Properties

Label 864.4.a.q.1.3
Level $864$
Weight $4$
Character 864.1
Self dual yes
Analytic conductor $50.978$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [864,4,Mod(1,864)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(864, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("864.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 864 = 2^{5} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 864.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,0,0,6,0,-9,0,0,0,-18] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(50.9776502450\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.148.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 3x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3}\cdot 3^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(0.311108\) of defining polynomial
Character \(\chi\) \(=\) 864.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+15.4193 q^{5} -29.5718 q^{7} +6.88586 q^{11} -25.0384 q^{13} +98.3347 q^{17} -63.7439 q^{19} -15.5139 q^{23} +112.754 q^{25} +77.6771 q^{29} -209.031 q^{31} -455.976 q^{35} -295.347 q^{37} -213.831 q^{41} -150.974 q^{43} +478.210 q^{47} +531.494 q^{49} -427.378 q^{53} +106.175 q^{55} -798.377 q^{59} -223.346 q^{61} -386.074 q^{65} +1026.21 q^{67} -925.890 q^{71} -1070.06 q^{73} -203.628 q^{77} +860.902 q^{79} -459.709 q^{83} +1516.25 q^{85} +787.829 q^{89} +740.432 q^{91} -982.885 q^{95} +118.831 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 6 q^{5} - 9 q^{7} - 18 q^{11} + 3 q^{13} + 18 q^{17} - 27 q^{19} - 90 q^{23} + 21 q^{25} + 72 q^{29} - 144 q^{31} - 450 q^{35} - 159 q^{37} - 168 q^{41} + 180 q^{43} - 522 q^{47} + 150 q^{49} - 84 q^{53}+ \cdots - 117 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 15.4193 1.37914 0.689571 0.724218i \(-0.257799\pi\)
0.689571 + 0.724218i \(0.257799\pi\)
\(6\) 0 0
\(7\) −29.5718 −1.59673 −0.798365 0.602174i \(-0.794301\pi\)
−0.798365 + 0.602174i \(0.794301\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 6.88586 0.188742 0.0943711 0.995537i \(-0.469916\pi\)
0.0943711 + 0.995537i \(0.469916\pi\)
\(12\) 0 0
\(13\) −25.0384 −0.534185 −0.267093 0.963671i \(-0.586063\pi\)
−0.267093 + 0.963671i \(0.586063\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 98.3347 1.40292 0.701461 0.712708i \(-0.252532\pi\)
0.701461 + 0.712708i \(0.252532\pi\)
\(18\) 0 0
\(19\) −63.7439 −0.769677 −0.384838 0.922984i \(-0.625743\pi\)
−0.384838 + 0.922984i \(0.625743\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −15.5139 −0.140647 −0.0703233 0.997524i \(-0.522403\pi\)
−0.0703233 + 0.997524i \(0.522403\pi\)
\(24\) 0 0
\(25\) 112.754 0.902031
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 77.6771 0.497389 0.248694 0.968582i \(-0.419999\pi\)
0.248694 + 0.968582i \(0.419999\pi\)
\(30\) 0 0
\(31\) −209.031 −1.21107 −0.605534 0.795819i \(-0.707041\pi\)
−0.605534 + 0.795819i \(0.707041\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −455.976 −2.20212
\(36\) 0 0
\(37\) −295.347 −1.31229 −0.656145 0.754635i \(-0.727814\pi\)
−0.656145 + 0.754635i \(0.727814\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −213.831 −0.814506 −0.407253 0.913315i \(-0.633513\pi\)
−0.407253 + 0.913315i \(0.633513\pi\)
\(42\) 0 0
\(43\) −150.974 −0.535428 −0.267714 0.963498i \(-0.586268\pi\)
−0.267714 + 0.963498i \(0.586268\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 478.210 1.48413 0.742065 0.670328i \(-0.233846\pi\)
0.742065 + 0.670328i \(0.233846\pi\)
\(48\) 0 0
\(49\) 531.494 1.54954
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −427.378 −1.10764 −0.553819 0.832637i \(-0.686830\pi\)
−0.553819 + 0.832637i \(0.686830\pi\)
\(54\) 0 0
\(55\) 106.175 0.260302
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −798.377 −1.76169 −0.880846 0.473403i \(-0.843026\pi\)
−0.880846 + 0.473403i \(0.843026\pi\)
\(60\) 0 0
\(61\) −223.346 −0.468795 −0.234398 0.972141i \(-0.575312\pi\)
−0.234398 + 0.972141i \(0.575312\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −386.074 −0.736717
\(66\) 0 0
\(67\) 1026.21 1.87122 0.935610 0.353035i \(-0.114850\pi\)
0.935610 + 0.353035i \(0.114850\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −925.890 −1.54765 −0.773823 0.633402i \(-0.781658\pi\)
−0.773823 + 0.633402i \(0.781658\pi\)
\(72\) 0 0
\(73\) −1070.06 −1.71564 −0.857819 0.513953i \(-0.828181\pi\)
−0.857819 + 0.513953i \(0.828181\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −203.628 −0.301370
\(78\) 0 0
\(79\) 860.902 1.22606 0.613032 0.790058i \(-0.289950\pi\)
0.613032 + 0.790058i \(0.289950\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −459.709 −0.607947 −0.303974 0.952680i \(-0.598314\pi\)
−0.303974 + 0.952680i \(0.598314\pi\)
\(84\) 0 0
\(85\) 1516.25 1.93483
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 787.829 0.938312 0.469156 0.883115i \(-0.344558\pi\)
0.469156 + 0.883115i \(0.344558\pi\)
\(90\) 0 0
\(91\) 740.432 0.852949
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −982.885 −1.06149
\(96\) 0 0
\(97\) 118.831 0.124386 0.0621930 0.998064i \(-0.480191\pi\)
0.0621930 + 0.998064i \(0.480191\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 1973.05 1.94382 0.971910 0.235354i \(-0.0756249\pi\)
0.971910 + 0.235354i \(0.0756249\pi\)
\(102\) 0 0
\(103\) −1655.41 −1.58362 −0.791809 0.610769i \(-0.790861\pi\)
−0.791809 + 0.610769i \(0.790861\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −1258.09 −1.13667 −0.568335 0.822797i \(-0.692412\pi\)
−0.568335 + 0.822797i \(0.692412\pi\)
\(108\) 0 0
\(109\) −775.418 −0.681390 −0.340695 0.940174i \(-0.610662\pi\)
−0.340695 + 0.940174i \(0.610662\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 543.228 0.452235 0.226118 0.974100i \(-0.427397\pi\)
0.226118 + 0.974100i \(0.427397\pi\)
\(114\) 0 0
\(115\) −239.213 −0.193972
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −2907.94 −2.24008
\(120\) 0 0
\(121\) −1283.58 −0.964376
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −188.825 −0.135112
\(126\) 0 0
\(127\) −1597.27 −1.11602 −0.558011 0.829834i \(-0.688435\pi\)
−0.558011 + 0.829834i \(0.688435\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 362.313 0.241644 0.120822 0.992674i \(-0.461447\pi\)
0.120822 + 0.992674i \(0.461447\pi\)
\(132\) 0 0
\(133\) 1885.02 1.22897
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −245.324 −0.152989 −0.0764944 0.997070i \(-0.524373\pi\)
−0.0764944 + 0.997070i \(0.524373\pi\)
\(138\) 0 0
\(139\) 1709.35 1.04306 0.521528 0.853234i \(-0.325362\pi\)
0.521528 + 0.853234i \(0.325362\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −172.411 −0.100823
\(144\) 0 0
\(145\) 1197.72 0.685969
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −3358.98 −1.84683 −0.923417 0.383799i \(-0.874615\pi\)
−0.923417 + 0.383799i \(0.874615\pi\)
\(150\) 0 0
\(151\) −2191.12 −1.18087 −0.590434 0.807086i \(-0.701043\pi\)
−0.590434 + 0.807086i \(0.701043\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −3223.11 −1.67023
\(156\) 0 0
\(157\) −1514.37 −0.769809 −0.384904 0.922956i \(-0.625766\pi\)
−0.384904 + 0.922956i \(0.625766\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 458.775 0.224575
\(162\) 0 0
\(163\) −432.967 −0.208053 −0.104026 0.994575i \(-0.533173\pi\)
−0.104026 + 0.994575i \(0.533173\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −3084.91 −1.42945 −0.714723 0.699407i \(-0.753447\pi\)
−0.714723 + 0.699407i \(0.753447\pi\)
\(168\) 0 0
\(169\) −1570.08 −0.714646
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 2186.79 0.961032 0.480516 0.876986i \(-0.340449\pi\)
0.480516 + 0.876986i \(0.340449\pi\)
\(174\) 0 0
\(175\) −3334.34 −1.44030
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 3485.04 1.45522 0.727609 0.685992i \(-0.240632\pi\)
0.727609 + 0.685992i \(0.240632\pi\)
\(180\) 0 0
\(181\) 575.709 0.236420 0.118210 0.992989i \(-0.462284\pi\)
0.118210 + 0.992989i \(0.462284\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −4554.04 −1.80983
\(186\) 0 0
\(187\) 677.119 0.264790
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −3913.44 −1.48255 −0.741273 0.671203i \(-0.765778\pi\)
−0.741273 + 0.671203i \(0.765778\pi\)
\(192\) 0 0
\(193\) 1103.37 0.411513 0.205757 0.978603i \(-0.434034\pi\)
0.205757 + 0.978603i \(0.434034\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −1564.65 −0.565872 −0.282936 0.959139i \(-0.591308\pi\)
−0.282936 + 0.959139i \(0.591308\pi\)
\(198\) 0 0
\(199\) −721.657 −0.257070 −0.128535 0.991705i \(-0.541027\pi\)
−0.128535 + 0.991705i \(0.541027\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −2297.05 −0.794195
\(204\) 0 0
\(205\) −3297.11 −1.12332
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −438.932 −0.145270
\(210\) 0 0
\(211\) 2478.16 0.808546 0.404273 0.914638i \(-0.367525\pi\)
0.404273 + 0.914638i \(0.367525\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −2327.92 −0.738431
\(216\) 0 0
\(217\) 6181.44 1.93375
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −2462.15 −0.749420
\(222\) 0 0
\(223\) 418.660 0.125720 0.0628600 0.998022i \(-0.479978\pi\)
0.0628600 + 0.998022i \(0.479978\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 2316.20 0.677232 0.338616 0.940925i \(-0.390041\pi\)
0.338616 + 0.940925i \(0.390041\pi\)
\(228\) 0 0
\(229\) −2242.01 −0.646971 −0.323486 0.946233i \(-0.604855\pi\)
−0.323486 + 0.946233i \(0.604855\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 6174.06 1.73595 0.867974 0.496610i \(-0.165422\pi\)
0.867974 + 0.496610i \(0.165422\pi\)
\(234\) 0 0
\(235\) 7373.65 2.04683
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 5495.44 1.48732 0.743662 0.668555i \(-0.233087\pi\)
0.743662 + 0.668555i \(0.233087\pi\)
\(240\) 0 0
\(241\) 1219.96 0.326076 0.163038 0.986620i \(-0.447871\pi\)
0.163038 + 0.986620i \(0.447871\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 8195.24 2.13704
\(246\) 0 0
\(247\) 1596.05 0.411150
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −3586.35 −0.901867 −0.450933 0.892558i \(-0.648909\pi\)
−0.450933 + 0.892558i \(0.648909\pi\)
\(252\) 0 0
\(253\) −106.827 −0.0265460
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −1122.37 −0.272418 −0.136209 0.990680i \(-0.543492\pi\)
−0.136209 + 0.990680i \(0.543492\pi\)
\(258\) 0 0
\(259\) 8733.95 2.09537
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 5943.77 1.39357 0.696784 0.717281i \(-0.254614\pi\)
0.696784 + 0.717281i \(0.254614\pi\)
\(264\) 0 0
\(265\) −6589.85 −1.52759
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −171.733 −0.0389247 −0.0194624 0.999811i \(-0.506195\pi\)
−0.0194624 + 0.999811i \(0.506195\pi\)
\(270\) 0 0
\(271\) −3144.04 −0.704749 −0.352375 0.935859i \(-0.614626\pi\)
−0.352375 + 0.935859i \(0.614626\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 776.408 0.170251
\(276\) 0 0
\(277\) 249.879 0.0542012 0.0271006 0.999633i \(-0.491373\pi\)
0.0271006 + 0.999633i \(0.491373\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 6972.42 1.48021 0.740106 0.672490i \(-0.234775\pi\)
0.740106 + 0.672490i \(0.234775\pi\)
\(282\) 0 0
\(283\) 2886.27 0.606257 0.303128 0.952950i \(-0.401969\pi\)
0.303128 + 0.952950i \(0.401969\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 6323.37 1.30055
\(288\) 0 0
\(289\) 4756.71 0.968188
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −1729.41 −0.344824 −0.172412 0.985025i \(-0.555156\pi\)
−0.172412 + 0.985025i \(0.555156\pi\)
\(294\) 0 0
\(295\) −12310.4 −2.42962
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 388.444 0.0751314
\(300\) 0 0
\(301\) 4464.59 0.854933
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −3443.83 −0.646535
\(306\) 0 0
\(307\) −1977.30 −0.367592 −0.183796 0.982964i \(-0.558839\pi\)
−0.183796 + 0.982964i \(0.558839\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −238.817 −0.0435436 −0.0217718 0.999763i \(-0.506931\pi\)
−0.0217718 + 0.999763i \(0.506931\pi\)
\(312\) 0 0
\(313\) −762.610 −0.137716 −0.0688582 0.997626i \(-0.521936\pi\)
−0.0688582 + 0.997626i \(0.521936\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 2026.48 0.359048 0.179524 0.983754i \(-0.442544\pi\)
0.179524 + 0.983754i \(0.442544\pi\)
\(318\) 0 0
\(319\) 534.873 0.0938783
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −6268.24 −1.07980
\(324\) 0 0
\(325\) −2823.18 −0.481852
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −14141.6 −2.36975
\(330\) 0 0
\(331\) 3556.18 0.590530 0.295265 0.955415i \(-0.404592\pi\)
0.295265 + 0.955415i \(0.404592\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 15823.4 2.58068
\(336\) 0 0
\(337\) −11124.3 −1.79815 −0.899075 0.437794i \(-0.855760\pi\)
−0.899075 + 0.437794i \(0.855760\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −1439.36 −0.228580
\(342\) 0 0
\(343\) −5574.10 −0.877473
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 5442.81 0.842033 0.421016 0.907053i \(-0.361674\pi\)
0.421016 + 0.907053i \(0.361674\pi\)
\(348\) 0 0
\(349\) 8082.25 1.23964 0.619818 0.784745i \(-0.287206\pi\)
0.619818 + 0.784745i \(0.287206\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 9229.59 1.39162 0.695809 0.718227i \(-0.255046\pi\)
0.695809 + 0.718227i \(0.255046\pi\)
\(354\) 0 0
\(355\) −14276.5 −2.13442
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 1042.32 0.153235 0.0766175 0.997061i \(-0.475588\pi\)
0.0766175 + 0.997061i \(0.475588\pi\)
\(360\) 0 0
\(361\) −2795.71 −0.407598
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −16499.6 −2.36611
\(366\) 0 0
\(367\) −537.465 −0.0764453 −0.0382226 0.999269i \(-0.512170\pi\)
−0.0382226 + 0.999269i \(0.512170\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 12638.3 1.76860
\(372\) 0 0
\(373\) 9364.17 1.29989 0.649944 0.759982i \(-0.274792\pi\)
0.649944 + 0.759982i \(0.274792\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −1944.91 −0.265698
\(378\) 0 0
\(379\) 5153.18 0.698419 0.349210 0.937045i \(-0.386450\pi\)
0.349210 + 0.937045i \(0.386450\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 4524.09 0.603577 0.301789 0.953375i \(-0.402416\pi\)
0.301789 + 0.953375i \(0.402416\pi\)
\(384\) 0 0
\(385\) −3139.79 −0.415632
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −6873.06 −0.895831 −0.447915 0.894076i \(-0.647833\pi\)
−0.447915 + 0.894076i \(0.647833\pi\)
\(390\) 0 0
\(391\) −1525.55 −0.197316
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 13274.5 1.69092
\(396\) 0 0
\(397\) −2235.66 −0.282631 −0.141316 0.989965i \(-0.545133\pi\)
−0.141316 + 0.989965i \(0.545133\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −5635.28 −0.701777 −0.350889 0.936417i \(-0.614120\pi\)
−0.350889 + 0.936417i \(0.614120\pi\)
\(402\) 0 0
\(403\) 5233.81 0.646935
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −2033.72 −0.247685
\(408\) 0 0
\(409\) 12300.2 1.48705 0.743525 0.668708i \(-0.233152\pi\)
0.743525 + 0.668708i \(0.233152\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 23609.5 2.81295
\(414\) 0 0
\(415\) −7088.38 −0.838446
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 935.396 0.109062 0.0545311 0.998512i \(-0.482634\pi\)
0.0545311 + 0.998512i \(0.482634\pi\)
\(420\) 0 0
\(421\) −8532.08 −0.987716 −0.493858 0.869543i \(-0.664414\pi\)
−0.493858 + 0.869543i \(0.664414\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 11087.6 1.26548
\(426\) 0 0
\(427\) 6604.75 0.748539
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −4312.88 −0.482005 −0.241003 0.970524i \(-0.577476\pi\)
−0.241003 + 0.970524i \(0.577476\pi\)
\(432\) 0 0
\(433\) −11728.0 −1.30164 −0.650820 0.759232i \(-0.725575\pi\)
−0.650820 + 0.759232i \(0.725575\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 988.917 0.108252
\(438\) 0 0
\(439\) −12399.1 −1.34801 −0.674004 0.738727i \(-0.735427\pi\)
−0.674004 + 0.738727i \(0.735427\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 7551.97 0.809943 0.404972 0.914329i \(-0.367281\pi\)
0.404972 + 0.914329i \(0.367281\pi\)
\(444\) 0 0
\(445\) 12147.8 1.29406
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −9921.19 −1.04278 −0.521392 0.853317i \(-0.674587\pi\)
−0.521392 + 0.853317i \(0.674587\pi\)
\(450\) 0 0
\(451\) −1472.41 −0.153732
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 11416.9 1.17634
\(456\) 0 0
\(457\) 4668.89 0.477903 0.238951 0.971032i \(-0.423196\pi\)
0.238951 + 0.971032i \(0.423196\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 9571.43 0.966997 0.483499 0.875345i \(-0.339366\pi\)
0.483499 + 0.875345i \(0.339366\pi\)
\(462\) 0 0
\(463\) 13977.7 1.40302 0.701509 0.712661i \(-0.252510\pi\)
0.701509 + 0.712661i \(0.252510\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 14140.3 1.40115 0.700573 0.713581i \(-0.252928\pi\)
0.700573 + 0.713581i \(0.252928\pi\)
\(468\) 0 0
\(469\) −30347.0 −2.98783
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −1039.59 −0.101058
\(474\) 0 0
\(475\) −7187.38 −0.694273
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −11658.2 −1.11206 −0.556030 0.831162i \(-0.687676\pi\)
−0.556030 + 0.831162i \(0.687676\pi\)
\(480\) 0 0
\(481\) 7395.02 0.701006
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 1832.28 0.171546
\(486\) 0 0
\(487\) 13681.7 1.27305 0.636525 0.771256i \(-0.280371\pi\)
0.636525 + 0.771256i \(0.280371\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 9540.92 0.876936 0.438468 0.898747i \(-0.355521\pi\)
0.438468 + 0.898747i \(0.355521\pi\)
\(492\) 0 0
\(493\) 7638.35 0.697797
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 27380.3 2.47117
\(498\) 0 0
\(499\) 4986.46 0.447344 0.223672 0.974665i \(-0.428196\pi\)
0.223672 + 0.974665i \(0.428196\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 18568.5 1.64598 0.822989 0.568058i \(-0.192305\pi\)
0.822989 + 0.568058i \(0.192305\pi\)
\(504\) 0 0
\(505\) 30423.0 2.68080
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −20855.8 −1.81614 −0.908072 0.418815i \(-0.862446\pi\)
−0.908072 + 0.418815i \(0.862446\pi\)
\(510\) 0 0
\(511\) 31643.8 2.73941
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −25525.3 −2.18403
\(516\) 0 0
\(517\) 3292.89 0.280118
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 4457.44 0.374826 0.187413 0.982281i \(-0.439990\pi\)
0.187413 + 0.982281i \(0.439990\pi\)
\(522\) 0 0
\(523\) 16688.1 1.39526 0.697629 0.716459i \(-0.254238\pi\)
0.697629 + 0.716459i \(0.254238\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −20555.0 −1.69903
\(528\) 0 0
\(529\) −11926.3 −0.980219
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 5353.99 0.435097
\(534\) 0 0
\(535\) −19398.8 −1.56763
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 3659.79 0.292464
\(540\) 0 0
\(541\) −24636.0 −1.95783 −0.978914 0.204272i \(-0.934517\pi\)
−0.978914 + 0.204272i \(0.934517\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −11956.4 −0.939734
\(546\) 0 0
\(547\) 2762.55 0.215938 0.107969 0.994154i \(-0.465565\pi\)
0.107969 + 0.994154i \(0.465565\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −4951.44 −0.382828
\(552\) 0 0
\(553\) −25458.4 −1.95769
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 5054.03 0.384464 0.192232 0.981350i \(-0.438427\pi\)
0.192232 + 0.981350i \(0.438427\pi\)
\(558\) 0 0
\(559\) 3780.16 0.286018
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 18442.2 1.38054 0.690272 0.723550i \(-0.257491\pi\)
0.690272 + 0.723550i \(0.257491\pi\)
\(564\) 0 0
\(565\) 8376.18 0.623697
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −11382.1 −0.838600 −0.419300 0.907848i \(-0.637724\pi\)
−0.419300 + 0.907848i \(0.637724\pi\)
\(570\) 0 0
\(571\) 10276.8 0.753192 0.376596 0.926378i \(-0.377094\pi\)
0.376596 + 0.926378i \(0.377094\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −1749.25 −0.126868
\(576\) 0 0
\(577\) 17124.8 1.23555 0.617776 0.786354i \(-0.288034\pi\)
0.617776 + 0.786354i \(0.288034\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 13594.4 0.970727
\(582\) 0 0
\(583\) −2942.86 −0.209058
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 9957.79 0.700174 0.350087 0.936717i \(-0.386152\pi\)
0.350087 + 0.936717i \(0.386152\pi\)
\(588\) 0 0
\(589\) 13324.5 0.932131
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −17146.9 −1.18742 −0.593708 0.804681i \(-0.702336\pi\)
−0.593708 + 0.804681i \(0.702336\pi\)
\(594\) 0 0
\(595\) −44838.3 −3.08939
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 5219.71 0.356046 0.178023 0.984026i \(-0.443030\pi\)
0.178023 + 0.984026i \(0.443030\pi\)
\(600\) 0 0
\(601\) 19507.5 1.32401 0.662004 0.749500i \(-0.269706\pi\)
0.662004 + 0.749500i \(0.269706\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −19791.9 −1.33001
\(606\) 0 0
\(607\) −1566.17 −0.104726 −0.0523632 0.998628i \(-0.516675\pi\)
−0.0523632 + 0.998628i \(0.516675\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −11973.6 −0.792801
\(612\) 0 0
\(613\) 13199.4 0.869690 0.434845 0.900505i \(-0.356803\pi\)
0.434845 + 0.900505i \(0.356803\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −17339.0 −1.13135 −0.565675 0.824628i \(-0.691384\pi\)
−0.565675 + 0.824628i \(0.691384\pi\)
\(618\) 0 0
\(619\) −29803.1 −1.93520 −0.967601 0.252486i \(-0.918752\pi\)
−0.967601 + 0.252486i \(0.918752\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −23297.6 −1.49823
\(624\) 0 0
\(625\) −17005.8 −1.08837
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −29042.8 −1.84104
\(630\) 0 0
\(631\) 8792.76 0.554729 0.277365 0.960765i \(-0.410539\pi\)
0.277365 + 0.960765i \(0.410539\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −24628.7 −1.53915
\(636\) 0 0
\(637\) −13307.8 −0.827744
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 4317.68 0.266050 0.133025 0.991113i \(-0.457531\pi\)
0.133025 + 0.991113i \(0.457531\pi\)
\(642\) 0 0
\(643\) −8621.03 −0.528741 −0.264370 0.964421i \(-0.585164\pi\)
−0.264370 + 0.964421i \(0.585164\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −13067.3 −0.794018 −0.397009 0.917815i \(-0.629952\pi\)
−0.397009 + 0.917815i \(0.629952\pi\)
\(648\) 0 0
\(649\) −5497.51 −0.332506
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −3553.56 −0.212958 −0.106479 0.994315i \(-0.533958\pi\)
−0.106479 + 0.994315i \(0.533958\pi\)
\(654\) 0 0
\(655\) 5586.60 0.333262
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −7006.61 −0.414171 −0.207086 0.978323i \(-0.566398\pi\)
−0.207086 + 0.978323i \(0.566398\pi\)
\(660\) 0 0
\(661\) −8529.88 −0.501927 −0.250964 0.967996i \(-0.580747\pi\)
−0.250964 + 0.967996i \(0.580747\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 29065.7 1.69492
\(666\) 0 0
\(667\) −1205.07 −0.0699560
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −1537.93 −0.0884814
\(672\) 0 0
\(673\) −9810.77 −0.561928 −0.280964 0.959718i \(-0.590654\pi\)
−0.280964 + 0.959718i \(0.590654\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 7583.91 0.430537 0.215268 0.976555i \(-0.430937\pi\)
0.215268 + 0.976555i \(0.430937\pi\)
\(678\) 0 0
\(679\) −3514.04 −0.198611
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −13524.5 −0.757690 −0.378845 0.925460i \(-0.623679\pi\)
−0.378845 + 0.925460i \(0.623679\pi\)
\(684\) 0 0
\(685\) −3782.72 −0.210993
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 10700.9 0.591684
\(690\) 0 0
\(691\) −27600.4 −1.51949 −0.759747 0.650219i \(-0.774677\pi\)
−0.759747 + 0.650219i \(0.774677\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 26356.9 1.43852
\(696\) 0 0
\(697\) −21027.0 −1.14269
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 19843.9 1.06918 0.534589 0.845112i \(-0.320466\pi\)
0.534589 + 0.845112i \(0.320466\pi\)
\(702\) 0 0
\(703\) 18826.6 1.01004
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −58346.7 −3.10375
\(708\) 0 0
\(709\) 20305.8 1.07560 0.537801 0.843072i \(-0.319255\pi\)
0.537801 + 0.843072i \(0.319255\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 3242.89 0.170333
\(714\) 0 0
\(715\) −2658.45 −0.139050
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −18258.3 −0.947038 −0.473519 0.880783i \(-0.657017\pi\)
−0.473519 + 0.880783i \(0.657017\pi\)
\(720\) 0 0
\(721\) 48953.6 2.52861
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 8758.40 0.448660
\(726\) 0 0
\(727\) 19790.1 1.00959 0.504797 0.863238i \(-0.331567\pi\)
0.504797 + 0.863238i \(0.331567\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −14846.0 −0.751163
\(732\) 0 0
\(733\) 28712.7 1.44683 0.723415 0.690414i \(-0.242571\pi\)
0.723415 + 0.690414i \(0.242571\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 7066.35 0.353178
\(738\) 0 0
\(739\) −18118.2 −0.901881 −0.450940 0.892554i \(-0.648911\pi\)
−0.450940 + 0.892554i \(0.648911\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −1931.54 −0.0953717 −0.0476859 0.998862i \(-0.515185\pi\)
−0.0476859 + 0.998862i \(0.515185\pi\)
\(744\) 0 0
\(745\) −51793.0 −2.54704
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 37203.9 1.81496
\(750\) 0 0
\(751\) 7810.34 0.379499 0.189749 0.981833i \(-0.439232\pi\)
0.189749 + 0.981833i \(0.439232\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −33785.5 −1.62858
\(756\) 0 0
\(757\) 8626.50 0.414181 0.207091 0.978322i \(-0.433600\pi\)
0.207091 + 0.978322i \(0.433600\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −5766.05 −0.274664 −0.137332 0.990525i \(-0.543853\pi\)
−0.137332 + 0.990525i \(0.543853\pi\)
\(762\) 0 0
\(763\) 22930.5 1.08800
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 19990.1 0.941070
\(768\) 0 0
\(769\) −21691.7 −1.01720 −0.508598 0.861004i \(-0.669836\pi\)
−0.508598 + 0.861004i \(0.669836\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −3779.52 −0.175860 −0.0879300 0.996127i \(-0.528025\pi\)
−0.0879300 + 0.996127i \(0.528025\pi\)
\(774\) 0 0
\(775\) −23569.1 −1.09242
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 13630.4 0.626906
\(780\) 0 0
\(781\) −6375.55 −0.292106
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −23350.5 −1.06168
\(786\) 0 0
\(787\) −28812.2 −1.30501 −0.652505 0.757784i \(-0.726282\pi\)
−0.652505 + 0.757784i \(0.726282\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −16064.3 −0.722098
\(792\) 0 0
\(793\) 5592.23 0.250423
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −1226.06 −0.0544908 −0.0272454 0.999629i \(-0.508674\pi\)
−0.0272454 + 0.999629i \(0.508674\pi\)
\(798\) 0 0
\(799\) 47024.6 2.08212
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −7368.31 −0.323813
\(804\) 0 0
\(805\) 7073.97 0.309720
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 4199.27 0.182495 0.0912476 0.995828i \(-0.470915\pi\)
0.0912476 + 0.995828i \(0.470915\pi\)
\(810\) 0 0
\(811\) 24531.4 1.06216 0.531082 0.847320i \(-0.321786\pi\)
0.531082 + 0.847320i \(0.321786\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −6676.04 −0.286934
\(816\) 0 0
\(817\) 9623.70 0.412106
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −10092.8 −0.429040 −0.214520 0.976720i \(-0.568819\pi\)
−0.214520 + 0.976720i \(0.568819\pi\)
\(822\) 0 0
\(823\) 14657.0 0.620791 0.310395 0.950608i \(-0.399539\pi\)
0.310395 + 0.950608i \(0.399539\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −19762.8 −0.830978 −0.415489 0.909598i \(-0.636390\pi\)
−0.415489 + 0.909598i \(0.636390\pi\)
\(828\) 0 0
\(829\) −8418.19 −0.352685 −0.176342 0.984329i \(-0.556427\pi\)
−0.176342 + 0.984329i \(0.556427\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 52264.2 2.17389
\(834\) 0 0
\(835\) −47567.1 −1.97141
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −14894.9 −0.612908 −0.306454 0.951886i \(-0.599142\pi\)
−0.306454 + 0.951886i \(0.599142\pi\)
\(840\) 0 0
\(841\) −18355.3 −0.752604
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −24209.4 −0.985598
\(846\) 0 0
\(847\) 37958.0 1.53985
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 4581.99 0.184569
\(852\) 0 0
\(853\) 9678.25 0.388484 0.194242 0.980954i \(-0.437775\pi\)
0.194242 + 0.980954i \(0.437775\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −39511.8 −1.57491 −0.787455 0.616373i \(-0.788601\pi\)
−0.787455 + 0.616373i \(0.788601\pi\)
\(858\) 0 0
\(859\) 37536.2 1.49094 0.745471 0.666539i \(-0.232225\pi\)
0.745471 + 0.666539i \(0.232225\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −17185.4 −0.677866 −0.338933 0.940811i \(-0.610066\pi\)
−0.338933 + 0.940811i \(0.610066\pi\)
\(864\) 0 0
\(865\) 33718.7 1.32540
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 5928.05 0.231410
\(870\) 0 0
\(871\) −25694.7 −0.999578
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 5583.91 0.215738
\(876\) 0 0
\(877\) −19722.5 −0.759385 −0.379693 0.925113i \(-0.623970\pi\)
−0.379693 + 0.925113i \(0.623970\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −17073.8 −0.652931 −0.326465 0.945209i \(-0.605858\pi\)
−0.326465 + 0.945209i \(0.605858\pi\)
\(882\) 0 0
\(883\) 15877.2 0.605108 0.302554 0.953132i \(-0.402161\pi\)
0.302554 + 0.953132i \(0.402161\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −38270.1 −1.44869 −0.724343 0.689440i \(-0.757857\pi\)
−0.724343 + 0.689440i \(0.757857\pi\)
\(888\) 0 0
\(889\) 47234.2 1.78198
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −30483.0 −1.14230
\(894\) 0 0
\(895\) 53736.8 2.00695
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −16236.9 −0.602372
\(900\) 0 0
\(901\) −42026.0 −1.55393
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 8877.01 0.326057
\(906\) 0 0
\(907\) 27813.0 1.01821 0.509104 0.860705i \(-0.329977\pi\)
0.509104 + 0.860705i \(0.329977\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −27203.6 −0.989347 −0.494674 0.869079i \(-0.664712\pi\)
−0.494674 + 0.869079i \(0.664712\pi\)
\(912\) 0 0
\(913\) −3165.49 −0.114745
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −10714.2 −0.385840
\(918\) 0 0
\(919\) 5542.67 0.198951 0.0994754 0.995040i \(-0.468284\pi\)
0.0994754 + 0.995040i \(0.468284\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 23182.8 0.826730
\(924\) 0 0
\(925\) −33301.5 −1.18373
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −48638.7 −1.71774 −0.858872 0.512191i \(-0.828834\pi\)
−0.858872 + 0.512191i \(0.828834\pi\)
\(930\) 0 0
\(931\) −33879.5 −1.19265
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 10440.7 0.365184
\(936\) 0 0
\(937\) 15364.9 0.535698 0.267849 0.963461i \(-0.413687\pi\)
0.267849 + 0.963461i \(0.413687\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −13853.8 −0.479936 −0.239968 0.970781i \(-0.577137\pi\)
−0.239968 + 0.970781i \(0.577137\pi\)
\(942\) 0 0
\(943\) 3317.35 0.114558
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 43336.3 1.48705 0.743527 0.668706i \(-0.233151\pi\)
0.743527 + 0.668706i \(0.233151\pi\)
\(948\) 0 0
\(949\) 26792.7 0.916468
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 14064.4 0.478060 0.239030 0.971012i \(-0.423171\pi\)
0.239030 + 0.971012i \(0.423171\pi\)
\(954\) 0 0
\(955\) −60342.4 −2.04464
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 7254.68 0.244282
\(960\) 0 0
\(961\) 13903.1 0.466687
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 17013.1 0.567535
\(966\) 0 0
\(967\) −2110.43 −0.0701828 −0.0350914 0.999384i \(-0.511172\pi\)
−0.0350914 + 0.999384i \(0.511172\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 31181.7 1.03055 0.515277 0.857024i \(-0.327689\pi\)
0.515277 + 0.857024i \(0.327689\pi\)
\(972\) 0 0
\(973\) −50548.5 −1.66548
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 13460.4 0.440775 0.220388 0.975412i \(-0.429268\pi\)
0.220388 + 0.975412i \(0.429268\pi\)
\(978\) 0 0
\(979\) 5424.88 0.177099
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −36001.9 −1.16814 −0.584071 0.811703i \(-0.698541\pi\)
−0.584071 + 0.811703i \(0.698541\pi\)
\(984\) 0 0
\(985\) −24125.8 −0.780417
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 2342.20 0.0753061
\(990\) 0 0
\(991\) 16783.4 0.537986 0.268993 0.963142i \(-0.413309\pi\)
0.268993 + 0.963142i \(0.413309\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −11127.4 −0.354536
\(996\) 0 0
\(997\) 26441.8 0.839940 0.419970 0.907538i \(-0.362041\pi\)
0.419970 + 0.907538i \(0.362041\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 864.4.a.q.1.3 yes 3
3.2 odd 2 864.4.a.k.1.1 3
4.3 odd 2 864.4.a.r.1.3 yes 3
8.3 odd 2 1728.4.a.bx.1.1 3
8.5 even 2 1728.4.a.bw.1.1 3
12.11 even 2 864.4.a.l.1.1 yes 3
24.5 odd 2 1728.4.a.cc.1.3 3
24.11 even 2 1728.4.a.cd.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
864.4.a.k.1.1 3 3.2 odd 2
864.4.a.l.1.1 yes 3 12.11 even 2
864.4.a.q.1.3 yes 3 1.1 even 1 trivial
864.4.a.r.1.3 yes 3 4.3 odd 2
1728.4.a.bw.1.1 3 8.5 even 2
1728.4.a.bx.1.1 3 8.3 odd 2
1728.4.a.cc.1.3 3 24.5 odd 2
1728.4.a.cd.1.3 3 24.11 even 2