.854160
\(65\) 6567.97i 1.55455i
\(66\) 743.700 496.975i 0.170730 0.114090i
\(67\) −3054.68 −0.680481 −0.340240 0.940338i \(-0.610508\pi\)
−0.340240 + 0.940338i \(0.610508\pi\)
\(68\) 1739.22 0.376130
\(69\) −2099.37 3141.61i −0.440951 0.659864i
\(70\) 1024.29i 0.209038i
\(71\) 350.225i 0.0694752i 0.999396 + 0.0347376i \(0.0110596\pi\)
−0.999396 + 0.0347376i \(0.988940\pi\)
\(72\) 617.151 1490.33i 0.119049 0.287486i
\(73\) 10245.9i 1.92267i −0.275375 0.961337i \(-0.588802\pi\)
0.275375 0.961337i \(-0.411198\pi\)
\(74\) 930.411i 0.169907i
\(75\) 3856.64 2577.19i 0.685625 0.458166i
\(76\) 8471.19i 1.46662i
\(77\) −7591.76 −1.28045
\(78\) −917.103 + 612.850i −0.150740 + 0.100731i
\(79\) 4691.27i 0.751685i −0.926683 0.375843i \(-0.877353\pi\)
0.926683 0.375843i \(-0.122647\pi\)
\(80\) 8006.71i 1.25105i
\(81\) −4640.20 4638.46i −0.707239 0.706974i
\(82\) −129.345 −0.0192363
\(83\) 3227.89i 0.468558i −0.972169 0.234279i \(-0.924727\pi\)
0.972169 0.234279i \(-0.0752729\pi\)
\(84\) −5620.04 + 3755.57i −0.796491 + 0.532252i
\(85\) 3764.23i 0.521000i
\(86\) 1346.84i 0.182104i
\(87\) 1134.04 + 7483.56i 0.149826 + 0.988712i
\(88\) 3140.87 0.405587
\(89\) 12721.8 1.60608 0.803042 0.595923i \(-0.203214\pi\)
0.803042 + 0.595923i \(0.203214\pi\)
\(90\) −1592.51 659.463i −0.196606 0.0814152i
\(91\) 9361.87 1.13052
\(92\) 6550.63i 0.773940i
\(93\) −1703.55 2549.29i −0.196965 0.294750i
\(94\) 1389.33 0.157235
\(95\) 18334.3 2.03150
\(96\) 3502.29 2340.40i 0.380023 0.253949i
\(97\) 14053.2i 1.49359i −0.665054 0.746796i \(-0.731591\pi\)
0.665054 0.746796i \(-0.268409\pi\)
\(98\) 52.9653 0.00551492
\(99\) 4887.78 11803.3i 0.498702 1.20429i
\(100\) 8041.55 0.804155
\(101\) −19596.4 −1.92102 −0.960512 0.278238i \(-0.910250\pi\)
−0.960512 + 0.278238i \(0.910250\pi\)
\(102\) −525.609 + 351.236i −0.0505199 + 0.0337597i
\(103\) −20485.3 −1.93094 −0.965470 0.260513i \(-0.916108\pi\)
−0.965470 + 0.260513i \(0.916108\pi\)
\(104\) −3873.20 −0.358099
\(105\) 8128.23 + 12163.5i 0.737255 + 1.10327i
\(106\) 893.872i 0.0795543i
\(107\) 10010.8i 0.874385i −0.899368 0.437193i \(-0.855973\pi\)
0.899368 0.437193i \(-0.144027\pi\)
\(108\) −2220.63 11155.7i −0.190383 0.956418i
\(109\) 7617.87 0.641181 0.320591 0.947218i \(-0.396119\pi\)
0.320591 + 0.947218i \(0.396119\pi\)
\(110\) 3356.21i 0.277372i
\(111\) 7383.27 + 11048.7i 0.599243 + 0.896739i
\(112\) −11412.6 −0.909808
\(113\) 1379.19 0.108011 0.0540056 0.998541i \(-0.482801\pi\)
0.0540056 + 0.998541i \(0.482801\pi\)
\(114\) −1710.76 2560.07i −0.131637 0.196989i
\(115\) −14177.6 −1.07203
\(116\) −5573.80 + 11879.4i −0.414224 + 0.882836i
\(117\) −6027.42 + 14555.3i −0.440311 + 1.06329i
\(118\) 27.8755i 0.00200197i
\(119\) 5365.47 0.378890
\(120\) −3362.82 5032.30i −0.233529 0.349465i
\(121\) 10234.4 0.699020
\(122\) 824.895i 0.0554216i
\(123\) −1535.98 + 1026.41i −0.101526 + 0.0678441i
\(124\) 5315.57i 0.345706i
\(125\) 3701.57i 0.236901i
\(126\) 939.988 2269.93i 0.0592081 0.142979i
\(127\) 13207.4i 0.818862i 0.912341 + 0.409431i \(0.134273\pi\)
−0.912341 + 0.409431i \(0.865727\pi\)
\(128\) 9693.18 0.591625
\(129\) −10687.9 15993.9i −0.642261 0.961114i
\(130\) 4138.75i 0.244896i
\(131\) −10148.6 −0.591377 −0.295688 0.955284i \(-0.595549\pi\)
−0.295688 + 0.955284i \(0.595549\pi\)
\(132\) 18414.8 12305.6i 1.05686 0.706244i
\(133\) 26133.5i 1.47738i
\(134\) 1924.88 0.107200
\(135\) −24144.4 + 4806.13i −1.32479 + 0.263711i
\(136\) −2219.80 −0.120015
\(137\) 29238.4 1.55780 0.778902 0.627146i \(-0.215777\pi\)
0.778902 + 0.627146i \(0.215777\pi\)
\(138\) 1322.90 + 1979.66i 0.0694654 + 0.103952i
\(139\) −21851.0 −1.13095 −0.565473 0.824767i \(-0.691306\pi\)
−0.565473 + 0.824767i \(0.691306\pi\)
\(140\) 25362.4i 1.29400i
\(141\) 16498.4 11025.0i 0.829859 0.554551i
\(142\) 220.691i 0.0109448i
\(143\) −30675.3 −1.50009
\(144\) 7347.75 17743.7i 0.354347 0.855697i
\(145\) 25710.8 + 12063.4i 1.22287 + 0.573767i
\(146\) 6456.38i 0.302889i
\(147\) 628.968 420.306i 0.0291068 0.0194505i
\(148\) 23037.9i 1.05177i
\(149\) 37875.8i 1.70604i 0.521876 + 0.853021i \(0.325232\pi\)
−0.521876 + 0.853021i \(0.674768\pi\)
\(150\) −2430.23 + 1623.99i −0.108010 + 0.0721774i
\(151\) 33435.0 1.46638 0.733191 0.680022i \(-0.238030\pi\)
0.733191 + 0.680022i \(0.238030\pi\)
\(152\) 10811.9i 0.467968i
\(153\) −3454.43 + 8341.93i −0.147568 + 0.356356i
\(154\) 4783.88 0.201715
\(155\) −11504.6 −0.478858
\(156\) −22708.4 + 15174.8i −0.933119 + 0.623553i
\(157\) 35624.2i 1.44526i −0.691235 0.722630i \(-0.742933\pi\)
0.691235 0.722630i \(-0.257067\pi\)
\(158\) 2956.16i 0.118417i
\(159\) 7093.32 + 10614.8i 0.280579 + 0.419874i
\(160\) 15805.3i 0.617396i
\(161\) 20208.5i 0.779621i
\(162\) 2923.98 + 2922.88i 0.111415 + 0.111373i
\(163\) 21894.7i 0.824070i 0.911168 + 0.412035i \(0.135182\pi\)
−0.911168 + 0.412035i \(0.864818\pi\)
\(164\) −3202.70 −0.119077
\(165\) −26633.2 39855.3i −0.978261 1.46392i
\(166\) 2034.03i 0.0738144i
\(167\) 27520.9i 0.986803i 0.869802 + 0.493401i \(0.164247\pi\)
−0.869802 + 0.493401i \(0.835753\pi\)
\(168\) 7172.96 4793.30i 0.254144 0.169831i
\(169\) 9266.67 0.324452
\(170\) 2371.99i 0.0820759i
\(171\) −40630.8 16825.4i −1.38952 0.575404i
\(172\) 33349.2i 1.12727i
\(173\) 44616.5i 1.49075i 0.666648 + 0.745373i \(0.267729\pi\)
−0.666648 + 0.745373i \(0.732271\pi\)
\(174\) −714.602 4715.70i −0.0236029 0.155757i
\(175\) 24808.0 0.810057
\(176\) 37394.9 1.20722
\(177\) −221.206 331.024i −0.00706073 0.0105661i
\(178\) −8016.52 −0.253015
\(179\) 4659.03i 0.145408i −0.997354 0.0727042i \(-0.976837\pi\)
0.997354 0.0727042i \(-0.0231629\pi\)
\(180\) −39432.0 16329.0i −1.21704 0.503980i
\(181\) −25894.6 −0.790410 −0.395205 0.918593i \(-0.629326\pi\)
−0.395205 + 0.918593i \(0.629326\pi\)
\(182\) −5899.30 −0.178098
\(183\) 6545.95 + 9795.71i 0.195466 + 0.292505i
\(184\) 8360.69i 0.246949i
\(185\) 49861.2 1.45687
\(186\) 1073.48 + 1606.41i 0.0310290 + 0.0464335i
\(187\) −17580.6 −0.502749
\(188\) 34401.2 0.973325
\(189\) −6850.58 34415.0i −0.191780 0.963438i
\(190\) −11553.2 −0.320034
\(191\) −30806.0 −0.844440 −0.422220 0.906493i \(-0.638749\pi\)
−0.422220 + 0.906493i \(0.638749\pi\)
\(192\) 26180.3 17494.9i 0.710186 0.474579i
\(193\) 12256.4i 0.329040i 0.986374 + 0.164520i \(0.0526075\pi\)
−0.986374 + 0.164520i \(0.947392\pi\)
\(194\) 8855.50i 0.235293i
\(195\) 32843.0 + 49148.1i 0.863721 + 1.29252i
\(196\) 1311.47 0.0341387
\(197\) 58435.3i 1.50571i −0.658184 0.752857i \(-0.728675\pi\)
0.658184 0.752857i \(-0.271325\pi\)
\(198\) −3079.99 + 7437.72i −0.0785631 + 0.189718i
\(199\) −2598.08 −0.0656064 −0.0328032 0.999462i \(-0.510443\pi\)
−0.0328032 + 0.999462i \(0.510443\pi\)
\(200\) −10263.6 −0.256590
\(201\) 22858.1 15274.9i 0.565782 0.378081i
\(202\) 12348.5 0.302629
\(203\) −17195.0 + 36647.8i −0.417264 + 0.889316i
\(204\) −13014.6 + 8696.96i −0.312731 + 0.208981i
\(205\) 6931.65i 0.164941i
\(206\) 12908.7 0.304191
\(207\) 31419.1 + 13010.8i 0.733253 + 0.303643i
\(208\) −46114.0 −1.06587
\(209\) 85629.5i 1.96034i
\(210\) −5121.93 7664.74i −0.116144 0.173804i
\(211\) 23410.2i 0.525824i 0.964820 + 0.262912i \(0.0846829\pi\)
−0.964820 + 0.262912i \(0.915317\pi\)
\(212\) 22133.2i 0.492461i
\(213\) −1751.29 2620.73i −0.0386011 0.0577647i
\(214\) 6308.24i 0.137746i
\(215\) −72178.0 −1.56145
\(216\) 2834.23 + 14238.2i 0.0607473 + 0.305174i
\(217\) 16398.4i 0.348243i
\(218\) −4800.34 −0.101009
\(219\) 51234.6 + 76670.2i 1.06826 + 1.59859i
\(220\) 83103.0i 1.71700i
\(221\) 21679.8 0.443884
\(222\) −4652.50 6962.26i −0.0944019 0.141268i
\(223\) −18380.7 −0.369618 −0.184809 0.982775i \(-0.559167\pi\)
−0.184809 + 0.982775i \(0.559167\pi\)
\(224\) 22528.7 0.448993
\(225\) −15972.0 + 38570.1i −0.315497 + 0.761879i
\(226\) −869.087 −0.0170156
\(227\) 51625.7i 1.00188i −0.865483 0.500938i \(-0.832988\pi\)
0.865483 0.500938i \(-0.167012\pi\)
\(228\) −42360.1 63389.9i −0.814867 1.21941i
\(229\) 83982.0i 1.60146i −0.599027 0.800729i \(-0.704446\pi\)
0.599027 0.800729i \(-0.295554\pi\)
\(230\) 8933.90 0.168883
\(231\) 56809.1 37962.5i 1.06462 0.711427i
\(232\) 7113.94 15162.0i 0.132170 0.281695i
\(233\) 22097.2i 0.407029i 0.979072 + 0.203515i \(0.0652365\pi\)
−0.979072 + 0.203515i \(0.934764\pi\)
\(234\) 3798.12 9171.91i 0.0693645 0.167505i
\(235\) 74455.0i 1.34821i
\(236\) 690.225i 0.0123927i
\(237\) 23458.6 + 35104.7i 0.417643 + 0.624984i
\(238\) −3381.00 −0.0596886
\(239\) 96321.0i 1.68626i −0.537708 0.843131i \(-0.680710\pi\)
0.537708 0.843131i \(-0.319290\pi\)
\(240\) −40037.4 59914.1i −0.695094 1.04018i
\(241\) −43690.0 −0.752226 −0.376113 0.926574i \(-0.622740\pi\)
−0.376113 + 0.926574i \(0.622740\pi\)
\(242\) −6449.09 −0.110120
\(243\) 57917.1 + 11506.3i 0.980831 + 0.194861i
\(244\) 20425.2i 0.343073i
\(245\) 2838.44i 0.0472876i
\(246\) 967.885 646.786i 0.0159939 0.0106878i
\(247\) 105595.i 1.73081i
\(248\) 6784.36i 0.110308i
\(249\) 16141.0 + 24154.3i 0.260335 + 0.389579i
\(250\) 2332.51i 0.0373202i
\(251\) 73276.9 1.16311 0.581553 0.813508i \(-0.302445\pi\)
0.581553 + 0.813508i \(0.302445\pi\)
\(252\) 23275.0 56205.8i 0.366513 0.885075i
\(253\) 66215.8i 1.03448i
\(254\) 8322.55i 0.129000i
\(255\) 18822.9 + 28167.7i 0.289472 + 0.433182i
\(256\) 49870.2 0.760958
\(257\) 28955.2i 0.438390i 0.975681 + 0.219195i \(0.0703430\pi\)
−0.975681 + 0.219195i \(0.929657\pi\)
\(258\) 6734.86 + 10078.4i 0.101179 + 0.151409i
\(259\) 71071.4i 1.05949i
\(260\) 102479.i 1.51597i
\(261\) −45907.4 50328.7i −0.673910 0.738814i
\(262\) 6395.06 0.0931627
\(263\) −10055.4 −0.145374 −0.0726868 0.997355i \(-0.523157\pi\)
−0.0726868 + 0.997355i \(0.523157\pi\)
\(264\) −23503.1 + 15705.9i −0.337223 + 0.225348i
\(265\) 47903.1 0.682138
\(266\) 16467.8i 0.232740i
\(267\) −95197.0 + 63615.1i −1.33537 + 0.892355i
\(268\) 47661.9 0.663593
\(269\) −73382.9 −1.01412 −0.507061 0.861910i \(-0.669268\pi\)
−0.507061 + 0.861910i \(0.669268\pi\)
\(270\) 15214.3 3028.54i 0.208702 0.0415438i
\(271\) 39697.2i 0.540532i 0.962786 + 0.270266i \(0.0871116\pi\)
−0.962786 + 0.270266i \(0.912888\pi\)
\(272\) −26428.8 −0.357223
\(273\) −70054.8 + 46813.9i −0.939968 + 0.628130i
\(274\) −18424.3 −0.245409
\(275\) −81286.5 −1.07486
\(276\) 32756.3 + 49018.3i 0.430008 + 0.643488i
\(277\) −7560.73 −0.0985380 −0.0492690 0.998786i \(-0.515689\pi\)
−0.0492690 + 0.998786i \(0.515689\pi\)
\(278\) 13769.2 0.178164
\(279\) 25495.4 + 10557.7i 0.327531 + 0.135632i
\(280\) 32370.5i 0.412889i
\(281\) 19737.3i 0.249963i −0.992159 0.124982i \(-0.960113\pi\)
0.992159 0.124982i \(-0.0398872\pi\)
\(282\) −10396.3 + 6947.32i −0.130732 + 0.0873613i
\(283\) 76861.1 0.959696 0.479848 0.877352i \(-0.340692\pi\)
0.479848 + 0.877352i \(0.340692\pi\)
\(284\) 5464.53i 0.0677510i
\(285\) −137196. + 91680.5i −1.68908 + 1.12872i
\(286\) 19329.8 0.236317
\(287\) −9880.27 −0.119951
\(288\) −14504.5 + 35026.3i −0.174871 + 0.422289i
\(289\) −71095.9 −0.851234
\(290\) −16201.5 7601.67i −0.192645 0.0903885i
\(291\) 70272.8 + 105160.i 0.829853 + 1.24184i
\(292\) 159866.i 1.87496i
\(293\) −102689. −1.19616 −0.598079 0.801437i \(-0.704069\pi\)
−0.598079 + 0.801437i \(0.704069\pi\)
\(294\) −396.339 + 264.852i −0.00458534 + 0.00306414i
\(295\) −1493.86 −0.0171659
\(296\) 29403.7i 0.335597i
\(297\) 22446.8 + 112765.i 0.254473 + 1.27838i
\(298\) 23867.1i 0.268762i
\(299\) 81654.8i 0.913355i
\(300\) −60174.9 + 40211.6i −0.668610 + 0.446796i
\(301\) 102881.i 1.13554i
\(302\) −21068.8 −0.231007
\(303\) 146639. 97991.3i 1.59722 1.06734i
\(304\) 128726.i 1.39290i
\(305\) 44206.6 0.475212
\(306\) 2176.78 5256.59i 0.0232472 0.0561386i
\(307\) 108734.i 1.15369i 0.816853 + 0.576846i \(0.195717\pi\)
−0.816853 + 0.576846i \(0.804283\pi\)
\(308\) 118454. 1.24867
\(309\) 153292. 102437.i 1.60547 1.07285i
\(310\) 7249.50 0.0754370
\(311\) −50640.2 −0.523570 −0.261785 0.965126i \(-0.584311\pi\)
−0.261785 + 0.965126i \(0.584311\pi\)
\(312\) 28983.1 19367.9i 0.297739 0.198963i
\(313\) −67839.5 −0.692459 −0.346230 0.938150i \(-0.612538\pi\)
−0.346230 + 0.938150i \(0.612538\pi\)
\(314\) 22448.3i 0.227679i
\(315\) −121647. 50374.5i −1.22597 0.507680i
\(316\) 73197.5i 0.733031i
\(317\) −102874. −1.02373 −0.511866 0.859065i \(-0.671046\pi\)
−0.511866 + 0.859065i \(0.671046\pi\)
\(318\) −4469.79 6688.84i −0.0442011 0.0661449i
\(319\) 56341.7 120081.i 0.553667 1.18003i
\(320\) 118148.i 1.15379i
\(321\) 50059.0 + 74911.0i 0.485816 + 0.727002i
\(322\) 12734.2i 0.122818i
\(323\) 60518.5i 0.580074i
\(324\) 72400.6 + 72373.5i 0.689687 + 0.689429i
\(325\) 100239. 0.949012
\(326\) 13796.8i 0.129820i
\(327\) −57004.5 + 38093.0i −0.533106 + 0.356246i
\(328\) 4087.67 0.0379951
\(329\) 106127. 0.980469
\(330\) 16782.7 + 25114.5i 0.154111 + 0.230620i
\(331\) 68418.8i 0.624482i 0.950003 + 0.312241i \(0.101080\pi\)
−0.950003 + 0.312241i \(0.898920\pi\)
\(332\) 50364.6i 0.456929i
\(333\) −110498. 45757.6i −0.996473 0.412644i
\(334\) 17342.1i 0.155456i
\(335\) 103155.i 0.919183i
\(336\) 85400.6 57068.7i 0.756454 0.505498i
\(337\) 25491.6i 0.224459i −0.993682 0.112230i \(-0.964201\pi\)
0.993682 0.112230i \(-0.0357992\pi\)
\(338\) −5839.31 −0.0511126
\(339\) −10320.5 + 6896.63i −0.0898051 + 0.0600120i
\(340\) 58732.9i 0.508070i
\(341\) 53731.5i 0.462083i
\(342\) 25603.2 + 10602.4i 0.218898 + 0.0906465i
\(343\) 119617. 1.01673
\(344\) 42564.1i 0.359689i
\(345\) 106091. 70894.9i 0.891334 0.595631i
\(346\) 28114.7i 0.234845i
\(347\) 65699.4i 0.545635i −0.962066 0.272818i \(-0.912044\pi\)
0.962066 0.272818i \(-0.0879556\pi\)
\(348\) −17694.3 116765.i −0.146108 0.964175i
\(349\) −187726. −1.54125 −0.770624 0.637290i \(-0.780055\pi\)
−0.770624 + 0.637290i \(0.780055\pi\)
\(350\) −15632.5 −0.127613
\(351\) −27680.5 139057.i −0.224678 1.12870i
\(352\) −73818.0 −0.595767
\(353\) 240553.i 1.93046i −0.261402 0.965230i \(-0.584185\pi\)
0.261402 0.965230i \(-0.415815\pi\)
\(354\) 139.391 + 208.592i 0.00111231 + 0.00166453i
\(355\) −11827.0 −0.0938461
\(356\) −198497. −1.56622
\(357\) −40149.8 + 26829.9i −0.315026 + 0.210515i
\(358\) 2935.85i 0.0229070i
\(359\) 138776. 1.07678 0.538388 0.842697i \(-0.319034\pi\)
0.538388 + 0.842697i \(0.319034\pi\)
\(360\) 50327.9 + 20841.0i 0.388332 + 0.160810i
\(361\) −164445. −1.26185
\(362\) 16317.3 0.124517
\(363\) −76583.6 + 51176.7i −0.581196 + 0.388382i
\(364\) −146073. −1.10247
\(365\) 346001. 2.59712
\(366\) −4124.87 6172.68i −0.0307927 0.0460799i
\(367\) 13869.3i 0.102972i −0.998674 0.0514862i \(-0.983604\pi\)
0.998674 0.0514862i \(-0.0163958\pi\)
\(368\) 99541.7i 0.735037i
\(369\) 6361.17 15361.3i 0.0467180 0.112817i
\(370\) −31419.6 −0.229508
\(371\) 68280.3i 0.496076i
\(372\) 26580.4 + 39776.4i 0.192077 + 0.287435i
\(373\) 174276. 1.25262 0.626310 0.779574i \(-0.284564\pi\)
0.626310 + 0.779574i \(0.284564\pi\)
\(374\) 11078.3 0.0792006
\(375\) −18509.7 27698.9i −0.131624 0.196970i
\(376\) −43906.9 −0.310568
\(377\) −69478.4 + 148080.i −0.488841 + 1.04187i
\(378\) 4316.83 + 21686.3i 0.0302122 + 0.151775i
\(379\) 97262.7i 0.677124i −0.940944 0.338562i \(-0.890060\pi\)
0.940944 0.338562i \(-0.109940\pi\)
\(380\) −286069. −1.98109
\(381\) −66043.5 98831.1i −0.454967 0.680838i
\(382\) 19412.1 0.133029
\(383\) 198169.i 1.35095i 0.737385 + 0.675473i \(0.236060\pi\)
−0.737385 + 0.675473i \(0.763940\pi\)
\(384\) −72534.0 + 48470.6i −0.491903 + 0.328712i
\(385\) 256371.i 1.72961i
\(386\) 7723.27i 0.0518354i
\(387\) 159954. + 66237.7i 1.06801 + 0.442266i
\(388\) 219271.i 1.45652i
\(389\) −46348.1 −0.306290 −0.153145 0.988204i \(-0.548940\pi\)
−0.153145 + 0.988204i \(0.548940\pi\)
\(390\) −20695.7 30970.2i −0.136067 0.203617i
\(391\) 46797.9i 0.306107i
\(392\) −1673.86 −0.0108930
\(393\) 75942.0 50748.0i 0.491697 0.328574i
\(394\) 36822.5i 0.237203i
\(395\) 158422. 1.01537
\(396\) −76263.6 + 184165.i −0.486325 + 1.17440i
\(397\) −25656.5 −0.162786 −0.0813928 0.996682i \(-0.525937\pi\)
−0.0813928 + 0.996682i \(0.525937\pi\)
\(398\) 1637.16 0.0103353
\(399\) −130680. 195556.i −0.820848 1.22836i
\(400\) −122197. −0.763733
\(401\) 215361.i 1.33930i −0.742677 0.669650i \(-0.766444\pi\)
0.742677 0.669650i \(-0.233556\pi\)
\(402\) −14403.9 + 9625.32i −0.0891305 + 0.0595612i
\(403\) 66259.6i 0.407980i
\(404\) 305761. 1.87335
\(405\) 156639. 156698.i 0.954970 0.955328i
\(406\) 10835.3 23093.3i 0.0657338 0.140099i
\(407\) 232874.i 1.40583i
\(408\) 16610.8 11100.1i 0.0997860 0.0666816i
\(409\) 281069.i 1.68022i −0.542416 0.840110i \(-0.682490\pi\)
0.542416 0.840110i \(-0.317510\pi\)
\(410\) 4367.92i 0.0259841i
\(411\) −218791. + 146206.i −1.29523 + 0.865530i
\(412\) 319631. 1.88302
\(413\) 2129.33i 0.0124837i
\(414\) −19798.5 8198.63i −0.115513 0.0478344i
\(415\) 109005. 0.632921
\(416\) 91029.5 0.526012
\(417\) 163511. 109266.i 0.940318 0.628364i
\(418\) 53958.7i 0.308822i
\(419\) 260243.i 1.48235i 0.671312 + 0.741175i \(0.265731\pi\)
−0.671312 + 0.741175i \(0.734269\pi\)
\(420\) −126824. 189787.i −0.718958 1.07589i
\(421\) 92253.6i 0.520498i −0.965542 0.260249i \(-0.916195\pi\)
0.965542 0.260249i \(-0.0838047\pi\)
\(422\) 14751.7i 0.0828359i
\(423\) −68327.3 + 165000.i −0.381868 + 0.922155i
\(424\) 28249.0i 0.157134i
\(425\) 57449.1 0.318057
\(426\) 1103.56 + 1651.43i 0.00608103 + 0.00909998i
\(427\) 63011.3i 0.345591i
\(428\) 156198.i 0.852685i
\(429\) 229543. 153392.i 1.24724 0.833464i
\(430\) 45482.3 0.245983
\(431\) 216475.i 1.16534i 0.812709 + 0.582669i \(0.197992\pi\)
−0.812709 + 0.582669i \(0.802008\pi\)
\(432\) 33744.1 + 169519.i 0.180813 + 0.908342i
\(433\) 16748.2i 0.0893289i 0.999002 + 0.0446644i \(0.0142219\pi\)
−0.999002 + 0.0446644i \(0.985778\pi\)
\(434\) 10333.3i 0.0548606i
\(435\) −252717. + 38295.9i −1.33554 + 0.202383i
\(436\) −118861. −0.625269
\(437\) 227937. 1.19358
\(438\) −32285.0 48313.0i −0.168288 0.251835i
\(439\) 51198.0 0.265658 0.132829 0.991139i \(-0.457594\pi\)
0.132829 + 0.991139i \(0.457594\pi\)
\(440\) 106066.i 0.547861i
\(441\) −2604.83 + 6290.29i −0.0133938 + 0.0323440i
\(442\) −13661.3 −0.0699274
\(443\) −307994. −1.56940 −0.784702 0.619873i \(-0.787184\pi\)
−0.784702 + 0.619873i \(0.787184\pi\)
\(444\) −115201. 172392.i −0.584371 0.874485i
\(445\) 429610.i 2.16947i
\(446\) 11582.4 0.0582278
\(447\) −189397. 283425.i −0.947893 1.41848i
\(448\) 168406. 0.839076
\(449\) −281767. −1.39765 −0.698824 0.715294i \(-0.746293\pi\)
−0.698824 + 0.715294i \(0.746293\pi\)
\(450\) 10064.6 24304.6i 0.0497019 0.120023i
\(451\) 32373.9 0.159163
\(452\) −21519.5 −0.105331
\(453\) −250194. + 167191.i −1.21921 + 0.814736i
\(454\) 32531.5i 0.157831i
\(455\) 316147.i 1.52710i
\(456\) 54064.9 + 80905.7i 0.260008 + 0.389089i
\(457\) −95866.1 −0.459021 −0.229510 0.973306i \(-0.573713\pi\)
−0.229510 + 0.973306i \(0.573713\pi\)
\(458\) 52920.5i 0.252286i
\(459\) −15864.2 79696.4i −0.0752998 0.378280i
\(460\) 221212. 1.04543
\(461\) −75535.7 −0.355427 −0.177713 0.984082i \(-0.556870\pi\)
−0.177713 + 0.984082i \(0.556870\pi\)
\(462\) −35797.8 + 23921.7i −0.167715 + 0.112075i
\(463\) −219935. −1.02596 −0.512982 0.858399i \(-0.671459\pi\)
−0.512982 + 0.858399i \(0.671459\pi\)
\(464\) 84698.0 180517.i 0.393402 0.838459i
\(465\) 86088.6 57528.4i 0.398143 0.266058i
\(466\) 13924.4i 0.0641215i
\(467\) −265329. −1.21661 −0.608305 0.793703i \(-0.708150\pi\)
−0.608305 + 0.793703i \(0.708150\pi\)
\(468\) 94045.3 227106.i 0.429384 1.03690i
\(469\) 147036. 0.668464
\(470\) 46917.1i 0.212391i
\(471\) 178138. + 266576.i 0.802999 + 1.20165i
\(472\) 880.947i 0.00395426i
\(473\) 337104.i 1.50675i
\(474\) −14782.2 22120.9i −0.0657935 0.0984570i
\(475\) 279816.i 1.24018i
\(476\) −83717.0 −0.369487
\(477\) −106159. 43960.7i −0.466571 0.193209i
\(478\) 60695.8i 0.265646i
\(479\) 83970.4 0.365978 0.182989 0.983115i \(-0.441423\pi\)
0.182989 + 0.983115i \(0.441423\pi\)
\(480\) 79034.3 + 118271.i 0.343031 + 0.513330i
\(481\) 287172.i 1.24123i
\(482\) 27530.9 0.118502
\(483\) 101052. + 151220.i 0.433164 + 0.648211i
\(484\) −159686. −0.681672
\(485\) 474571. 2.01752
\(486\) −36495.9 7250.62i −0.154515 0.0306975i
\(487\) −106418. −0.448703 −0.224352 0.974508i \(-0.572026\pi\)
−0.224352 + 0.974508i \(0.572026\pi\)
\(488\) 26069.1i 0.109468i
\(489\) −109484. 163838.i −0.457861 0.685168i
\(490\) 1788.62i 0.00744947i
\(491\) −160380. −0.665252 −0.332626 0.943059i \(-0.607935\pi\)
−0.332626 + 0.943059i \(0.607935\pi\)
\(492\) 23965.8 16015.1i 0.0990061 0.0661604i
\(493\) −39819.4 + 84867.2i −0.163833 + 0.349177i
\(494\) 66539.8i 0.272664i
\(495\) 398592. + 165058.i 1.62674 + 0.673639i
\(496\) 80774.0i 0.328328i
\(497\) 16857.9i 0.0682483i
\(498\) −10171.1 15220.6i −0.0410119 0.0613725i
\(499\) −182487. −0.732875 −0.366438 0.930443i \(-0.619423\pi\)
−0.366438 + 0.930443i \(0.619423\pi\)
\(500\) 57755.4i 0.231021i
\(501\) −137618. 205939.i −0.548277 0.820471i
\(502\) −46174.8 −0.183230
\(503\) 280094. 1.10705 0.553525 0.832832i \(-0.313282\pi\)
0.553525 + 0.832832i \(0.313282\pi\)
\(504\) −29706.4 + 71736.5i −0.116947 + 0.282409i
\(505\) 661762.i 2.59489i
\(506\) 41725.3i 0.162967i
\(507\) −69342.4 + 46337.8i −0.269763 + 0.180268i
\(508\) 206075.i 0.798540i
\(509\) 372754.i 1.43875i 0.694620 + 0.719376i \(0.255572\pi\)
−0.694620 + 0.719376i \(0.744428\pi\)
\(510\) −11861.1 17749.6i −0.0456021 0.0682415i
\(511\) 493184.i 1.88872i
\(512\) −186516. −0.711502
\(513\) 388175. 77269.5i 1.47500 0.293612i
\(514\) 18245.9i 0.0690618i
\(515\) 691782.i 2.60829i
\(516\) 166762. + 249551.i 0.626321 + 0.937261i
\(517\) −347738. −1.30098
\(518\) 44785.0i 0.166906i
\(519\) −223104. 333865.i −0.828272 1.23947i
\(520\) 130796.i 0.483715i
\(521\) 59484.7i 0.219144i 0.993979 + 0.109572i \(0.0349480\pi\)
−0.993979 + 0.109572i \(0.965052\pi\)
\(522\) 28928.1 + 31714.2i 0.106165 + 0.116389i
\(523\) 122539. 0.447994 0.223997 0.974590i \(-0.428089\pi\)
0.223997 + 0.974590i \(0.428089\pi\)
\(524\) 158348. 0.576700
\(525\) −185638. + 124052.i −0.673517 + 0.450075i
\(526\) 6336.29 0.0229015
\(527\) 37974.6i 0.136733i
\(528\) −279826. + 186993.i −1.00374 + 0.670743i
\(529\) 103581. 0.370142
\(530\) −30185.7 −0.107461
\(531\) 3310.56 + 1370.92i 0.0117412 + 0.00486208i
\(532\) 407758.i 1.44072i
\(533\) −39922.3 −0.140527
\(534\) 59987.6 40086.5i 0.210368 0.140577i
\(535\) 338062. 1.18111
\(536\) −60831.8 −0.211739
\(537\) 23297.4 + 34863.5i 0.0807902 + 0.120899i
\(538\) 46241.6 0.159760
\(539\) −13256.8 −0.0456310
\(540\) 376722. 74989.7i 1.29192 0.257166i
\(541\) 233288.i 0.797074i 0.917152 + 0.398537i \(0.130482\pi\)
−0.917152 + 0.398537i \(0.869518\pi\)
\(542\) 25014.8i 0.0851528i
\(543\) 193769. 129486.i 0.657181 0.439159i
\(544\) 52170.7 0.176291
\(545\) 257253.i 0.866098i
\(546\) 44144.4 29499.4i 0.148078 0.0989526i
\(547\) −164676. −0.550372 −0.275186 0.961391i \(-0.588739\pi\)
−0.275186 + 0.961391i \(0.588739\pi\)
\(548\) −456205. −1.51914
\(549\) −97966.6 40568.3i −0.325037 0.134599i
\(550\) 51222.0 0.169329
\(551\) −413360. 193947.i −1.36153 0.638823i
\(552\) −41807.5 62563.0i −0.137207 0.205324i
\(553\) 225813.i 0.738411i
\(554\) 4764.32 0.0155232
\(555\) −373111. + 249330.i −1.21130 + 0.809448i
\(556\) 340940. 1.10288
\(557\) 148476.i 0.478570i −0.970949 0.239285i \(-0.923087\pi\)
0.970949 0.239285i \(-0.0769130\pi\)
\(558\) −16065.7 6652.86i −0.0515977 0.0213668i
\(559\) 415703.i 1.33033i
\(560\) 385400.i 1.22896i
\(561\) 131556. 87911.6i 0.418007 0.279332i
\(562\) 12437.3i 0.0393780i
\(563\) 9184.31 0.0289754 0.0144877 0.999895i \(-0.495388\pi\)
0.0144877 + 0.999895i \(0.495388\pi\)
\(564\) −257424. + 172023.i −0.809265 + 0.540788i
\(565\) 46574.9i 0.145900i
\(566\) −48433.3 −0.151186
\(567\) 223354. + 223271.i 0.694749 + 0.694490i
\(568\) 6974.48i 0.0216180i
\(569\) 448012. 1.38377 0.691887 0.722006i \(-0.256780\pi\)
0.691887 + 0.722006i \(0.256780\pi\)
\(570\) 86452.6 57771.6i 0.266090 0.177814i
\(571\) 107032. 0.328279 0.164139 0.986437i \(-0.447515\pi\)
0.164139 + 0.986437i \(0.447515\pi\)
\(572\) 478625. 1.46286
\(573\) 230521. 154045.i 0.702104 0.469178i
\(574\) 6225.96 0.0188966
\(575\) 216377.i 0.654448i
\(576\) −108424. + 261828.i −0.326799 + 0.789172i
\(577\) 5581.80i 0.0167657i 0.999965 + 0.00838287i \(0.00266838\pi\)
−0.999965 + 0.00838287i \(0.997332\pi\)
\(578\) 44800.5 0.134099
\(579\) −61288.0 91714.6i −0.182818 0.273578i
\(580\) −401164. 188225.i −1.19252 0.559527i
\(581\) 155374.i 0.460283i
\(582\) −44281.8 66265.6i −0.130731 0.195633i
\(583\) 223729.i 0.658241i
\(584\) 204040.i 0.598261i
\(585\) −491528. 203544.i −1.43627 0.594766i
\(586\) 64708.5 0.188437
\(587\) 333889.i 0.969006i 0.874790 + 0.484503i \(0.160999\pi\)
−0.874790 + 0.484503i \(0.839001\pi\)
\(588\) −9813.74 + 6558.00i −0.0283844 + 0.0189678i
\(589\) 184962. 0.533153
\(590\) 941.344 0.00270424
\(591\) 292205. + 437271.i 0.836589 + 1.25192i
\(592\) 350078.i 0.998898i
\(593\) 240831.i 0.684863i −0.939543 0.342432i \(-0.888749\pi\)
0.939543 0.342432i \(-0.111251\pi\)
\(594\) −14144.6 71057.8i −0.0400884 0.201390i
\(595\) 181190.i 0.511799i
\(596\) 590974.i 1.66370i
\(597\) 19441.4 12991.6i 0.0545480 0.0364515i
\(598\) 51454.1i 0.143886i
\(599\) 138765. 0.386746 0.193373 0.981125i \(-0.438057\pi\)
0.193373 + 0.981125i \(0.438057\pi\)
\(600\) 76802.3 51322.9i 0.213340 0.142563i
\(601\) 117210.i 0.324499i 0.986750 + 0.162250i \(0.0518750\pi\)
−0.986750 + 0.162250i \(0.948125\pi\)
\(602\) 64829.8i 0.178888i
\(603\) −94665.6 + 228603.i −0.260350 + 0.628707i
\(604\) −521684. −1.42999
\(605\) 345610.i 0.944226i
\(606\) −92403.6 + 61748.3i −0.251619 + 0.168143i
\(607\) 202092.i 0.548494i −0.961659 0.274247i \(-0.911571\pi\)
0.961659 0.274247i \(-0.0884286\pi\)
\(608\) 254107.i 0.687399i
\(609\) −54586.4 360219.i −0.147180 0.971252i
\(610\) −27856.4 −0.0748626
\(611\) 428817. 1.14866
\(612\) 53899.2 130159.i 0.143906 0.347512i
\(613\) 483368. 1.28634 0.643171 0.765722i \(-0.277618\pi\)
0.643171 + 0.765722i \(0.277618\pi\)
\(614\) 68518.0i 0.181747i
\(615\) −34661.6 51869.5i −0.0916428 0.137139i
\(616\) −151185. −0.398425
\(617\) 152864. 0.401547 0.200773 0.979638i \(-0.435654\pi\)
0.200773 + 0.979638i \(0.435654\pi\)
\(618\) −96595.4 + 64549.5i −0.252918 + 0.169011i
\(619\) 406789.i 1.06166i −0.847477 0.530832i \(-0.821879\pi\)
0.847477 0.530832i \(-0.178121\pi\)
\(620\) 179505. 0.466974
\(621\) −300169. + 59751.2i −0.778365 + 0.154940i
\(622\) 31910.5 0.0824807
\(623\) −612359. −1.57772
\(624\) 345071. 230592.i 0.886214 0.592209i
\(625\) −447118. −1.14462
\(626\) 42748.5 0.109087
\(627\) 428189. + 640765.i 1.08918 + 1.62991i
\(628\) 555842.i 1.40939i
\(629\) 164584.i 0.415992i
\(630\) 76654.8 + 31743.0i 0.193134 + 0.0799774i
\(631\) −599217. −1.50496 −0.752480 0.658615i \(-0.771143\pi\)
−0.752480 + 0.658615i \(0.771143\pi\)
\(632\) 93423.3i 0.233895i
\(633\) −117062. 175178.i −0.292153 0.437193i
\(634\) 64825.1 0.161274
\(635\) −446010. −1.10611
\(636\) −110677. 165622.i −0.273616 0.409454i
\(637\) 16347.8 0.0402883
\(638\) −35503.2 + 75668.1i −0.0872220 + 0.185897i
\(639\) 26209.8 + 10853.6i 0.0641892 + 0.0265810i
\(640\) 327335.i 0.799158i
\(641\) −18851.1 −0.0458798 −0.0229399 0.999737i \(-0.507303\pi\)
−0.0229399 + 0.999737i \(0.507303\pi\)
\(642\) −31544.2 47204.5i −0.0765332 0.114528i
\(643\) 298232. 0.721326 0.360663 0.932696i \(-0.382550\pi\)
0.360663 + 0.932696i \(0.382550\pi\)
\(644\) 315312.i 0.760273i
\(645\) 540108. 360925.i 1.29826 0.867556i
\(646\) 38135.2i 0.0913821i
\(647\) 235747.i 0.563167i −0.959537 0.281583i \(-0.909140\pi\)
0.959537 0.281583i \(-0.0908596\pi\)
\(648\) −92406.2 92371.7i −0.220065 0.219983i
\(649\) 6977.01i 0.0165646i
\(650\) −63165.0 −0.149503
\(651\) 82000.0 + 122709.i 0.193487 + 0.289545i
\(652\) 341622.i 0.803619i
\(653\) 12502.0 0.0293192 0.0146596 0.999893i \(-0.495334\pi\)
0.0146596 + 0.999893i \(0.495334\pi\)
\(654\) 35920.9 24004.0i 0.0839830 0.0561213i
\(655\) 342715.i 0.798823i
\(656\) 48667.4 0.113092
\(657\) −766776. 317525.i −1.77639 0.735609i
\(658\) −66874.9 −0.154458
\(659\) 421411. 0.970365 0.485183 0.874413i \(-0.338753\pi\)
0.485183 + 0.874413i \(0.338753\pi\)
\(660\) 415555. + 621859.i 0.953983 + 1.42759i
\(661\) 328543. 0.751952 0.375976 0.926629i \(-0.377308\pi\)
0.375976 + 0.926629i \(0.377308\pi\)
\(662\) 43113.5i 0.0983779i
\(663\) −162229. + 108409.i −0.369065 + 0.246626i
\(664\) 64281.3i 0.145797i
\(665\) −882517. −1.99563
\(666\) 69629.3 + 28833.8i 0.156980 + 0.0650059i
\(667\) 319644. + 149976.i 0.718481 + 0.337109i
\(668\) 429407.i 0.962313i
\(669\) 137543. 91912.4i 0.307316 0.205363i
\(670\) 65002.4i 0.144804i
\(671\) 206464.i 0.458564i
\(672\) −168582. + 112654.i −0.373312 + 0.249464i
\(673\) 318120. 0.702362 0.351181 0.936308i \(-0.385780\pi\)
0.351181 + 0.936308i \(0.385780\pi\)
\(674\) 16063.3i 0.0353602i
\(675\) −73350.6 368488.i −0.160989 0.808753i
\(676\) −144587. −0.316400
\(677\) −805095. −1.75659 −0.878294 0.478121i \(-0.841318\pi\)
−0.878294 + 0.478121i \(0.841318\pi\)
\(678\) 6503.37 4345.85i 0.0141475 0.00945400i
\(679\) 676446.i 1.46721i
\(680\) 74961.9i 0.162115i
\(681\) 258153. + 386315.i 0.556652 + 0.833004i
\(682\) 33858.4i 0.0727944i
\(683\) 172224.i 0.369191i 0.982815 + 0.184596i \(0.0590976\pi\)
−0.982815 + 0.184596i \(0.940902\pi\)
\(684\) 633960. + 262525.i 1.35503 + 0.561124i
\(685\) 987370.i 2.10426i
\(686\) −75375.7 −0.160171
\(687\) 419951. + 628437.i 0.889785 + 1.33152i
\(688\) 506765.i 1.07061i
\(689\) 275894.i 0.581171i
\(690\) −66852.3 + 44673.8i −0.140417 + 0.0938328i
\(691\) 842962. 1.76544 0.882718 0.469904i \(-0.155711\pi\)
0.882718 + 0.469904i \(0.155711\pi\)
\(692\) 696148.i 1.45375i
\(693\) −235271. + 568146.i −0.489895 + 1.18302i
\(694\) 41399.9i 0.0859568i
\(695\) 737900.i 1.52767i
\(696\) 22583.5 + 149030.i 0.0466201 + 0.307649i
\(697\) −22880.2 −0.0470972
\(698\) 118294. 0.242801
\(699\) −110497. 165353.i −0.226149 0.338422i
\(700\) −387077. −0.789954
\(701\) 181247.i 0.368838i 0.982848 + 0.184419i \(0.0590403\pi\)
−0.982848 + 0.184419i \(0.940960\pi\)
\(702\) 17442.6 + 87625.8i 0.0353947 + 0.177811i
\(703\) −801633. −1.62205
\(704\) −551803. −1.11337
\(705\) 372311. + 557146.i 0.749079 + 1.12096i
\(706\) 151582.i 0.304116i
\(707\) 943265. 1.88710
\(708\) 3451.46 + 5164.95i 0.00688551 + 0.0103038i
\(709\) −503485. −1.00160 −0.500800 0.865563i \(-0.666961\pi\)
−0.500800 + 0.865563i \(0.666961\pi\)
\(710\) 7452.65 0.0147841
\(711\) −351081. 145384.i −0.694494 0.287593i
\(712\) 253345. 0.499750
\(713\) −143028. −0.281347
\(714\) 25300.0 16906.6i 0.0496277 0.0331635i
\(715\) 1.03589e6i 2.02630i
\(716\) 72694.5i 0.141800i
\(717\) 481651. + 720769.i 0.936903 + 1.40203i
\(718\) −87448.4 −0.169630
\(719\) 653680.i 1.26447i −0.774778 0.632234i \(-0.782138\pi\)
0.774778 0.632234i \(-0.217862\pi\)
\(720\) 599199. + 248131.i 1.15586 + 0.478647i
\(721\) 986056. 1.89684
\(722\) 103624. 0.198785
\(723\) 326932. 218471.i 0.625433 0.417943i
\(724\) 404032. 0.770794
\(725\) −184111. + 392395.i −0.350270 + 0.746531i
\(726\) 48258.5 32248.5i 0.0915589 0.0611839i
\(727\) 763045.i 1.44371i 0.692042 + 0.721857i \(0.256711\pi\)
−0.692042 + 0.721857i \(0.743289\pi\)
\(728\) 186435. 0.351775
\(729\) −490930. + 203511.i −0.923772 + 0.382943i
\(730\) −218030. −0.409138
\(731\) 238248.i 0.445855i
\(732\) −102136. 152842.i −0.190615 0.285246i
\(733\) 119072.i 0.221617i 0.993842 + 0.110809i \(0.0353440\pi\)
−0.993842 + 0.110809i \(0.964656\pi\)
\(734\) 8739.59i 0.0162218i
\(735\) 14193.6 + 21240.0i 0.0262734 + 0.0393170i
\(736\) 196496.i 0.362743i
\(737\) −481782. −0.886983
\(738\) −4008.44 + 9679.78i −0.00735974 + 0.0177727i
\(739\) 387109.i 0.708833i −0.935088 0.354417i \(-0.884679\pi\)
0.935088 0.354417i \(-0.115321\pi\)
\(740\) −777981. −1.42071
\(741\) −528026. 790167.i −0.961654 1.43907i
\(742\) 43026.2i 0.0781494i
\(743\) 627893. 1.13739 0.568693 0.822550i \(-0.307449\pi\)
0.568693 + 0.822550i \(0.307449\pi\)
\(744\) −33925.1 50767.3i −0.0612879 0.0917146i
\(745\) −1.27905e6 −2.30450
\(746\) −109818. −0.197332
\(747\) −241566. 100034.i −0.432908 0.179269i
\(748\) 274309. 0.490272
\(749\) 481868.i 0.858944i
\(750\) 11663.7 + 17454.2i 0.0207355 + 0.0310297i
\(751\) 707998.i 1.25531i −0.778490 0.627657i \(-0.784014\pi\)
0.778490 0.627657i \(-0.215986\pi\)
\(752\) −522751. −0.924399
\(753\) −548330. + 366420.i −0.967057 + 0.646232i
\(754\) 43781.2 93311.0i 0.0770096 0.164131i
\(755\) 1.12909e6i 1.98077i
\(756\) 106889. + 536974.i 0.187021 + 0.939528i
\(757\) 192253.i 0.335491i −0.985830 0.167745i \(-0.946351\pi\)
0.985830 0.167745i \(-0.0536487\pi\)
\(758\) 61289.2i 0.106671i
\(759\) −331111. 495492.i −0.574765 0.860109i
\(760\) 365115. 0.632125
\(761\) 428996.i 0.740770i 0.928878 + 0.370385i \(0.120774\pi\)
−0.928878 + 0.370385i \(0.879226\pi\)
\(762\) 41616.7 + 62277.5i 0.0716734 + 0.107256i
\(763\) −366684. −0.629858
\(764\) 480664. 0.823483
\(765\) −281704. 116655.i −0.481360 0.199333i
\(766\) 124874.i 0.212822i
\(767\) 8603.78i 0.0146251i
\(768\) −373178. + 249375.i −0.632694 + 0.422795i
\(769\) 203801.i 0.344630i 0.985042 + 0.172315i \(0.0551248\pi\)
−0.985042 + 0.172315i \(0.944875\pi\)
\(770\) 161550.i 0.272474i
\(771\) −144790. 216672.i −0.243573 0.364496i
\(772\) 191236.i 0.320874i
\(773\) 515215. 0.862242 0.431121 0.902294i \(-0.358118\pi\)
0.431121 + 0.902294i \(0.358118\pi\)
\(774\) −100794. 41739.1i −0.168249 0.0696725i
\(775\) 175581.i 0.292331i
\(776\) 279860.i 0.464747i
\(777\) −355391. 531827.i −0.588660 0.880903i
\(778\) 29205.8 0.0482515
\(779\) 111442.i 0.183643i
\(780\) −512447. 766853.i −0.842286 1.26044i
\(781\) 55237.2i 0.0905585i
\(782\) 29489.3i 0.0482226i
\(783\) 595193. + 147050.i 0.970810 + 0.239852i
\(784\) −19928.8 −0.0324227
\(785\) 1.20302e6 1.95223
\(786\) −47854.2 + 31978.4i −0.0774595 + 0.0517621i
\(787\) 305990. 0.494035 0.247017 0.969011i \(-0.420549\pi\)
0.247017 + 0.969011i \(0.420549\pi\)
\(788\) 911761.i 1.46835i
\(789\) 75244.1 50281.6i 0.120870 0.0807709i
\(790\) −99828.5 −0.159956
\(791\) −66387.0 −0.106104
\(792\) 97336.6 235054.i 0.155176 0.374728i
\(793\) 254604.i 0.404873i
\(794\) 16167.2 0.0256445
\(795\) −358459. + 239539.i −0.567159 + 0.379002i
\(796\) 40537.6 0.0639782
\(797\) −17838.2 −0.0280825 −0.0140412 0.999901i \(-0.504470\pi\)
−0.0140412 + 0.999901i \(0.504470\pi\)
\(798\) 82346.7 + 123228.i 0.129313 + 0.193510i
\(799\) 245763. 0.384967
\(800\) 241219. 0.376904
\(801\) 394253. 952062.i 0.614483 1.48389i
\(802\) 135708.i 0.210987i
\(803\) 1.61598e6i 2.50614i
\(804\) −356654. + 238333.i −0.551740 + 0.368698i
\(805\) 682435. 1.05310
\(806\) 41752.9i 0.0642712i
\(807\) 549124. 366950.i 0.843186 0.563456i
\(808\) −390248. −0.597748
\(809\) 981369. 1.49946 0.749731 0.661743i \(-0.230183\pi\)
0.749731 + 0.661743i \(0.230183\pi\)
\(810\) −98704.7 + 98741.6i −0.150442 + 0.150498i
\(811\) −212489. −0.323068 −0.161534 0.986867i \(-0.551644\pi\)
−0.161534 + 0.986867i \(0.551644\pi\)
\(812\) 268293. 571813.i 0.406909 0.867246i
\(813\) −198505. 297054.i −0.300324 0.449422i
\(814\) 146744.i 0.221468i
\(815\) −739376. −1.11314
\(816\) 197766. 132157.i 0.297011 0.198476i
\(817\) 1.16043e6 1.73850
\(818\) 177113.i 0.264694i
\(819\) 290128. 700616.i 0.432535 1.04451i
\(820\) 108154.i 0.160848i
\(821\) 436417.i 0.647463i 0.946149 + 0.323732i \(0.104938\pi\)
−0.946149 + 0.323732i \(0.895062\pi\)
\(822\) 137869. 92130.5i 0.204044 0.136351i
\(823\) 414627.i 0.612151i 0.952007 + 0.306075i \(0.0990159\pi\)
−0.952007 + 0.306075i \(0.900984\pi\)
\(824\) −407951. −0.600833
\(825\) 608266. 406472.i 0.893688 0.597204i
\(826\) 1341.78i 0.00196662i
\(827\) −520899. −0.761628 −0.380814 0.924652i \(-0.624356\pi\)
−0.380814 + 0.924652i \(0.624356\pi\)
\(828\) −490230. 203006.i −0.715055 0.296107i
\(829\) 41779.1i 0.0607925i 0.999538 + 0.0303962i \(0.00967691\pi\)
−0.999538 + 0.0303962i \(0.990323\pi\)
\(830\) −68688.4 −0.0997073
\(831\) 56576.8 37807.3i 0.0819288 0.0547486i
\(832\) 680462. 0.983009
\(833\) 9369.21 0.0135025
\(834\) −103035. + 68852.7i −0.148133 + 0.0989895i
\(835\) −929372. −1.33296
\(836\) 1.33607e6i 1.91169i
\(837\) −243575. + 48485.7i −0.347682 + 0.0692090i
\(838\) 163990.i 0.233522i
\(839\) 628323. 0.892605 0.446303 0.894882i \(-0.352741\pi\)
0.446303 + 0.894882i \(0.352741\pi\)
\(840\) 161868. + 242228.i 0.229405 + 0.343294i
\(841\) −452058. 543958.i −0.639149 0.769083i
\(842\) 58132.8i 0.0819968i
\(843\) 98696.3 + 147694.i 0.138882 + 0.207830i
\(844\) 365268.i 0.512775i
\(845\) 312932.i 0.438265i
\(846\) 43055.8 103973.i 0.0601577 0.145272i
\(847\) −492627. −0.686676
\(848\) 336330.i 0.467707i
\(849\) −575151. + 384342.i −0.797933 + 0.533216i
\(850\) −36201.0 −0.0501053
\(851\) 619889. 0.855963
\(852\) 27325.3 + 40891.0i 0.0376431 + 0.0563312i
\(853\) 690533.i 0.949045i −0.880243 0.474522i \(-0.842621\pi\)
0.880243 0.474522i \(-0.157379\pi\)
\(854\) 39706.0i 0.0544428i
\(855\) 568187. 1.37209e6i 0.777247 1.87694i
\(856\) 199359.i 0.272074i
\(857\) 470602.i 0.640755i 0.947290 + 0.320377i \(0.103810\pi\)
−0.947290 + 0.320377i \(0.896190\pi\)
\(858\) −144645. + 96658.3i −0.196484 + 0.131300i
\(859\) 1.29875e6i 1.76011i −0.474870 0.880056i \(-0.657505\pi\)
0.474870 0.880056i \(-0.342495\pi\)
\(860\) 1.12619e6 1.52270
\(861\) 73934.0 49406.1i 0.0997327 0.0666460i
\(862\) 136409.i 0.183582i
\(863\) 1.22107e6i 1.63953i 0.572702 + 0.819764i \(0.305895\pi\)
−0.572702 + 0.819764i \(0.694105\pi\)
\(864\) −66611.1 334631.i −0.0892318 0.448270i
\(865\) −1.50668e6 −2.01368
\(866\) 10553.7i 0.0140724i
\(867\) 532010. 355514.i 0.707753 0.472953i
\(868\) 255863.i 0.339601i
\(869\) 739903.i 0.979795i
\(870\) 159247. 24131.8i 0.210394 0.0318825i
\(871\) 594115. 0.783130
\(872\) 151705. 0.199511
\(873\) −1.05170e6 435514.i −1.37995 0.571443i
\(874\) −143633. −0.188032
\(875\) 178174.i 0.232717i
\(876\) −799409. 1.19628e6i −1.04174 1.55892i
\(877\) −695909. −0.904802 −0.452401 0.891815i \(-0.649432\pi\)
−0.452401 + 0.891815i \(0.649432\pi\)
\(878\) −32261.9 −0.0418506
\(879\) 768421. 513494.i 0.994538 0.664596i
\(880\) 1.26281e6i 1.63070i
\(881\) −205174. −0.264344 −0.132172 0.991227i \(-0.542195\pi\)
−0.132172 + 0.991227i \(0.542195\pi\)
\(882\) 1641.41 3963.77i 0.00210999 0.00509532i
\(883\) −942359. −1.20863 −0.604317 0.796744i \(-0.706554\pi\)
−0.604317 + 0.796744i \(0.706554\pi\)
\(884\) −338267. −0.432868
\(885\) 11178.6 7470.04i 0.0142725 0.00953753i
\(886\) 194080. 0.247237
\(887\) −205689. −0.261435 −0.130718 0.991420i \(-0.541728\pi\)
−0.130718 + 0.991420i \(0.541728\pi\)
\(888\) 147033. + 220028.i 0.186461 + 0.279030i
\(889\) 635735.i 0.804402i
\(890\) 270715.i 0.341769i
\(891\) −731848. 731574.i −0.921861 0.921516i
\(892\) 286793. 0.360445
\(893\) 1.19703e6i 1.50108i
\(894\) 119347. + 178598.i 0.149327 + 0.223460i
\(895\) 157334. 0.196415
\(896\) −466578. −0.581177
\(897\) 408313. + 611022.i 0.507468 + 0.759403i
\(898\) 177553. 0.220179
\(899\) 259379. + 121700.i 0.320933 + 0.150581i
\(900\) 249211. 601807.i 0.307667 0.742971i
\(901\) 158120.i 0.194777i
\(902\) −20400.1 −0.0250738
\(903\) 514457. + 769861.i 0.630919 + 0.944141i
\(904\) 27465.7 0.0336088
\(905\) 874452.i 1.06767i
\(906\) 157657. 105354.i 0.192069 0.128350i
\(907\) 861662.i 1.04742i 0.851895 + 0.523712i \(0.175453\pi\)
−0.851895 + 0.523712i \(0.824547\pi\)
\(908\) 805512.i 0.977013i
\(909\) −607299. + 1.46654e6i −0.734978 + 1.77486i
\(910\) 199217.i 0.240571i
\(911\) 265544. 0.319964 0.159982 0.987120i \(-0.448856\pi\)
0.159982 + 0.987120i \(0.448856\pi\)
\(912\) 643692. + 963256.i 0.773907 + 1.15812i
\(913\) 509101.i 0.610749i
\(914\) 60409.1 0.0723120
\(915\) −330798. + 221054.i −0.395112 + 0.264032i
\(916\) 1.31037e6i 1.56171i
\(917\) 488500. 0.580933
\(918\) 9996.70 + 50220.0i 0.0118624 + 0.0595925i
\(919\) 290403. 0.343850 0.171925 0.985110i \(-0.445001\pi\)
0.171925 + 0.985110i \(0.445001\pi\)
\(920\) −282337. −0.333574
\(921\) −543724. 813659.i −0.641002 0.959231i
\(922\) 47598.1 0.0559923
\(923\) 68116.4i 0.0799555i
\(924\) −886388. + 592326.i −1.03820 + 0.693772i
\(925\) 760976.i 0.889380i
\(926\) 138590. 0.161625
\(927\) −634848. + 1.53306e6i −0.738772 + 1.78403i
\(928\) −167195. + 356342.i −0.194145 + 0.413782i
\(929\) 1.38809e6i 1.60837i 0.594377 + 0.804186i \(0.297399\pi\)
−0.594377 + 0.804186i \(0.702601\pi\)
\(930\) −54247.9 + 36251.0i −0.0627216 + 0.0419135i
\(931\) 45634.4i 0.0526493i
\(932\) 344781.i 0.396928i
\(933\) 378940. 253226.i 0.435319 0.290900i
\(934\) 167195. 0.191659
\(935\) 593691.i 0.679105i
\(936\) −120032. + 289859.i −0.137008 + 0.330853i
\(937\) −24450.5 −0.0278490 −0.0139245 0.999903i \(-0.504432\pi\)
−0.0139245 + 0.999903i \(0.504432\pi\)
\(938\) −92653.4 −0.105307
\(939\) 507643. 339230.i 0.575741 0.384737i
\(940\) 1.16172e6i 1.31475i
\(941\) 771463.i 0.871236i −0.900132 0.435618i \(-0.856530\pi\)
0.900132 0.435618i \(-0.143470\pi\)
\(942\) −112252. 167980.i −0.126501 0.189303i
\(943\) 86176.3i 0.0969091i
\(944\) 10488.5i 0.0117698i
\(945\) 1.16218e6 231342.i 1.30140 0.259054i
\(946\) 212423.i 0.237366i
\(947\) −1.35877e6 −1.51512 −0.757560 0.652765i \(-0.773609\pi\)
−0.757560 + 0.652765i \(0.773609\pi\)
\(948\) −366023. 547736.i −0.407278 0.609474i
\(949\) 1.99277e6i 2.21271i
\(950\) 176324.i 0.195372i
\(951\) 769805. 514419.i 0.851176 0.568795i
\(952\) 106850. 0.117896
\(953\) 755735.i 0.832116i −0.909338 0.416058i \(-0.863411\pi\)
0.909338 0.416058i \(-0.136589\pi\)
\(954\) 66894.8 + 27701.4i 0.0735014 + 0.0304372i
\(955\) 1.04031e6i 1.14066i
\(956\) 1.50289e6i 1.64441i
\(957\) 178859. + 1.18030e6i 0.195293 + 1.28875i
\(958\) −52913.2 −0.0576545
\(959\) −1.40738e6 −1.53029
\(960\) 590796. + 884099.i 0.641054 + 0.959308i
\(961\) 807460. 0.874327
\(962\) 180959.i 0.195537i
\(963\) −749182. 310239.i −0.807858 0.334537i
\(964\) 681692. 0.733557
\(965\) −413894. −0.444462
\(966\) −63677.3 95290.2i −0.0682387 0.102116i
\(967\) 142980.i 0.152905i −0.997073 0.0764527i \(-0.975641\pi\)
0.997073 0.0764527i \(-0.0243594\pi\)
\(968\) 203810. 0.217508
\(969\) −302622. 452860.i −0.322294 0.482299i
\(970\) −299047. −0.317831
\(971\) 38982.8 0.0413461 0.0206731 0.999786i \(-0.493419\pi\)
0.0206731 + 0.999786i \(0.493419\pi\)
\(972\) −903676. 179533.i −0.956489 0.190025i
\(973\) 1.05179e6 1.11097
\(974\) 67058.7 0.0706866
\(975\) −750091. + 501246.i −0.789050 + 0.527280i
\(976\) 310376.i 0.325828i
\(977\) 518384.i 0.543078i −0.962427 0.271539i \(-0.912467\pi\)
0.962427 0.271539i \(-0.0875327\pi\)
\(978\) 68990.4 + 103241.i 0.0721292 + 0.107938i
\(979\) 2.00647e6 2.09347
\(980\) 44287.9i 0.0461141i
\(981\) 236081. 570100.i 0.245314 0.592397i
\(982\) 101062. 0.104801
\(983\) 1.61151e6 1.66773 0.833865 0.551968i \(-0.186123\pi\)
0.833865 + 0.551968i \(0.186123\pi\)
\(984\) −30588.0 + 20440.3i −0.0315908 + 0.0211104i
\(985\) 1.97334e6 2.03390
\(986\) 25091.8 53478.3i 0.0258094 0.0550077i
\(987\) −794147. + 530686.i −0.815204 + 0.544757i
\(988\) 1.64759e6i 1.68786i
\(989\) −897338. −0.917410
\(990\) −251169. 104010.i −0.256269 0.106122i
\(991\) −1.21858e6 −1.24081 −0.620405 0.784282i \(-0.713032\pi\)
−0.620405 + 0.784282i \(0.713032\pi\)
\(992\) 159449.i 0.162031i
\(993\) −342127. 511978.i −0.346968 0.519221i
\(994\) 10622.9i 0.0107515i
\(995\) 87736.1i 0.0886201i
\(996\) −251847. 376878.i −0.253874 0.379911i
\(997\) 454057.i 0.456794i 0.973568 + 0.228397i \(0.0733484\pi\)
−0.973568 + 0.228397i \(0.926652\pi\)
\(998\) 114992. 0.115454
\(999\) 1.05567e6 210139.i 1.05778 0.210560i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 87.5.d.c.86.16 yes 32
3.2 odd 2 inner 87.5.d.c.86.18 yes 32
29.28 even 2 inner 87.5.d.c.86.17 yes 32
87.86 odd 2 inner 87.5.d.c.86.15 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
87.5.d.c.86.15 32 87.86 odd 2 inner
87.5.d.c.86.16 yes 32 1.1 even 1 trivial
87.5.d.c.86.17 yes 32 29.28 even 2 inner
87.5.d.c.86.18 yes 32 3.2 odd 2 inner