Properties

Label 864.4.a.g.1.2
Level $864$
Weight $4$
Character 864.1
Self dual yes
Analytic conductor $50.978$
Analytic rank $1$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [864,4,Mod(1,864)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(864, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("864.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 864 = 2^{5} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 864.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,0,0,0,0,0,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(50.9776502450\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{73}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 18 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-3.77200\) of defining polynomial
Character \(\chi\) \(=\) 864.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+8.54400 q^{5} +8.54400 q^{7} +1.00000 q^{11} -8.00000 q^{13} -102.528 q^{17} -119.616 q^{19} -18.0000 q^{23} -52.0000 q^{25} -119.616 q^{29} +93.9840 q^{31} +73.0000 q^{35} -146.000 q^{37} +85.4400 q^{41} +222.144 q^{43} -106.000 q^{47} -270.000 q^{49} +299.040 q^{53} +8.54400 q^{55} +20.0000 q^{59} -408.000 q^{61} -68.3520 q^{65} -598.080 q^{67} +20.0000 q^{71} -591.000 q^{73} +8.54400 q^{77} +683.520 q^{79} +345.000 q^{83} -876.000 q^{85} +222.144 q^{89} -68.3520 q^{91} -1022.00 q^{95} -1241.00 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{11} - 16 q^{13} - 36 q^{23} - 104 q^{25} + 146 q^{35} - 292 q^{37} - 212 q^{47} - 540 q^{49} + 40 q^{59} - 816 q^{61} + 40 q^{71} - 1182 q^{73} + 690 q^{83} - 1752 q^{85} - 2044 q^{95} - 2482 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 8.54400 0.764199 0.382099 0.924121i \(-0.375201\pi\)
0.382099 + 0.924121i \(0.375201\pi\)
\(6\) 0 0
\(7\) 8.54400 0.461333 0.230666 0.973033i \(-0.425909\pi\)
0.230666 + 0.973033i \(0.425909\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 1.00000 0.0274101 0.0137051 0.999906i \(-0.495637\pi\)
0.0137051 + 0.999906i \(0.495637\pi\)
\(12\) 0 0
\(13\) −8.00000 −0.170677 −0.0853385 0.996352i \(-0.527197\pi\)
−0.0853385 + 0.996352i \(0.527197\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −102.528 −1.46275 −0.731374 0.681977i \(-0.761120\pi\)
−0.731374 + 0.681977i \(0.761120\pi\)
\(18\) 0 0
\(19\) −119.616 −1.44431 −0.722153 0.691734i \(-0.756847\pi\)
−0.722153 + 0.691734i \(0.756847\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −18.0000 −0.163185 −0.0815926 0.996666i \(-0.526001\pi\)
−0.0815926 + 0.996666i \(0.526001\pi\)
\(24\) 0 0
\(25\) −52.0000 −0.416000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −119.616 −0.765936 −0.382968 0.923762i \(-0.625098\pi\)
−0.382968 + 0.923762i \(0.625098\pi\)
\(30\) 0 0
\(31\) 93.9840 0.544517 0.272259 0.962224i \(-0.412229\pi\)
0.272259 + 0.962224i \(0.412229\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 73.0000 0.352550
\(36\) 0 0
\(37\) −146.000 −0.648710 −0.324355 0.945936i \(-0.605147\pi\)
−0.324355 + 0.945936i \(0.605147\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 85.4400 0.325451 0.162726 0.986671i \(-0.447971\pi\)
0.162726 + 0.986671i \(0.447971\pi\)
\(42\) 0 0
\(43\) 222.144 0.787829 0.393915 0.919147i \(-0.371121\pi\)
0.393915 + 0.919147i \(0.371121\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −106.000 −0.328972 −0.164486 0.986379i \(-0.552597\pi\)
−0.164486 + 0.986379i \(0.552597\pi\)
\(48\) 0 0
\(49\) −270.000 −0.787172
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 299.040 0.775025 0.387512 0.921864i \(-0.373334\pi\)
0.387512 + 0.921864i \(0.373334\pi\)
\(54\) 0 0
\(55\) 8.54400 0.0209468
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 20.0000 0.0441318 0.0220659 0.999757i \(-0.492976\pi\)
0.0220659 + 0.999757i \(0.492976\pi\)
\(60\) 0 0
\(61\) −408.000 −0.856378 −0.428189 0.903689i \(-0.640848\pi\)
−0.428189 + 0.903689i \(0.640848\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −68.3520 −0.130431
\(66\) 0 0
\(67\) −598.080 −1.09055 −0.545277 0.838256i \(-0.683576\pi\)
−0.545277 + 0.838256i \(0.683576\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 20.0000 0.0334305 0.0167152 0.999860i \(-0.494679\pi\)
0.0167152 + 0.999860i \(0.494679\pi\)
\(72\) 0 0
\(73\) −591.000 −0.947552 −0.473776 0.880645i \(-0.657109\pi\)
−0.473776 + 0.880645i \(0.657109\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 8.54400 0.0126452
\(78\) 0 0
\(79\) 683.520 0.973444 0.486722 0.873557i \(-0.338193\pi\)
0.486722 + 0.873557i \(0.338193\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 345.000 0.456249 0.228125 0.973632i \(-0.426741\pi\)
0.228125 + 0.973632i \(0.426741\pi\)
\(84\) 0 0
\(85\) −876.000 −1.11783
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 222.144 0.264576 0.132288 0.991211i \(-0.457768\pi\)
0.132288 + 0.991211i \(0.457768\pi\)
\(90\) 0 0
\(91\) −68.3520 −0.0787389
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −1022.00 −1.10374
\(96\) 0 0
\(97\) −1241.00 −1.29902 −0.649508 0.760355i \(-0.725025\pi\)
−0.649508 + 0.760355i \(0.725025\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 743.328 0.732316 0.366158 0.930553i \(-0.380673\pi\)
0.366158 + 0.930553i \(0.380673\pi\)
\(102\) 0 0
\(103\) 102.528 0.0980814 0.0490407 0.998797i \(-0.484384\pi\)
0.0490407 + 0.998797i \(0.484384\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 1301.00 1.17544 0.587722 0.809063i \(-0.300025\pi\)
0.587722 + 0.809063i \(0.300025\pi\)
\(108\) 0 0
\(109\) −1426.00 −1.25308 −0.626541 0.779388i \(-0.715530\pi\)
−0.626541 + 0.779388i \(0.715530\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 1315.78 1.09538 0.547690 0.836682i \(-0.315507\pi\)
0.547690 + 0.836682i \(0.315507\pi\)
\(114\) 0 0
\(115\) −153.792 −0.124706
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −876.000 −0.674813
\(120\) 0 0
\(121\) −1330.00 −0.999249
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −1512.29 −1.08211
\(126\) 0 0
\(127\) −2674.27 −1.86853 −0.934265 0.356579i \(-0.883943\pi\)
−0.934265 + 0.356579i \(0.883943\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 277.000 0.184745 0.0923725 0.995725i \(-0.470555\pi\)
0.0923725 + 0.995725i \(0.470555\pi\)
\(132\) 0 0
\(133\) −1022.00 −0.666306
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −1691.71 −1.05498 −0.527492 0.849560i \(-0.676867\pi\)
−0.527492 + 0.849560i \(0.676867\pi\)
\(138\) 0 0
\(139\) 1606.27 0.980160 0.490080 0.871677i \(-0.336968\pi\)
0.490080 + 0.871677i \(0.336968\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −8.00000 −0.00467828
\(144\) 0 0
\(145\) −1022.00 −0.585327
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −2998.95 −1.64888 −0.824440 0.565949i \(-0.808510\pi\)
−0.824440 + 0.565949i \(0.808510\pi\)
\(150\) 0 0
\(151\) 128.160 0.0690697 0.0345348 0.999403i \(-0.489005\pi\)
0.0345348 + 0.999403i \(0.489005\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 803.000 0.416119
\(156\) 0 0
\(157\) −1660.00 −0.843837 −0.421919 0.906634i \(-0.638643\pi\)
−0.421919 + 0.906634i \(0.638643\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −153.792 −0.0752827
\(162\) 0 0
\(163\) 2187.26 1.05104 0.525521 0.850781i \(-0.323870\pi\)
0.525521 + 0.850781i \(0.323870\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −2974.00 −1.37805 −0.689027 0.724736i \(-0.741962\pi\)
−0.689027 + 0.724736i \(0.741962\pi\)
\(168\) 0 0
\(169\) −2133.00 −0.970869
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 2435.04 1.07013 0.535066 0.844810i \(-0.320287\pi\)
0.535066 + 0.844810i \(0.320287\pi\)
\(174\) 0 0
\(175\) −444.288 −0.191914
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 4659.00 1.94542 0.972710 0.232026i \(-0.0745355\pi\)
0.972710 + 0.232026i \(0.0745355\pi\)
\(180\) 0 0
\(181\) −2080.00 −0.854172 −0.427086 0.904211i \(-0.640460\pi\)
−0.427086 + 0.904211i \(0.640460\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −1247.42 −0.495743
\(186\) 0 0
\(187\) −102.528 −0.0400941
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −3168.00 −1.20015 −0.600074 0.799944i \(-0.704862\pi\)
−0.600074 + 0.799944i \(0.704862\pi\)
\(192\) 0 0
\(193\) −675.000 −0.251749 −0.125875 0.992046i \(-0.540174\pi\)
−0.125875 + 0.992046i \(0.540174\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 3648.29 1.31944 0.659720 0.751511i \(-0.270675\pi\)
0.659720 + 0.751511i \(0.270675\pi\)
\(198\) 0 0
\(199\) 4502.69 1.60396 0.801978 0.597354i \(-0.203781\pi\)
0.801978 + 0.597354i \(0.203781\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −1022.00 −0.353351
\(204\) 0 0
\(205\) 730.000 0.248709
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −119.616 −0.0395886
\(210\) 0 0
\(211\) −2990.40 −0.975676 −0.487838 0.872934i \(-0.662214\pi\)
−0.487838 + 0.872934i \(0.662214\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 1898.00 0.602058
\(216\) 0 0
\(217\) 803.000 0.251204
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 820.224 0.249657
\(222\) 0 0
\(223\) −4989.70 −1.49836 −0.749181 0.662365i \(-0.769553\pi\)
−0.749181 + 0.662365i \(0.769553\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 2892.00 0.845589 0.422795 0.906226i \(-0.361049\pi\)
0.422795 + 0.906226i \(0.361049\pi\)
\(228\) 0 0
\(229\) 86.0000 0.0248168 0.0124084 0.999923i \(-0.496050\pi\)
0.0124084 + 0.999923i \(0.496050\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 51.2640 0.0144138 0.00720691 0.999974i \(-0.497706\pi\)
0.00720691 + 0.999974i \(0.497706\pi\)
\(234\) 0 0
\(235\) −905.664 −0.251400
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −6894.00 −1.86584 −0.932920 0.360084i \(-0.882748\pi\)
−0.932920 + 0.360084i \(0.882748\pi\)
\(240\) 0 0
\(241\) −1538.00 −0.411084 −0.205542 0.978648i \(-0.565896\pi\)
−0.205542 + 0.978648i \(0.565896\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −2306.88 −0.601556
\(246\) 0 0
\(247\) 956.928 0.246510
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 6432.00 1.61747 0.808734 0.588175i \(-0.200153\pi\)
0.808734 + 0.588175i \(0.200153\pi\)
\(252\) 0 0
\(253\) −18.0000 −0.00447293
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 3007.49 0.729969 0.364984 0.931014i \(-0.381074\pi\)
0.364984 + 0.931014i \(0.381074\pi\)
\(258\) 0 0
\(259\) −1247.42 −0.299271
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −2850.00 −0.668207 −0.334104 0.942536i \(-0.608434\pi\)
−0.334104 + 0.942536i \(0.608434\pi\)
\(264\) 0 0
\(265\) 2555.00 0.592273
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −2306.88 −0.522874 −0.261437 0.965221i \(-0.584196\pi\)
−0.261437 + 0.965221i \(0.584196\pi\)
\(270\) 0 0
\(271\) 3357.79 0.752662 0.376331 0.926485i \(-0.377186\pi\)
0.376331 + 0.926485i \(0.377186\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −52.0000 −0.0114026
\(276\) 0 0
\(277\) 4816.00 1.04464 0.522320 0.852749i \(-0.325067\pi\)
0.522320 + 0.852749i \(0.325067\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 4818.82 1.02301 0.511506 0.859279i \(-0.329088\pi\)
0.511506 + 0.859279i \(0.329088\pi\)
\(282\) 0 0
\(283\) 3810.63 0.800418 0.400209 0.916424i \(-0.368938\pi\)
0.400209 + 0.916424i \(0.368938\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 730.000 0.150141
\(288\) 0 0
\(289\) 5599.00 1.13963
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 4972.61 0.991478 0.495739 0.868472i \(-0.334897\pi\)
0.495739 + 0.868472i \(0.334897\pi\)
\(294\) 0 0
\(295\) 170.880 0.0337255
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 144.000 0.0278520
\(300\) 0 0
\(301\) 1898.00 0.363451
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −3485.95 −0.654443
\(306\) 0 0
\(307\) −4818.82 −0.895845 −0.447923 0.894072i \(-0.647836\pi\)
−0.447923 + 0.894072i \(0.647836\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −7098.00 −1.29418 −0.647091 0.762413i \(-0.724015\pi\)
−0.647091 + 0.762413i \(0.724015\pi\)
\(312\) 0 0
\(313\) 997.000 0.180044 0.0900220 0.995940i \(-0.471306\pi\)
0.0900220 + 0.995940i \(0.471306\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −1922.40 −0.340608 −0.170304 0.985392i \(-0.554475\pi\)
−0.170304 + 0.985392i \(0.554475\pi\)
\(318\) 0 0
\(319\) −119.616 −0.0209944
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 12264.0 2.11265
\(324\) 0 0
\(325\) 416.000 0.0710016
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −905.664 −0.151766
\(330\) 0 0
\(331\) −1213.25 −0.201469 −0.100734 0.994913i \(-0.532119\pi\)
−0.100734 + 0.994913i \(0.532119\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −5110.00 −0.833400
\(336\) 0 0
\(337\) 4418.00 0.714136 0.357068 0.934078i \(-0.383776\pi\)
0.357068 + 0.934078i \(0.383776\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 93.9840 0.0149253
\(342\) 0 0
\(343\) −5237.47 −0.824481
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −5329.00 −0.824426 −0.412213 0.911088i \(-0.635244\pi\)
−0.412213 + 0.911088i \(0.635244\pi\)
\(348\) 0 0
\(349\) 9466.00 1.45187 0.725936 0.687762i \(-0.241407\pi\)
0.725936 + 0.687762i \(0.241407\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −6852.29 −1.03317 −0.516587 0.856235i \(-0.672798\pi\)
−0.516587 + 0.856235i \(0.672798\pi\)
\(354\) 0 0
\(355\) 170.880 0.0255475
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 7954.00 1.16935 0.584674 0.811268i \(-0.301222\pi\)
0.584674 + 0.811268i \(0.301222\pi\)
\(360\) 0 0
\(361\) 7449.00 1.08602
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −5049.51 −0.724118
\(366\) 0 0
\(367\) 12021.4 1.70984 0.854922 0.518757i \(-0.173605\pi\)
0.854922 + 0.518757i \(0.173605\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 2555.00 0.357544
\(372\) 0 0
\(373\) 6164.00 0.855656 0.427828 0.903860i \(-0.359279\pi\)
0.427828 + 0.903860i \(0.359279\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 956.928 0.130728
\(378\) 0 0
\(379\) 2699.91 0.365923 0.182961 0.983120i \(-0.441432\pi\)
0.182961 + 0.983120i \(0.441432\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −11788.0 −1.57269 −0.786343 0.617790i \(-0.788028\pi\)
−0.786343 + 0.617790i \(0.788028\pi\)
\(384\) 0 0
\(385\) 73.0000 0.00966344
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −6895.01 −0.898691 −0.449346 0.893358i \(-0.648343\pi\)
−0.449346 + 0.893358i \(0.648343\pi\)
\(390\) 0 0
\(391\) 1845.50 0.238699
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 5840.00 0.743905
\(396\) 0 0
\(397\) 1336.00 0.168897 0.0844483 0.996428i \(-0.473087\pi\)
0.0844483 + 0.996428i \(0.473087\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −5570.69 −0.693733 −0.346867 0.937914i \(-0.612754\pi\)
−0.346867 + 0.937914i \(0.612754\pi\)
\(402\) 0 0
\(403\) −751.872 −0.0929365
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −146.000 −0.0177812
\(408\) 0 0
\(409\) 6943.00 0.839387 0.419693 0.907666i \(-0.362138\pi\)
0.419693 + 0.907666i \(0.362138\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 170.880 0.0203595
\(414\) 0 0
\(415\) 2947.68 0.348665
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −3428.00 −0.399687 −0.199843 0.979828i \(-0.564043\pi\)
−0.199843 + 0.979828i \(0.564043\pi\)
\(420\) 0 0
\(421\) 10256.0 1.18728 0.593642 0.804729i \(-0.297689\pi\)
0.593642 + 0.804729i \(0.297689\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 5331.46 0.608503
\(426\) 0 0
\(427\) −3485.95 −0.395075
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 6810.00 0.761082 0.380541 0.924764i \(-0.375738\pi\)
0.380541 + 0.924764i \(0.375738\pi\)
\(432\) 0 0
\(433\) 13909.0 1.54370 0.771852 0.635802i \(-0.219331\pi\)
0.771852 + 0.635802i \(0.219331\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 2153.09 0.235689
\(438\) 0 0
\(439\) −3938.79 −0.428219 −0.214109 0.976810i \(-0.568685\pi\)
−0.214109 + 0.976810i \(0.568685\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −3900.00 −0.418272 −0.209136 0.977887i \(-0.567065\pi\)
−0.209136 + 0.977887i \(0.567065\pi\)
\(444\) 0 0
\(445\) 1898.00 0.202188
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 17139.3 1.80145 0.900726 0.434387i \(-0.143035\pi\)
0.900726 + 0.434387i \(0.143035\pi\)
\(450\) 0 0
\(451\) 85.4400 0.00892065
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −584.000 −0.0601722
\(456\) 0 0
\(457\) −4705.00 −0.481599 −0.240799 0.970575i \(-0.577410\pi\)
−0.240799 + 0.970575i \(0.577410\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 12585.3 1.27149 0.635745 0.771899i \(-0.280693\pi\)
0.635745 + 0.771899i \(0.280693\pi\)
\(462\) 0 0
\(463\) −17387.0 −1.74524 −0.872618 0.488403i \(-0.837580\pi\)
−0.872618 + 0.488403i \(0.837580\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 11881.0 1.17727 0.588637 0.808397i \(-0.299665\pi\)
0.588637 + 0.808397i \(0.299665\pi\)
\(468\) 0 0
\(469\) −5110.00 −0.503108
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 222.144 0.0215945
\(474\) 0 0
\(475\) 6220.03 0.600831
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −8538.00 −0.814428 −0.407214 0.913333i \(-0.633500\pi\)
−0.407214 + 0.913333i \(0.633500\pi\)
\(480\) 0 0
\(481\) 1168.00 0.110720
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −10603.1 −0.992706
\(486\) 0 0
\(487\) −10731.3 −0.998522 −0.499261 0.866452i \(-0.666395\pi\)
−0.499261 + 0.866452i \(0.666395\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −13109.0 −1.20489 −0.602445 0.798160i \(-0.705807\pi\)
−0.602445 + 0.798160i \(0.705807\pi\)
\(492\) 0 0
\(493\) 12264.0 1.12037
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 170.880 0.0154226
\(498\) 0 0
\(499\) 7330.76 0.657655 0.328827 0.944390i \(-0.393347\pi\)
0.328827 + 0.944390i \(0.393347\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 12834.0 1.13765 0.568827 0.822457i \(-0.307397\pi\)
0.568827 + 0.822457i \(0.307397\pi\)
\(504\) 0 0
\(505\) 6351.00 0.559635
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 15609.9 1.35932 0.679662 0.733525i \(-0.262126\pi\)
0.679662 + 0.733525i \(0.262126\pi\)
\(510\) 0 0
\(511\) −5049.51 −0.437137
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 876.000 0.0749537
\(516\) 0 0
\(517\) −106.000 −0.00901717
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −18660.1 −1.56912 −0.784562 0.620050i \(-0.787112\pi\)
−0.784562 + 0.620050i \(0.787112\pi\)
\(522\) 0 0
\(523\) −1127.81 −0.0942937 −0.0471469 0.998888i \(-0.515013\pi\)
−0.0471469 + 0.998888i \(0.515013\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −9636.00 −0.796491
\(528\) 0 0
\(529\) −11843.0 −0.973371
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −683.520 −0.0555470
\(534\) 0 0
\(535\) 11115.7 0.898272
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −270.000 −0.0215765
\(540\) 0 0
\(541\) −10244.0 −0.814092 −0.407046 0.913408i \(-0.633441\pi\)
−0.407046 + 0.913408i \(0.633441\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −12183.7 −0.957605
\(546\) 0 0
\(547\) 24504.2 1.91540 0.957700 0.287768i \(-0.0929131\pi\)
0.957700 + 0.287768i \(0.0929131\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 14308.0 1.10625
\(552\) 0 0
\(553\) 5840.00 0.449081
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 7800.68 0.593403 0.296701 0.954970i \(-0.404113\pi\)
0.296701 + 0.954970i \(0.404113\pi\)
\(558\) 0 0
\(559\) −1777.15 −0.134464
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −1113.00 −0.0833168 −0.0416584 0.999132i \(-0.513264\pi\)
−0.0416584 + 0.999132i \(0.513264\pi\)
\(564\) 0 0
\(565\) 11242.0 0.837088
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 12747.7 0.939208 0.469604 0.882877i \(-0.344397\pi\)
0.469604 + 0.882877i \(0.344397\pi\)
\(570\) 0 0
\(571\) −10116.1 −0.741411 −0.370705 0.928750i \(-0.620884\pi\)
−0.370705 + 0.928750i \(0.620884\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 936.000 0.0678850
\(576\) 0 0
\(577\) 6030.00 0.435064 0.217532 0.976053i \(-0.430199\pi\)
0.217532 + 0.976053i \(0.430199\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 2947.68 0.210483
\(582\) 0 0
\(583\) 299.040 0.0212435
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −15975.0 −1.12327 −0.561634 0.827386i \(-0.689827\pi\)
−0.561634 + 0.827386i \(0.689827\pi\)
\(588\) 0 0
\(589\) −11242.0 −0.786449
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 7023.17 0.486353 0.243176 0.969982i \(-0.421811\pi\)
0.243176 + 0.969982i \(0.421811\pi\)
\(594\) 0 0
\(595\) −7484.55 −0.515692
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 11078.0 0.755651 0.377825 0.925877i \(-0.376672\pi\)
0.377825 + 0.925877i \(0.376672\pi\)
\(600\) 0 0
\(601\) −19397.0 −1.31651 −0.658253 0.752797i \(-0.728704\pi\)
−0.658253 + 0.752797i \(0.728704\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −11363.5 −0.763625
\(606\) 0 0
\(607\) 19753.7 1.32089 0.660444 0.750875i \(-0.270368\pi\)
0.660444 + 0.750875i \(0.270368\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 848.000 0.0561480
\(612\) 0 0
\(613\) −16866.0 −1.11127 −0.555637 0.831425i \(-0.687526\pi\)
−0.555637 + 0.831425i \(0.687526\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 871.488 0.0568635 0.0284318 0.999596i \(-0.490949\pi\)
0.0284318 + 0.999596i \(0.490949\pi\)
\(618\) 0 0
\(619\) −26862.3 −1.74425 −0.872124 0.489286i \(-0.837258\pi\)
−0.872124 + 0.489286i \(0.837258\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 1898.00 0.122057
\(624\) 0 0
\(625\) −6421.00 −0.410944
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 14969.1 0.948898
\(630\) 0 0
\(631\) 4861.54 0.306711 0.153356 0.988171i \(-0.450992\pi\)
0.153356 + 0.988171i \(0.450992\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −22849.0 −1.42793
\(636\) 0 0
\(637\) 2160.00 0.134352
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 17.0880 0.00105294 0.000526471 1.00000i \(-0.499832\pi\)
0.000526471 1.00000i \(0.499832\pi\)
\(642\) 0 0
\(643\) 6049.15 0.371004 0.185502 0.982644i \(-0.440609\pi\)
0.185502 + 0.982644i \(0.440609\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 23016.0 1.39854 0.699268 0.714860i \(-0.253510\pi\)
0.699268 + 0.714860i \(0.253510\pi\)
\(648\) 0 0
\(649\) 20.0000 0.00120966
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −29485.4 −1.76700 −0.883500 0.468431i \(-0.844819\pi\)
−0.883500 + 0.468431i \(0.844819\pi\)
\(654\) 0 0
\(655\) 2366.69 0.141182
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 3951.00 0.233549 0.116775 0.993158i \(-0.462744\pi\)
0.116775 + 0.993158i \(0.462744\pi\)
\(660\) 0 0
\(661\) −15262.0 −0.898068 −0.449034 0.893515i \(-0.648232\pi\)
−0.449034 + 0.893515i \(0.648232\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −8731.97 −0.509190
\(666\) 0 0
\(667\) 2153.09 0.124989
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −408.000 −0.0234734
\(672\) 0 0
\(673\) −23827.0 −1.36473 −0.682365 0.731012i \(-0.739049\pi\)
−0.682365 + 0.731012i \(0.739049\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −21616.3 −1.22715 −0.613577 0.789635i \(-0.710270\pi\)
−0.613577 + 0.789635i \(0.710270\pi\)
\(678\) 0 0
\(679\) −10603.1 −0.599278
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −21828.0 −1.22288 −0.611439 0.791292i \(-0.709409\pi\)
−0.611439 + 0.791292i \(0.709409\pi\)
\(684\) 0 0
\(685\) −14454.0 −0.806217
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −2392.32 −0.132279
\(690\) 0 0
\(691\) −8578.18 −0.472257 −0.236128 0.971722i \(-0.575879\pi\)
−0.236128 + 0.971722i \(0.575879\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 13724.0 0.749037
\(696\) 0 0
\(697\) −8760.00 −0.476053
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −12072.7 −0.650469 −0.325234 0.945633i \(-0.605443\pi\)
−0.325234 + 0.945633i \(0.605443\pi\)
\(702\) 0 0
\(703\) 17463.9 0.936935
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 6351.00 0.337841
\(708\) 0 0
\(709\) 3340.00 0.176920 0.0884600 0.996080i \(-0.471805\pi\)
0.0884600 + 0.996080i \(0.471805\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −1691.71 −0.0888571
\(714\) 0 0
\(715\) −68.3520 −0.00357513
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −3196.00 −0.165773 −0.0828864 0.996559i \(-0.526414\pi\)
−0.0828864 + 0.996559i \(0.526414\pi\)
\(720\) 0 0
\(721\) 876.000 0.0452482
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 6220.03 0.318629
\(726\) 0 0
\(727\) −12636.6 −0.644656 −0.322328 0.946628i \(-0.604465\pi\)
−0.322328 + 0.946628i \(0.604465\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −22776.0 −1.15240
\(732\) 0 0
\(733\) −10978.0 −0.553181 −0.276591 0.960988i \(-0.589205\pi\)
−0.276591 + 0.960988i \(0.589205\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −598.080 −0.0298922
\(738\) 0 0
\(739\) 34893.7 1.73692 0.868461 0.495757i \(-0.165109\pi\)
0.868461 + 0.495757i \(0.165109\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 21408.0 1.05704 0.528522 0.848920i \(-0.322746\pi\)
0.528522 + 0.848920i \(0.322746\pi\)
\(744\) 0 0
\(745\) −25623.0 −1.26007
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 11115.7 0.542271
\(750\) 0 0
\(751\) −8210.79 −0.398956 −0.199478 0.979902i \(-0.563925\pi\)
−0.199478 + 0.979902i \(0.563925\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 1095.00 0.0527830
\(756\) 0 0
\(757\) −38550.0 −1.85089 −0.925445 0.378882i \(-0.876309\pi\)
−0.925445 + 0.378882i \(0.876309\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 21941.0 1.04515 0.522576 0.852593i \(-0.324971\pi\)
0.522576 + 0.852593i \(0.324971\pi\)
\(762\) 0 0
\(763\) −12183.7 −0.578088
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −160.000 −0.00753229
\(768\) 0 0
\(769\) −11783.0 −0.552543 −0.276272 0.961080i \(-0.589099\pi\)
−0.276272 + 0.961080i \(0.589099\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 5485.25 0.255227 0.127614 0.991824i \(-0.459268\pi\)
0.127614 + 0.991824i \(0.459268\pi\)
\(774\) 0 0
\(775\) −4887.17 −0.226519
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −10220.0 −0.470051
\(780\) 0 0
\(781\) 20.0000 0.000916333 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −14183.0 −0.644859
\(786\) 0 0
\(787\) −36089.9 −1.63464 −0.817322 0.576181i \(-0.804542\pi\)
−0.817322 + 0.576181i \(0.804542\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 11242.0 0.505334
\(792\) 0 0
\(793\) 3264.00 0.146164
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 18429.4 0.819076 0.409538 0.912293i \(-0.365690\pi\)
0.409538 + 0.912293i \(0.365690\pi\)
\(798\) 0 0
\(799\) 10868.0 0.481203
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −591.000 −0.0259725
\(804\) 0 0
\(805\) −1314.00 −0.0575309
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 4425.79 0.192339 0.0961697 0.995365i \(-0.469341\pi\)
0.0961697 + 0.995365i \(0.469341\pi\)
\(810\) 0 0
\(811\) 2546.11 0.110242 0.0551209 0.998480i \(-0.482446\pi\)
0.0551209 + 0.998480i \(0.482446\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 18688.0 0.803205
\(816\) 0 0
\(817\) −26572.0 −1.13787
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 32894.4 1.39832 0.699161 0.714964i \(-0.253557\pi\)
0.699161 + 0.714964i \(0.253557\pi\)
\(822\) 0 0
\(823\) 3750.82 0.158864 0.0794321 0.996840i \(-0.474689\pi\)
0.0794321 + 0.996840i \(0.474689\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −39728.0 −1.67047 −0.835235 0.549894i \(-0.814668\pi\)
−0.835235 + 0.549894i \(0.814668\pi\)
\(828\) 0 0
\(829\) −16774.0 −0.702756 −0.351378 0.936234i \(-0.614287\pi\)
−0.351378 + 0.936234i \(0.614287\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 27682.6 1.15143
\(834\) 0 0
\(835\) −25409.9 −1.05311
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 24236.0 0.997282 0.498641 0.866809i \(-0.333833\pi\)
0.498641 + 0.866809i \(0.333833\pi\)
\(840\) 0 0
\(841\) −10081.0 −0.413342
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −18224.4 −0.741937
\(846\) 0 0
\(847\) −11363.5 −0.460986
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 2628.00 0.105860
\(852\) 0 0
\(853\) 23022.0 0.924101 0.462051 0.886854i \(-0.347114\pi\)
0.462051 + 0.886854i \(0.347114\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −10697.1 −0.426378 −0.213189 0.977011i \(-0.568385\pi\)
−0.213189 + 0.977011i \(0.568385\pi\)
\(858\) 0 0
\(859\) 26930.7 1.06969 0.534845 0.844950i \(-0.320370\pi\)
0.534845 + 0.844950i \(0.320370\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −21748.0 −0.857834 −0.428917 0.903344i \(-0.641105\pi\)
−0.428917 + 0.903344i \(0.641105\pi\)
\(864\) 0 0
\(865\) 20805.0 0.817793
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 683.520 0.0266822
\(870\) 0 0
\(871\) 4784.64 0.186133
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −12921.0 −0.499211
\(876\) 0 0
\(877\) −21494.0 −0.827595 −0.413797 0.910369i \(-0.635798\pi\)
−0.413797 + 0.910369i \(0.635798\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 615.168 0.0235250 0.0117625 0.999931i \(-0.496256\pi\)
0.0117625 + 0.999931i \(0.496256\pi\)
\(882\) 0 0
\(883\) −12901.4 −0.491697 −0.245848 0.969308i \(-0.579067\pi\)
−0.245848 + 0.969308i \(0.579067\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 37176.0 1.40727 0.703635 0.710562i \(-0.251559\pi\)
0.703635 + 0.710562i \(0.251559\pi\)
\(888\) 0 0
\(889\) −22849.0 −0.862014
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 12679.3 0.475136
\(894\) 0 0
\(895\) 39806.5 1.48669
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −11242.0 −0.417065
\(900\) 0 0
\(901\) −30660.0 −1.13367
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −17771.5 −0.652758
\(906\) 0 0
\(907\) 36790.5 1.34687 0.673433 0.739248i \(-0.264819\pi\)
0.673433 + 0.739248i \(0.264819\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 1278.00 0.0464786 0.0232393 0.999730i \(-0.492602\pi\)
0.0232393 + 0.999730i \(0.492602\pi\)
\(912\) 0 0
\(913\) 345.000 0.0125058
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 2366.69 0.0852290
\(918\) 0 0
\(919\) 13149.2 0.471983 0.235992 0.971755i \(-0.424166\pi\)
0.235992 + 0.971755i \(0.424166\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −160.000 −0.00570581
\(924\) 0 0
\(925\) 7592.00 0.269863
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −29630.6 −1.04645 −0.523223 0.852196i \(-0.675271\pi\)
−0.523223 + 0.852196i \(0.675271\pi\)
\(930\) 0 0
\(931\) 32296.3 1.13692
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −876.000 −0.0306399
\(936\) 0 0
\(937\) 1643.00 0.0572833 0.0286417 0.999590i \(-0.490882\pi\)
0.0286417 + 0.999590i \(0.490882\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −28665.1 −0.993046 −0.496523 0.868023i \(-0.665390\pi\)
−0.496523 + 0.868023i \(0.665390\pi\)
\(942\) 0 0
\(943\) −1537.92 −0.0531088
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 17367.0 0.595936 0.297968 0.954576i \(-0.403691\pi\)
0.297968 + 0.954576i \(0.403691\pi\)
\(948\) 0 0
\(949\) 4728.00 0.161725
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 26759.8 0.909586 0.454793 0.890597i \(-0.349713\pi\)
0.454793 + 0.890597i \(0.349713\pi\)
\(954\) 0 0
\(955\) −27067.4 −0.917152
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −14454.0 −0.486699
\(960\) 0 0
\(961\) −20958.0 −0.703501
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −5767.20 −0.192386
\(966\) 0 0
\(967\) −38268.6 −1.27263 −0.636316 0.771429i \(-0.719543\pi\)
−0.636316 + 0.771429i \(0.719543\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −38855.0 −1.28416 −0.642078 0.766639i \(-0.721928\pi\)
−0.642078 + 0.766639i \(0.721928\pi\)
\(972\) 0 0
\(973\) 13724.0 0.452180
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 32279.2 1.05702 0.528508 0.848928i \(-0.322752\pi\)
0.528508 + 0.848928i \(0.322752\pi\)
\(978\) 0 0
\(979\) 222.144 0.00725205
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 34134.0 1.10753 0.553767 0.832672i \(-0.313190\pi\)
0.553767 + 0.832672i \(0.313190\pi\)
\(984\) 0 0
\(985\) 31171.0 1.00832
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −3998.59 −0.128562
\(990\) 0 0
\(991\) −36969.9 −1.18505 −0.592527 0.805551i \(-0.701869\pi\)
−0.592527 + 0.805551i \(0.701869\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 38471.0 1.22574
\(996\) 0 0
\(997\) 20448.0 0.649543 0.324772 0.945792i \(-0.394713\pi\)
0.324772 + 0.945792i \(0.394713\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 864.4.a.g.1.2 yes 2
3.2 odd 2 864.4.a.f.1.1 2
4.3 odd 2 864.4.a.f.1.2 yes 2
8.3 odd 2 1728.4.a.bn.1.1 2
8.5 even 2 1728.4.a.bm.1.1 2
12.11 even 2 inner 864.4.a.g.1.1 yes 2
24.5 odd 2 1728.4.a.bn.1.2 2
24.11 even 2 1728.4.a.bm.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
864.4.a.f.1.1 2 3.2 odd 2
864.4.a.f.1.2 yes 2 4.3 odd 2
864.4.a.g.1.1 yes 2 12.11 even 2 inner
864.4.a.g.1.2 yes 2 1.1 even 1 trivial
1728.4.a.bm.1.1 2 8.5 even 2
1728.4.a.bm.1.2 2 24.11 even 2
1728.4.a.bn.1.1 2 8.3 odd 2
1728.4.a.bn.1.2 2 24.5 odd 2