Properties

Label 867.2.e.k.829.4
Level $867$
Weight $2$
Character 867.829
Analytic conductor $6.923$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [867,2,Mod(616,867)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("867.616"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(867, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 3])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 867 = 3 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 867.e (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,0,-36,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(10)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.92302985525\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 829.4
Character \(\chi\) \(=\) 867.829
Dual form 867.2.e.k.616.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.44395i q^{2} +(0.707107 + 0.707107i) q^{3} -3.97290 q^{4} +(-2.03186 - 2.03186i) q^{5} +(1.72814 - 1.72814i) q^{6} +(1.10487 - 1.10487i) q^{7} +4.82168i q^{8} +1.00000i q^{9} +(-4.96577 + 4.96577i) q^{10} +(-4.48482 + 4.48482i) q^{11} +(-2.80927 - 2.80927i) q^{12} -0.803928 q^{13} +(-2.70024 - 2.70024i) q^{14} -2.87349i q^{15} +3.83815 q^{16} +2.44395 q^{18} -3.25173i q^{19} +(8.07238 + 8.07238i) q^{20} +1.56252 q^{21} +(10.9607 + 10.9607i) q^{22} +(-4.36560 + 4.36560i) q^{23} +(-3.40944 + 3.40944i) q^{24} +3.25692i q^{25} +1.96476i q^{26} +(-0.707107 + 0.707107i) q^{27} +(-4.38953 + 4.38953i) q^{28} +(1.08113 + 1.08113i) q^{29} -7.02266 q^{30} +(1.53664 + 1.53664i) q^{31} +0.263112i q^{32} -6.34249 q^{33} -4.48987 q^{35} -3.97290i q^{36} +(0.449887 + 0.449887i) q^{37} -7.94707 q^{38} +(-0.568463 - 0.568463i) q^{39} +(9.79698 - 9.79698i) q^{40} +(-3.97096 + 3.97096i) q^{41} -3.81872i q^{42} -11.0241i q^{43} +(17.8177 - 17.8177i) q^{44} +(2.03186 - 2.03186i) q^{45} +(10.6693 + 10.6693i) q^{46} -7.46399 q^{47} +(2.71398 + 2.71398i) q^{48} +4.55854i q^{49} +7.95975 q^{50} +3.19393 q^{52} -1.34692i q^{53} +(1.72814 + 1.72814i) q^{54} +18.2250 q^{55} +(5.32731 + 5.32731i) q^{56} +(2.29932 - 2.29932i) q^{57} +(2.64223 - 2.64223i) q^{58} +4.03412i q^{59} +11.4161i q^{60} +(-5.91720 + 5.91720i) q^{61} +(3.75547 - 3.75547i) q^{62} +(1.10487 + 1.10487i) q^{63} +8.31932 q^{64} +(1.63347 + 1.63347i) q^{65} +15.5007i q^{66} +7.75709 q^{67} -6.17389 q^{69} +10.9730i q^{70} +(-3.19435 - 3.19435i) q^{71} -4.82168 q^{72} +(-5.85550 - 5.85550i) q^{73} +(1.09950 - 1.09950i) q^{74} +(-2.30299 + 2.30299i) q^{75} +12.9188i q^{76} +9.91025i q^{77} +(-1.38930 + 1.38930i) q^{78} +(1.06575 - 1.06575i) q^{79} +(-7.79858 - 7.79858i) q^{80} -1.00000 q^{81} +(9.70484 + 9.70484i) q^{82} -7.52521i q^{83} -6.20773 q^{84} -26.9424 q^{86} +1.52895i q^{87} +(-21.6243 - 21.6243i) q^{88} +6.12748 q^{89} +(-4.96577 - 4.96577i) q^{90} +(-0.888234 + 0.888234i) q^{91} +(17.3441 - 17.3441i) q^{92} +2.17313i q^{93} +18.2416i q^{94} +(-6.60707 + 6.60707i) q^{95} +(-0.186048 + 0.186048i) q^{96} +(-3.42351 - 3.42351i) q^{97} +11.1408 q^{98} +(-4.48482 - 4.48482i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 36 q^{4} - 36 q^{13} + 60 q^{16} + 12 q^{18} - 12 q^{21} - 48 q^{30} - 36 q^{33} + 24 q^{38} - 96 q^{47} + 48 q^{50} - 72 q^{52} + 96 q^{55} - 96 q^{64} - 24 q^{67} - 36 q^{69} - 48 q^{72} - 24 q^{81}+ \cdots + 228 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/867\mathbb{Z}\right)^\times\).

\(n\) \(290\) \(292\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.44395i 1.72814i −0.503376 0.864068i \(-0.667909\pi\)
0.503376 0.864068i \(-0.332091\pi\)
\(3\) 0.707107 + 0.707107i 0.408248 + 0.408248i
\(4\) −3.97290 −1.98645
\(5\) −2.03186 2.03186i −0.908676 0.908676i 0.0874895 0.996165i \(-0.472116\pi\)
−0.996165 + 0.0874895i \(0.972116\pi\)
\(6\) 1.72814 1.72814i 0.705508 0.705508i
\(7\) 1.10487 1.10487i 0.417600 0.417600i −0.466775 0.884376i \(-0.654584\pi\)
0.884376 + 0.466775i \(0.154584\pi\)
\(8\) 4.82168i 1.70472i
\(9\) 1.00000i 0.333333i
\(10\) −4.96577 + 4.96577i −1.57031 + 1.57031i
\(11\) −4.48482 + 4.48482i −1.35222 + 1.35222i −0.469052 + 0.883170i \(0.655404\pi\)
−0.883170 + 0.469052i \(0.844596\pi\)
\(12\) −2.80927 2.80927i −0.810965 0.810965i
\(13\) −0.803928 −0.222970 −0.111485 0.993766i \(-0.535561\pi\)
−0.111485 + 0.993766i \(0.535561\pi\)
\(14\) −2.70024 2.70024i −0.721670 0.721670i
\(15\) 2.87349i 0.741931i
\(16\) 3.83815 0.959536
\(17\) 0 0
\(18\) 2.44395 0.576045
\(19\) 3.25173i 0.745998i −0.927832 0.372999i \(-0.878329\pi\)
0.927832 0.372999i \(-0.121671\pi\)
\(20\) 8.07238 + 8.07238i 1.80504 + 1.80504i
\(21\) 1.56252 0.340969
\(22\) 10.9607 + 10.9607i 2.33682 + 2.33682i
\(23\) −4.36560 + 4.36560i −0.910290 + 0.910290i −0.996295 0.0860050i \(-0.972590\pi\)
0.0860050 + 0.996295i \(0.472590\pi\)
\(24\) −3.40944 + 3.40944i −0.695949 + 0.695949i
\(25\) 3.25692i 0.651384i
\(26\) 1.96476i 0.385321i
\(27\) −0.707107 + 0.707107i −0.136083 + 0.136083i
\(28\) −4.38953 + 4.38953i −0.829543 + 0.829543i
\(29\) 1.08113 + 1.08113i 0.200761 + 0.200761i 0.800326 0.599565i \(-0.204660\pi\)
−0.599565 + 0.800326i \(0.704660\pi\)
\(30\) −7.02266 −1.28216
\(31\) 1.53664 + 1.53664i 0.275988 + 0.275988i 0.831505 0.555517i \(-0.187480\pi\)
−0.555517 + 0.831505i \(0.687480\pi\)
\(32\) 0.263112i 0.0465121i
\(33\) −6.34249 −1.10409
\(34\) 0 0
\(35\) −4.48987 −0.758927
\(36\) 3.97290i 0.662150i
\(37\) 0.449887 + 0.449887i 0.0739609 + 0.0739609i 0.743120 0.669159i \(-0.233345\pi\)
−0.669159 + 0.743120i \(0.733345\pi\)
\(38\) −7.94707 −1.28919
\(39\) −0.568463 0.568463i −0.0910269 0.0910269i
\(40\) 9.79698 9.79698i 1.54904 1.54904i
\(41\) −3.97096 + 3.97096i −0.620160 + 0.620160i −0.945572 0.325412i \(-0.894497\pi\)
0.325412 + 0.945572i \(0.394497\pi\)
\(42\) 3.81872i 0.589241i
\(43\) 11.0241i 1.68116i −0.541685 0.840582i \(-0.682213\pi\)
0.541685 0.840582i \(-0.317787\pi\)
\(44\) 17.8177 17.8177i 2.68612 2.68612i
\(45\) 2.03186 2.03186i 0.302892 0.302892i
\(46\) 10.6693 + 10.6693i 1.57310 + 1.57310i
\(47\) −7.46399 −1.08874 −0.544368 0.838847i \(-0.683230\pi\)
−0.544368 + 0.838847i \(0.683230\pi\)
\(48\) 2.71398 + 2.71398i 0.391729 + 0.391729i
\(49\) 4.55854i 0.651220i
\(50\) 7.95975 1.12568
\(51\) 0 0
\(52\) 3.19393 0.442918
\(53\) 1.34692i 0.185014i −0.995712 0.0925071i \(-0.970512\pi\)
0.995712 0.0925071i \(-0.0294881\pi\)
\(54\) 1.72814 + 1.72814i 0.235169 + 0.235169i
\(55\) 18.2250 2.45746
\(56\) 5.32731 + 5.32731i 0.711892 + 0.711892i
\(57\) 2.29932 2.29932i 0.304552 0.304552i
\(58\) 2.64223 2.64223i 0.346942 0.346942i
\(59\) 4.03412i 0.525198i 0.964905 + 0.262599i \(0.0845796\pi\)
−0.964905 + 0.262599i \(0.915420\pi\)
\(60\) 11.4161i 1.47381i
\(61\) −5.91720 + 5.91720i −0.757620 + 0.757620i −0.975889 0.218269i \(-0.929959\pi\)
0.218269 + 0.975889i \(0.429959\pi\)
\(62\) 3.75547 3.75547i 0.476945 0.476945i
\(63\) 1.10487 + 1.10487i 0.139200 + 0.139200i
\(64\) 8.31932 1.03992
\(65\) 1.63347 + 1.63347i 0.202607 + 0.202607i
\(66\) 15.5007i 1.90801i
\(67\) 7.75709 0.947680 0.473840 0.880611i \(-0.342868\pi\)
0.473840 + 0.880611i \(0.342868\pi\)
\(68\) 0 0
\(69\) −6.17389 −0.743248
\(70\) 10.9730i 1.31153i
\(71\) −3.19435 3.19435i −0.379099 0.379099i 0.491678 0.870777i \(-0.336384\pi\)
−0.870777 + 0.491678i \(0.836384\pi\)
\(72\) −4.82168 −0.568240
\(73\) −5.85550 5.85550i −0.685335 0.685335i 0.275863 0.961197i \(-0.411037\pi\)
−0.961197 + 0.275863i \(0.911037\pi\)
\(74\) 1.09950 1.09950i 0.127814 0.127814i
\(75\) −2.30299 + 2.30299i −0.265926 + 0.265926i
\(76\) 12.9188i 1.48189i
\(77\) 9.91025i 1.12938i
\(78\) −1.38930 + 1.38930i −0.157307 + 0.157307i
\(79\) 1.06575 1.06575i 0.119906 0.119906i −0.644607 0.764514i \(-0.722979\pi\)
0.764514 + 0.644607i \(0.222979\pi\)
\(80\) −7.79858 7.79858i −0.871907 0.871907i
\(81\) −1.00000 −0.111111
\(82\) 9.70484 + 9.70484i 1.07172 + 1.07172i
\(83\) 7.52521i 0.825999i −0.910731 0.413000i \(-0.864481\pi\)
0.910731 0.413000i \(-0.135519\pi\)
\(84\) −6.20773 −0.677319
\(85\) 0 0
\(86\) −26.9424 −2.90528
\(87\) 1.52895i 0.163921i
\(88\) −21.6243 21.6243i −2.30516 2.30516i
\(89\) 6.12748 0.649511 0.324756 0.945798i \(-0.394718\pi\)
0.324756 + 0.945798i \(0.394718\pi\)
\(90\) −4.96577 4.96577i −0.523438 0.523438i
\(91\) −0.888234 + 0.888234i −0.0931122 + 0.0931122i
\(92\) 17.3441 17.3441i 1.80825 1.80825i
\(93\) 2.17313i 0.225344i
\(94\) 18.2416i 1.88148i
\(95\) −6.60707 + 6.60707i −0.677871 + 0.677871i
\(96\) −0.186048 + 0.186048i −0.0189885 + 0.0189885i
\(97\) −3.42351 3.42351i −0.347605 0.347605i 0.511612 0.859217i \(-0.329049\pi\)
−0.859217 + 0.511612i \(0.829049\pi\)
\(98\) 11.1408 1.12540
\(99\) −4.48482 4.48482i −0.450741 0.450741i
\(100\) 12.9394i 1.29394i
\(101\) −15.8161 −1.57376 −0.786882 0.617104i \(-0.788306\pi\)
−0.786882 + 0.617104i \(0.788306\pi\)
\(102\) 0 0
\(103\) −7.19272 −0.708720 −0.354360 0.935109i \(-0.615301\pi\)
−0.354360 + 0.935109i \(0.615301\pi\)
\(104\) 3.87628i 0.380101i
\(105\) −3.17482 3.17482i −0.309831 0.309831i
\(106\) −3.29182 −0.319730
\(107\) −2.60052 2.60052i −0.251401 0.251401i 0.570144 0.821545i \(-0.306888\pi\)
−0.821545 + 0.570144i \(0.806888\pi\)
\(108\) 2.80927 2.80927i 0.270322 0.270322i
\(109\) −7.27162 + 7.27162i −0.696495 + 0.696495i −0.963653 0.267158i \(-0.913915\pi\)
0.267158 + 0.963653i \(0.413915\pi\)
\(110\) 44.5411i 4.24683i
\(111\) 0.636236i 0.0603889i
\(112\) 4.24064 4.24064i 0.400703 0.400703i
\(113\) 9.85021 9.85021i 0.926630 0.926630i −0.0708569 0.997486i \(-0.522573\pi\)
0.997486 + 0.0708569i \(0.0225734\pi\)
\(114\) −5.61943 5.61943i −0.526308 0.526308i
\(115\) 17.7406 1.65432
\(116\) −4.29523 4.29523i −0.398802 0.398802i
\(117\) 0.803928i 0.0743232i
\(118\) 9.85920 0.907613
\(119\) 0 0
\(120\) 13.8550 1.26478
\(121\) 29.2271i 2.65701i
\(122\) 14.4614 + 14.4614i 1.30927 + 1.30927i
\(123\) −5.61579 −0.506359
\(124\) −6.10491 6.10491i −0.548237 0.548237i
\(125\) −3.54170 + 3.54170i −0.316779 + 0.316779i
\(126\) 2.70024 2.70024i 0.240557 0.240557i
\(127\) 2.17742i 0.193215i 0.995323 + 0.0966076i \(0.0307992\pi\)
−0.995323 + 0.0966076i \(0.969201\pi\)
\(128\) 19.8058i 1.75060i
\(129\) 7.79523 7.79523i 0.686332 0.686332i
\(130\) 3.99212 3.99212i 0.350132 0.350132i
\(131\) 3.11737 + 3.11737i 0.272366 + 0.272366i 0.830052 0.557686i \(-0.188311\pi\)
−0.557686 + 0.830052i \(0.688311\pi\)
\(132\) 25.1981 2.19321
\(133\) −3.59273 3.59273i −0.311529 0.311529i
\(134\) 18.9580i 1.63772i
\(135\) 2.87349 0.247310
\(136\) 0 0
\(137\) 0.311499 0.0266131 0.0133066 0.999911i \(-0.495764\pi\)
0.0133066 + 0.999911i \(0.495764\pi\)
\(138\) 15.0887i 1.28443i
\(139\) −7.64365 7.64365i −0.648326 0.648326i 0.304263 0.952588i \(-0.401590\pi\)
−0.952588 + 0.304263i \(0.901590\pi\)
\(140\) 17.8378 1.50757
\(141\) −5.27784 5.27784i −0.444474 0.444474i
\(142\) −7.80683 + 7.80683i −0.655135 + 0.655135i
\(143\) 3.60547 3.60547i 0.301504 0.301504i
\(144\) 3.83815i 0.319845i
\(145\) 4.39341i 0.364853i
\(146\) −14.3106 + 14.3106i −1.18435 + 1.18435i
\(147\) −3.22337 + 3.22337i −0.265859 + 0.265859i
\(148\) −1.78736 1.78736i −0.146920 0.146920i
\(149\) −17.7269 −1.45225 −0.726123 0.687565i \(-0.758680\pi\)
−0.726123 + 0.687565i \(0.758680\pi\)
\(150\) 5.62840 + 5.62840i 0.459557 + 0.459557i
\(151\) 16.1244i 1.31219i 0.754680 + 0.656093i \(0.227792\pi\)
−0.754680 + 0.656093i \(0.772208\pi\)
\(152\) 15.6788 1.27172
\(153\) 0 0
\(154\) 24.2202 1.95172
\(155\) 6.24447i 0.501568i
\(156\) 2.25845 + 2.25845i 0.180821 + 0.180821i
\(157\) −19.6347 −1.56702 −0.783510 0.621380i \(-0.786572\pi\)
−0.783510 + 0.621380i \(0.786572\pi\)
\(158\) −2.60464 2.60464i −0.207214 0.207214i
\(159\) 0.952419 0.952419i 0.0755318 0.0755318i
\(160\) 0.534608 0.534608i 0.0422644 0.0422644i
\(161\) 9.64681i 0.760275i
\(162\) 2.44395i 0.192015i
\(163\) 7.69165 7.69165i 0.602456 0.602456i −0.338507 0.940964i \(-0.609922\pi\)
0.940964 + 0.338507i \(0.109922\pi\)
\(164\) 15.7762 15.7762i 1.23192 1.23192i
\(165\) 12.8871 + 12.8871i 1.00326 + 1.00326i
\(166\) −18.3913 −1.42744
\(167\) −7.43457 7.43457i −0.575304 0.575304i 0.358302 0.933606i \(-0.383356\pi\)
−0.933606 + 0.358302i \(0.883356\pi\)
\(168\) 7.53396i 0.581257i
\(169\) −12.3537 −0.950285
\(170\) 0 0
\(171\) 3.25173 0.248666
\(172\) 43.7978i 3.33955i
\(173\) −5.47898 5.47898i −0.416559 0.416559i 0.467457 0.884016i \(-0.345170\pi\)
−0.884016 + 0.467457i \(0.845170\pi\)
\(174\) 3.73668 0.283277
\(175\) 3.59846 + 3.59846i 0.272018 + 0.272018i
\(176\) −17.2134 + 17.2134i −1.29751 + 1.29751i
\(177\) −2.85255 + 2.85255i −0.214411 + 0.214411i
\(178\) 14.9753i 1.12244i
\(179\) 11.9475i 0.893001i −0.894783 0.446501i \(-0.852670\pi\)
0.894783 0.446501i \(-0.147330\pi\)
\(180\) −8.07238 + 8.07238i −0.601680 + 0.601680i
\(181\) −1.23965 + 1.23965i −0.0921422 + 0.0921422i −0.751675 0.659533i \(-0.770754\pi\)
0.659533 + 0.751675i \(0.270754\pi\)
\(182\) 2.17080 + 2.17080i 0.160910 + 0.160910i
\(183\) −8.36818 −0.618594
\(184\) −21.0495 21.0495i −1.55179 1.55179i
\(185\) 1.82822i 0.134413i
\(186\) 5.31104 0.389424
\(187\) 0 0
\(188\) 29.6537 2.16272
\(189\) 1.56252i 0.113656i
\(190\) 16.1474 + 16.1474i 1.17145 + 1.17145i
\(191\) 22.3232 1.61525 0.807627 0.589694i \(-0.200752\pi\)
0.807627 + 0.589694i \(0.200752\pi\)
\(192\) 5.88265 + 5.88265i 0.424544 + 0.424544i
\(193\) −18.4963 + 18.4963i −1.33139 + 1.33139i −0.427262 + 0.904128i \(0.640522\pi\)
−0.904128 + 0.427262i \(0.859478\pi\)
\(194\) −8.36690 + 8.36690i −0.600708 + 0.600708i
\(195\) 2.31008i 0.165428i
\(196\) 18.1106i 1.29362i
\(197\) 12.5837 12.5837i 0.896551 0.896551i −0.0985783 0.995129i \(-0.531429\pi\)
0.995129 + 0.0985783i \(0.0314295\pi\)
\(198\) −10.9607 + 10.9607i −0.778941 + 0.778941i
\(199\) −16.0188 16.0188i −1.13554 1.13554i −0.989240 0.146305i \(-0.953262\pi\)
−0.146305 0.989240i \(-0.546738\pi\)
\(200\) −15.7038 −1.11043
\(201\) 5.48509 + 5.48509i 0.386889 + 0.386889i
\(202\) 38.6538i 2.71968i
\(203\) 2.38901 0.167676
\(204\) 0 0
\(205\) 16.1369 1.12705
\(206\) 17.5787i 1.22476i
\(207\) −4.36560 4.36560i −0.303430 0.303430i
\(208\) −3.08559 −0.213947
\(209\) 14.5834 + 14.5834i 1.00876 + 1.00876i
\(210\) −7.75911 + 7.75911i −0.535429 + 0.535429i
\(211\) −16.0694 + 16.0694i −1.10626 + 1.10626i −0.112623 + 0.993638i \(0.535925\pi\)
−0.993638 + 0.112623i \(0.964075\pi\)
\(212\) 5.35120i 0.367522i
\(213\) 4.51749i 0.309533i
\(214\) −6.35554 + 6.35554i −0.434456 + 0.434456i
\(215\) −22.3995 + 22.3995i −1.52763 + 1.52763i
\(216\) −3.40944 3.40944i −0.231983 0.231983i
\(217\) 3.39556 0.230506
\(218\) 17.7715 + 17.7715i 1.20364 + 1.20364i
\(219\) 8.28093i 0.559573i
\(220\) −72.4063 −4.88163
\(221\) 0 0
\(222\) 1.55493 0.104360
\(223\) 0.594738i 0.0398266i −0.999802 0.0199133i \(-0.993661\pi\)
0.999802 0.0199133i \(-0.00633902\pi\)
\(224\) 0.290704 + 0.290704i 0.0194235 + 0.0194235i
\(225\) −3.25692 −0.217128
\(226\) −24.0734 24.0734i −1.60134 1.60134i
\(227\) 14.1725 14.1725i 0.940661 0.940661i −0.0576740 0.998335i \(-0.518368\pi\)
0.998335 + 0.0576740i \(0.0183684\pi\)
\(228\) −9.13498 + 9.13498i −0.604979 + 0.604979i
\(229\) 1.93974i 0.128182i 0.997944 + 0.0640909i \(0.0204148\pi\)
−0.997944 + 0.0640909i \(0.979585\pi\)
\(230\) 43.3571i 2.85888i
\(231\) −7.00760 + 7.00760i −0.461067 + 0.461067i
\(232\) −5.21286 + 5.21286i −0.342241 + 0.342241i
\(233\) −5.96993 5.96993i −0.391103 0.391103i 0.483978 0.875080i \(-0.339192\pi\)
−0.875080 + 0.483978i \(0.839192\pi\)
\(234\) −1.96476 −0.128440
\(235\) 15.1658 + 15.1658i 0.989308 + 0.989308i
\(236\) 16.0272i 1.04328i
\(237\) 1.50720 0.0979031
\(238\) 0 0
\(239\) 15.5030 1.00281 0.501403 0.865214i \(-0.332817\pi\)
0.501403 + 0.865214i \(0.332817\pi\)
\(240\) 11.0289i 0.711909i
\(241\) 21.0659 + 21.0659i 1.35698 + 1.35698i 0.877620 + 0.479357i \(0.159130\pi\)
0.479357 + 0.877620i \(0.340870\pi\)
\(242\) −71.4297 −4.59168
\(243\) −0.707107 0.707107i −0.0453609 0.0453609i
\(244\) 23.5085 23.5085i 1.50497 1.50497i
\(245\) 9.26232 9.26232i 0.591748 0.591748i
\(246\) 13.7247i 0.875056i
\(247\) 2.61416i 0.166335i
\(248\) −7.40917 + 7.40917i −0.470483 + 0.470483i
\(249\) 5.32113 5.32113i 0.337213 0.337213i
\(250\) 8.65574 + 8.65574i 0.547437 + 0.547437i
\(251\) 4.59133 0.289802 0.144901 0.989446i \(-0.453714\pi\)
0.144901 + 0.989446i \(0.453714\pi\)
\(252\) −4.38953 4.38953i −0.276514 0.276514i
\(253\) 39.1578i 2.46183i
\(254\) 5.32152 0.333902
\(255\) 0 0
\(256\) −31.7658 −1.98536
\(257\) 29.0731i 1.81353i 0.421637 + 0.906765i \(0.361456\pi\)
−0.421637 + 0.906765i \(0.638544\pi\)
\(258\) −19.0512 19.0512i −1.18607 1.18607i
\(259\) 0.994130 0.0617722
\(260\) −6.48962 6.48962i −0.402469 0.402469i
\(261\) −1.08113 + 1.08113i −0.0669203 + 0.0669203i
\(262\) 7.61871 7.61871i 0.470685 0.470685i
\(263\) 1.07458i 0.0662617i −0.999451 0.0331308i \(-0.989452\pi\)
0.999451 0.0331308i \(-0.0105478\pi\)
\(264\) 30.5814i 1.88216i
\(265\) −2.73676 + 2.73676i −0.168118 + 0.168118i
\(266\) −8.78046 + 8.78046i −0.538365 + 0.538365i
\(267\) 4.33278 + 4.33278i 0.265162 + 0.265162i
\(268\) −30.8182 −1.88252
\(269\) −17.9032 17.9032i −1.09157 1.09157i −0.995361 0.0962141i \(-0.969327\pi\)
−0.0962141 0.995361i \(-0.530673\pi\)
\(270\) 7.02266i 0.427386i
\(271\) 19.4812 1.18340 0.591699 0.806159i \(-0.298458\pi\)
0.591699 + 0.806159i \(0.298458\pi\)
\(272\) 0 0
\(273\) −1.25615 −0.0760258
\(274\) 0.761288i 0.0459911i
\(275\) −14.6067 14.6067i −0.880816 0.880816i
\(276\) 24.5282 1.47643
\(277\) 6.71973 + 6.71973i 0.403749 + 0.403749i 0.879552 0.475803i \(-0.157842\pi\)
−0.475803 + 0.879552i \(0.657842\pi\)
\(278\) −18.6807 + 18.6807i −1.12039 + 1.12039i
\(279\) −1.53664 + 1.53664i −0.0919961 + 0.0919961i
\(280\) 21.6487i 1.29376i
\(281\) 14.4217i 0.860329i 0.902751 + 0.430164i \(0.141544\pi\)
−0.902751 + 0.430164i \(0.858456\pi\)
\(282\) −12.8988 + 12.8988i −0.768112 + 0.768112i
\(283\) 13.7256 13.7256i 0.815900 0.815900i −0.169611 0.985511i \(-0.554251\pi\)
0.985511 + 0.169611i \(0.0542512\pi\)
\(284\) 12.6908 + 12.6908i 0.753062 + 0.753062i
\(285\) −9.34380 −0.553479
\(286\) −8.81159 8.81159i −0.521040 0.521040i
\(287\) 8.77477i 0.517958i
\(288\) −0.263112 −0.0155040
\(289\) 0 0
\(290\) −10.7373 −0.630516
\(291\) 4.84158i 0.283818i
\(292\) 23.2633 + 23.2633i 1.36138 + 1.36138i
\(293\) 1.07338 0.0627076 0.0313538 0.999508i \(-0.490018\pi\)
0.0313538 + 0.999508i \(0.490018\pi\)
\(294\) 7.87777 + 7.87777i 0.459441 + 0.459441i
\(295\) 8.19677 8.19677i 0.477235 0.477235i
\(296\) −2.16921 + 2.16921i −0.126083 + 0.126083i
\(297\) 6.34249i 0.368028i
\(298\) 43.3238i 2.50968i
\(299\) 3.50962 3.50962i 0.202967 0.202967i
\(300\) 9.14955 9.14955i 0.528250 0.528250i
\(301\) −12.1802 12.1802i −0.702054 0.702054i
\(302\) 39.4073 2.26764
\(303\) −11.1837 11.1837i −0.642486 0.642486i
\(304\) 12.4806i 0.715812i
\(305\) 24.0459 1.37686
\(306\) 0 0
\(307\) 14.5796 0.832104 0.416052 0.909341i \(-0.363413\pi\)
0.416052 + 0.909341i \(0.363413\pi\)
\(308\) 39.3724i 2.24345i
\(309\) −5.08602 5.08602i −0.289334 0.289334i
\(310\) −15.2612 −0.866777
\(311\) −10.1434 10.1434i −0.575180 0.575180i 0.358391 0.933571i \(-0.383325\pi\)
−0.933571 + 0.358391i \(0.883325\pi\)
\(312\) 2.74094 2.74094i 0.155175 0.155175i
\(313\) 8.00336 8.00336i 0.452377 0.452377i −0.443766 0.896143i \(-0.646358\pi\)
0.896143 + 0.443766i \(0.146358\pi\)
\(314\) 47.9863i 2.70802i
\(315\) 4.48987i 0.252976i
\(316\) −4.23412 + 4.23412i −0.238188 + 0.238188i
\(317\) 8.31718 8.31718i 0.467139 0.467139i −0.433847 0.900986i \(-0.642844\pi\)
0.900986 + 0.433847i \(0.142844\pi\)
\(318\) −2.32767 2.32767i −0.130529 0.130529i
\(319\) −9.69734 −0.542947
\(320\) −16.9037 16.9037i −0.944946 0.944946i
\(321\) 3.67769i 0.205268i
\(322\) 23.5763 1.31386
\(323\) 0 0
\(324\) 3.97290 0.220717
\(325\) 2.61833i 0.145239i
\(326\) −18.7980 18.7980i −1.04113 1.04113i
\(327\) −10.2836 −0.568686
\(328\) −19.1467 19.1467i −1.05720 1.05720i
\(329\) −8.24672 + 8.24672i −0.454656 + 0.454656i
\(330\) 31.4953 31.4953i 1.73376 1.73376i
\(331\) 20.2084i 1.11075i −0.831600 0.555376i \(-0.812574\pi\)
0.831600 0.555376i \(-0.187426\pi\)
\(332\) 29.8969i 1.64081i
\(333\) −0.449887 + 0.449887i −0.0246536 + 0.0246536i
\(334\) −18.1697 + 18.1697i −0.994203 + 0.994203i
\(335\) −15.7613 15.7613i −0.861134 0.861134i
\(336\) 5.99717 0.327172
\(337\) 4.53115 + 4.53115i 0.246827 + 0.246827i 0.819667 0.572840i \(-0.194158\pi\)
−0.572840 + 0.819667i \(0.694158\pi\)
\(338\) 30.1919i 1.64222i
\(339\) 13.9303 0.756590
\(340\) 0 0
\(341\) −13.7831 −0.746395
\(342\) 7.94707i 0.429729i
\(343\) 12.7706 + 12.7706i 0.689550 + 0.689550i
\(344\) 53.1548 2.86591
\(345\) 12.5445 + 12.5445i 0.675372 + 0.675372i
\(346\) −13.3904 + 13.3904i −0.719871 + 0.719871i
\(347\) 8.29369 8.29369i 0.445229 0.445229i −0.448536 0.893765i \(-0.648054\pi\)
0.893765 + 0.448536i \(0.148054\pi\)
\(348\) 6.07437i 0.325620i
\(349\) 25.7808i 1.38001i 0.723803 + 0.690007i \(0.242393\pi\)
−0.723803 + 0.690007i \(0.757607\pi\)
\(350\) 8.79447 8.79447i 0.470084 0.470084i
\(351\) 0.568463 0.568463i 0.0303423 0.0303423i
\(352\) −1.18001 1.18001i −0.0628947 0.0628947i
\(353\) 3.96309 0.210934 0.105467 0.994423i \(-0.466366\pi\)
0.105467 + 0.994423i \(0.466366\pi\)
\(354\) 6.97151 + 6.97151i 0.370531 + 0.370531i
\(355\) 12.9809i 0.688957i
\(356\) −24.3439 −1.29022
\(357\) 0 0
\(358\) −29.1992 −1.54323
\(359\) 11.2422i 0.593340i 0.954980 + 0.296670i \(0.0958762\pi\)
−0.954980 + 0.296670i \(0.904124\pi\)
\(360\) 9.79698 + 9.79698i 0.516346 + 0.516346i
\(361\) 8.42625 0.443487
\(362\) 3.02964 + 3.02964i 0.159234 + 0.159234i
\(363\) 20.6667 20.6667i 1.08472 1.08472i
\(364\) 3.52886 3.52886i 0.184963 0.184963i
\(365\) 23.7951i 1.24549i
\(366\) 20.4514i 1.06901i
\(367\) 10.9270 10.9270i 0.570387 0.570387i −0.361850 0.932236i \(-0.617855\pi\)
0.932236 + 0.361850i \(0.117855\pi\)
\(368\) −16.7558 + 16.7558i −0.873456 + 0.873456i
\(369\) −3.97096 3.97096i −0.206720 0.206720i
\(370\) −4.46807 −0.232284
\(371\) −1.48817 1.48817i −0.0772620 0.0772620i
\(372\) 8.63365i 0.447634i
\(373\) −5.14892 −0.266601 −0.133300 0.991076i \(-0.542558\pi\)
−0.133300 + 0.991076i \(0.542558\pi\)
\(374\) 0 0
\(375\) −5.00872 −0.258649
\(376\) 35.9890i 1.85599i
\(377\) −0.869151 0.869151i −0.0447636 0.0447636i
\(378\) 3.81872 0.196414
\(379\) −8.37697 8.37697i −0.430296 0.430296i 0.458433 0.888729i \(-0.348411\pi\)
−0.888729 + 0.458433i \(0.848411\pi\)
\(380\) 26.2492 26.2492i 1.34656 1.34656i
\(381\) −1.53967 + 1.53967i −0.0788797 + 0.0788797i
\(382\) 54.5569i 2.79138i
\(383\) 30.7346i 1.57047i 0.619200 + 0.785234i \(0.287457\pi\)
−0.619200 + 0.785234i \(0.712543\pi\)
\(384\) 14.0048 14.0048i 0.714680 0.714680i
\(385\) 20.1362 20.1362i 1.02624 1.02624i
\(386\) 45.2040 + 45.2040i 2.30082 + 2.30082i
\(387\) 11.0241 0.560388
\(388\) 13.6013 + 13.6013i 0.690500 + 0.690500i
\(389\) 19.3503i 0.981099i −0.871413 0.490549i \(-0.836796\pi\)
0.871413 0.490549i \(-0.163204\pi\)
\(390\) 5.64571 0.285882
\(391\) 0 0
\(392\) −21.9798 −1.11015
\(393\) 4.40863i 0.222386i
\(394\) −30.7539 30.7539i −1.54936 1.54936i
\(395\) −4.33091 −0.217912
\(396\) 17.8177 + 17.8177i 0.895375 + 0.895375i
\(397\) 9.57603 9.57603i 0.480607 0.480607i −0.424718 0.905326i \(-0.639627\pi\)
0.905326 + 0.424718i \(0.139627\pi\)
\(398\) −39.1492 + 39.1492i −1.96237 + 1.96237i
\(399\) 5.08089i 0.254363i
\(400\) 12.5005i 0.625026i
\(401\) 6.12006 6.12006i 0.305621 0.305621i −0.537587 0.843208i \(-0.680664\pi\)
0.843208 + 0.537587i \(0.180664\pi\)
\(402\) 13.4053 13.4053i 0.668596 0.668596i
\(403\) −1.23535 1.23535i −0.0615370 0.0615370i
\(404\) 62.8359 3.12620
\(405\) 2.03186 + 2.03186i 0.100964 + 0.100964i
\(406\) 5.83863i 0.289766i
\(407\) −4.03532 −0.200023
\(408\) 0 0
\(409\) 20.2269 1.00015 0.500077 0.865981i \(-0.333305\pi\)
0.500077 + 0.865981i \(0.333305\pi\)
\(410\) 39.4378i 1.94769i
\(411\) 0.220263 + 0.220263i 0.0108648 + 0.0108648i
\(412\) 28.5760 1.40784
\(413\) 4.45717 + 4.45717i 0.219323 + 0.219323i
\(414\) −10.6693 + 10.6693i −0.524368 + 0.524368i
\(415\) −15.2902 + 15.2902i −0.750566 + 0.750566i
\(416\) 0.211523i 0.0103708i
\(417\) 10.8097i 0.529356i
\(418\) 35.6412 35.6412i 1.74327 1.74327i
\(419\) −19.7048 + 19.7048i −0.962640 + 0.962640i −0.999327 0.0366865i \(-0.988320\pi\)
0.0366865 + 0.999327i \(0.488320\pi\)
\(420\) 12.6132 + 12.6132i 0.615463 + 0.615463i
\(421\) 30.5071 1.48682 0.743411 0.668834i \(-0.233206\pi\)
0.743411 + 0.668834i \(0.233206\pi\)
\(422\) 39.2728 + 39.2728i 1.91177 + 1.91177i
\(423\) 7.46399i 0.362912i
\(424\) 6.49443 0.315398
\(425\) 0 0
\(426\) −11.0405 −0.534915
\(427\) 13.0754i 0.632765i
\(428\) 10.3316 + 10.3316i 0.499397 + 0.499397i
\(429\) 5.09890 0.246177
\(430\) 54.7433 + 54.7433i 2.63996 + 2.63996i
\(431\) −8.36977 + 8.36977i −0.403157 + 0.403157i −0.879344 0.476187i \(-0.842019\pi\)
0.476187 + 0.879344i \(0.342019\pi\)
\(432\) −2.71398 + 2.71398i −0.130576 + 0.130576i
\(433\) 24.9436i 1.19871i 0.800483 + 0.599355i \(0.204576\pi\)
−0.800483 + 0.599355i \(0.795424\pi\)
\(434\) 8.29859i 0.398345i
\(435\) 3.10661 3.10661i 0.148951 0.148951i
\(436\) 28.8894 28.8894i 1.38355 1.38355i
\(437\) 14.1957 + 14.1957i 0.679075 + 0.679075i
\(438\) −20.2382 −0.967018
\(439\) 10.1007 + 10.1007i 0.482079 + 0.482079i 0.905795 0.423716i \(-0.139274\pi\)
−0.423716 + 0.905795i \(0.639274\pi\)
\(440\) 87.8753i 4.18929i
\(441\) −4.55854 −0.217073
\(442\) 0 0
\(443\) 3.36806 0.160021 0.0800107 0.996794i \(-0.474505\pi\)
0.0800107 + 0.996794i \(0.474505\pi\)
\(444\) 2.52770i 0.119959i
\(445\) −12.4502 12.4502i −0.590195 0.590195i
\(446\) −1.45351 −0.0688257
\(447\) −12.5348 12.5348i −0.592877 0.592877i
\(448\) 9.19175 9.19175i 0.434269 0.434269i
\(449\) 2.78325 2.78325i 0.131350 0.131350i −0.638376 0.769725i \(-0.720393\pi\)
0.769725 + 0.638376i \(0.220393\pi\)
\(450\) 7.95975i 0.375226i
\(451\) 35.6181i 1.67719i
\(452\) −39.1339 + 39.1339i −1.84070 + 1.84070i
\(453\) −11.4017 + 11.4017i −0.535698 + 0.535698i
\(454\) −34.6369 34.6369i −1.62559 1.62559i
\(455\) 3.60953 0.169218
\(456\) 11.0866 + 11.0866i 0.519177 + 0.519177i
\(457\) 14.8175i 0.693132i 0.938026 + 0.346566i \(0.112652\pi\)
−0.938026 + 0.346566i \(0.887348\pi\)
\(458\) 4.74064 0.221515
\(459\) 0 0
\(460\) −70.4815 −3.28622
\(461\) 33.2839i 1.55019i 0.631847 + 0.775093i \(0.282297\pi\)
−0.631847 + 0.775093i \(0.717703\pi\)
\(462\) 17.1262 + 17.1262i 0.796785 + 0.796785i
\(463\) −19.1509 −0.890018 −0.445009 0.895526i \(-0.646799\pi\)
−0.445009 + 0.895526i \(0.646799\pi\)
\(464\) 4.14954 + 4.14954i 0.192637 + 0.192637i
\(465\) 4.41551 4.41551i 0.204764 0.204764i
\(466\) −14.5902 + 14.5902i −0.675879 + 0.675879i
\(467\) 37.8301i 1.75057i −0.483607 0.875285i \(-0.660674\pi\)
0.483607 0.875285i \(-0.339326\pi\)
\(468\) 3.19393i 0.147639i
\(469\) 8.57056 8.57056i 0.395752 0.395752i
\(470\) 37.0645 37.0645i 1.70966 1.70966i
\(471\) −13.8838 13.8838i −0.639733 0.639733i
\(472\) −19.4512 −0.895315
\(473\) 49.4412 + 49.4412i 2.27331 + 2.27331i
\(474\) 3.68352i 0.169190i
\(475\) 10.5906 0.485931
\(476\) 0 0
\(477\) 1.34692 0.0616714
\(478\) 37.8886i 1.73298i
\(479\) 0.303694 + 0.303694i 0.0138761 + 0.0138761i 0.714011 0.700135i \(-0.246877\pi\)
−0.700135 + 0.714011i \(0.746877\pi\)
\(480\) 0.756049 0.0345088
\(481\) −0.361677 0.361677i −0.0164910 0.0164910i
\(482\) 51.4842 51.4842i 2.34504 2.34504i
\(483\) −6.82132 + 6.82132i −0.310381 + 0.310381i
\(484\) 116.117i 5.27803i
\(485\) 13.9122i 0.631721i
\(486\) −1.72814 + 1.72814i −0.0783898 + 0.0783898i
\(487\) −0.138329 + 0.138329i −0.00626826 + 0.00626826i −0.710234 0.703966i \(-0.751411\pi\)
0.703966 + 0.710234i \(0.251411\pi\)
\(488\) −28.5308 28.5308i −1.29153 1.29153i
\(489\) 10.8776 0.491903
\(490\) −22.6367 22.6367i −1.02262 1.02262i
\(491\) 9.32805i 0.420969i 0.977597 + 0.210485i \(0.0675042\pi\)
−0.977597 + 0.210485i \(0.932496\pi\)
\(492\) 22.3110 1.00586
\(493\) 0 0
\(494\) 6.38888 0.287449
\(495\) 18.2250i 0.819155i
\(496\) 5.89784 + 5.89784i 0.264821 + 0.264821i
\(497\) −7.05866 −0.316624
\(498\) −13.0046 13.0046i −0.582749 0.582749i
\(499\) 5.80808 5.80808i 0.260005 0.260005i −0.565051 0.825056i \(-0.691143\pi\)
0.825056 + 0.565051i \(0.191143\pi\)
\(500\) 14.0708 14.0708i 0.629266 0.629266i
\(501\) 10.5141i 0.469734i
\(502\) 11.2210i 0.500818i
\(503\) 21.1656 21.1656i 0.943727 0.943727i −0.0547716 0.998499i \(-0.517443\pi\)
0.998499 + 0.0547716i \(0.0174431\pi\)
\(504\) −5.32731 + 5.32731i −0.237297 + 0.237297i
\(505\) 32.1362 + 32.1362i 1.43004 + 1.43004i
\(506\) −95.6998 −4.25437
\(507\) −8.73538 8.73538i −0.387952 0.387952i
\(508\) 8.65069i 0.383812i
\(509\) 2.71603 0.120386 0.0601929 0.998187i \(-0.480828\pi\)
0.0601929 + 0.998187i \(0.480828\pi\)
\(510\) 0 0
\(511\) −12.9391 −0.572392
\(512\) 38.0225i 1.68037i
\(513\) 2.29932 + 2.29932i 0.101517 + 0.101517i
\(514\) 71.0532 3.13402
\(515\) 14.6146 + 14.6146i 0.643997 + 0.643997i
\(516\) −30.9697 + 30.9697i −1.36336 + 1.36336i
\(517\) 33.4746 33.4746i 1.47221 1.47221i
\(518\) 2.42961i 0.106751i
\(519\) 7.74845i 0.340119i
\(520\) −7.87607 + 7.87607i −0.345388 + 0.345388i
\(521\) −1.46717 + 1.46717i −0.0642779 + 0.0642779i −0.738515 0.674237i \(-0.764473\pi\)
0.674237 + 0.738515i \(0.264473\pi\)
\(522\) 2.64223 + 2.64223i 0.115647 + 0.115647i
\(523\) −17.2333 −0.753558 −0.376779 0.926303i \(-0.622968\pi\)
−0.376779 + 0.926303i \(0.622968\pi\)
\(524\) −12.3850 12.3850i −0.541042 0.541042i
\(525\) 5.08899i 0.222102i
\(526\) −2.62623 −0.114509
\(527\) 0 0
\(528\) −24.3434 −1.05941
\(529\) 15.1169i 0.657255i
\(530\) 6.68852 + 6.68852i 0.290531 + 0.290531i
\(531\) −4.03412 −0.175066
\(532\) 14.2736 + 14.2736i 0.618837 + 0.618837i
\(533\) 3.19237 3.19237i 0.138277 0.138277i
\(534\) 10.5891 10.5891i 0.458235 0.458235i
\(535\) 10.5678i 0.456885i
\(536\) 37.4022i 1.61553i
\(537\) 8.44819 8.44819i 0.364566 0.364566i
\(538\) −43.7545 + 43.7545i −1.88639 + 1.88639i
\(539\) −20.4442 20.4442i −0.880594 0.880594i
\(540\) −11.4161 −0.491270
\(541\) −2.50022 2.50022i −0.107493 0.107493i 0.651315 0.758808i \(-0.274218\pi\)
−0.758808 + 0.651315i \(0.774218\pi\)
\(542\) 47.6111i 2.04507i
\(543\) −1.75313 −0.0752338
\(544\) 0 0
\(545\) 29.5498 1.26578
\(546\) 3.06997i 0.131383i
\(547\) 13.8383 + 13.8383i 0.591683 + 0.591683i 0.938086 0.346403i \(-0.112597\pi\)
−0.346403 + 0.938086i \(0.612597\pi\)
\(548\) −1.23755 −0.0528657
\(549\) −5.91720 5.91720i −0.252540 0.252540i
\(550\) −35.6980 + 35.6980i −1.52217 + 1.52217i
\(551\) 3.51555 3.51555i 0.149767 0.149767i
\(552\) 29.7685i 1.26703i
\(553\) 2.35502i 0.100146i
\(554\) 16.4227 16.4227i 0.697733 0.697733i
\(555\) 1.29274 1.29274i 0.0548739 0.0548739i
\(556\) 30.3675 + 30.3675i 1.28787 + 1.28787i
\(557\) −15.0835 −0.639110 −0.319555 0.947568i \(-0.603533\pi\)
−0.319555 + 0.947568i \(0.603533\pi\)
\(558\) 3.75547 + 3.75547i 0.158982 + 0.158982i
\(559\) 8.86260i 0.374848i
\(560\) −17.2328 −0.728218
\(561\) 0 0
\(562\) 35.2460 1.48676
\(563\) 38.6507i 1.62893i −0.580212 0.814466i \(-0.697030\pi\)
0.580212 0.814466i \(-0.302970\pi\)
\(564\) 20.9683 + 20.9683i 0.882926 + 0.882926i
\(565\) −40.0285 −1.68401
\(566\) −33.5446 33.5446i −1.40999 1.40999i
\(567\) −1.10487 + 1.10487i −0.0464001 + 0.0464001i
\(568\) 15.4021 15.4021i 0.646258 0.646258i
\(569\) 3.19348i 0.133878i −0.997757 0.0669389i \(-0.978677\pi\)
0.997757 0.0669389i \(-0.0213233\pi\)
\(570\) 22.8358i 0.956487i
\(571\) −3.76282 + 3.76282i −0.157469 + 0.157469i −0.781444 0.623975i \(-0.785517\pi\)
0.623975 + 0.781444i \(0.285517\pi\)
\(572\) −14.3242 + 14.3242i −0.598924 + 0.598924i
\(573\) 15.7849 + 15.7849i 0.659424 + 0.659424i
\(574\) 21.4451 0.895102
\(575\) −14.2184 14.2184i −0.592948 0.592948i
\(576\) 8.31932i 0.346638i
\(577\) −10.4307 −0.434236 −0.217118 0.976145i \(-0.569666\pi\)
−0.217118 + 0.976145i \(0.569666\pi\)
\(578\) 0 0
\(579\) −26.1577 −1.08708
\(580\) 17.4546i 0.724763i
\(581\) −8.31436 8.31436i −0.344938 0.344938i
\(582\) −11.8326 −0.490476
\(583\) 6.04071 + 6.04071i 0.250180 + 0.250180i
\(584\) 28.2333 28.2333i 1.16830 1.16830i
\(585\) −1.63347 + 1.63347i −0.0675357 + 0.0675357i
\(586\) 2.62329i 0.108367i
\(587\) 18.7387i 0.773427i −0.922200 0.386714i \(-0.873610\pi\)
0.922200 0.386714i \(-0.126390\pi\)
\(588\) 12.8061 12.8061i 0.528116 0.528116i
\(589\) 4.99673 4.99673i 0.205887 0.205887i
\(590\) −20.0325 20.0325i −0.824726 0.824726i
\(591\) 17.7960 0.732031
\(592\) 1.72673 + 1.72673i 0.0709682 + 0.0709682i
\(593\) 7.29409i 0.299533i 0.988721 + 0.149766i \(0.0478521\pi\)
−0.988721 + 0.149766i \(0.952148\pi\)
\(594\) −15.5007 −0.636003
\(595\) 0 0
\(596\) 70.4273 2.88482
\(597\) 22.6540i 0.927168i
\(598\) −8.57736 8.57736i −0.350754 0.350754i
\(599\) −31.8625 −1.30187 −0.650933 0.759135i \(-0.725622\pi\)
−0.650933 + 0.759135i \(0.725622\pi\)
\(600\) −11.1043 11.1043i −0.453330 0.453330i
\(601\) −0.370640 + 0.370640i −0.0151187 + 0.0151187i −0.714626 0.699507i \(-0.753403\pi\)
0.699507 + 0.714626i \(0.253403\pi\)
\(602\) −29.7678 + 29.7678i −1.21324 + 1.21324i
\(603\) 7.75709i 0.315893i
\(604\) 64.0607i 2.60659i
\(605\) −59.3855 + 59.3855i −2.41436 + 2.41436i
\(606\) −27.3324 + 27.3324i −1.11030 + 1.11030i
\(607\) 0.671134 + 0.671134i 0.0272405 + 0.0272405i 0.720596 0.693355i \(-0.243868\pi\)
−0.693355 + 0.720596i \(0.743868\pi\)
\(608\) 0.855570 0.0346980
\(609\) 1.68929 + 1.68929i 0.0684533 + 0.0684533i
\(610\) 58.7669i 2.37940i
\(611\) 6.00051 0.242755
\(612\) 0 0
\(613\) 3.89703 0.157399 0.0786997 0.996898i \(-0.474923\pi\)
0.0786997 + 0.996898i \(0.474923\pi\)
\(614\) 35.6319i 1.43799i
\(615\) 11.4105 + 11.4105i 0.460116 + 0.460116i
\(616\) −47.7840 −1.92527
\(617\) 13.6831 + 13.6831i 0.550862 + 0.550862i 0.926690 0.375827i \(-0.122641\pi\)
−0.375827 + 0.926690i \(0.622641\pi\)
\(618\) −12.4300 + 12.4300i −0.500008 + 0.500008i
\(619\) 13.9123 13.9123i 0.559182 0.559182i −0.369893 0.929074i \(-0.620606\pi\)
0.929074 + 0.369893i \(0.120606\pi\)
\(620\) 24.8087i 0.996340i
\(621\) 6.17389i 0.247749i
\(622\) −24.7900 + 24.7900i −0.993989 + 0.993989i
\(623\) 6.77005 6.77005i 0.271236 0.271236i
\(624\) −2.18184 2.18184i −0.0873436 0.0873436i
\(625\) 30.6771 1.22708
\(626\) −19.5598 19.5598i −0.781768 0.781768i
\(627\) 20.6241i 0.823646i
\(628\) 78.0067 3.11281
\(629\) 0 0
\(630\) −10.9730 −0.437176
\(631\) 2.77834i 0.110604i 0.998470 + 0.0553019i \(0.0176121\pi\)
−0.998470 + 0.0553019i \(0.982388\pi\)
\(632\) 5.13870 + 5.13870i 0.204407 + 0.204407i
\(633\) −22.7255 −0.903258
\(634\) −20.3268 20.3268i −0.807280 0.807280i
\(635\) 4.42422 4.42422i 0.175570 0.175570i
\(636\) −3.78387 + 3.78387i −0.150040 + 0.150040i
\(637\) 3.66474i 0.145202i
\(638\) 23.6998i 0.938286i
\(639\) 3.19435 3.19435i 0.126366 0.126366i
\(640\) −40.2426 + 40.2426i −1.59073 + 1.59073i
\(641\) −15.2145 15.2145i −0.600938 0.600938i 0.339623 0.940562i \(-0.389700\pi\)
−0.940562 + 0.339623i \(0.889700\pi\)
\(642\) −8.98809 −0.354732
\(643\) −31.4208 31.4208i −1.23912 1.23912i −0.960362 0.278754i \(-0.910078\pi\)
−0.278754 0.960362i \(-0.589922\pi\)
\(644\) 38.3258i 1.51025i
\(645\) −31.6777 −1.24731
\(646\) 0 0
\(647\) −43.8840 −1.72526 −0.862629 0.505838i \(-0.831183\pi\)
−0.862629 + 0.505838i \(0.831183\pi\)
\(648\) 4.82168i 0.189413i
\(649\) −18.0923 18.0923i −0.710184 0.710184i
\(650\) −6.39907 −0.250992
\(651\) 2.40102 + 2.40102i 0.0941036 + 0.0941036i
\(652\) −30.5582 + 30.5582i −1.19675 + 1.19675i
\(653\) −6.04458 + 6.04458i −0.236543 + 0.236543i −0.815417 0.578874i \(-0.803492\pi\)
0.578874 + 0.815417i \(0.303492\pi\)
\(654\) 25.1327i 0.982766i
\(655\) 12.6681i 0.494985i
\(656\) −15.2411 + 15.2411i −0.595066 + 0.595066i
\(657\) 5.85550 5.85550i 0.228445 0.228445i
\(658\) 20.1546 + 20.1546i 0.785708 + 0.785708i
\(659\) −36.1408 −1.40785 −0.703924 0.710276i \(-0.748570\pi\)
−0.703924 + 0.710276i \(0.748570\pi\)
\(660\) −51.1990 51.1990i −1.99292 1.99292i
\(661\) 46.4203i 1.80554i −0.430122 0.902771i \(-0.641529\pi\)
0.430122 0.902771i \(-0.358471\pi\)
\(662\) −49.3882 −1.91953
\(663\) 0 0
\(664\) 36.2841 1.40810
\(665\) 14.5999i 0.566158i
\(666\) 1.09950 + 1.09950i 0.0426048 + 0.0426048i
\(667\) −9.43956 −0.365501
\(668\) 29.5368 + 29.5368i 1.14281 + 1.14281i
\(669\) 0.420543 0.420543i 0.0162591 0.0162591i
\(670\) −38.5200 + 38.5200i −1.48816 + 1.48816i
\(671\) 53.0751i 2.04894i
\(672\) 0.411118i 0.0158592i
\(673\) −31.9122 + 31.9122i −1.23012 + 1.23012i −0.266209 + 0.963915i \(0.585771\pi\)
−0.963915 + 0.266209i \(0.914229\pi\)
\(674\) 11.0739 11.0739i 0.426551 0.426551i
\(675\) −2.30299 2.30299i −0.0886421 0.0886421i
\(676\) 49.0800 1.88769
\(677\) −25.6225 25.6225i −0.984751 0.984751i 0.0151343 0.999885i \(-0.495182\pi\)
−0.999885 + 0.0151343i \(0.995182\pi\)
\(678\) 34.0450i 1.30749i
\(679\) −7.56505 −0.290320
\(680\) 0 0
\(681\) 20.0429 0.768047
\(682\) 33.6852i 1.28987i
\(683\) 17.2036 + 17.2036i 0.658279 + 0.658279i 0.954973 0.296694i \(-0.0958840\pi\)
−0.296694 + 0.954973i \(0.595884\pi\)
\(684\) −12.9188 −0.493963
\(685\) −0.632922 0.632922i −0.0241827 0.0241827i
\(686\) 31.2108 31.2108i 1.19164 1.19164i
\(687\) −1.37160 + 1.37160i −0.0523300 + 0.0523300i
\(688\) 42.3122i 1.61314i
\(689\) 1.08283i 0.0412525i
\(690\) 30.6581 30.6581i 1.16713 1.16713i
\(691\) −15.1241 + 15.1241i −0.575349 + 0.575349i −0.933618 0.358269i \(-0.883367\pi\)
0.358269 + 0.933618i \(0.383367\pi\)
\(692\) 21.7675 + 21.7675i 0.827474 + 0.827474i
\(693\) −9.91025 −0.376459
\(694\) −20.2694 20.2694i −0.769415 0.769415i
\(695\) 31.0617i 1.17824i
\(696\) −7.37210 −0.279439
\(697\) 0 0
\(698\) 63.0070 2.38485
\(699\) 8.44275i 0.319334i
\(700\) −14.2963 14.2963i −0.540351 0.540351i
\(701\) 15.3315 0.579063 0.289532 0.957168i \(-0.406500\pi\)
0.289532 + 0.957168i \(0.406500\pi\)
\(702\) −1.38930 1.38930i −0.0524356 0.0524356i
\(703\) 1.46291 1.46291i 0.0551747 0.0551747i
\(704\) −37.3106 + 37.3106i −1.40620 + 1.40620i
\(705\) 21.4477i 0.807766i
\(706\) 9.68560i 0.364522i
\(707\) −17.4747 + 17.4747i −0.657204 + 0.657204i
\(708\) 11.3329 11.3329i 0.425917 0.425917i
\(709\) 27.2246 + 27.2246i 1.02244 + 1.02244i 0.999742 + 0.0226975i \(0.00722545\pi\)
0.0226975 + 0.999742i \(0.492775\pi\)
\(710\) 31.7248 1.19061
\(711\) 1.06575 + 1.06575i 0.0399688 + 0.0399688i
\(712\) 29.5447i 1.10723i
\(713\) −13.4167 −0.502459
\(714\) 0 0
\(715\) −14.6516 −0.547940
\(716\) 47.4664i 1.77390i
\(717\) 10.9623 + 10.9623i 0.409394 + 0.409394i
\(718\) 27.4754 1.02537
\(719\) −10.7701 10.7701i −0.401656 0.401656i 0.477160 0.878816i \(-0.341666\pi\)
−0.878816 + 0.477160i \(0.841666\pi\)
\(720\) 7.79858 7.79858i 0.290636 0.290636i
\(721\) −7.94700 + 7.94700i −0.295962 + 0.295962i
\(722\) 20.5933i 0.766405i
\(723\) 29.7917i 1.10797i
\(724\) 4.92499 4.92499i 0.183036 0.183036i
\(725\) −3.52116 + 3.52116i −0.130772 + 0.130772i
\(726\) −50.5084 50.5084i −1.87454 1.87454i
\(727\) −11.2839 −0.418495 −0.209248 0.977863i \(-0.567101\pi\)
−0.209248 + 0.977863i \(0.567101\pi\)
\(728\) −4.28278 4.28278i −0.158730 0.158730i
\(729\) 1.00000i 0.0370370i
\(730\) 58.1542 2.15238
\(731\) 0 0
\(732\) 33.2460 1.22881
\(733\) 26.5213i 0.979585i 0.871839 + 0.489793i \(0.162927\pi\)
−0.871839 + 0.489793i \(0.837073\pi\)
\(734\) −26.7052 26.7052i −0.985705 0.985705i
\(735\) 13.0989 0.483160
\(736\) −1.14864 1.14864i −0.0423395 0.0423395i
\(737\) −34.7891 + 34.7891i −1.28147 + 1.28147i
\(738\) −9.70484 + 9.70484i −0.357240 + 0.357240i
\(739\) 0.861682i 0.0316975i 0.999874 + 0.0158487i \(0.00504502\pi\)
−0.999874 + 0.0158487i \(0.994955\pi\)
\(740\) 7.26332i 0.267005i
\(741\) −1.84849 + 1.84849i −0.0679059 + 0.0679059i
\(742\) −3.63702 + 3.63702i −0.133519 + 0.133519i
\(743\) −3.06667 3.06667i −0.112505 0.112505i 0.648613 0.761118i \(-0.275349\pi\)
−0.761118 + 0.648613i \(0.775349\pi\)
\(744\) −10.4782 −0.384148
\(745\) 36.0186 + 36.0186i 1.31962 + 1.31962i
\(746\) 12.5837i 0.460722i
\(747\) 7.52521 0.275333
\(748\) 0 0
\(749\) −5.74645 −0.209971
\(750\) 12.2411i 0.446981i
\(751\) 24.1088 + 24.1088i 0.879741 + 0.879741i 0.993508 0.113766i \(-0.0362915\pi\)
−0.113766 + 0.993508i \(0.536291\pi\)
\(752\) −28.6479 −1.04468
\(753\) 3.24656 + 3.24656i 0.118311 + 0.118311i
\(754\) −2.12416 + 2.12416i −0.0773575 + 0.0773575i
\(755\) 32.7626 32.7626i 1.19235 1.19235i
\(756\) 6.20773i 0.225773i
\(757\) 35.7904i 1.30082i 0.759581 + 0.650412i \(0.225404\pi\)
−0.759581 + 0.650412i \(0.774596\pi\)
\(758\) −20.4729 + 20.4729i −0.743610 + 0.743610i
\(759\) 27.6887 27.6887i 1.00504 1.00504i
\(760\) −31.8571 31.8571i −1.15558 1.15558i
\(761\) −24.8283 −0.900025 −0.450013 0.893022i \(-0.648580\pi\)
−0.450013 + 0.893022i \(0.648580\pi\)
\(762\) 3.76288 + 3.76288i 0.136315 + 0.136315i
\(763\) 16.0683i 0.581713i
\(764\) −88.6880 −3.20862
\(765\) 0 0
\(766\) 75.1140 2.71398
\(767\) 3.24314i 0.117103i
\(768\) −22.4618 22.4618i −0.810521 0.810521i
\(769\) 47.0234 1.69571 0.847854 0.530230i \(-0.177894\pi\)
0.847854 + 0.530230i \(0.177894\pi\)
\(770\) −49.2120 49.2120i −1.77348 1.77348i
\(771\) −20.5578 + 20.5578i −0.740370 + 0.740370i
\(772\) 73.4838 73.4838i 2.64474 2.64474i
\(773\) 41.7490i 1.50161i 0.660525 + 0.750804i \(0.270334\pi\)
−0.660525 + 0.750804i \(0.729666\pi\)
\(774\) 26.9424i 0.968426i
\(775\) −5.00471 + 5.00471i −0.179774 + 0.179774i
\(776\) 16.5071 16.5071i 0.592569 0.592569i
\(777\) 0.702956 + 0.702956i 0.0252184 + 0.0252184i
\(778\) −47.2912 −1.69547
\(779\) 12.9125 + 12.9125i 0.462638 + 0.462638i
\(780\) 9.17770i 0.328614i
\(781\) 28.6521 1.02525
\(782\) 0 0
\(783\) −1.52895 −0.0546402
\(784\) 17.4963i 0.624869i
\(785\) 39.8950 + 39.8950i 1.42391 + 1.42391i
\(786\) 10.7745 0.384313
\(787\) −1.68336 1.68336i −0.0600054 0.0600054i 0.676467 0.736473i \(-0.263510\pi\)
−0.736473 + 0.676467i \(0.763510\pi\)
\(788\) −49.9938 + 49.9938i −1.78095 + 1.78095i
\(789\) 0.759845 0.759845i 0.0270512 0.0270512i
\(790\) 10.5845i 0.376581i
\(791\) 21.7663i 0.773922i
\(792\) 21.6243 21.6243i 0.768387 0.768387i
\(793\) 4.75700 4.75700i 0.168926 0.168926i
\(794\) −23.4034 23.4034i −0.830554 0.830554i
\(795\) −3.87037 −0.137268
\(796\) 63.6412 + 63.6412i 2.25570 + 2.25570i
\(797\) 38.4308i 1.36129i 0.732614 + 0.680645i \(0.238300\pi\)
−0.732614 + 0.680645i \(0.761700\pi\)
\(798\) −12.4174 −0.439573
\(799\) 0 0
\(800\) −0.856935 −0.0302972
\(801\) 6.12748i 0.216504i
\(802\) −14.9571 14.9571i −0.528155 0.528155i
\(803\) 52.5217 1.85345
\(804\) −21.7917 21.7917i −0.768535 0.768535i
\(805\) 19.6010 19.6010i 0.690843 0.690843i
\(806\) −3.01913 + 3.01913i −0.106344 + 0.106344i
\(807\) 25.3189i 0.891267i
\(808\) 76.2602i 2.68283i
\(809\) 10.3101 10.3101i 0.362484 0.362484i −0.502243 0.864727i \(-0.667492\pi\)
0.864727 + 0.502243i \(0.167492\pi\)
\(810\) 4.96577 4.96577i 0.174479 0.174479i
\(811\) −0.196697 0.196697i −0.00690697 0.00690697i 0.703645 0.710552i \(-0.251555\pi\)
−0.710552 + 0.703645i \(0.751555\pi\)
\(812\) −9.49131 −0.333080
\(813\) 13.7753 + 13.7753i 0.483120 + 0.483120i
\(814\) 9.86213i 0.345667i
\(815\) −31.2567 −1.09487
\(816\) 0 0
\(817\) −35.8475 −1.25414
\(818\) 49.4335i 1.72840i
\(819\) −0.888234 0.888234i −0.0310374 0.0310374i
\(820\) −64.1103 −2.23883
\(821\) −8.80316 8.80316i −0.307232 0.307232i 0.536603 0.843835i \(-0.319707\pi\)
−0.843835 + 0.536603i \(0.819707\pi\)
\(822\) 0.538312 0.538312i 0.0187758 0.0187758i
\(823\) −14.8015 + 14.8015i −0.515947 + 0.515947i −0.916342 0.400396i \(-0.868873\pi\)
0.400396 + 0.916342i \(0.368873\pi\)
\(824\) 34.6810i 1.20817i
\(825\) 20.6570i 0.719183i
\(826\) 10.8931 10.8931i 0.379020 0.379020i
\(827\) −21.8744 + 21.8744i −0.760648 + 0.760648i −0.976439 0.215792i \(-0.930767\pi\)
0.215792 + 0.976439i \(0.430767\pi\)
\(828\) 17.3441 + 17.3441i 0.602749 + 0.602749i
\(829\) −5.04799 −0.175324 −0.0876620 0.996150i \(-0.527940\pi\)
−0.0876620 + 0.996150i \(0.527940\pi\)
\(830\) 37.3685 + 37.3685i 1.29708 + 1.29708i
\(831\) 9.50313i 0.329660i
\(832\) −6.68814 −0.231869
\(833\) 0 0
\(834\) −26.4185 −0.914798
\(835\) 30.2120i 1.04553i
\(836\) −57.9385 57.9385i −2.00384 2.00384i
\(837\) −2.17313 −0.0751145
\(838\) 48.1575 + 48.1575i 1.66357 + 1.66357i
\(839\) 7.75414 7.75414i 0.267703 0.267703i −0.560471 0.828174i \(-0.689380\pi\)
0.828174 + 0.560471i \(0.189380\pi\)
\(840\) 15.3080 15.3080i 0.528175 0.528175i
\(841\) 26.6623i 0.919390i
\(842\) 74.5578i 2.56943i
\(843\) −10.1977 + 10.1977i −0.351228 + 0.351228i
\(844\) 63.8420 63.8420i 2.19753 2.19753i
\(845\) 25.1010 + 25.1010i 0.863501 + 0.863501i
\(846\) −18.2416 −0.627161
\(847\) −32.2921 32.2921i −1.10957 1.10957i
\(848\) 5.16969i 0.177528i
\(849\) 19.4109 0.666180
\(850\) 0 0
\(851\) −3.92805 −0.134652
\(852\) 17.9475i 0.614873i
\(853\) −18.8308 18.8308i −0.644753 0.644753i 0.306967 0.951720i \(-0.400686\pi\)
−0.951720 + 0.306967i \(0.900686\pi\)
\(854\) 31.9557 1.09350
\(855\) −6.60707 6.60707i −0.225957 0.225957i
\(856\) 12.5389 12.5389i 0.428569 0.428569i
\(857\) −0.943438 + 0.943438i −0.0322272 + 0.0322272i −0.723037 0.690810i \(-0.757254\pi\)
0.690810 + 0.723037i \(0.257254\pi\)
\(858\) 12.4615i 0.425428i
\(859\) 24.4857i 0.835441i −0.908575 0.417721i \(-0.862829\pi\)
0.908575 0.417721i \(-0.137171\pi\)
\(860\) 88.9910 88.9910i 3.03457 3.03457i
\(861\) −6.20470 + 6.20470i −0.211456 + 0.211456i
\(862\) 20.4553 + 20.4553i 0.696711 + 0.696711i
\(863\) 39.3336 1.33893 0.669465 0.742843i \(-0.266523\pi\)
0.669465 + 0.742843i \(0.266523\pi\)
\(864\) −0.186048 0.186048i −0.00632950 0.00632950i
\(865\) 22.2651i 0.757035i
\(866\) 60.9609 2.07153
\(867\) 0 0
\(868\) −13.4902 −0.457888
\(869\) 9.55939i 0.324280i
\(870\) −7.59241 7.59241i −0.257407 0.257407i
\(871\) −6.23614 −0.211304
\(872\) −35.0614 35.0614i −1.18733 1.18733i
\(873\) 3.42351 3.42351i 0.115868 0.115868i
\(874\) 34.6937 34.6937i 1.17353 1.17353i
\(875\) 7.82621i 0.264574i
\(876\) 32.8993i 1.11156i
\(877\) 2.73454 2.73454i 0.0923388 0.0923388i −0.659428 0.751767i \(-0.729202\pi\)
0.751767 + 0.659428i \(0.229202\pi\)
\(878\) 24.6856 24.6856i 0.833098 0.833098i
\(879\) 0.758995 + 0.758995i 0.0256003 + 0.0256003i
\(880\) 69.9504 2.35803
\(881\) −11.5575 11.5575i −0.389383 0.389383i 0.485084 0.874467i \(-0.338789\pi\)
−0.874467 + 0.485084i \(0.838789\pi\)
\(882\) 11.1408i 0.375132i
\(883\) −33.5409 −1.12874 −0.564370 0.825522i \(-0.690881\pi\)
−0.564370 + 0.825522i \(0.690881\pi\)
\(884\) 0 0
\(885\) 11.5920 0.389660
\(886\) 8.23138i 0.276539i
\(887\) −17.8096 17.8096i −0.597988 0.597988i 0.341789 0.939777i \(-0.388967\pi\)
−0.939777 + 0.341789i \(0.888967\pi\)
\(888\) −3.06772 −0.102946
\(889\) 2.40576 + 2.40576i 0.0806867 + 0.0806867i
\(890\) −30.4276 + 30.4276i −1.01994 + 1.01994i
\(891\) 4.48482 4.48482i 0.150247 0.150247i
\(892\) 2.36283i 0.0791135i
\(893\) 24.2709i 0.812195i
\(894\) −30.6345 + 30.6345i −1.02457 + 1.02457i
\(895\) −24.2758 + 24.2758i −0.811449 + 0.811449i
\(896\) −21.8828 21.8828i −0.731052 0.731052i
\(897\) 4.96336 0.165722
\(898\) −6.80212 6.80212i −0.226990 0.226990i
\(899\) 3.32261i 0.110815i
\(900\) 12.9394 0.431314
\(901\) 0 0
\(902\) −87.0488 −2.89841
\(903\) 17.2254i 0.573225i
\(904\) 47.4945 + 47.4945i 1.57964 + 1.57964i
\(905\) 5.03758 0.167455
\(906\) 27.8652 + 27.8652i 0.925758 + 0.925758i
\(907\) −31.8673 + 31.8673i −1.05814 + 1.05814i −0.0599326 + 0.998202i \(0.519089\pi\)
−0.998202 + 0.0599326i \(0.980911\pi\)
\(908\) −56.3059 + 56.3059i −1.86858 + 1.86858i
\(909\) 15.8161i 0.524588i
\(910\) 8.82153i 0.292431i
\(911\) 31.8427 31.8427i 1.05500 1.05500i 0.0565992 0.998397i \(-0.481974\pi\)
0.998397 0.0565992i \(-0.0180257\pi\)
\(912\) 8.82513 8.82513i 0.292229 0.292229i
\(913\) 33.7492 + 33.7492i 1.11694 + 1.11694i
\(914\) 36.2132 1.19783
\(915\) 17.0030 + 17.0030i 0.562101 + 0.562101i
\(916\) 7.70640i 0.254627i
\(917\) 6.88856 0.227480
\(918\) 0 0
\(919\) −56.5601 −1.86574 −0.932872 0.360208i \(-0.882706\pi\)
−0.932872 + 0.360208i \(0.882706\pi\)
\(920\) 85.5393i 2.82015i
\(921\) 10.3094 + 10.3094i 0.339705 + 0.339705i
\(922\) 81.3443 2.67893
\(923\) 2.56803 + 2.56803i 0.0845276 + 0.0845276i
\(924\) 27.8405 27.8405i 0.915886 0.915886i
\(925\) −1.46524 + 1.46524i −0.0481770 + 0.0481770i
\(926\) 46.8039i 1.53807i
\(927\) 7.19272i 0.236240i
\(928\) −0.284459 + 0.284459i −0.00933782 + 0.00933782i
\(929\) 23.7730 23.7730i 0.779968 0.779968i −0.199857 0.979825i \(-0.564048\pi\)
0.979825 + 0.199857i \(0.0640479\pi\)
\(930\) −10.7913 10.7913i −0.353860 0.353860i
\(931\) 14.8231 0.485809
\(932\) 23.7179 + 23.7179i 0.776907 + 0.776907i
\(933\) 14.3449i 0.469633i
\(934\) −92.4550 −3.02522
\(935\) 0 0
\(936\) 3.87628 0.126700
\(937\) 2.08118i 0.0679891i 0.999422 + 0.0339946i \(0.0108229\pi\)
−0.999422 + 0.0339946i \(0.989177\pi\)
\(938\) −20.9460 20.9460i −0.683912 0.683912i
\(939\) 11.3185 0.369364
\(940\) −60.2522 60.2522i −1.96521 1.96521i
\(941\) −4.07691 + 4.07691i −0.132903 + 0.132903i −0.770429 0.637526i \(-0.779958\pi\)
0.637526 + 0.770429i \(0.279958\pi\)
\(942\) −33.9314 + 33.9314i −1.10554 + 1.10554i
\(943\) 34.6712i 1.12905i
\(944\) 15.4835i 0.503946i
\(945\) 3.17482 3.17482i 0.103277 0.103277i
\(946\) 120.832 120.832i 3.92858 3.92858i
\(947\) 17.3421 + 17.3421i 0.563544 + 0.563544i 0.930312 0.366768i \(-0.119536\pi\)
−0.366768 + 0.930312i \(0.619536\pi\)
\(948\) −5.98795 −0.194480
\(949\) 4.70740 + 4.70740i 0.152809 + 0.152809i
\(950\) 25.8830i 0.839755i
\(951\) 11.7623 0.381418
\(952\) 0 0
\(953\) 13.3063 0.431033 0.215517 0.976500i \(-0.430856\pi\)
0.215517 + 0.976500i \(0.430856\pi\)
\(954\) 3.29182i 0.106577i
\(955\) −45.3577 45.3577i −1.46774 1.46774i
\(956\) −61.5919 −1.99202
\(957\) −6.85706 6.85706i −0.221657 0.221657i
\(958\) 0.742214 0.742214i 0.0239798 0.0239798i
\(959\) 0.344165 0.344165i 0.0111137 0.0111137i
\(960\) 23.9055i 0.771545i
\(961\) 26.2775i 0.847661i
\(962\) −0.883920 + 0.883920i −0.0284987 + 0.0284987i
\(963\) 2.60052 2.60052i 0.0838005 0.0838005i
\(964\) −83.6929 83.6929i −2.69557 2.69557i
\(965\) 75.1637 2.41960
\(966\) 16.6710 + 16.6710i 0.536380 + 0.536380i
\(967\) 18.0996i 0.582044i 0.956716 + 0.291022i \(0.0939953\pi\)
−0.956716 + 0.291022i \(0.906005\pi\)
\(968\) 140.924 4.52946
\(969\) 0 0
\(970\) 34.0008 1.09170
\(971\) 2.40360i 0.0771352i −0.999256 0.0385676i \(-0.987721\pi\)
0.999256 0.0385676i \(-0.0122795\pi\)
\(972\) 2.80927 + 2.80927i 0.0901072 + 0.0901072i
\(973\) −16.8904 −0.541482
\(974\) 0.338068 + 0.338068i 0.0108324 + 0.0108324i
\(975\) 1.85144 1.85144i 0.0592935 0.0592935i
\(976\) −22.7111 + 22.7111i −0.726964 + 0.726964i
\(977\) 41.4410i 1.32581i 0.748701 + 0.662907i \(0.230678\pi\)
−0.748701 + 0.662907i \(0.769322\pi\)
\(978\) 26.5844i 0.850076i
\(979\) −27.4806 + 27.4806i −0.878284 + 0.878284i
\(980\) −36.7983 + 36.7983i −1.17548 + 1.17548i
\(981\) −7.27162 7.27162i −0.232165 0.232165i
\(982\) 22.7973 0.727491
\(983\) 26.7967 + 26.7967i 0.854682 + 0.854682i 0.990706 0.136023i \(-0.0434322\pi\)
−0.136023 + 0.990706i \(0.543432\pi\)
\(984\) 27.0775i 0.863200i
\(985\) −51.1366 −1.62935
\(986\) 0 0
\(987\) −11.6626 −0.371225
\(988\) 10.3858i 0.330416i
\(989\) 48.1269 + 48.1269i 1.53035 + 1.53035i
\(990\) 44.5411 1.41561
\(991\) 17.9220 + 17.9220i 0.569311 + 0.569311i 0.931935 0.362625i \(-0.118119\pi\)
−0.362625 + 0.931935i \(0.618119\pi\)
\(992\) −0.404308 + 0.404308i −0.0128368 + 0.0128368i
\(993\) 14.2895 14.2895i 0.453462 0.453462i
\(994\) 17.2510i 0.547169i
\(995\) 65.0960i 2.06368i
\(996\) −21.1403 + 21.1403i −0.669857 + 0.669857i
\(997\) −23.8995 + 23.8995i −0.756906 + 0.756906i −0.975758 0.218852i \(-0.929769\pi\)
0.218852 + 0.975758i \(0.429769\pi\)
\(998\) −14.1947 14.1947i −0.449324 0.449324i
\(999\) −0.636236 −0.0201296
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 867.2.e.k.829.4 24
17.2 even 8 867.2.a.p.1.5 yes 6
17.3 odd 16 867.2.h.m.712.4 48
17.4 even 4 inner 867.2.e.k.616.10 24
17.5 odd 16 867.2.h.m.733.9 48
17.6 odd 16 867.2.h.m.757.10 48
17.7 odd 16 867.2.h.m.688.4 48
17.8 even 8 867.2.d.g.577.3 12
17.9 even 8 867.2.d.g.577.4 12
17.10 odd 16 867.2.h.m.688.3 48
17.11 odd 16 867.2.h.m.757.9 48
17.12 odd 16 867.2.h.m.733.10 48
17.13 even 4 inner 867.2.e.k.616.9 24
17.14 odd 16 867.2.h.m.712.3 48
17.15 even 8 867.2.a.o.1.5 6
17.16 even 2 inner 867.2.e.k.829.3 24
51.2 odd 8 2601.2.a.bi.1.2 6
51.32 odd 8 2601.2.a.bh.1.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
867.2.a.o.1.5 6 17.15 even 8
867.2.a.p.1.5 yes 6 17.2 even 8
867.2.d.g.577.3 12 17.8 even 8
867.2.d.g.577.4 12 17.9 even 8
867.2.e.k.616.9 24 17.13 even 4 inner
867.2.e.k.616.10 24 17.4 even 4 inner
867.2.e.k.829.3 24 17.16 even 2 inner
867.2.e.k.829.4 24 1.1 even 1 trivial
867.2.h.m.688.3 48 17.10 odd 16
867.2.h.m.688.4 48 17.7 odd 16
867.2.h.m.712.3 48 17.14 odd 16
867.2.h.m.712.4 48 17.3 odd 16
867.2.h.m.733.9 48 17.5 odd 16
867.2.h.m.733.10 48 17.12 odd 16
867.2.h.m.757.9 48 17.11 odd 16
867.2.h.m.757.10 48 17.6 odd 16
2601.2.a.bh.1.2 6 51.32 odd 8
2601.2.a.bi.1.2 6 51.2 odd 8