Properties

Label 8688.2.a.bf.1.4
Level $8688$
Weight $2$
Character 8688.1
Self dual yes
Analytic conductor $69.374$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8688,2,Mod(1,8688)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8688.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8688, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 8688 = 2^{4} \cdot 3 \cdot 181 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8688.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,8,0,5,0,3,0,8,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(69.3740292761\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 3x^{7} - 6x^{6} + 21x^{5} + 5x^{4} - 35x^{3} + 10x^{2} + 4x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{23}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 543)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(2.48495\) of defining polynomial
Character \(\chi\) \(=\) 8688.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{3} +0.370811 q^{5} +1.96328 q^{7} +1.00000 q^{9} -4.04845 q^{11} +4.06041 q^{13} +0.370811 q^{15} +3.62919 q^{17} -5.64676 q^{19} +1.96328 q^{21} +8.92443 q^{23} -4.86250 q^{25} +1.00000 q^{27} -6.74722 q^{29} +8.80518 q^{31} -4.04845 q^{33} +0.728004 q^{35} -0.921480 q^{37} +4.06041 q^{39} -0.316916 q^{41} +2.22243 q^{43} +0.370811 q^{45} +4.93727 q^{47} -3.14555 q^{49} +3.62919 q^{51} +14.1879 q^{53} -1.50121 q^{55} -5.64676 q^{57} +0.537828 q^{59} -2.35027 q^{61} +1.96328 q^{63} +1.50564 q^{65} -10.6251 q^{67} +8.92443 q^{69} -1.33418 q^{71} +8.35531 q^{73} -4.86250 q^{75} -7.94822 q^{77} +15.5212 q^{79} +1.00000 q^{81} -9.55110 q^{83} +1.34574 q^{85} -6.74722 q^{87} +3.36562 q^{89} +7.97171 q^{91} +8.80518 q^{93} -2.09388 q^{95} +12.3388 q^{97} -4.04845 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{3} + 5 q^{5} + 3 q^{7} + 8 q^{9} - 4 q^{11} + 13 q^{13} + 5 q^{15} + 27 q^{17} + 10 q^{19} + 3 q^{21} - 3 q^{23} + 13 q^{25} + 8 q^{27} + 16 q^{29} + q^{31} - 4 q^{33} - 14 q^{35} + 3 q^{37}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000 0.577350
\(4\) 0 0
\(5\) 0.370811 0.165832 0.0829158 0.996557i \(-0.473577\pi\)
0.0829158 + 0.996557i \(0.473577\pi\)
\(6\) 0 0
\(7\) 1.96328 0.742048 0.371024 0.928623i \(-0.379007\pi\)
0.371024 + 0.928623i \(0.379007\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) −4.04845 −1.22065 −0.610326 0.792150i \(-0.708962\pi\)
−0.610326 + 0.792150i \(0.708962\pi\)
\(12\) 0 0
\(13\) 4.06041 1.12616 0.563078 0.826404i \(-0.309617\pi\)
0.563078 + 0.826404i \(0.309617\pi\)
\(14\) 0 0
\(15\) 0.370811 0.0957429
\(16\) 0 0
\(17\) 3.62919 0.880208 0.440104 0.897947i \(-0.354942\pi\)
0.440104 + 0.897947i \(0.354942\pi\)
\(18\) 0 0
\(19\) −5.64676 −1.29545 −0.647727 0.761872i \(-0.724280\pi\)
−0.647727 + 0.761872i \(0.724280\pi\)
\(20\) 0 0
\(21\) 1.96328 0.428422
\(22\) 0 0
\(23\) 8.92443 1.86087 0.930436 0.366454i \(-0.119428\pi\)
0.930436 + 0.366454i \(0.119428\pi\)
\(24\) 0 0
\(25\) −4.86250 −0.972500
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) −6.74722 −1.25293 −0.626464 0.779451i \(-0.715498\pi\)
−0.626464 + 0.779451i \(0.715498\pi\)
\(30\) 0 0
\(31\) 8.80518 1.58146 0.790729 0.612166i \(-0.209702\pi\)
0.790729 + 0.612166i \(0.209702\pi\)
\(32\) 0 0
\(33\) −4.04845 −0.704744
\(34\) 0 0
\(35\) 0.728004 0.123055
\(36\) 0 0
\(37\) −0.921480 −0.151490 −0.0757452 0.997127i \(-0.524134\pi\)
−0.0757452 + 0.997127i \(0.524134\pi\)
\(38\) 0 0
\(39\) 4.06041 0.650186
\(40\) 0 0
\(41\) −0.316916 −0.0494939 −0.0247470 0.999694i \(-0.507878\pi\)
−0.0247470 + 0.999694i \(0.507878\pi\)
\(42\) 0 0
\(43\) 2.22243 0.338917 0.169458 0.985537i \(-0.445798\pi\)
0.169458 + 0.985537i \(0.445798\pi\)
\(44\) 0 0
\(45\) 0.370811 0.0552772
\(46\) 0 0
\(47\) 4.93727 0.720174 0.360087 0.932919i \(-0.382747\pi\)
0.360087 + 0.932919i \(0.382747\pi\)
\(48\) 0 0
\(49\) −3.14555 −0.449364
\(50\) 0 0
\(51\) 3.62919 0.508188
\(52\) 0 0
\(53\) 14.1879 1.94885 0.974426 0.224711i \(-0.0721437\pi\)
0.974426 + 0.224711i \(0.0721437\pi\)
\(54\) 0 0
\(55\) −1.50121 −0.202423
\(56\) 0 0
\(57\) −5.64676 −0.747931
\(58\) 0 0
\(59\) 0.537828 0.0700192 0.0350096 0.999387i \(-0.488854\pi\)
0.0350096 + 0.999387i \(0.488854\pi\)
\(60\) 0 0
\(61\) −2.35027 −0.300921 −0.150461 0.988616i \(-0.548076\pi\)
−0.150461 + 0.988616i \(0.548076\pi\)
\(62\) 0 0
\(63\) 1.96328 0.247349
\(64\) 0 0
\(65\) 1.50564 0.186752
\(66\) 0 0
\(67\) −10.6251 −1.29806 −0.649032 0.760761i \(-0.724826\pi\)
−0.649032 + 0.760761i \(0.724826\pi\)
\(68\) 0 0
\(69\) 8.92443 1.07438
\(70\) 0 0
\(71\) −1.33418 −0.158338 −0.0791691 0.996861i \(-0.525227\pi\)
−0.0791691 + 0.996861i \(0.525227\pi\)
\(72\) 0 0
\(73\) 8.35531 0.977915 0.488958 0.872308i \(-0.337377\pi\)
0.488958 + 0.872308i \(0.337377\pi\)
\(74\) 0 0
\(75\) −4.86250 −0.561473
\(76\) 0 0
\(77\) −7.94822 −0.905783
\(78\) 0 0
\(79\) 15.5212 1.74627 0.873137 0.487475i \(-0.162082\pi\)
0.873137 + 0.487475i \(0.162082\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) −9.55110 −1.04837 −0.524185 0.851604i \(-0.675630\pi\)
−0.524185 + 0.851604i \(0.675630\pi\)
\(84\) 0 0
\(85\) 1.34574 0.145966
\(86\) 0 0
\(87\) −6.74722 −0.723378
\(88\) 0 0
\(89\) 3.36562 0.356755 0.178378 0.983962i \(-0.442915\pi\)
0.178378 + 0.983962i \(0.442915\pi\)
\(90\) 0 0
\(91\) 7.97171 0.835662
\(92\) 0 0
\(93\) 8.80518 0.913055
\(94\) 0 0
\(95\) −2.09388 −0.214827
\(96\) 0 0
\(97\) 12.3388 1.25281 0.626407 0.779496i \(-0.284525\pi\)
0.626407 + 0.779496i \(0.284525\pi\)
\(98\) 0 0
\(99\) −4.04845 −0.406884
\(100\) 0 0
\(101\) 1.21813 0.121208 0.0606042 0.998162i \(-0.480697\pi\)
0.0606042 + 0.998162i \(0.480697\pi\)
\(102\) 0 0
\(103\) 1.05825 0.104272 0.0521361 0.998640i \(-0.483397\pi\)
0.0521361 + 0.998640i \(0.483397\pi\)
\(104\) 0 0
\(105\) 0.728004 0.0710459
\(106\) 0 0
\(107\) 3.95524 0.382368 0.191184 0.981554i \(-0.438767\pi\)
0.191184 + 0.981554i \(0.438767\pi\)
\(108\) 0 0
\(109\) −1.34588 −0.128912 −0.0644562 0.997921i \(-0.520531\pi\)
−0.0644562 + 0.997921i \(0.520531\pi\)
\(110\) 0 0
\(111\) −0.921480 −0.0874630
\(112\) 0 0
\(113\) −2.24544 −0.211233 −0.105617 0.994407i \(-0.533682\pi\)
−0.105617 + 0.994407i \(0.533682\pi\)
\(114\) 0 0
\(115\) 3.30927 0.308591
\(116\) 0 0
\(117\) 4.06041 0.375385
\(118\) 0 0
\(119\) 7.12510 0.653157
\(120\) 0 0
\(121\) 5.38992 0.489993
\(122\) 0 0
\(123\) −0.316916 −0.0285753
\(124\) 0 0
\(125\) −3.65712 −0.327103
\(126\) 0 0
\(127\) 17.6937 1.57006 0.785032 0.619455i \(-0.212646\pi\)
0.785032 + 0.619455i \(0.212646\pi\)
\(128\) 0 0
\(129\) 2.22243 0.195674
\(130\) 0 0
\(131\) −13.4044 −1.17115 −0.585575 0.810618i \(-0.699131\pi\)
−0.585575 + 0.810618i \(0.699131\pi\)
\(132\) 0 0
\(133\) −11.0861 −0.961290
\(134\) 0 0
\(135\) 0.370811 0.0319143
\(136\) 0 0
\(137\) 5.68019 0.485292 0.242646 0.970115i \(-0.421985\pi\)
0.242646 + 0.970115i \(0.421985\pi\)
\(138\) 0 0
\(139\) 17.0855 1.44917 0.724585 0.689185i \(-0.242031\pi\)
0.724585 + 0.689185i \(0.242031\pi\)
\(140\) 0 0
\(141\) 4.93727 0.415793
\(142\) 0 0
\(143\) −16.4384 −1.37465
\(144\) 0 0
\(145\) −2.50194 −0.207775
\(146\) 0 0
\(147\) −3.14555 −0.259440
\(148\) 0 0
\(149\) −12.9363 −1.05978 −0.529890 0.848067i \(-0.677767\pi\)
−0.529890 + 0.848067i \(0.677767\pi\)
\(150\) 0 0
\(151\) 10.7174 0.872173 0.436087 0.899905i \(-0.356364\pi\)
0.436087 + 0.899905i \(0.356364\pi\)
\(152\) 0 0
\(153\) 3.62919 0.293403
\(154\) 0 0
\(155\) 3.26506 0.262256
\(156\) 0 0
\(157\) −3.06175 −0.244354 −0.122177 0.992508i \(-0.538988\pi\)
−0.122177 + 0.992508i \(0.538988\pi\)
\(158\) 0 0
\(159\) 14.1879 1.12517
\(160\) 0 0
\(161\) 17.5211 1.38086
\(162\) 0 0
\(163\) −5.50865 −0.431471 −0.215735 0.976452i \(-0.569215\pi\)
−0.215735 + 0.976452i \(0.569215\pi\)
\(164\) 0 0
\(165\) −1.50121 −0.116869
\(166\) 0 0
\(167\) −20.2718 −1.56868 −0.784341 0.620330i \(-0.786999\pi\)
−0.784341 + 0.620330i \(0.786999\pi\)
\(168\) 0 0
\(169\) 3.48696 0.268227
\(170\) 0 0
\(171\) −5.64676 −0.431818
\(172\) 0 0
\(173\) 19.9597 1.51751 0.758753 0.651378i \(-0.225809\pi\)
0.758753 + 0.651378i \(0.225809\pi\)
\(174\) 0 0
\(175\) −9.54643 −0.721642
\(176\) 0 0
\(177\) 0.537828 0.0404256
\(178\) 0 0
\(179\) 2.45329 0.183367 0.0916837 0.995788i \(-0.470775\pi\)
0.0916837 + 0.995788i \(0.470775\pi\)
\(180\) 0 0
\(181\) 1.00000 0.0743294
\(182\) 0 0
\(183\) −2.35027 −0.173737
\(184\) 0 0
\(185\) −0.341695 −0.0251219
\(186\) 0 0
\(187\) −14.6926 −1.07443
\(188\) 0 0
\(189\) 1.96328 0.142807
\(190\) 0 0
\(191\) −26.6172 −1.92595 −0.962975 0.269590i \(-0.913112\pi\)
−0.962975 + 0.269590i \(0.913112\pi\)
\(192\) 0 0
\(193\) 9.38507 0.675552 0.337776 0.941226i \(-0.390325\pi\)
0.337776 + 0.941226i \(0.390325\pi\)
\(194\) 0 0
\(195\) 1.50564 0.107821
\(196\) 0 0
\(197\) −2.17420 −0.154905 −0.0774527 0.996996i \(-0.524679\pi\)
−0.0774527 + 0.996996i \(0.524679\pi\)
\(198\) 0 0
\(199\) 19.5191 1.38367 0.691835 0.722055i \(-0.256802\pi\)
0.691835 + 0.722055i \(0.256802\pi\)
\(200\) 0 0
\(201\) −10.6251 −0.749438
\(202\) 0 0
\(203\) −13.2467 −0.929733
\(204\) 0 0
\(205\) −0.117516 −0.00820766
\(206\) 0 0
\(207\) 8.92443 0.620291
\(208\) 0 0
\(209\) 22.8606 1.58130
\(210\) 0 0
\(211\) 8.94618 0.615881 0.307940 0.951406i \(-0.400360\pi\)
0.307940 + 0.951406i \(0.400360\pi\)
\(212\) 0 0
\(213\) −1.33418 −0.0914166
\(214\) 0 0
\(215\) 0.824100 0.0562031
\(216\) 0 0
\(217\) 17.2870 1.17352
\(218\) 0 0
\(219\) 8.35531 0.564600
\(220\) 0 0
\(221\) 14.7360 0.991251
\(222\) 0 0
\(223\) 17.4305 1.16723 0.583615 0.812030i \(-0.301638\pi\)
0.583615 + 0.812030i \(0.301638\pi\)
\(224\) 0 0
\(225\) −4.86250 −0.324167
\(226\) 0 0
\(227\) −5.26176 −0.349235 −0.174618 0.984636i \(-0.555869\pi\)
−0.174618 + 0.984636i \(0.555869\pi\)
\(228\) 0 0
\(229\) 24.2475 1.60232 0.801159 0.598451i \(-0.204217\pi\)
0.801159 + 0.598451i \(0.204217\pi\)
\(230\) 0 0
\(231\) −7.94822 −0.522954
\(232\) 0 0
\(233\) 12.1328 0.794845 0.397422 0.917636i \(-0.369905\pi\)
0.397422 + 0.917636i \(0.369905\pi\)
\(234\) 0 0
\(235\) 1.83079 0.119428
\(236\) 0 0
\(237\) 15.5212 1.00821
\(238\) 0 0
\(239\) −15.1685 −0.981172 −0.490586 0.871393i \(-0.663217\pi\)
−0.490586 + 0.871393i \(0.663217\pi\)
\(240\) 0 0
\(241\) −18.2872 −1.17798 −0.588990 0.808141i \(-0.700474\pi\)
−0.588990 + 0.808141i \(0.700474\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) 0 0
\(245\) −1.16640 −0.0745188
\(246\) 0 0
\(247\) −22.9282 −1.45888
\(248\) 0 0
\(249\) −9.55110 −0.605277
\(250\) 0 0
\(251\) 1.81307 0.114440 0.0572199 0.998362i \(-0.481776\pi\)
0.0572199 + 0.998362i \(0.481776\pi\)
\(252\) 0 0
\(253\) −36.1301 −2.27148
\(254\) 0 0
\(255\) 1.34574 0.0842736
\(256\) 0 0
\(257\) −6.67435 −0.416335 −0.208167 0.978093i \(-0.566750\pi\)
−0.208167 + 0.978093i \(0.566750\pi\)
\(258\) 0 0
\(259\) −1.80912 −0.112413
\(260\) 0 0
\(261\) −6.74722 −0.417642
\(262\) 0 0
\(263\) 21.0546 1.29828 0.649140 0.760669i \(-0.275129\pi\)
0.649140 + 0.760669i \(0.275129\pi\)
\(264\) 0 0
\(265\) 5.26101 0.323181
\(266\) 0 0
\(267\) 3.36562 0.205973
\(268\) 0 0
\(269\) 5.45589 0.332652 0.166326 0.986071i \(-0.446810\pi\)
0.166326 + 0.986071i \(0.446810\pi\)
\(270\) 0 0
\(271\) 4.00206 0.243108 0.121554 0.992585i \(-0.461212\pi\)
0.121554 + 0.992585i \(0.461212\pi\)
\(272\) 0 0
\(273\) 7.97171 0.482470
\(274\) 0 0
\(275\) 19.6856 1.18708
\(276\) 0 0
\(277\) 22.5668 1.35591 0.677954 0.735105i \(-0.262867\pi\)
0.677954 + 0.735105i \(0.262867\pi\)
\(278\) 0 0
\(279\) 8.80518 0.527153
\(280\) 0 0
\(281\) −9.87322 −0.588987 −0.294494 0.955653i \(-0.595151\pi\)
−0.294494 + 0.955653i \(0.595151\pi\)
\(282\) 0 0
\(283\) 29.5858 1.75869 0.879347 0.476181i \(-0.157979\pi\)
0.879347 + 0.476181i \(0.157979\pi\)
\(284\) 0 0
\(285\) −2.09388 −0.124031
\(286\) 0 0
\(287\) −0.622193 −0.0367269
\(288\) 0 0
\(289\) −3.82899 −0.225234
\(290\) 0 0
\(291\) 12.3388 0.723312
\(292\) 0 0
\(293\) −16.2215 −0.947668 −0.473834 0.880614i \(-0.657130\pi\)
−0.473834 + 0.880614i \(0.657130\pi\)
\(294\) 0 0
\(295\) 0.199432 0.0116114
\(296\) 0 0
\(297\) −4.04845 −0.234915
\(298\) 0 0
\(299\) 36.2369 2.09563
\(300\) 0 0
\(301\) 4.36324 0.251493
\(302\) 0 0
\(303\) 1.21813 0.0699798
\(304\) 0 0
\(305\) −0.871506 −0.0499023
\(306\) 0 0
\(307\) −13.1246 −0.749063 −0.374531 0.927214i \(-0.622196\pi\)
−0.374531 + 0.927214i \(0.622196\pi\)
\(308\) 0 0
\(309\) 1.05825 0.0602016
\(310\) 0 0
\(311\) −18.3176 −1.03869 −0.519347 0.854563i \(-0.673825\pi\)
−0.519347 + 0.854563i \(0.673825\pi\)
\(312\) 0 0
\(313\) 25.8600 1.46170 0.730848 0.682540i \(-0.239125\pi\)
0.730848 + 0.682540i \(0.239125\pi\)
\(314\) 0 0
\(315\) 0.728004 0.0410184
\(316\) 0 0
\(317\) 18.3141 1.02862 0.514312 0.857603i \(-0.328047\pi\)
0.514312 + 0.857603i \(0.328047\pi\)
\(318\) 0 0
\(319\) 27.3158 1.52939
\(320\) 0 0
\(321\) 3.95524 0.220760
\(322\) 0 0
\(323\) −20.4931 −1.14027
\(324\) 0 0
\(325\) −19.7438 −1.09519
\(326\) 0 0
\(327\) −1.34588 −0.0744276
\(328\) 0 0
\(329\) 9.69321 0.534404
\(330\) 0 0
\(331\) −14.6270 −0.803971 −0.401985 0.915646i \(-0.631680\pi\)
−0.401985 + 0.915646i \(0.631680\pi\)
\(332\) 0 0
\(333\) −0.921480 −0.0504968
\(334\) 0 0
\(335\) −3.93991 −0.215260
\(336\) 0 0
\(337\) −5.19389 −0.282929 −0.141465 0.989943i \(-0.545181\pi\)
−0.141465 + 0.989943i \(0.545181\pi\)
\(338\) 0 0
\(339\) −2.24544 −0.121956
\(340\) 0 0
\(341\) −35.6473 −1.93041
\(342\) 0 0
\(343\) −19.9185 −1.07550
\(344\) 0 0
\(345\) 3.30927 0.178165
\(346\) 0 0
\(347\) −18.0979 −0.971545 −0.485773 0.874085i \(-0.661462\pi\)
−0.485773 + 0.874085i \(0.661462\pi\)
\(348\) 0 0
\(349\) 21.5687 1.15455 0.577274 0.816551i \(-0.304117\pi\)
0.577274 + 0.816551i \(0.304117\pi\)
\(350\) 0 0
\(351\) 4.06041 0.216729
\(352\) 0 0
\(353\) −12.6910 −0.675472 −0.337736 0.941241i \(-0.609661\pi\)
−0.337736 + 0.941241i \(0.609661\pi\)
\(354\) 0 0
\(355\) −0.494729 −0.0262575
\(356\) 0 0
\(357\) 7.12510 0.377100
\(358\) 0 0
\(359\) 2.09266 0.110446 0.0552231 0.998474i \(-0.482413\pi\)
0.0552231 + 0.998474i \(0.482413\pi\)
\(360\) 0 0
\(361\) 12.8858 0.678203
\(362\) 0 0
\(363\) 5.38992 0.282897
\(364\) 0 0
\(365\) 3.09824 0.162169
\(366\) 0 0
\(367\) −27.7795 −1.45008 −0.725039 0.688708i \(-0.758178\pi\)
−0.725039 + 0.688708i \(0.758178\pi\)
\(368\) 0 0
\(369\) −0.316916 −0.0164980
\(370\) 0 0
\(371\) 27.8547 1.44614
\(372\) 0 0
\(373\) −19.1864 −0.993433 −0.496716 0.867913i \(-0.665461\pi\)
−0.496716 + 0.867913i \(0.665461\pi\)
\(374\) 0 0
\(375\) −3.65712 −0.188853
\(376\) 0 0
\(377\) −27.3965 −1.41099
\(378\) 0 0
\(379\) 1.30800 0.0671872 0.0335936 0.999436i \(-0.489305\pi\)
0.0335936 + 0.999436i \(0.489305\pi\)
\(380\) 0 0
\(381\) 17.6937 0.906477
\(382\) 0 0
\(383\) −32.9356 −1.68293 −0.841466 0.540310i \(-0.818307\pi\)
−0.841466 + 0.540310i \(0.818307\pi\)
\(384\) 0 0
\(385\) −2.94728 −0.150208
\(386\) 0 0
\(387\) 2.22243 0.112972
\(388\) 0 0
\(389\) −14.6600 −0.743291 −0.371645 0.928375i \(-0.621206\pi\)
−0.371645 + 0.928375i \(0.621206\pi\)
\(390\) 0 0
\(391\) 32.3884 1.63795
\(392\) 0 0
\(393\) −13.4044 −0.676164
\(394\) 0 0
\(395\) 5.75544 0.289587
\(396\) 0 0
\(397\) 7.01622 0.352134 0.176067 0.984378i \(-0.443662\pi\)
0.176067 + 0.984378i \(0.443662\pi\)
\(398\) 0 0
\(399\) −11.0861 −0.555001
\(400\) 0 0
\(401\) 21.5827 1.07779 0.538895 0.842373i \(-0.318842\pi\)
0.538895 + 0.842373i \(0.318842\pi\)
\(402\) 0 0
\(403\) 35.7527 1.78097
\(404\) 0 0
\(405\) 0.370811 0.0184257
\(406\) 0 0
\(407\) 3.73056 0.184917
\(408\) 0 0
\(409\) −5.30477 −0.262304 −0.131152 0.991362i \(-0.541868\pi\)
−0.131152 + 0.991362i \(0.541868\pi\)
\(410\) 0 0
\(411\) 5.68019 0.280183
\(412\) 0 0
\(413\) 1.05590 0.0519577
\(414\) 0 0
\(415\) −3.54165 −0.173853
\(416\) 0 0
\(417\) 17.0855 0.836679
\(418\) 0 0
\(419\) 30.8119 1.50526 0.752630 0.658443i \(-0.228785\pi\)
0.752630 + 0.658443i \(0.228785\pi\)
\(420\) 0 0
\(421\) 22.1309 1.07860 0.539298 0.842115i \(-0.318690\pi\)
0.539298 + 0.842115i \(0.318690\pi\)
\(422\) 0 0
\(423\) 4.93727 0.240058
\(424\) 0 0
\(425\) −17.6469 −0.856002
\(426\) 0 0
\(427\) −4.61423 −0.223298
\(428\) 0 0
\(429\) −16.4384 −0.793652
\(430\) 0 0
\(431\) −21.0033 −1.01169 −0.505846 0.862624i \(-0.668820\pi\)
−0.505846 + 0.862624i \(0.668820\pi\)
\(432\) 0 0
\(433\) −8.63171 −0.414814 −0.207407 0.978255i \(-0.566502\pi\)
−0.207407 + 0.978255i \(0.566502\pi\)
\(434\) 0 0
\(435\) −2.50194 −0.119959
\(436\) 0 0
\(437\) −50.3941 −2.41068
\(438\) 0 0
\(439\) 36.9023 1.76125 0.880624 0.473815i \(-0.157123\pi\)
0.880624 + 0.473815i \(0.157123\pi\)
\(440\) 0 0
\(441\) −3.14555 −0.149788
\(442\) 0 0
\(443\) 38.0863 1.80953 0.904767 0.425906i \(-0.140045\pi\)
0.904767 + 0.425906i \(0.140045\pi\)
\(444\) 0 0
\(445\) 1.24801 0.0591613
\(446\) 0 0
\(447\) −12.9363 −0.611864
\(448\) 0 0
\(449\) 10.5002 0.495534 0.247767 0.968820i \(-0.420303\pi\)
0.247767 + 0.968820i \(0.420303\pi\)
\(450\) 0 0
\(451\) 1.28302 0.0604149
\(452\) 0 0
\(453\) 10.7174 0.503549
\(454\) 0 0
\(455\) 2.95600 0.138579
\(456\) 0 0
\(457\) −14.4330 −0.675147 −0.337574 0.941299i \(-0.609606\pi\)
−0.337574 + 0.941299i \(0.609606\pi\)
\(458\) 0 0
\(459\) 3.62919 0.169396
\(460\) 0 0
\(461\) 24.9671 1.16284 0.581418 0.813605i \(-0.302498\pi\)
0.581418 + 0.813605i \(0.302498\pi\)
\(462\) 0 0
\(463\) −32.3333 −1.50266 −0.751329 0.659928i \(-0.770587\pi\)
−0.751329 + 0.659928i \(0.770587\pi\)
\(464\) 0 0
\(465\) 3.26506 0.151413
\(466\) 0 0
\(467\) −32.8660 −1.52086 −0.760428 0.649422i \(-0.775011\pi\)
−0.760428 + 0.649422i \(0.775011\pi\)
\(468\) 0 0
\(469\) −20.8600 −0.963227
\(470\) 0 0
\(471\) −3.06175 −0.141078
\(472\) 0 0
\(473\) −8.99738 −0.413700
\(474\) 0 0
\(475\) 27.4573 1.25983
\(476\) 0 0
\(477\) 14.1879 0.649617
\(478\) 0 0
\(479\) −10.2308 −0.467455 −0.233728 0.972302i \(-0.575092\pi\)
−0.233728 + 0.972302i \(0.575092\pi\)
\(480\) 0 0
\(481\) −3.74159 −0.170602
\(482\) 0 0
\(483\) 17.5211 0.797239
\(484\) 0 0
\(485\) 4.57535 0.207756
\(486\) 0 0
\(487\) −7.93179 −0.359424 −0.179712 0.983719i \(-0.557517\pi\)
−0.179712 + 0.983719i \(0.557517\pi\)
\(488\) 0 0
\(489\) −5.50865 −0.249110
\(490\) 0 0
\(491\) −39.3721 −1.77684 −0.888420 0.459032i \(-0.848196\pi\)
−0.888420 + 0.459032i \(0.848196\pi\)
\(492\) 0 0
\(493\) −24.4869 −1.10284
\(494\) 0 0
\(495\) −1.50121 −0.0674743
\(496\) 0 0
\(497\) −2.61937 −0.117495
\(498\) 0 0
\(499\) −1.78195 −0.0797712 −0.0398856 0.999204i \(-0.512699\pi\)
−0.0398856 + 0.999204i \(0.512699\pi\)
\(500\) 0 0
\(501\) −20.2718 −0.905679
\(502\) 0 0
\(503\) 37.1023 1.65431 0.827156 0.561973i \(-0.189958\pi\)
0.827156 + 0.561973i \(0.189958\pi\)
\(504\) 0 0
\(505\) 0.451696 0.0201002
\(506\) 0 0
\(507\) 3.48696 0.154861
\(508\) 0 0
\(509\) −18.0275 −0.799054 −0.399527 0.916722i \(-0.630826\pi\)
−0.399527 + 0.916722i \(0.630826\pi\)
\(510\) 0 0
\(511\) 16.4038 0.725660
\(512\) 0 0
\(513\) −5.64676 −0.249310
\(514\) 0 0
\(515\) 0.392410 0.0172916
\(516\) 0 0
\(517\) −19.9883 −0.879083
\(518\) 0 0
\(519\) 19.9597 0.876133
\(520\) 0 0
\(521\) 20.9237 0.916683 0.458342 0.888776i \(-0.348444\pi\)
0.458342 + 0.888776i \(0.348444\pi\)
\(522\) 0 0
\(523\) −43.3377 −1.89502 −0.947512 0.319720i \(-0.896411\pi\)
−0.947512 + 0.319720i \(0.896411\pi\)
\(524\) 0 0
\(525\) −9.54643 −0.416640
\(526\) 0 0
\(527\) 31.9557 1.39201
\(528\) 0 0
\(529\) 56.6455 2.46285
\(530\) 0 0
\(531\) 0.537828 0.0233397
\(532\) 0 0
\(533\) −1.28681 −0.0557379
\(534\) 0 0
\(535\) 1.46665 0.0634087
\(536\) 0 0
\(537\) 2.45329 0.105867
\(538\) 0 0
\(539\) 12.7346 0.548517
\(540\) 0 0
\(541\) 29.2960 1.25953 0.629767 0.776784i \(-0.283150\pi\)
0.629767 + 0.776784i \(0.283150\pi\)
\(542\) 0 0
\(543\) 1.00000 0.0429141
\(544\) 0 0
\(545\) −0.499068 −0.0213777
\(546\) 0 0
\(547\) 38.8865 1.66267 0.831334 0.555773i \(-0.187578\pi\)
0.831334 + 0.555773i \(0.187578\pi\)
\(548\) 0 0
\(549\) −2.35027 −0.100307
\(550\) 0 0
\(551\) 38.0999 1.62311
\(552\) 0 0
\(553\) 30.4724 1.29582
\(554\) 0 0
\(555\) −0.341695 −0.0145041
\(556\) 0 0
\(557\) 41.8529 1.77336 0.886682 0.462379i \(-0.153004\pi\)
0.886682 + 0.462379i \(0.153004\pi\)
\(558\) 0 0
\(559\) 9.02397 0.381673
\(560\) 0 0
\(561\) −14.6926 −0.620321
\(562\) 0 0
\(563\) 2.68310 0.113079 0.0565396 0.998400i \(-0.481993\pi\)
0.0565396 + 0.998400i \(0.481993\pi\)
\(564\) 0 0
\(565\) −0.832633 −0.0350291
\(566\) 0 0
\(567\) 1.96328 0.0824498
\(568\) 0 0
\(569\) −9.17154 −0.384491 −0.192246 0.981347i \(-0.561577\pi\)
−0.192246 + 0.981347i \(0.561577\pi\)
\(570\) 0 0
\(571\) 26.6381 1.11477 0.557385 0.830254i \(-0.311805\pi\)
0.557385 + 0.830254i \(0.311805\pi\)
\(572\) 0 0
\(573\) −26.6172 −1.11195
\(574\) 0 0
\(575\) −43.3950 −1.80970
\(576\) 0 0
\(577\) −10.2555 −0.426941 −0.213470 0.976950i \(-0.568477\pi\)
−0.213470 + 0.976950i \(0.568477\pi\)
\(578\) 0 0
\(579\) 9.38507 0.390030
\(580\) 0 0
\(581\) −18.7515 −0.777941
\(582\) 0 0
\(583\) −57.4388 −2.37887
\(584\) 0 0
\(585\) 1.50564 0.0622507
\(586\) 0 0
\(587\) 12.5974 0.519949 0.259974 0.965616i \(-0.416286\pi\)
0.259974 + 0.965616i \(0.416286\pi\)
\(588\) 0 0
\(589\) −49.7207 −2.04871
\(590\) 0 0
\(591\) −2.17420 −0.0894347
\(592\) 0 0
\(593\) 19.2129 0.788979 0.394490 0.918900i \(-0.370921\pi\)
0.394490 + 0.918900i \(0.370921\pi\)
\(594\) 0 0
\(595\) 2.64206 0.108314
\(596\) 0 0
\(597\) 19.5191 0.798863
\(598\) 0 0
\(599\) 20.6159 0.842345 0.421172 0.906981i \(-0.361619\pi\)
0.421172 + 0.906981i \(0.361619\pi\)
\(600\) 0 0
\(601\) 14.6688 0.598354 0.299177 0.954198i \(-0.403288\pi\)
0.299177 + 0.954198i \(0.403288\pi\)
\(602\) 0 0
\(603\) −10.6251 −0.432688
\(604\) 0 0
\(605\) 1.99864 0.0812563
\(606\) 0 0
\(607\) −18.7059 −0.759250 −0.379625 0.925140i \(-0.623947\pi\)
−0.379625 + 0.925140i \(0.623947\pi\)
\(608\) 0 0
\(609\) −13.2467 −0.536781
\(610\) 0 0
\(611\) 20.0473 0.811029
\(612\) 0 0
\(613\) −2.57586 −0.104038 −0.0520191 0.998646i \(-0.516566\pi\)
−0.0520191 + 0.998646i \(0.516566\pi\)
\(614\) 0 0
\(615\) −0.117516 −0.00473869
\(616\) 0 0
\(617\) −19.1221 −0.769828 −0.384914 0.922952i \(-0.625769\pi\)
−0.384914 + 0.922952i \(0.625769\pi\)
\(618\) 0 0
\(619\) 11.0897 0.445733 0.222867 0.974849i \(-0.428459\pi\)
0.222867 + 0.974849i \(0.428459\pi\)
\(620\) 0 0
\(621\) 8.92443 0.358125
\(622\) 0 0
\(623\) 6.60765 0.264730
\(624\) 0 0
\(625\) 22.9564 0.918256
\(626\) 0 0
\(627\) 22.8606 0.912964
\(628\) 0 0
\(629\) −3.34423 −0.133343
\(630\) 0 0
\(631\) −28.4699 −1.13337 −0.566685 0.823935i \(-0.691774\pi\)
−0.566685 + 0.823935i \(0.691774\pi\)
\(632\) 0 0
\(633\) 8.94618 0.355579
\(634\) 0 0
\(635\) 6.56102 0.260366
\(636\) 0 0
\(637\) −12.7722 −0.506054
\(638\) 0 0
\(639\) −1.33418 −0.0527794
\(640\) 0 0
\(641\) −15.8650 −0.626632 −0.313316 0.949649i \(-0.601440\pi\)
−0.313316 + 0.949649i \(0.601440\pi\)
\(642\) 0 0
\(643\) −5.72748 −0.225870 −0.112935 0.993602i \(-0.536025\pi\)
−0.112935 + 0.993602i \(0.536025\pi\)
\(644\) 0 0
\(645\) 0.824100 0.0324489
\(646\) 0 0
\(647\) −5.88463 −0.231349 −0.115674 0.993287i \(-0.536903\pi\)
−0.115674 + 0.993287i \(0.536903\pi\)
\(648\) 0 0
\(649\) −2.17737 −0.0854691
\(650\) 0 0
\(651\) 17.2870 0.677531
\(652\) 0 0
\(653\) −41.1149 −1.60895 −0.804476 0.593985i \(-0.797554\pi\)
−0.804476 + 0.593985i \(0.797554\pi\)
\(654\) 0 0
\(655\) −4.97050 −0.194214
\(656\) 0 0
\(657\) 8.35531 0.325972
\(658\) 0 0
\(659\) 12.1465 0.473162 0.236581 0.971612i \(-0.423973\pi\)
0.236581 + 0.971612i \(0.423973\pi\)
\(660\) 0 0
\(661\) −15.9501 −0.620389 −0.310194 0.950673i \(-0.600394\pi\)
−0.310194 + 0.950673i \(0.600394\pi\)
\(662\) 0 0
\(663\) 14.7360 0.572299
\(664\) 0 0
\(665\) −4.11086 −0.159412
\(666\) 0 0
\(667\) −60.2151 −2.33154
\(668\) 0 0
\(669\) 17.4305 0.673901
\(670\) 0 0
\(671\) 9.51495 0.367321
\(672\) 0 0
\(673\) −28.3034 −1.09102 −0.545508 0.838106i \(-0.683663\pi\)
−0.545508 + 0.838106i \(0.683663\pi\)
\(674\) 0 0
\(675\) −4.86250 −0.187158
\(676\) 0 0
\(677\) 5.99704 0.230485 0.115242 0.993337i \(-0.463236\pi\)
0.115242 + 0.993337i \(0.463236\pi\)
\(678\) 0 0
\(679\) 24.2244 0.929648
\(680\) 0 0
\(681\) −5.26176 −0.201631
\(682\) 0 0
\(683\) −33.7218 −1.29033 −0.645165 0.764043i \(-0.723211\pi\)
−0.645165 + 0.764043i \(0.723211\pi\)
\(684\) 0 0
\(685\) 2.10628 0.0804767
\(686\) 0 0
\(687\) 24.2475 0.925099
\(688\) 0 0
\(689\) 57.6085 2.19471
\(690\) 0 0
\(691\) −8.64738 −0.328962 −0.164481 0.986380i \(-0.552595\pi\)
−0.164481 + 0.986380i \(0.552595\pi\)
\(692\) 0 0
\(693\) −7.94822 −0.301928
\(694\) 0 0
\(695\) 6.33548 0.240318
\(696\) 0 0
\(697\) −1.15015 −0.0435649
\(698\) 0 0
\(699\) 12.1328 0.458904
\(700\) 0 0
\(701\) 12.2904 0.464202 0.232101 0.972692i \(-0.425440\pi\)
0.232101 + 0.972692i \(0.425440\pi\)
\(702\) 0 0
\(703\) 5.20337 0.196249
\(704\) 0 0
\(705\) 1.83079 0.0689516
\(706\) 0 0
\(707\) 2.39153 0.0899426
\(708\) 0 0
\(709\) 2.80892 0.105491 0.0527457 0.998608i \(-0.483203\pi\)
0.0527457 + 0.998608i \(0.483203\pi\)
\(710\) 0 0
\(711\) 15.5212 0.582091
\(712\) 0 0
\(713\) 78.5813 2.94289
\(714\) 0 0
\(715\) −6.09552 −0.227960
\(716\) 0 0
\(717\) −15.1685 −0.566480
\(718\) 0 0
\(719\) 17.4798 0.651888 0.325944 0.945389i \(-0.394318\pi\)
0.325944 + 0.945389i \(0.394318\pi\)
\(720\) 0 0
\(721\) 2.07763 0.0773751
\(722\) 0 0
\(723\) −18.2872 −0.680106
\(724\) 0 0
\(725\) 32.8084 1.21847
\(726\) 0 0
\(727\) 26.2700 0.974299 0.487149 0.873319i \(-0.338037\pi\)
0.487149 + 0.873319i \(0.338037\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 8.06561 0.298317
\(732\) 0 0
\(733\) −29.3942 −1.08570 −0.542849 0.839830i \(-0.682655\pi\)
−0.542849 + 0.839830i \(0.682655\pi\)
\(734\) 0 0
\(735\) −1.16640 −0.0430234
\(736\) 0 0
\(737\) 43.0152 1.58449
\(738\) 0 0
\(739\) 2.53688 0.0933208 0.0466604 0.998911i \(-0.485142\pi\)
0.0466604 + 0.998911i \(0.485142\pi\)
\(740\) 0 0
\(741\) −22.9282 −0.842287
\(742\) 0 0
\(743\) 37.6157 1.37998 0.689992 0.723817i \(-0.257614\pi\)
0.689992 + 0.723817i \(0.257614\pi\)
\(744\) 0 0
\(745\) −4.79690 −0.175745
\(746\) 0 0
\(747\) −9.55110 −0.349457
\(748\) 0 0
\(749\) 7.76524 0.283736
\(750\) 0 0
\(751\) −19.3798 −0.707180 −0.353590 0.935401i \(-0.615039\pi\)
−0.353590 + 0.935401i \(0.615039\pi\)
\(752\) 0 0
\(753\) 1.81307 0.0660718
\(754\) 0 0
\(755\) 3.97414 0.144634
\(756\) 0 0
\(757\) −0.893853 −0.0324877 −0.0162438 0.999868i \(-0.505171\pi\)
−0.0162438 + 0.999868i \(0.505171\pi\)
\(758\) 0 0
\(759\) −36.1301 −1.31144
\(760\) 0 0
\(761\) −20.9488 −0.759392 −0.379696 0.925111i \(-0.623971\pi\)
−0.379696 + 0.925111i \(0.623971\pi\)
\(762\) 0 0
\(763\) −2.64234 −0.0956592
\(764\) 0 0
\(765\) 1.34574 0.0486554
\(766\) 0 0
\(767\) 2.18380 0.0788526
\(768\) 0 0
\(769\) −52.9737 −1.91028 −0.955141 0.296153i \(-0.904296\pi\)
−0.955141 + 0.296153i \(0.904296\pi\)
\(770\) 0 0
\(771\) −6.67435 −0.240371
\(772\) 0 0
\(773\) −4.57701 −0.164624 −0.0823118 0.996607i \(-0.526230\pi\)
−0.0823118 + 0.996607i \(0.526230\pi\)
\(774\) 0 0
\(775\) −42.8152 −1.53797
\(776\) 0 0
\(777\) −1.80912 −0.0649018
\(778\) 0 0
\(779\) 1.78955 0.0641171
\(780\) 0 0
\(781\) 5.40136 0.193276
\(782\) 0 0
\(783\) −6.74722 −0.241126
\(784\) 0 0
\(785\) −1.13533 −0.0405217
\(786\) 0 0
\(787\) −10.6325 −0.379008 −0.189504 0.981880i \(-0.560688\pi\)
−0.189504 + 0.981880i \(0.560688\pi\)
\(788\) 0 0
\(789\) 21.0546 0.749563
\(790\) 0 0
\(791\) −4.40842 −0.156745
\(792\) 0 0
\(793\) −9.54307 −0.338885
\(794\) 0 0
\(795\) 5.26101 0.186589
\(796\) 0 0
\(797\) −56.1843 −1.99015 −0.995076 0.0991189i \(-0.968398\pi\)
−0.995076 + 0.0991189i \(0.968398\pi\)
\(798\) 0 0
\(799\) 17.9183 0.633903
\(800\) 0 0
\(801\) 3.36562 0.118918
\(802\) 0 0
\(803\) −33.8260 −1.19369
\(804\) 0 0
\(805\) 6.49702 0.228990
\(806\) 0 0
\(807\) 5.45589 0.192057
\(808\) 0 0
\(809\) 11.6538 0.409726 0.204863 0.978791i \(-0.434325\pi\)
0.204863 + 0.978791i \(0.434325\pi\)
\(810\) 0 0
\(811\) 16.4662 0.578206 0.289103 0.957298i \(-0.406643\pi\)
0.289103 + 0.957298i \(0.406643\pi\)
\(812\) 0 0
\(813\) 4.00206 0.140358
\(814\) 0 0
\(815\) −2.04267 −0.0715515
\(816\) 0 0
\(817\) −12.5495 −0.439051
\(818\) 0 0
\(819\) 7.97171 0.278554
\(820\) 0 0
\(821\) 43.9803 1.53492 0.767462 0.641094i \(-0.221519\pi\)
0.767462 + 0.641094i \(0.221519\pi\)
\(822\) 0 0
\(823\) −15.3338 −0.534504 −0.267252 0.963627i \(-0.586116\pi\)
−0.267252 + 0.963627i \(0.586116\pi\)
\(824\) 0 0
\(825\) 19.6856 0.685364
\(826\) 0 0
\(827\) 16.9750 0.590280 0.295140 0.955454i \(-0.404634\pi\)
0.295140 + 0.955454i \(0.404634\pi\)
\(828\) 0 0
\(829\) 27.5204 0.955823 0.477911 0.878408i \(-0.341394\pi\)
0.477911 + 0.878408i \(0.341394\pi\)
\(830\) 0 0
\(831\) 22.5668 0.782833
\(832\) 0 0
\(833\) −11.4158 −0.395534
\(834\) 0 0
\(835\) −7.51702 −0.260137
\(836\) 0 0
\(837\) 8.80518 0.304352
\(838\) 0 0
\(839\) −15.2470 −0.526384 −0.263192 0.964744i \(-0.584775\pi\)
−0.263192 + 0.964744i \(0.584775\pi\)
\(840\) 0 0
\(841\) 16.5250 0.569827
\(842\) 0 0
\(843\) −9.87322 −0.340052
\(844\) 0 0
\(845\) 1.29300 0.0444806
\(846\) 0 0
\(847\) 10.5819 0.363598
\(848\) 0 0
\(849\) 29.5858 1.01538
\(850\) 0 0
\(851\) −8.22369 −0.281904
\(852\) 0 0
\(853\) −23.7441 −0.812982 −0.406491 0.913655i \(-0.633248\pi\)
−0.406491 + 0.913655i \(0.633248\pi\)
\(854\) 0 0
\(855\) −2.09388 −0.0716091
\(856\) 0 0
\(857\) 4.28871 0.146500 0.0732498 0.997314i \(-0.476663\pi\)
0.0732498 + 0.997314i \(0.476663\pi\)
\(858\) 0 0
\(859\) −1.15611 −0.0394458 −0.0197229 0.999805i \(-0.506278\pi\)
−0.0197229 + 0.999805i \(0.506278\pi\)
\(860\) 0 0
\(861\) −0.622193 −0.0212043
\(862\) 0 0
\(863\) 49.4010 1.68163 0.840815 0.541323i \(-0.182076\pi\)
0.840815 + 0.541323i \(0.182076\pi\)
\(864\) 0 0
\(865\) 7.40126 0.251651
\(866\) 0 0
\(867\) −3.82899 −0.130039
\(868\) 0 0
\(869\) −62.8368 −2.13159
\(870\) 0 0
\(871\) −43.1424 −1.46182
\(872\) 0 0
\(873\) 12.3388 0.417604
\(874\) 0 0
\(875\) −7.17994 −0.242726
\(876\) 0 0
\(877\) 43.4495 1.46719 0.733593 0.679589i \(-0.237842\pi\)
0.733593 + 0.679589i \(0.237842\pi\)
\(878\) 0 0
\(879\) −16.2215 −0.547137
\(880\) 0 0
\(881\) −51.9644 −1.75073 −0.875363 0.483466i \(-0.839378\pi\)
−0.875363 + 0.483466i \(0.839378\pi\)
\(882\) 0 0
\(883\) 35.2566 1.18648 0.593239 0.805026i \(-0.297849\pi\)
0.593239 + 0.805026i \(0.297849\pi\)
\(884\) 0 0
\(885\) 0.199432 0.00670384
\(886\) 0 0
\(887\) 24.7631 0.831464 0.415732 0.909487i \(-0.363525\pi\)
0.415732 + 0.909487i \(0.363525\pi\)
\(888\) 0 0
\(889\) 34.7377 1.16506
\(890\) 0 0
\(891\) −4.04845 −0.135628
\(892\) 0 0
\(893\) −27.8795 −0.932953
\(894\) 0 0
\(895\) 0.909706 0.0304081
\(896\) 0 0
\(897\) 36.2369 1.20991
\(898\) 0 0
\(899\) −59.4105 −1.98145
\(900\) 0 0
\(901\) 51.4904 1.71539
\(902\) 0 0
\(903\) 4.36324 0.145199
\(904\) 0 0
\(905\) 0.370811 0.0123262
\(906\) 0 0
\(907\) 55.6804 1.84884 0.924419 0.381377i \(-0.124550\pi\)
0.924419 + 0.381377i \(0.124550\pi\)
\(908\) 0 0
\(909\) 1.21813 0.0404028
\(910\) 0 0
\(911\) −39.9314 −1.32299 −0.661493 0.749951i \(-0.730077\pi\)
−0.661493 + 0.749951i \(0.730077\pi\)
\(912\) 0 0
\(913\) 38.6671 1.27970
\(914\) 0 0
\(915\) −0.871506 −0.0288111
\(916\) 0 0
\(917\) −26.3166 −0.869050
\(918\) 0 0
\(919\) −27.4981 −0.907080 −0.453540 0.891236i \(-0.649839\pi\)
−0.453540 + 0.891236i \(0.649839\pi\)
\(920\) 0 0
\(921\) −13.1246 −0.432472
\(922\) 0 0
\(923\) −5.41733 −0.178314
\(924\) 0 0
\(925\) 4.48070 0.147324
\(926\) 0 0
\(927\) 1.05825 0.0347574
\(928\) 0 0
\(929\) −45.6591 −1.49803 −0.749013 0.662556i \(-0.769472\pi\)
−0.749013 + 0.662556i \(0.769472\pi\)
\(930\) 0 0
\(931\) 17.7621 0.582131
\(932\) 0 0
\(933\) −18.3176 −0.599690
\(934\) 0 0
\(935\) −5.44817 −0.178174
\(936\) 0 0
\(937\) −10.2634 −0.335291 −0.167646 0.985847i \(-0.553616\pi\)
−0.167646 + 0.985847i \(0.553616\pi\)
\(938\) 0 0
\(939\) 25.8600 0.843910
\(940\) 0 0
\(941\) 29.9236 0.975482 0.487741 0.872988i \(-0.337821\pi\)
0.487741 + 0.872988i \(0.337821\pi\)
\(942\) 0 0
\(943\) −2.82829 −0.0921019
\(944\) 0 0
\(945\) 0.728004 0.0236820
\(946\) 0 0
\(947\) −16.8152 −0.546421 −0.273211 0.961954i \(-0.588086\pi\)
−0.273211 + 0.961954i \(0.588086\pi\)
\(948\) 0 0
\(949\) 33.9260 1.10129
\(950\) 0 0
\(951\) 18.3141 0.593876
\(952\) 0 0
\(953\) −12.5451 −0.406374 −0.203187 0.979140i \(-0.565130\pi\)
−0.203187 + 0.979140i \(0.565130\pi\)
\(954\) 0 0
\(955\) −9.86993 −0.319383
\(956\) 0 0
\(957\) 27.3158 0.882993
\(958\) 0 0
\(959\) 11.1518 0.360110
\(960\) 0 0
\(961\) 46.5313 1.50101
\(962\) 0 0
\(963\) 3.95524 0.127456
\(964\) 0 0
\(965\) 3.48009 0.112028
\(966\) 0 0
\(967\) 8.59093 0.276266 0.138133 0.990414i \(-0.455890\pi\)
0.138133 + 0.990414i \(0.455890\pi\)
\(968\) 0 0
\(969\) −20.4931 −0.658335
\(970\) 0 0
\(971\) −23.9170 −0.767535 −0.383767 0.923430i \(-0.625374\pi\)
−0.383767 + 0.923430i \(0.625374\pi\)
\(972\) 0 0
\(973\) 33.5435 1.07535
\(974\) 0 0
\(975\) −19.7438 −0.632306
\(976\) 0 0
\(977\) −21.5036 −0.687963 −0.343981 0.938977i \(-0.611776\pi\)
−0.343981 + 0.938977i \(0.611776\pi\)
\(978\) 0 0
\(979\) −13.6255 −0.435474
\(980\) 0 0
\(981\) −1.34588 −0.0429708
\(982\) 0 0
\(983\) −23.9678 −0.764456 −0.382228 0.924068i \(-0.624843\pi\)
−0.382228 + 0.924068i \(0.624843\pi\)
\(984\) 0 0
\(985\) −0.806217 −0.0256882
\(986\) 0 0
\(987\) 9.69321 0.308538
\(988\) 0 0
\(989\) 19.8339 0.630681
\(990\) 0 0
\(991\) −9.12524 −0.289873 −0.144936 0.989441i \(-0.546298\pi\)
−0.144936 + 0.989441i \(0.546298\pi\)
\(992\) 0 0
\(993\) −14.6270 −0.464173
\(994\) 0 0
\(995\) 7.23788 0.229456
\(996\) 0 0
\(997\) −23.5653 −0.746321 −0.373161 0.927767i \(-0.621726\pi\)
−0.373161 + 0.927767i \(0.621726\pi\)
\(998\) 0 0
\(999\) −0.921480 −0.0291543
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8688.2.a.bf.1.4 8
4.3 odd 2 543.2.a.d.1.8 8
12.11 even 2 1629.2.a.e.1.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
543.2.a.d.1.8 8 4.3 odd 2
1629.2.a.e.1.1 8 12.11 even 2
8688.2.a.bf.1.4 8 1.1 even 1 trivial