Properties

Label 8649.2.a.bs.1.5
Level $8649$
Weight $2$
Character 8649.1
Self dual yes
Analytic conductor $69.063$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8649,2,Mod(1,8649)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8649.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8649, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 8649 = 3^{2} \cdot 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8649.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,8,0,8,16,0,-16,0,0,8,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(69.0626127082\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 24x^{14} + 220x^{12} - 992x^{10} + 2366x^{8} - 2944x^{6} + 1688x^{4} - 288x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 961)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(-1.86943\) of defining polynomial
Character \(\chi\) \(=\) 8649.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.124175 q^{2} -1.98458 q^{4} +1.22944 q^{5} +2.66703 q^{7} +0.494784 q^{8} -0.152666 q^{10} -5.63192 q^{11} +0.0134654 q^{13} -0.331177 q^{14} +3.90772 q^{16} +3.54485 q^{17} -5.96385 q^{19} -2.43993 q^{20} +0.699342 q^{22} -4.08969 q^{23} -3.48847 q^{25} -0.00167206 q^{26} -5.29293 q^{28} -2.96497 q^{29} -1.47481 q^{32} -0.440181 q^{34} +3.27896 q^{35} -10.6352 q^{37} +0.740559 q^{38} +0.608309 q^{40} +7.14473 q^{41} +3.17563 q^{43} +11.1770 q^{44} +0.507836 q^{46} +9.81029 q^{47} +0.113032 q^{49} +0.433179 q^{50} -0.0267232 q^{52} +7.90828 q^{53} -6.92413 q^{55} +1.31960 q^{56} +0.368174 q^{58} +10.3909 q^{59} -3.70951 q^{61} -7.63231 q^{64} +0.0165550 q^{65} +3.56973 q^{67} -7.03504 q^{68} -0.407164 q^{70} -3.76169 q^{71} +3.55021 q^{73} +1.32063 q^{74} +11.8357 q^{76} -15.0205 q^{77} +3.25987 q^{79} +4.80433 q^{80} -0.887194 q^{82} +2.07024 q^{83} +4.35820 q^{85} -0.394333 q^{86} -2.78658 q^{88} +8.80431 q^{89} +0.0359126 q^{91} +8.11632 q^{92} -1.21819 q^{94} -7.33223 q^{95} +3.38749 q^{97} -0.0140358 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 8 q^{2} + 8 q^{4} + 16 q^{5} - 16 q^{7} + 8 q^{10} + 8 q^{14} - 8 q^{16} - 32 q^{19} + 24 q^{20} - 8 q^{28} + 8 q^{32} + 16 q^{35} + 24 q^{38} + 32 q^{41} + 32 q^{47} - 16 q^{49} + 32 q^{50} + 48 q^{56}+ \cdots - 16 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.124175 −0.0878047 −0.0439024 0.999036i \(-0.513979\pi\)
−0.0439024 + 0.999036i \(0.513979\pi\)
\(3\) 0 0
\(4\) −1.98458 −0.992290
\(5\) 1.22944 0.549824 0.274912 0.961469i \(-0.411351\pi\)
0.274912 + 0.961469i \(0.411351\pi\)
\(6\) 0 0
\(7\) 2.66703 1.00804 0.504021 0.863692i \(-0.331854\pi\)
0.504021 + 0.863692i \(0.331854\pi\)
\(8\) 0.494784 0.174933
\(9\) 0 0
\(10\) −0.152666 −0.0482772
\(11\) −5.63192 −1.69809 −0.849044 0.528322i \(-0.822821\pi\)
−0.849044 + 0.528322i \(0.822821\pi\)
\(12\) 0 0
\(13\) 0.0134654 0.00373463 0.00186731 0.999998i \(-0.499406\pi\)
0.00186731 + 0.999998i \(0.499406\pi\)
\(14\) −0.331177 −0.0885108
\(15\) 0 0
\(16\) 3.90772 0.976930
\(17\) 3.54485 0.859753 0.429876 0.902888i \(-0.358557\pi\)
0.429876 + 0.902888i \(0.358557\pi\)
\(18\) 0 0
\(19\) −5.96385 −1.36820 −0.684101 0.729388i \(-0.739805\pi\)
−0.684101 + 0.729388i \(0.739805\pi\)
\(20\) −2.43993 −0.545585
\(21\) 0 0
\(22\) 0.699342 0.149100
\(23\) −4.08969 −0.852759 −0.426380 0.904544i \(-0.640211\pi\)
−0.426380 + 0.904544i \(0.640211\pi\)
\(24\) 0 0
\(25\) −3.48847 −0.697693
\(26\) −0.00167206 −0.000327918 0
\(27\) 0 0
\(28\) −5.29293 −1.00027
\(29\) −2.96497 −0.550581 −0.275290 0.961361i \(-0.588774\pi\)
−0.275290 + 0.961361i \(0.588774\pi\)
\(30\) 0 0
\(31\) 0 0
\(32\) −1.47481 −0.260712
\(33\) 0 0
\(34\) −0.440181 −0.0754903
\(35\) 3.27896 0.554246
\(36\) 0 0
\(37\) −10.6352 −1.74842 −0.874211 0.485546i \(-0.838621\pi\)
−0.874211 + 0.485546i \(0.838621\pi\)
\(38\) 0.740559 0.120135
\(39\) 0 0
\(40\) 0.608309 0.0961822
\(41\) 7.14473 1.11582 0.557910 0.829902i \(-0.311604\pi\)
0.557910 + 0.829902i \(0.311604\pi\)
\(42\) 0 0
\(43\) 3.17563 0.484279 0.242139 0.970241i \(-0.422151\pi\)
0.242139 + 0.970241i \(0.422151\pi\)
\(44\) 11.1770 1.68500
\(45\) 0 0
\(46\) 0.507836 0.0748763
\(47\) 9.81029 1.43098 0.715489 0.698624i \(-0.246204\pi\)
0.715489 + 0.698624i \(0.246204\pi\)
\(48\) 0 0
\(49\) 0.113032 0.0161475
\(50\) 0.433179 0.0612608
\(51\) 0 0
\(52\) −0.0267232 −0.00370584
\(53\) 7.90828 1.08629 0.543143 0.839640i \(-0.317234\pi\)
0.543143 + 0.839640i \(0.317234\pi\)
\(54\) 0 0
\(55\) −6.92413 −0.933650
\(56\) 1.31960 0.176339
\(57\) 0 0
\(58\) 0.368174 0.0483436
\(59\) 10.3909 1.35278 0.676392 0.736542i \(-0.263543\pi\)
0.676392 + 0.736542i \(0.263543\pi\)
\(60\) 0 0
\(61\) −3.70951 −0.474954 −0.237477 0.971393i \(-0.576320\pi\)
−0.237477 + 0.971393i \(0.576320\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) −7.63231 −0.954039
\(65\) 0.0165550 0.00205339
\(66\) 0 0
\(67\) 3.56973 0.436112 0.218056 0.975936i \(-0.430028\pi\)
0.218056 + 0.975936i \(0.430028\pi\)
\(68\) −7.03504 −0.853124
\(69\) 0 0
\(70\) −0.407164 −0.0486654
\(71\) −3.76169 −0.446430 −0.223215 0.974769i \(-0.571655\pi\)
−0.223215 + 0.974769i \(0.571655\pi\)
\(72\) 0 0
\(73\) 3.55021 0.415520 0.207760 0.978180i \(-0.433383\pi\)
0.207760 + 0.978180i \(0.433383\pi\)
\(74\) 1.32063 0.153520
\(75\) 0 0
\(76\) 11.8357 1.35765
\(77\) −15.0205 −1.71174
\(78\) 0 0
\(79\) 3.25987 0.366765 0.183382 0.983042i \(-0.441295\pi\)
0.183382 + 0.983042i \(0.441295\pi\)
\(80\) 4.80433 0.537140
\(81\) 0 0
\(82\) −0.887194 −0.0979742
\(83\) 2.07024 0.227238 0.113619 0.993524i \(-0.463756\pi\)
0.113619 + 0.993524i \(0.463756\pi\)
\(84\) 0 0
\(85\) 4.35820 0.472713
\(86\) −0.394333 −0.0425220
\(87\) 0 0
\(88\) −2.78658 −0.297051
\(89\) 8.80431 0.933255 0.466627 0.884454i \(-0.345469\pi\)
0.466627 + 0.884454i \(0.345469\pi\)
\(90\) 0 0
\(91\) 0.0359126 0.00376466
\(92\) 8.11632 0.846185
\(93\) 0 0
\(94\) −1.21819 −0.125647
\(95\) −7.33223 −0.752271
\(96\) 0 0
\(97\) 3.38749 0.343948 0.171974 0.985101i \(-0.444986\pi\)
0.171974 + 0.985101i \(0.444986\pi\)
\(98\) −0.0140358 −0.00141783
\(99\) 0 0
\(100\) 6.92314 0.692314
\(101\) 8.66837 0.862535 0.431267 0.902224i \(-0.358067\pi\)
0.431267 + 0.902224i \(0.358067\pi\)
\(102\) 0 0
\(103\) 2.68096 0.264163 0.132081 0.991239i \(-0.457834\pi\)
0.132081 + 0.991239i \(0.457834\pi\)
\(104\) 0.00666246 0.000653308 0
\(105\) 0 0
\(106\) −0.982008 −0.0953811
\(107\) 7.97570 0.771040 0.385520 0.922700i \(-0.374022\pi\)
0.385520 + 0.922700i \(0.374022\pi\)
\(108\) 0 0
\(109\) 6.29895 0.603330 0.301665 0.953414i \(-0.402458\pi\)
0.301665 + 0.953414i \(0.402458\pi\)
\(110\) 0.859802 0.0819789
\(111\) 0 0
\(112\) 10.4220 0.984786
\(113\) 2.74728 0.258442 0.129221 0.991616i \(-0.458752\pi\)
0.129221 + 0.991616i \(0.458752\pi\)
\(114\) 0 0
\(115\) −5.02805 −0.468868
\(116\) 5.88422 0.546336
\(117\) 0 0
\(118\) −1.29029 −0.118781
\(119\) 9.45421 0.866666
\(120\) 0 0
\(121\) 20.7185 1.88350
\(122\) 0.460627 0.0417032
\(123\) 0 0
\(124\) 0 0
\(125\) −10.4361 −0.933433
\(126\) 0 0
\(127\) −1.73534 −0.153986 −0.0769931 0.997032i \(-0.524532\pi\)
−0.0769931 + 0.997032i \(0.524532\pi\)
\(128\) 3.89735 0.344481
\(129\) 0 0
\(130\) −0.00205571 −0.000180297 0
\(131\) −7.06939 −0.617656 −0.308828 0.951118i \(-0.599937\pi\)
−0.308828 + 0.951118i \(0.599937\pi\)
\(132\) 0 0
\(133\) −15.9058 −1.37920
\(134\) −0.443270 −0.0382927
\(135\) 0 0
\(136\) 1.75394 0.150399
\(137\) −9.53710 −0.814809 −0.407405 0.913248i \(-0.633566\pi\)
−0.407405 + 0.913248i \(0.633566\pi\)
\(138\) 0 0
\(139\) −13.3484 −1.13220 −0.566098 0.824338i \(-0.691547\pi\)
−0.566098 + 0.824338i \(0.691547\pi\)
\(140\) −6.50737 −0.549973
\(141\) 0 0
\(142\) 0.467106 0.0391987
\(143\) −0.0758360 −0.00634173
\(144\) 0 0
\(145\) −3.64526 −0.302723
\(146\) −0.440846 −0.0364846
\(147\) 0 0
\(148\) 21.1065 1.73494
\(149\) −18.1985 −1.49088 −0.745440 0.666573i \(-0.767761\pi\)
−0.745440 + 0.666573i \(0.767761\pi\)
\(150\) 0 0
\(151\) 6.59561 0.536743 0.268371 0.963316i \(-0.413515\pi\)
0.268371 + 0.963316i \(0.413515\pi\)
\(152\) −2.95082 −0.239343
\(153\) 0 0
\(154\) 1.86516 0.150299
\(155\) 0 0
\(156\) 0 0
\(157\) 15.7251 1.25500 0.627502 0.778615i \(-0.284078\pi\)
0.627502 + 0.778615i \(0.284078\pi\)
\(158\) −0.404794 −0.0322037
\(159\) 0 0
\(160\) −1.81319 −0.143346
\(161\) −10.9073 −0.859617
\(162\) 0 0
\(163\) −7.19636 −0.563663 −0.281831 0.959464i \(-0.590942\pi\)
−0.281831 + 0.959464i \(0.590942\pi\)
\(164\) −14.1793 −1.10722
\(165\) 0 0
\(166\) −0.257071 −0.0199526
\(167\) 20.4703 1.58404 0.792018 0.610498i \(-0.209031\pi\)
0.792018 + 0.610498i \(0.209031\pi\)
\(168\) 0 0
\(169\) −12.9998 −0.999986
\(170\) −0.541178 −0.0415064
\(171\) 0 0
\(172\) −6.30229 −0.480545
\(173\) 21.0674 1.60173 0.800863 0.598848i \(-0.204375\pi\)
0.800863 + 0.598848i \(0.204375\pi\)
\(174\) 0 0
\(175\) −9.30383 −0.703304
\(176\) −22.0080 −1.65891
\(177\) 0 0
\(178\) −1.09327 −0.0819442
\(179\) 10.4789 0.783231 0.391615 0.920129i \(-0.371916\pi\)
0.391615 + 0.920129i \(0.371916\pi\)
\(180\) 0 0
\(181\) −9.53710 −0.708887 −0.354443 0.935077i \(-0.615330\pi\)
−0.354443 + 0.935077i \(0.615330\pi\)
\(182\) −0.00445943 −0.000330555 0
\(183\) 0 0
\(184\) −2.02351 −0.149175
\(185\) −13.0754 −0.961325
\(186\) 0 0
\(187\) −19.9643 −1.45994
\(188\) −19.4693 −1.41994
\(189\) 0 0
\(190\) 0.910477 0.0660529
\(191\) 10.0046 0.723905 0.361952 0.932197i \(-0.382110\pi\)
0.361952 + 0.932197i \(0.382110\pi\)
\(192\) 0 0
\(193\) −20.6806 −1.48862 −0.744310 0.667835i \(-0.767221\pi\)
−0.744310 + 0.667835i \(0.767221\pi\)
\(194\) −0.420641 −0.0302003
\(195\) 0 0
\(196\) −0.224322 −0.0160230
\(197\) 0.753285 0.0536693 0.0268347 0.999640i \(-0.491457\pi\)
0.0268347 + 0.999640i \(0.491457\pi\)
\(198\) 0 0
\(199\) 9.89063 0.701128 0.350564 0.936539i \(-0.385990\pi\)
0.350564 + 0.936539i \(0.385990\pi\)
\(200\) −1.72604 −0.122049
\(201\) 0 0
\(202\) −1.07639 −0.0757346
\(203\) −7.90765 −0.555008
\(204\) 0 0
\(205\) 8.78405 0.613505
\(206\) −0.332907 −0.0231947
\(207\) 0 0
\(208\) 0.0526190 0.00364847
\(209\) 33.5879 2.32333
\(210\) 0 0
\(211\) 14.0629 0.968128 0.484064 0.875033i \(-0.339160\pi\)
0.484064 + 0.875033i \(0.339160\pi\)
\(212\) −15.6946 −1.07791
\(213\) 0 0
\(214\) −0.990379 −0.0677009
\(215\) 3.90426 0.266268
\(216\) 0 0
\(217\) 0 0
\(218\) −0.782170 −0.0529753
\(219\) 0 0
\(220\) 13.7415 0.926452
\(221\) 0.0477328 0.00321086
\(222\) 0 0
\(223\) 9.89557 0.662656 0.331328 0.943516i \(-0.392503\pi\)
0.331328 + 0.943516i \(0.392503\pi\)
\(224\) −3.93335 −0.262808
\(225\) 0 0
\(226\) −0.341142 −0.0226924
\(227\) −9.40457 −0.624204 −0.312102 0.950049i \(-0.601033\pi\)
−0.312102 + 0.950049i \(0.601033\pi\)
\(228\) 0 0
\(229\) −14.7546 −0.975011 −0.487506 0.873120i \(-0.662093\pi\)
−0.487506 + 0.873120i \(0.662093\pi\)
\(230\) 0.624356 0.0411688
\(231\) 0 0
\(232\) −1.46702 −0.0963145
\(233\) 28.5860 1.87273 0.936365 0.351028i \(-0.114168\pi\)
0.936365 + 0.351028i \(0.114168\pi\)
\(234\) 0 0
\(235\) 12.0612 0.786786
\(236\) −20.6216 −1.34235
\(237\) 0 0
\(238\) −1.17397 −0.0760974
\(239\) 9.00876 0.582729 0.291364 0.956612i \(-0.405891\pi\)
0.291364 + 0.956612i \(0.405891\pi\)
\(240\) 0 0
\(241\) 0.788163 0.0507700 0.0253850 0.999678i \(-0.491919\pi\)
0.0253850 + 0.999678i \(0.491919\pi\)
\(242\) −2.57271 −0.165380
\(243\) 0 0
\(244\) 7.36182 0.471292
\(245\) 0.138967 0.00887829
\(246\) 0 0
\(247\) −0.0803056 −0.00510972
\(248\) 0 0
\(249\) 0 0
\(250\) 1.29590 0.0819598
\(251\) 19.7718 1.24798 0.623992 0.781430i \(-0.285510\pi\)
0.623992 + 0.781430i \(0.285510\pi\)
\(252\) 0 0
\(253\) 23.0328 1.44806
\(254\) 0.215485 0.0135207
\(255\) 0 0
\(256\) 14.7807 0.923792
\(257\) 9.02462 0.562940 0.281470 0.959570i \(-0.409178\pi\)
0.281470 + 0.959570i \(0.409178\pi\)
\(258\) 0 0
\(259\) −28.3645 −1.76248
\(260\) −0.0328546 −0.00203756
\(261\) 0 0
\(262\) 0.877840 0.0542331
\(263\) 3.12800 0.192881 0.0964403 0.995339i \(-0.469254\pi\)
0.0964403 + 0.995339i \(0.469254\pi\)
\(264\) 0 0
\(265\) 9.72280 0.597267
\(266\) 1.97509 0.121101
\(267\) 0 0
\(268\) −7.08441 −0.432749
\(269\) −13.9776 −0.852231 −0.426115 0.904669i \(-0.640118\pi\)
−0.426115 + 0.904669i \(0.640118\pi\)
\(270\) 0 0
\(271\) 14.0587 0.854008 0.427004 0.904250i \(-0.359569\pi\)
0.427004 + 0.904250i \(0.359569\pi\)
\(272\) 13.8523 0.839918
\(273\) 0 0
\(274\) 1.18427 0.0715441
\(275\) 19.6468 1.18474
\(276\) 0 0
\(277\) 22.0218 1.32316 0.661581 0.749874i \(-0.269886\pi\)
0.661581 + 0.749874i \(0.269886\pi\)
\(278\) 1.65753 0.0994121
\(279\) 0 0
\(280\) 1.62238 0.0969556
\(281\) −2.32625 −0.138772 −0.0693862 0.997590i \(-0.522104\pi\)
−0.0693862 + 0.997590i \(0.522104\pi\)
\(282\) 0 0
\(283\) 13.9295 0.828021 0.414010 0.910272i \(-0.364128\pi\)
0.414010 + 0.910272i \(0.364128\pi\)
\(284\) 7.46537 0.442988
\(285\) 0 0
\(286\) 0.00941691 0.000556834 0
\(287\) 19.0552 1.12479
\(288\) 0 0
\(289\) −4.43403 −0.260825
\(290\) 0.452649 0.0265805
\(291\) 0 0
\(292\) −7.04567 −0.412317
\(293\) −25.8604 −1.51078 −0.755390 0.655276i \(-0.772552\pi\)
−0.755390 + 0.655276i \(0.772552\pi\)
\(294\) 0 0
\(295\) 12.7751 0.743794
\(296\) −5.26214 −0.305856
\(297\) 0 0
\(298\) 2.25979 0.130906
\(299\) −0.0550693 −0.00318474
\(300\) 0 0
\(301\) 8.46949 0.488173
\(302\) −0.819007 −0.0471286
\(303\) 0 0
\(304\) −23.3051 −1.33664
\(305\) −4.56064 −0.261141
\(306\) 0 0
\(307\) −0.655663 −0.0374206 −0.0187103 0.999825i \(-0.505956\pi\)
−0.0187103 + 0.999825i \(0.505956\pi\)
\(308\) 29.8094 1.69855
\(309\) 0 0
\(310\) 0 0
\(311\) 22.0394 1.24974 0.624869 0.780730i \(-0.285152\pi\)
0.624869 + 0.780730i \(0.285152\pi\)
\(312\) 0 0
\(313\) 9.51336 0.537727 0.268863 0.963178i \(-0.413352\pi\)
0.268863 + 0.963178i \(0.413352\pi\)
\(314\) −1.95266 −0.110195
\(315\) 0 0
\(316\) −6.46948 −0.363937
\(317\) 2.09503 0.117669 0.0588343 0.998268i \(-0.481262\pi\)
0.0588343 + 0.998268i \(0.481262\pi\)
\(318\) 0 0
\(319\) 16.6985 0.934934
\(320\) −9.38350 −0.524554
\(321\) 0 0
\(322\) 1.35441 0.0754784
\(323\) −21.1410 −1.17631
\(324\) 0 0
\(325\) −0.0469736 −0.00260562
\(326\) 0.893606 0.0494923
\(327\) 0 0
\(328\) 3.53510 0.195193
\(329\) 26.1643 1.44248
\(330\) 0 0
\(331\) 2.50739 0.137819 0.0689093 0.997623i \(-0.478048\pi\)
0.0689093 + 0.997623i \(0.478048\pi\)
\(332\) −4.10855 −0.225486
\(333\) 0 0
\(334\) −2.54189 −0.139086
\(335\) 4.38878 0.239785
\(336\) 0 0
\(337\) −27.2137 −1.48242 −0.741212 0.671271i \(-0.765749\pi\)
−0.741212 + 0.671271i \(0.765749\pi\)
\(338\) 1.61425 0.0878035
\(339\) 0 0
\(340\) −8.64920 −0.469069
\(341\) 0 0
\(342\) 0 0
\(343\) −18.3677 −0.991764
\(344\) 1.57125 0.0847161
\(345\) 0 0
\(346\) −2.61604 −0.140639
\(347\) −24.3284 −1.30602 −0.653010 0.757350i \(-0.726494\pi\)
−0.653010 + 0.757350i \(0.726494\pi\)
\(348\) 0 0
\(349\) 12.1656 0.651211 0.325605 0.945506i \(-0.394432\pi\)
0.325605 + 0.945506i \(0.394432\pi\)
\(350\) 1.15530 0.0617534
\(351\) 0 0
\(352\) 8.30600 0.442711
\(353\) −28.0154 −1.49111 −0.745556 0.666443i \(-0.767816\pi\)
−0.745556 + 0.666443i \(0.767816\pi\)
\(354\) 0 0
\(355\) −4.62479 −0.245458
\(356\) −17.4729 −0.926060
\(357\) 0 0
\(358\) −1.30122 −0.0687714
\(359\) 24.3366 1.28444 0.642219 0.766521i \(-0.278014\pi\)
0.642219 + 0.766521i \(0.278014\pi\)
\(360\) 0 0
\(361\) 16.5675 0.871975
\(362\) 1.18427 0.0622436
\(363\) 0 0
\(364\) −0.0712714 −0.00373564
\(365\) 4.36478 0.228463
\(366\) 0 0
\(367\) −1.68920 −0.0881753 −0.0440876 0.999028i \(-0.514038\pi\)
−0.0440876 + 0.999028i \(0.514038\pi\)
\(368\) −15.9814 −0.833087
\(369\) 0 0
\(370\) 1.62364 0.0844089
\(371\) 21.0916 1.09502
\(372\) 0 0
\(373\) 24.2842 1.25739 0.628695 0.777652i \(-0.283589\pi\)
0.628695 + 0.777652i \(0.283589\pi\)
\(374\) 2.47906 0.128189
\(375\) 0 0
\(376\) 4.85397 0.250324
\(377\) −0.0399245 −0.00205621
\(378\) 0 0
\(379\) 13.3445 0.685462 0.342731 0.939433i \(-0.388648\pi\)
0.342731 + 0.939433i \(0.388648\pi\)
\(380\) 14.5514 0.746471
\(381\) 0 0
\(382\) −1.24231 −0.0635622
\(383\) −25.0445 −1.27971 −0.639857 0.768494i \(-0.721006\pi\)
−0.639857 + 0.768494i \(0.721006\pi\)
\(384\) 0 0
\(385\) −18.4669 −0.941158
\(386\) 2.56800 0.130708
\(387\) 0 0
\(388\) −6.72276 −0.341296
\(389\) −21.9366 −1.11223 −0.556115 0.831105i \(-0.687709\pi\)
−0.556115 + 0.831105i \(0.687709\pi\)
\(390\) 0 0
\(391\) −14.4973 −0.733162
\(392\) 0.0559267 0.00282472
\(393\) 0 0
\(394\) −0.0935389 −0.00471242
\(395\) 4.00784 0.201656
\(396\) 0 0
\(397\) 2.21630 0.111233 0.0556165 0.998452i \(-0.482288\pi\)
0.0556165 + 0.998452i \(0.482288\pi\)
\(398\) −1.22817 −0.0615624
\(399\) 0 0
\(400\) −13.6320 −0.681598
\(401\) 26.6696 1.33181 0.665907 0.746035i \(-0.268045\pi\)
0.665907 + 0.746035i \(0.268045\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) −17.2031 −0.855885
\(405\) 0 0
\(406\) 0.981930 0.0487323
\(407\) 59.8968 2.96897
\(408\) 0 0
\(409\) −37.8777 −1.87293 −0.936465 0.350760i \(-0.885923\pi\)
−0.936465 + 0.350760i \(0.885923\pi\)
\(410\) −1.09076 −0.0538686
\(411\) 0 0
\(412\) −5.32058 −0.262126
\(413\) 27.7129 1.36366
\(414\) 0 0
\(415\) 2.54524 0.124941
\(416\) −0.0198589 −0.000973661 0
\(417\) 0 0
\(418\) −4.17077 −0.203999
\(419\) 9.16702 0.447838 0.223919 0.974608i \(-0.428115\pi\)
0.223919 + 0.974608i \(0.428115\pi\)
\(420\) 0 0
\(421\) −3.26808 −0.159277 −0.0796383 0.996824i \(-0.525377\pi\)
−0.0796383 + 0.996824i \(0.525377\pi\)
\(422\) −1.74625 −0.0850062
\(423\) 0 0
\(424\) 3.91289 0.190027
\(425\) −12.3661 −0.599843
\(426\) 0 0
\(427\) −9.89336 −0.478773
\(428\) −15.8284 −0.765095
\(429\) 0 0
\(430\) −0.484810 −0.0233796
\(431\) 23.4706 1.13054 0.565269 0.824907i \(-0.308772\pi\)
0.565269 + 0.824907i \(0.308772\pi\)
\(432\) 0 0
\(433\) 27.3421 1.31398 0.656990 0.753900i \(-0.271829\pi\)
0.656990 + 0.753900i \(0.271829\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −12.5008 −0.598679
\(437\) 24.3903 1.16675
\(438\) 0 0
\(439\) −33.0439 −1.57710 −0.788551 0.614970i \(-0.789168\pi\)
−0.788551 + 0.614970i \(0.789168\pi\)
\(440\) −3.42595 −0.163326
\(441\) 0 0
\(442\) −0.00592720 −0.000281928 0
\(443\) 13.3265 0.633162 0.316581 0.948566i \(-0.397465\pi\)
0.316581 + 0.948566i \(0.397465\pi\)
\(444\) 0 0
\(445\) 10.8244 0.513126
\(446\) −1.22878 −0.0581844
\(447\) 0 0
\(448\) −20.3556 −0.961711
\(449\) −11.2943 −0.533012 −0.266506 0.963833i \(-0.585869\pi\)
−0.266506 + 0.963833i \(0.585869\pi\)
\(450\) 0 0
\(451\) −40.2385 −1.89476
\(452\) −5.45219 −0.256449
\(453\) 0 0
\(454\) 1.16781 0.0548080
\(455\) 0.0441525 0.00206990
\(456\) 0 0
\(457\) 4.55068 0.212872 0.106436 0.994320i \(-0.466056\pi\)
0.106436 + 0.994320i \(0.466056\pi\)
\(458\) 1.83215 0.0856106
\(459\) 0 0
\(460\) 9.97857 0.465253
\(461\) −28.7961 −1.34117 −0.670585 0.741833i \(-0.733957\pi\)
−0.670585 + 0.741833i \(0.733957\pi\)
\(462\) 0 0
\(463\) 12.0515 0.560082 0.280041 0.959988i \(-0.409652\pi\)
0.280041 + 0.959988i \(0.409652\pi\)
\(464\) −11.5863 −0.537879
\(465\) 0 0
\(466\) −3.54965 −0.164435
\(467\) 19.1300 0.885230 0.442615 0.896712i \(-0.354051\pi\)
0.442615 + 0.896712i \(0.354051\pi\)
\(468\) 0 0
\(469\) 9.52056 0.439619
\(470\) −1.49770 −0.0690836
\(471\) 0 0
\(472\) 5.14126 0.236646
\(473\) −17.8849 −0.822348
\(474\) 0 0
\(475\) 20.8047 0.954585
\(476\) −18.7626 −0.859985
\(477\) 0 0
\(478\) −1.11866 −0.0511663
\(479\) 12.2911 0.561593 0.280797 0.959767i \(-0.409401\pi\)
0.280797 + 0.959767i \(0.409401\pi\)
\(480\) 0 0
\(481\) −0.143208 −0.00652971
\(482\) −0.0978698 −0.00445785
\(483\) 0 0
\(484\) −41.1176 −1.86898
\(485\) 4.16474 0.189111
\(486\) 0 0
\(487\) 15.1267 0.685456 0.342728 0.939435i \(-0.388649\pi\)
0.342728 + 0.939435i \(0.388649\pi\)
\(488\) −1.83540 −0.0830849
\(489\) 0 0
\(490\) −0.0172562 −0.000779556 0
\(491\) −30.5340 −1.37798 −0.688990 0.724771i \(-0.741946\pi\)
−0.688990 + 0.724771i \(0.741946\pi\)
\(492\) 0 0
\(493\) −10.5104 −0.473363
\(494\) 0.00997192 0.000448658 0
\(495\) 0 0
\(496\) 0 0
\(497\) −10.0325 −0.450020
\(498\) 0 0
\(499\) 28.8272 1.29048 0.645240 0.763980i \(-0.276757\pi\)
0.645240 + 0.763980i \(0.276757\pi\)
\(500\) 20.7113 0.926237
\(501\) 0 0
\(502\) −2.45516 −0.109579
\(503\) 3.11786 0.139018 0.0695092 0.997581i \(-0.477857\pi\)
0.0695092 + 0.997581i \(0.477857\pi\)
\(504\) 0 0
\(505\) 10.6573 0.474243
\(506\) −2.86009 −0.127147
\(507\) 0 0
\(508\) 3.44392 0.152799
\(509\) 13.2957 0.589323 0.294661 0.955602i \(-0.404793\pi\)
0.294661 + 0.955602i \(0.404793\pi\)
\(510\) 0 0
\(511\) 9.46849 0.418862
\(512\) −9.63009 −0.425594
\(513\) 0 0
\(514\) −1.12063 −0.0494288
\(515\) 3.29609 0.145243
\(516\) 0 0
\(517\) −55.2507 −2.42992
\(518\) 3.52215 0.154754
\(519\) 0 0
\(520\) 0.00819113 0.000359205 0
\(521\) −8.44298 −0.369894 −0.184947 0.982749i \(-0.559211\pi\)
−0.184947 + 0.982749i \(0.559211\pi\)
\(522\) 0 0
\(523\) 39.6642 1.73440 0.867198 0.497964i \(-0.165919\pi\)
0.867198 + 0.497964i \(0.165919\pi\)
\(524\) 14.0298 0.612894
\(525\) 0 0
\(526\) −0.388418 −0.0169358
\(527\) 0 0
\(528\) 0 0
\(529\) −6.27443 −0.272801
\(530\) −1.20732 −0.0524428
\(531\) 0 0
\(532\) 31.5662 1.36857
\(533\) 0.0962066 0.00416717
\(534\) 0 0
\(535\) 9.80568 0.423937
\(536\) 1.76624 0.0762901
\(537\) 0 0
\(538\) 1.73567 0.0748299
\(539\) −0.636590 −0.0274199
\(540\) 0 0
\(541\) 21.8292 0.938509 0.469255 0.883063i \(-0.344523\pi\)
0.469255 + 0.883063i \(0.344523\pi\)
\(542\) −1.74574 −0.0749859
\(543\) 0 0
\(544\) −5.22797 −0.224148
\(545\) 7.74422 0.331726
\(546\) 0 0
\(547\) 27.3401 1.16898 0.584490 0.811401i \(-0.301295\pi\)
0.584490 + 0.811401i \(0.301295\pi\)
\(548\) 18.9271 0.808527
\(549\) 0 0
\(550\) −2.43963 −0.104026
\(551\) 17.6826 0.753305
\(552\) 0 0
\(553\) 8.69417 0.369714
\(554\) −2.73455 −0.116180
\(555\) 0 0
\(556\) 26.4909 1.12347
\(557\) 27.9171 1.18289 0.591443 0.806347i \(-0.298559\pi\)
0.591443 + 0.806347i \(0.298559\pi\)
\(558\) 0 0
\(559\) 0.0427611 0.00180860
\(560\) 12.8133 0.541460
\(561\) 0 0
\(562\) 0.288861 0.0121849
\(563\) 25.7662 1.08591 0.542957 0.839760i \(-0.317305\pi\)
0.542957 + 0.839760i \(0.317305\pi\)
\(564\) 0 0
\(565\) 3.37762 0.142098
\(566\) −1.72969 −0.0727042
\(567\) 0 0
\(568\) −1.86122 −0.0780952
\(569\) −16.2134 −0.679701 −0.339851 0.940479i \(-0.610377\pi\)
−0.339851 + 0.940479i \(0.610377\pi\)
\(570\) 0 0
\(571\) −9.37945 −0.392518 −0.196259 0.980552i \(-0.562879\pi\)
−0.196259 + 0.980552i \(0.562879\pi\)
\(572\) 0.150503 0.00629283
\(573\) 0 0
\(574\) −2.36617 −0.0987620
\(575\) 14.2667 0.594964
\(576\) 0 0
\(577\) 31.6764 1.31870 0.659352 0.751834i \(-0.270831\pi\)
0.659352 + 0.751834i \(0.270831\pi\)
\(578\) 0.550594 0.0229017
\(579\) 0 0
\(580\) 7.23432 0.300389
\(581\) 5.52138 0.229065
\(582\) 0 0
\(583\) −44.5388 −1.84461
\(584\) 1.75658 0.0726880
\(585\) 0 0
\(586\) 3.21120 0.132654
\(587\) 0.186802 0.00771014 0.00385507 0.999993i \(-0.498773\pi\)
0.00385507 + 0.999993i \(0.498773\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) −1.58634 −0.0653086
\(591\) 0 0
\(592\) −41.5596 −1.70809
\(593\) 13.4668 0.553015 0.276508 0.961012i \(-0.410823\pi\)
0.276508 + 0.961012i \(0.410823\pi\)
\(594\) 0 0
\(595\) 11.6234 0.476514
\(596\) 36.1164 1.47939
\(597\) 0 0
\(598\) 0.00683821 0.000279635 0
\(599\) 18.4914 0.755540 0.377770 0.925899i \(-0.376691\pi\)
0.377770 + 0.925899i \(0.376691\pi\)
\(600\) 0 0
\(601\) 17.8606 0.728548 0.364274 0.931292i \(-0.381317\pi\)
0.364274 + 0.931292i \(0.381317\pi\)
\(602\) −1.05170 −0.0428639
\(603\) 0 0
\(604\) −13.0895 −0.532605
\(605\) 25.4723 1.03560
\(606\) 0 0
\(607\) 28.9604 1.17547 0.587734 0.809054i \(-0.300020\pi\)
0.587734 + 0.809054i \(0.300020\pi\)
\(608\) 8.79553 0.356706
\(609\) 0 0
\(610\) 0.566315 0.0229294
\(611\) 0.132099 0.00534417
\(612\) 0 0
\(613\) 20.6444 0.833821 0.416910 0.908948i \(-0.363113\pi\)
0.416910 + 0.908948i \(0.363113\pi\)
\(614\) 0.0814167 0.00328571
\(615\) 0 0
\(616\) −7.43189 −0.299439
\(617\) −0.697562 −0.0280828 −0.0140414 0.999901i \(-0.504470\pi\)
−0.0140414 + 0.999901i \(0.504470\pi\)
\(618\) 0 0
\(619\) 2.41091 0.0969026 0.0484513 0.998826i \(-0.484571\pi\)
0.0484513 + 0.998826i \(0.484571\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −2.73673 −0.109733
\(623\) 23.4813 0.940760
\(624\) 0 0
\(625\) 4.61172 0.184469
\(626\) −1.18132 −0.0472150
\(627\) 0 0
\(628\) −31.2078 −1.24533
\(629\) −37.7003 −1.50321
\(630\) 0 0
\(631\) −36.4136 −1.44960 −0.724801 0.688959i \(-0.758068\pi\)
−0.724801 + 0.688959i \(0.758068\pi\)
\(632\) 1.61293 0.0641590
\(633\) 0 0
\(634\) −0.260150 −0.0103319
\(635\) −2.13350 −0.0846654
\(636\) 0 0
\(637\) 0.00152203 6.03049e−5 0
\(638\) −2.07353 −0.0820917
\(639\) 0 0
\(640\) 4.79158 0.189404
\(641\) 2.14971 0.0849085 0.0424542 0.999098i \(-0.486482\pi\)
0.0424542 + 0.999098i \(0.486482\pi\)
\(642\) 0 0
\(643\) 17.7453 0.699806 0.349903 0.936786i \(-0.386215\pi\)
0.349903 + 0.936786i \(0.386215\pi\)
\(644\) 21.6464 0.852989
\(645\) 0 0
\(646\) 2.62517 0.103286
\(647\) 40.1703 1.57926 0.789629 0.613584i \(-0.210273\pi\)
0.789629 + 0.613584i \(0.210273\pi\)
\(648\) 0 0
\(649\) −58.5209 −2.29715
\(650\) 0.00583292 0.000228786 0
\(651\) 0 0
\(652\) 14.2818 0.559317
\(653\) 2.41626 0.0945556 0.0472778 0.998882i \(-0.484945\pi\)
0.0472778 + 0.998882i \(0.484945\pi\)
\(654\) 0 0
\(655\) −8.69143 −0.339602
\(656\) 27.9196 1.09008
\(657\) 0 0
\(658\) −3.24894 −0.126657
\(659\) −26.3680 −1.02715 −0.513576 0.858044i \(-0.671679\pi\)
−0.513576 + 0.858044i \(0.671679\pi\)
\(660\) 0 0
\(661\) −37.8137 −1.47078 −0.735392 0.677642i \(-0.763002\pi\)
−0.735392 + 0.677642i \(0.763002\pi\)
\(662\) −0.311354 −0.0121011
\(663\) 0 0
\(664\) 1.02432 0.0397513
\(665\) −19.5552 −0.758320
\(666\) 0 0
\(667\) 12.1258 0.469513
\(668\) −40.6249 −1.57182
\(669\) 0 0
\(670\) −0.544976 −0.0210542
\(671\) 20.8916 0.806513
\(672\) 0 0
\(673\) −25.8793 −0.997575 −0.498788 0.866724i \(-0.666221\pi\)
−0.498788 + 0.866724i \(0.666221\pi\)
\(674\) 3.37925 0.130164
\(675\) 0 0
\(676\) 25.7992 0.992276
\(677\) −19.9464 −0.766602 −0.383301 0.923623i \(-0.625213\pi\)
−0.383301 + 0.923623i \(0.625213\pi\)
\(678\) 0 0
\(679\) 9.03454 0.346714
\(680\) 2.15637 0.0826929
\(681\) 0 0
\(682\) 0 0
\(683\) 10.3960 0.397793 0.198897 0.980020i \(-0.436264\pi\)
0.198897 + 0.980020i \(0.436264\pi\)
\(684\) 0 0
\(685\) −11.7253 −0.448002
\(686\) 2.28081 0.0870816
\(687\) 0 0
\(688\) 12.4095 0.473107
\(689\) 0.106488 0.00405687
\(690\) 0 0
\(691\) −13.4503 −0.511675 −0.255837 0.966720i \(-0.582351\pi\)
−0.255837 + 0.966720i \(0.582351\pi\)
\(692\) −41.8100 −1.58938
\(693\) 0 0
\(694\) 3.02098 0.114675
\(695\) −16.4111 −0.622509
\(696\) 0 0
\(697\) 25.3270 0.959328
\(698\) −1.51066 −0.0571794
\(699\) 0 0
\(700\) 18.4642 0.697881
\(701\) 1.52309 0.0575264 0.0287632 0.999586i \(-0.490843\pi\)
0.0287632 + 0.999586i \(0.490843\pi\)
\(702\) 0 0
\(703\) 63.4270 2.39219
\(704\) 42.9846 1.62004
\(705\) 0 0
\(706\) 3.47881 0.130927
\(707\) 23.1188 0.869471
\(708\) 0 0
\(709\) −1.54507 −0.0580263 −0.0290131 0.999579i \(-0.509236\pi\)
−0.0290131 + 0.999579i \(0.509236\pi\)
\(710\) 0.574281 0.0215524
\(711\) 0 0
\(712\) 4.35623 0.163257
\(713\) 0 0
\(714\) 0 0
\(715\) −0.0932362 −0.00348684
\(716\) −20.7962 −0.777192
\(717\) 0 0
\(718\) −3.02199 −0.112780
\(719\) −36.4715 −1.36016 −0.680079 0.733139i \(-0.738054\pi\)
−0.680079 + 0.733139i \(0.738054\pi\)
\(720\) 0 0
\(721\) 7.15019 0.266287
\(722\) −2.05727 −0.0765635
\(723\) 0 0
\(724\) 18.9271 0.703422
\(725\) 10.3432 0.384136
\(726\) 0 0
\(727\) 11.3252 0.420027 0.210013 0.977698i \(-0.432649\pi\)
0.210013 + 0.977698i \(0.432649\pi\)
\(728\) 0.0177690 0.000658561 0
\(729\) 0 0
\(730\) −0.541995 −0.0200601
\(731\) 11.2571 0.416360
\(732\) 0 0
\(733\) 1.82359 0.0673559 0.0336779 0.999433i \(-0.489278\pi\)
0.0336779 + 0.999433i \(0.489278\pi\)
\(734\) 0.209755 0.00774221
\(735\) 0 0
\(736\) 6.03151 0.222324
\(737\) −20.1044 −0.740556
\(738\) 0 0
\(739\) −35.2840 −1.29794 −0.648971 0.760813i \(-0.724800\pi\)
−0.648971 + 0.760813i \(0.724800\pi\)
\(740\) 25.9493 0.953914
\(741\) 0 0
\(742\) −2.61904 −0.0961481
\(743\) 26.9859 0.990018 0.495009 0.868888i \(-0.335165\pi\)
0.495009 + 0.868888i \(0.335165\pi\)
\(744\) 0 0
\(745\) −22.3741 −0.819722
\(746\) −3.01549 −0.110405
\(747\) 0 0
\(748\) 39.6208 1.44868
\(749\) 21.2714 0.777240
\(750\) 0 0
\(751\) −21.1606 −0.772161 −0.386080 0.922465i \(-0.626171\pi\)
−0.386080 + 0.922465i \(0.626171\pi\)
\(752\) 38.3359 1.39797
\(753\) 0 0
\(754\) 0.00495761 0.000180545 0
\(755\) 8.10894 0.295114
\(756\) 0 0
\(757\) 53.6180 1.94878 0.974389 0.224869i \(-0.0721956\pi\)
0.974389 + 0.224869i \(0.0721956\pi\)
\(758\) −1.65705 −0.0601868
\(759\) 0 0
\(760\) −3.62787 −0.131597
\(761\) 8.24779 0.298982 0.149491 0.988763i \(-0.452236\pi\)
0.149491 + 0.988763i \(0.452236\pi\)
\(762\) 0 0
\(763\) 16.7995 0.608182
\(764\) −19.8549 −0.718323
\(765\) 0 0
\(766\) 3.10989 0.112365
\(767\) 0.139918 0.00505214
\(768\) 0 0
\(769\) 26.3326 0.949577 0.474788 0.880100i \(-0.342525\pi\)
0.474788 + 0.880100i \(0.342525\pi\)
\(770\) 2.29311 0.0826381
\(771\) 0 0
\(772\) 41.0422 1.47714
\(773\) 11.8440 0.426000 0.213000 0.977052i \(-0.431677\pi\)
0.213000 + 0.977052i \(0.431677\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 1.67608 0.0601677
\(777\) 0 0
\(778\) 2.72397 0.0976591
\(779\) −42.6101 −1.52667
\(780\) 0 0
\(781\) 21.1855 0.758078
\(782\) 1.80020 0.0643751
\(783\) 0 0
\(784\) 0.441700 0.0157750
\(785\) 19.3332 0.690032
\(786\) 0 0
\(787\) 38.8768 1.38581 0.692904 0.721030i \(-0.256331\pi\)
0.692904 + 0.721030i \(0.256331\pi\)
\(788\) −1.49496 −0.0532556
\(789\) 0 0
\(790\) −0.497672 −0.0177064
\(791\) 7.32706 0.260520
\(792\) 0 0
\(793\) −0.0499500 −0.00177378
\(794\) −0.275208 −0.00976678
\(795\) 0 0
\(796\) −19.6288 −0.695723
\(797\) −52.0663 −1.84428 −0.922141 0.386854i \(-0.873562\pi\)
−0.922141 + 0.386854i \(0.873562\pi\)
\(798\) 0 0
\(799\) 34.7760 1.23029
\(800\) 5.14482 0.181897
\(801\) 0 0
\(802\) −3.31168 −0.116940
\(803\) −19.9945 −0.705590
\(804\) 0 0
\(805\) −13.4099 −0.472638
\(806\) 0 0
\(807\) 0 0
\(808\) 4.28897 0.150885
\(809\) −31.2082 −1.09722 −0.548612 0.836077i \(-0.684843\pi\)
−0.548612 + 0.836077i \(0.684843\pi\)
\(810\) 0 0
\(811\) 16.4241 0.576729 0.288364 0.957521i \(-0.406889\pi\)
0.288364 + 0.957521i \(0.406889\pi\)
\(812\) 15.6934 0.550729
\(813\) 0 0
\(814\) −7.43766 −0.260690
\(815\) −8.84753 −0.309916
\(816\) 0 0
\(817\) −18.9390 −0.662591
\(818\) 4.70345 0.164452
\(819\) 0 0
\(820\) −17.4327 −0.608775
\(821\) 40.2675 1.40534 0.702672 0.711514i \(-0.251990\pi\)
0.702672 + 0.711514i \(0.251990\pi\)
\(822\) 0 0
\(823\) 23.3005 0.812205 0.406102 0.913828i \(-0.366888\pi\)
0.406102 + 0.913828i \(0.366888\pi\)
\(824\) 1.32650 0.0462107
\(825\) 0 0
\(826\) −3.44124 −0.119736
\(827\) −24.1368 −0.839319 −0.419660 0.907682i \(-0.637851\pi\)
−0.419660 + 0.907682i \(0.637851\pi\)
\(828\) 0 0
\(829\) −22.7194 −0.789076 −0.394538 0.918880i \(-0.629095\pi\)
−0.394538 + 0.918880i \(0.629095\pi\)
\(830\) −0.316055 −0.0109704
\(831\) 0 0
\(832\) −0.102772 −0.00356298
\(833\) 0.400683 0.0138829
\(834\) 0 0
\(835\) 25.1670 0.870941
\(836\) −66.6580 −2.30541
\(837\) 0 0
\(838\) −1.13831 −0.0393223
\(839\) 6.01460 0.207647 0.103823 0.994596i \(-0.466892\pi\)
0.103823 + 0.994596i \(0.466892\pi\)
\(840\) 0 0
\(841\) −20.2090 −0.696861
\(842\) 0.405813 0.0139852
\(843\) 0 0
\(844\) −27.9089 −0.960664
\(845\) −15.9826 −0.549817
\(846\) 0 0
\(847\) 55.2568 1.89865
\(848\) 30.9034 1.06123
\(849\) 0 0
\(850\) 1.53555 0.0526691
\(851\) 43.4948 1.49098
\(852\) 0 0
\(853\) 10.8138 0.370258 0.185129 0.982714i \(-0.440730\pi\)
0.185129 + 0.982714i \(0.440730\pi\)
\(854\) 1.22850 0.0420385
\(855\) 0 0
\(856\) 3.94625 0.134880
\(857\) 34.0840 1.16429 0.582144 0.813086i \(-0.302214\pi\)
0.582144 + 0.813086i \(0.302214\pi\)
\(858\) 0 0
\(859\) −7.51793 −0.256508 −0.128254 0.991741i \(-0.540937\pi\)
−0.128254 + 0.991741i \(0.540937\pi\)
\(860\) −7.74832 −0.264215
\(861\) 0 0
\(862\) −2.91445 −0.0992666
\(863\) 22.2748 0.758243 0.379121 0.925347i \(-0.376226\pi\)
0.379121 + 0.925347i \(0.376226\pi\)
\(864\) 0 0
\(865\) 25.9012 0.880668
\(866\) −3.39520 −0.115374
\(867\) 0 0
\(868\) 0 0
\(869\) −18.3594 −0.622798
\(870\) 0 0
\(871\) 0.0480678 0.00162872
\(872\) 3.11662 0.105542
\(873\) 0 0
\(874\) −3.02866 −0.102446
\(875\) −27.8334 −0.940939
\(876\) 0 0
\(877\) −27.1655 −0.917313 −0.458656 0.888614i \(-0.651669\pi\)
−0.458656 + 0.888614i \(0.651669\pi\)
\(878\) 4.10322 0.138477
\(879\) 0 0
\(880\) −27.0576 −0.912111
\(881\) 22.7696 0.767126 0.383563 0.923515i \(-0.374697\pi\)
0.383563 + 0.923515i \(0.374697\pi\)
\(882\) 0 0
\(883\) −20.5333 −0.691000 −0.345500 0.938419i \(-0.612291\pi\)
−0.345500 + 0.938419i \(0.612291\pi\)
\(884\) −0.0947296 −0.00318610
\(885\) 0 0
\(886\) −1.65481 −0.0555946
\(887\) −53.7079 −1.80333 −0.901667 0.432431i \(-0.857656\pi\)
−0.901667 + 0.432431i \(0.857656\pi\)
\(888\) 0 0
\(889\) −4.62819 −0.155224
\(890\) −1.34412 −0.0450549
\(891\) 0 0
\(892\) −19.6386 −0.657547
\(893\) −58.5071 −1.95787
\(894\) 0 0
\(895\) 12.8832 0.430639
\(896\) 10.3943 0.347251
\(897\) 0 0
\(898\) 1.40247 0.0468010
\(899\) 0 0
\(900\) 0 0
\(901\) 28.0337 0.933937
\(902\) 4.99661 0.166369
\(903\) 0 0
\(904\) 1.35931 0.0452099
\(905\) −11.7253 −0.389763
\(906\) 0 0
\(907\) 53.3488 1.77142 0.885709 0.464241i \(-0.153673\pi\)
0.885709 + 0.464241i \(0.153673\pi\)
\(908\) 18.6641 0.619391
\(909\) 0 0
\(910\) −0.00548262 −0.000181747 0
\(911\) 44.5464 1.47589 0.737944 0.674861i \(-0.235797\pi\)
0.737944 + 0.674861i \(0.235797\pi\)
\(912\) 0 0
\(913\) −11.6594 −0.385870
\(914\) −0.565079 −0.0186912
\(915\) 0 0
\(916\) 29.2817 0.967494
\(917\) −18.8543 −0.622623
\(918\) 0 0
\(919\) −11.6589 −0.384593 −0.192297 0.981337i \(-0.561594\pi\)
−0.192297 + 0.981337i \(0.561594\pi\)
\(920\) −2.48780 −0.0820203
\(921\) 0 0
\(922\) 3.57575 0.117761
\(923\) −0.0506526 −0.00166725
\(924\) 0 0
\(925\) 37.1007 1.21986
\(926\) −1.49649 −0.0491779
\(927\) 0 0
\(928\) 4.37276 0.143543
\(929\) −16.1137 −0.528675 −0.264337 0.964430i \(-0.585153\pi\)
−0.264337 + 0.964430i \(0.585153\pi\)
\(930\) 0 0
\(931\) −0.674109 −0.0220930
\(932\) −56.7312 −1.85829
\(933\) 0 0
\(934\) −2.37546 −0.0777274
\(935\) −24.5450 −0.802708
\(936\) 0 0
\(937\) 45.2884 1.47951 0.739754 0.672877i \(-0.234942\pi\)
0.739754 + 0.672877i \(0.234942\pi\)
\(938\) −1.18221 −0.0386006
\(939\) 0 0
\(940\) −23.9364 −0.780720
\(941\) 24.5088 0.798964 0.399482 0.916741i \(-0.369190\pi\)
0.399482 + 0.916741i \(0.369190\pi\)
\(942\) 0 0
\(943\) −29.2197 −0.951525
\(944\) 40.6049 1.32158
\(945\) 0 0
\(946\) 2.22085 0.0722060
\(947\) 44.7537 1.45430 0.727150 0.686478i \(-0.240844\pi\)
0.727150 + 0.686478i \(0.240844\pi\)
\(948\) 0 0
\(949\) 0.0478049 0.00155181
\(950\) −2.58341 −0.0838170
\(951\) 0 0
\(952\) 4.67779 0.151608
\(953\) 30.8112 0.998071 0.499036 0.866581i \(-0.333688\pi\)
0.499036 + 0.866581i \(0.333688\pi\)
\(954\) 0 0
\(955\) 12.3001 0.398020
\(956\) −17.8786 −0.578236
\(957\) 0 0
\(958\) −1.52624 −0.0493105
\(959\) −25.4357 −0.821361
\(960\) 0 0
\(961\) 0 0
\(962\) 0.0177828 0.000573339 0
\(963\) 0 0
\(964\) −1.56417 −0.0503786
\(965\) −25.4256 −0.818479
\(966\) 0 0
\(967\) 44.5447 1.43246 0.716230 0.697864i \(-0.245866\pi\)
0.716230 + 0.697864i \(0.245866\pi\)
\(968\) 10.2512 0.329486
\(969\) 0 0
\(970\) −0.517155 −0.0166048
\(971\) −6.35732 −0.204016 −0.102008 0.994784i \(-0.532527\pi\)
−0.102008 + 0.994784i \(0.532527\pi\)
\(972\) 0 0
\(973\) −35.6005 −1.14130
\(974\) −1.87835 −0.0601863
\(975\) 0 0
\(976\) −14.4957 −0.463997
\(977\) 13.4329 0.429758 0.214879 0.976641i \(-0.431064\pi\)
0.214879 + 0.976641i \(0.431064\pi\)
\(978\) 0 0
\(979\) −49.5852 −1.58475
\(980\) −0.275792 −0.00880984
\(981\) 0 0
\(982\) 3.79155 0.120993
\(983\) −42.1777 −1.34526 −0.672629 0.739980i \(-0.734835\pi\)
−0.672629 + 0.739980i \(0.734835\pi\)
\(984\) 0 0
\(985\) 0.926123 0.0295087
\(986\) 1.30512 0.0415635
\(987\) 0 0
\(988\) 0.159373 0.00507033
\(989\) −12.9873 −0.412973
\(990\) 0 0
\(991\) 40.1209 1.27448 0.637241 0.770665i \(-0.280076\pi\)
0.637241 + 0.770665i \(0.280076\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 1.24579 0.0395139
\(995\) 12.1600 0.385497
\(996\) 0 0
\(997\) −40.6053 −1.28598 −0.642991 0.765874i \(-0.722307\pi\)
−0.642991 + 0.765874i \(0.722307\pi\)
\(998\) −3.57960 −0.113310
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8649.2.a.bs.1.5 16
3.2 odd 2 961.2.a.l.1.11 16
31.30 odd 2 inner 8649.2.a.bs.1.6 16
93.2 odd 10 961.2.d.s.531.11 64
93.5 odd 6 961.2.c.l.521.12 32
93.8 odd 10 961.2.d.s.374.6 64
93.11 even 30 961.2.g.w.338.5 128
93.14 odd 30 961.2.g.w.816.6 128
93.17 even 30 961.2.g.w.816.5 128
93.20 odd 30 961.2.g.w.338.6 128
93.23 even 10 961.2.d.s.374.5 64
93.26 even 6 961.2.c.l.521.11 32
93.29 even 10 961.2.d.s.531.12 64
93.35 odd 10 961.2.d.s.388.6 64
93.38 odd 30 961.2.g.w.235.5 128
93.41 odd 30 961.2.g.w.844.12 128
93.44 even 30 961.2.g.w.448.12 128
93.47 odd 10 961.2.d.s.628.11 64
93.50 odd 30 961.2.g.w.547.11 128
93.53 even 30 961.2.g.w.732.6 128
93.56 odd 6 961.2.c.l.439.12 32
93.59 odd 30 961.2.g.w.846.12 128
93.65 even 30 961.2.g.w.846.11 128
93.68 even 6 961.2.c.l.439.11 32
93.71 odd 30 961.2.g.w.732.5 128
93.74 even 30 961.2.g.w.547.12 128
93.77 even 10 961.2.d.s.628.12 64
93.80 odd 30 961.2.g.w.448.11 128
93.83 even 30 961.2.g.w.844.11 128
93.86 even 30 961.2.g.w.235.6 128
93.89 even 10 961.2.d.s.388.5 64
93.92 even 2 961.2.a.l.1.12 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
961.2.a.l.1.11 16 3.2 odd 2
961.2.a.l.1.12 yes 16 93.92 even 2
961.2.c.l.439.11 32 93.68 even 6
961.2.c.l.439.12 32 93.56 odd 6
961.2.c.l.521.11 32 93.26 even 6
961.2.c.l.521.12 32 93.5 odd 6
961.2.d.s.374.5 64 93.23 even 10
961.2.d.s.374.6 64 93.8 odd 10
961.2.d.s.388.5 64 93.89 even 10
961.2.d.s.388.6 64 93.35 odd 10
961.2.d.s.531.11 64 93.2 odd 10
961.2.d.s.531.12 64 93.29 even 10
961.2.d.s.628.11 64 93.47 odd 10
961.2.d.s.628.12 64 93.77 even 10
961.2.g.w.235.5 128 93.38 odd 30
961.2.g.w.235.6 128 93.86 even 30
961.2.g.w.338.5 128 93.11 even 30
961.2.g.w.338.6 128 93.20 odd 30
961.2.g.w.448.11 128 93.80 odd 30
961.2.g.w.448.12 128 93.44 even 30
961.2.g.w.547.11 128 93.50 odd 30
961.2.g.w.547.12 128 93.74 even 30
961.2.g.w.732.5 128 93.71 odd 30
961.2.g.w.732.6 128 93.53 even 30
961.2.g.w.816.5 128 93.17 even 30
961.2.g.w.816.6 128 93.14 odd 30
961.2.g.w.844.11 128 93.83 even 30
961.2.g.w.844.12 128 93.41 odd 30
961.2.g.w.846.11 128 93.65 even 30
961.2.g.w.846.12 128 93.59 odd 30
8649.2.a.bs.1.5 16 1.1 even 1 trivial
8649.2.a.bs.1.6 16 31.30 odd 2 inner