Properties

Label 855.4.a.h.1.3
Level $855$
Weight $4$
Character 855.1
Self dual yes
Analytic conductor $50.447$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [855,4,Mod(1,855)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(855, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("855.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 855 = 3^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 855.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,1,0,7,-15,0,-24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(50.4466330549\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.3580.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 15x + 7 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 285)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(4.18473\) of defining polynomial
Character \(\chi\) \(=\) 855.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.18473 q^{2} +9.51199 q^{4} -5.00000 q^{5} -11.3273 q^{7} +6.32725 q^{8} -20.9237 q^{10} +48.7207 q^{11} +19.2692 q^{13} -47.4015 q^{14} -49.6180 q^{16} -121.574 q^{17} -19.0000 q^{19} -47.5599 q^{20} +203.883 q^{22} -133.817 q^{23} +25.0000 q^{25} +80.6363 q^{26} -107.745 q^{28} +7.97030 q^{29} -122.116 q^{31} -258.256 q^{32} -508.754 q^{34} +56.6363 q^{35} +89.7616 q^{37} -79.5099 q^{38} -31.6363 q^{40} -124.738 q^{41} -270.378 q^{43} +463.430 q^{44} -559.988 q^{46} +387.769 q^{47} -214.693 q^{49} +104.618 q^{50} +183.288 q^{52} +157.361 q^{53} -243.603 q^{55} -71.6704 q^{56} +33.3536 q^{58} -35.1738 q^{59} -543.534 q^{61} -511.024 q^{62} -683.789 q^{64} -96.3458 q^{65} -617.006 q^{67} -1156.41 q^{68} +237.008 q^{70} -400.155 q^{71} -732.299 q^{73} +375.628 q^{74} -180.728 q^{76} -551.872 q^{77} -903.791 q^{79} +248.090 q^{80} -521.996 q^{82} +910.929 q^{83} +607.869 q^{85} -1131.46 q^{86} +308.268 q^{88} -739.460 q^{89} -218.267 q^{91} -1272.86 q^{92} +1622.71 q^{94} +95.0000 q^{95} +1770.18 q^{97} -898.434 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + q^{2} + 7 q^{4} - 15 q^{5} - 24 q^{7} + 9 q^{8} - 5 q^{10} + 70 q^{11} + 20 q^{13} + 8 q^{14} - 69 q^{16} - 100 q^{17} - 57 q^{19} - 35 q^{20} + 98 q^{22} + 56 q^{23} + 75 q^{25} + 192 q^{26} - 204 q^{28}+ \cdots - 615 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.18473 1.47953 0.739763 0.672867i \(-0.234938\pi\)
0.739763 + 0.672867i \(0.234938\pi\)
\(3\) 0 0
\(4\) 9.51199 1.18900
\(5\) −5.00000 −0.447214
\(6\) 0 0
\(7\) −11.3273 −0.611614 −0.305807 0.952093i \(-0.598926\pi\)
−0.305807 + 0.952093i \(0.598926\pi\)
\(8\) 6.32725 0.279628
\(9\) 0 0
\(10\) −20.9237 −0.661664
\(11\) 48.7207 1.33544 0.667720 0.744413i \(-0.267270\pi\)
0.667720 + 0.744413i \(0.267270\pi\)
\(12\) 0 0
\(13\) 19.2692 0.411100 0.205550 0.978647i \(-0.434102\pi\)
0.205550 + 0.978647i \(0.434102\pi\)
\(14\) −47.4015 −0.904899
\(15\) 0 0
\(16\) −49.6180 −0.775282
\(17\) −121.574 −1.73447 −0.867234 0.497900i \(-0.834104\pi\)
−0.867234 + 0.497900i \(0.834104\pi\)
\(18\) 0 0
\(19\) −19.0000 −0.229416
\(20\) −47.5599 −0.531736
\(21\) 0 0
\(22\) 203.883 1.97582
\(23\) −133.817 −1.21316 −0.606581 0.795021i \(-0.707460\pi\)
−0.606581 + 0.795021i \(0.707460\pi\)
\(24\) 0 0
\(25\) 25.0000 0.200000
\(26\) 80.6363 0.608234
\(27\) 0 0
\(28\) −107.745 −0.727208
\(29\) 7.97030 0.0510361 0.0255181 0.999674i \(-0.491876\pi\)
0.0255181 + 0.999674i \(0.491876\pi\)
\(30\) 0 0
\(31\) −122.116 −0.707507 −0.353753 0.935339i \(-0.615095\pi\)
−0.353753 + 0.935339i \(0.615095\pi\)
\(32\) −258.256 −1.42668
\(33\) 0 0
\(34\) −508.754 −2.56619
\(35\) 56.6363 0.273522
\(36\) 0 0
\(37\) 89.7616 0.398830 0.199415 0.979915i \(-0.436096\pi\)
0.199415 + 0.979915i \(0.436096\pi\)
\(38\) −79.5099 −0.339427
\(39\) 0 0
\(40\) −31.6363 −0.125053
\(41\) −124.738 −0.475142 −0.237571 0.971370i \(-0.576351\pi\)
−0.237571 + 0.971370i \(0.576351\pi\)
\(42\) 0 0
\(43\) −270.378 −0.958890 −0.479445 0.877572i \(-0.659162\pi\)
−0.479445 + 0.877572i \(0.659162\pi\)
\(44\) 463.430 1.58784
\(45\) 0 0
\(46\) −559.988 −1.79491
\(47\) 387.769 1.20344 0.601722 0.798705i \(-0.294481\pi\)
0.601722 + 0.798705i \(0.294481\pi\)
\(48\) 0 0
\(49\) −214.693 −0.625928
\(50\) 104.618 0.295905
\(51\) 0 0
\(52\) 183.288 0.488797
\(53\) 157.361 0.407833 0.203917 0.978988i \(-0.434633\pi\)
0.203917 + 0.978988i \(0.434633\pi\)
\(54\) 0 0
\(55\) −243.603 −0.597227
\(56\) −71.6704 −0.171024
\(57\) 0 0
\(58\) 33.3536 0.0755093
\(59\) −35.1738 −0.0776142 −0.0388071 0.999247i \(-0.512356\pi\)
−0.0388071 + 0.999247i \(0.512356\pi\)
\(60\) 0 0
\(61\) −543.534 −1.14086 −0.570430 0.821346i \(-0.693223\pi\)
−0.570430 + 0.821346i \(0.693223\pi\)
\(62\) −511.024 −1.04678
\(63\) 0 0
\(64\) −683.789 −1.33552
\(65\) −96.3458 −0.183850
\(66\) 0 0
\(67\) −617.006 −1.12506 −0.562532 0.826775i \(-0.690173\pi\)
−0.562532 + 0.826775i \(0.690173\pi\)
\(68\) −1156.41 −2.06228
\(69\) 0 0
\(70\) 237.008 0.404683
\(71\) −400.155 −0.668869 −0.334434 0.942419i \(-0.608545\pi\)
−0.334434 + 0.942419i \(0.608545\pi\)
\(72\) 0 0
\(73\) −732.299 −1.17410 −0.587048 0.809552i \(-0.699710\pi\)
−0.587048 + 0.809552i \(0.699710\pi\)
\(74\) 375.628 0.590079
\(75\) 0 0
\(76\) −180.728 −0.272775
\(77\) −551.872 −0.816774
\(78\) 0 0
\(79\) −903.791 −1.28714 −0.643572 0.765385i \(-0.722548\pi\)
−0.643572 + 0.765385i \(0.722548\pi\)
\(80\) 248.090 0.346716
\(81\) 0 0
\(82\) −521.996 −0.702985
\(83\) 910.929 1.20467 0.602334 0.798244i \(-0.294238\pi\)
0.602334 + 0.798244i \(0.294238\pi\)
\(84\) 0 0
\(85\) 607.869 0.775678
\(86\) −1131.46 −1.41870
\(87\) 0 0
\(88\) 308.268 0.373426
\(89\) −739.460 −0.880703 −0.440352 0.897825i \(-0.645146\pi\)
−0.440352 + 0.897825i \(0.645146\pi\)
\(90\) 0 0
\(91\) −218.267 −0.251435
\(92\) −1272.86 −1.44245
\(93\) 0 0
\(94\) 1622.71 1.78053
\(95\) 95.0000 0.102598
\(96\) 0 0
\(97\) 1770.18 1.85293 0.926466 0.376379i \(-0.122831\pi\)
0.926466 + 0.376379i \(0.122831\pi\)
\(98\) −898.434 −0.926077
\(99\) 0 0
\(100\) 237.800 0.237800
\(101\) 332.869 0.327938 0.163969 0.986466i \(-0.447570\pi\)
0.163969 + 0.986466i \(0.447570\pi\)
\(102\) 0 0
\(103\) 570.264 0.545532 0.272766 0.962080i \(-0.412062\pi\)
0.272766 + 0.962080i \(0.412062\pi\)
\(104\) 121.921 0.114955
\(105\) 0 0
\(106\) 658.513 0.603400
\(107\) 677.514 0.612129 0.306064 0.952011i \(-0.400988\pi\)
0.306064 + 0.952011i \(0.400988\pi\)
\(108\) 0 0
\(109\) −921.322 −0.809602 −0.404801 0.914405i \(-0.632659\pi\)
−0.404801 + 0.914405i \(0.632659\pi\)
\(110\) −1019.42 −0.883613
\(111\) 0 0
\(112\) 562.036 0.474173
\(113\) 1855.53 1.54472 0.772361 0.635184i \(-0.219076\pi\)
0.772361 + 0.635184i \(0.219076\pi\)
\(114\) 0 0
\(115\) 669.084 0.542543
\(116\) 75.8134 0.0606819
\(117\) 0 0
\(118\) −147.193 −0.114832
\(119\) 1377.10 1.06083
\(120\) 0 0
\(121\) 1042.71 0.783400
\(122\) −2274.55 −1.68793
\(123\) 0 0
\(124\) −1161.57 −0.841224
\(125\) −125.000 −0.0894427
\(126\) 0 0
\(127\) 963.401 0.673134 0.336567 0.941660i \(-0.390734\pi\)
0.336567 + 0.941660i \(0.390734\pi\)
\(128\) −795.424 −0.549267
\(129\) 0 0
\(130\) −403.181 −0.272010
\(131\) −1031.58 −0.688013 −0.344006 0.938967i \(-0.611784\pi\)
−0.344006 + 0.938967i \(0.611784\pi\)
\(132\) 0 0
\(133\) 215.218 0.140314
\(134\) −2582.01 −1.66456
\(135\) 0 0
\(136\) −769.228 −0.485005
\(137\) 1244.79 0.776277 0.388138 0.921601i \(-0.373118\pi\)
0.388138 + 0.921601i \(0.373118\pi\)
\(138\) 0 0
\(139\) −2853.77 −1.74139 −0.870697 0.491820i \(-0.836332\pi\)
−0.870697 + 0.491820i \(0.836332\pi\)
\(140\) 538.723 0.325217
\(141\) 0 0
\(142\) −1674.54 −0.989609
\(143\) 938.807 0.549000
\(144\) 0 0
\(145\) −39.8515 −0.0228241
\(146\) −3064.47 −1.73711
\(147\) 0 0
\(148\) 853.811 0.474208
\(149\) 2697.92 1.48337 0.741684 0.670749i \(-0.234027\pi\)
0.741684 + 0.670749i \(0.234027\pi\)
\(150\) 0 0
\(151\) 2001.45 1.07865 0.539324 0.842099i \(-0.318680\pi\)
0.539324 + 0.842099i \(0.318680\pi\)
\(152\) −120.218 −0.0641510
\(153\) 0 0
\(154\) −2309.43 −1.20844
\(155\) 610.581 0.316407
\(156\) 0 0
\(157\) −2142.94 −1.08933 −0.544667 0.838652i \(-0.683344\pi\)
−0.544667 + 0.838652i \(0.683344\pi\)
\(158\) −3782.12 −1.90436
\(159\) 0 0
\(160\) 1291.28 0.638029
\(161\) 1515.78 0.741988
\(162\) 0 0
\(163\) 3696.16 1.77611 0.888054 0.459738i \(-0.152057\pi\)
0.888054 + 0.459738i \(0.152057\pi\)
\(164\) −1186.51 −0.564943
\(165\) 0 0
\(166\) 3811.99 1.78234
\(167\) −1937.20 −0.897634 −0.448817 0.893624i \(-0.648155\pi\)
−0.448817 + 0.893624i \(0.648155\pi\)
\(168\) 0 0
\(169\) −1825.70 −0.830997
\(170\) 2543.77 1.14764
\(171\) 0 0
\(172\) −2571.83 −1.14012
\(173\) 3799.75 1.66988 0.834940 0.550341i \(-0.185502\pi\)
0.834940 + 0.550341i \(0.185502\pi\)
\(174\) 0 0
\(175\) −283.181 −0.122323
\(176\) −2417.42 −1.03534
\(177\) 0 0
\(178\) −3094.44 −1.30302
\(179\) −121.921 −0.0509095 −0.0254548 0.999676i \(-0.508103\pi\)
−0.0254548 + 0.999676i \(0.508103\pi\)
\(180\) 0 0
\(181\) 225.206 0.0924829 0.0462414 0.998930i \(-0.485276\pi\)
0.0462414 + 0.998930i \(0.485276\pi\)
\(182\) −913.387 −0.372004
\(183\) 0 0
\(184\) −846.693 −0.339234
\(185\) −448.808 −0.178362
\(186\) 0 0
\(187\) −5923.16 −2.31628
\(188\) 3688.45 1.43089
\(189\) 0 0
\(190\) 397.550 0.151796
\(191\) 2991.27 1.13320 0.566600 0.823993i \(-0.308259\pi\)
0.566600 + 0.823993i \(0.308259\pi\)
\(192\) 0 0
\(193\) 4282.60 1.59725 0.798623 0.601832i \(-0.205562\pi\)
0.798623 + 0.601832i \(0.205562\pi\)
\(194\) 7407.72 2.74146
\(195\) 0 0
\(196\) −2042.16 −0.744227
\(197\) −3085.51 −1.11591 −0.557954 0.829872i \(-0.688413\pi\)
−0.557954 + 0.829872i \(0.688413\pi\)
\(198\) 0 0
\(199\) −4351.94 −1.55026 −0.775128 0.631804i \(-0.782315\pi\)
−0.775128 + 0.631804i \(0.782315\pi\)
\(200\) 158.181 0.0559255
\(201\) 0 0
\(202\) 1392.97 0.485193
\(203\) −90.2816 −0.0312144
\(204\) 0 0
\(205\) 623.691 0.212490
\(206\) 2386.40 0.807129
\(207\) 0 0
\(208\) −956.097 −0.318718
\(209\) −925.693 −0.306371
\(210\) 0 0
\(211\) −539.478 −0.176015 −0.0880076 0.996120i \(-0.528050\pi\)
−0.0880076 + 0.996120i \(0.528050\pi\)
\(212\) 1496.81 0.484913
\(213\) 0 0
\(214\) 2835.22 0.905661
\(215\) 1351.89 0.428829
\(216\) 0 0
\(217\) 1383.24 0.432721
\(218\) −3855.49 −1.19783
\(219\) 0 0
\(220\) −2317.15 −0.710102
\(221\) −2342.62 −0.713040
\(222\) 0 0
\(223\) −559.515 −0.168017 −0.0840087 0.996465i \(-0.526772\pi\)
−0.0840087 + 0.996465i \(0.526772\pi\)
\(224\) 2925.33 0.872576
\(225\) 0 0
\(226\) 7764.89 2.28546
\(227\) 458.145 0.133957 0.0669783 0.997754i \(-0.478664\pi\)
0.0669783 + 0.997754i \(0.478664\pi\)
\(228\) 0 0
\(229\) −2729.93 −0.787769 −0.393884 0.919160i \(-0.628869\pi\)
−0.393884 + 0.919160i \(0.628869\pi\)
\(230\) 2799.94 0.802706
\(231\) 0 0
\(232\) 50.4301 0.0142711
\(233\) 3642.55 1.02417 0.512085 0.858935i \(-0.328873\pi\)
0.512085 + 0.858935i \(0.328873\pi\)
\(234\) 0 0
\(235\) −1938.84 −0.538197
\(236\) −334.573 −0.0922832
\(237\) 0 0
\(238\) 5762.78 1.56952
\(239\) −5074.58 −1.37342 −0.686709 0.726932i \(-0.740945\pi\)
−0.686709 + 0.726932i \(0.740945\pi\)
\(240\) 0 0
\(241\) −1574.01 −0.420710 −0.210355 0.977625i \(-0.567462\pi\)
−0.210355 + 0.977625i \(0.567462\pi\)
\(242\) 4363.44 1.15906
\(243\) 0 0
\(244\) −5170.09 −1.35648
\(245\) 1073.47 0.279924
\(246\) 0 0
\(247\) −366.114 −0.0943129
\(248\) −772.660 −0.197839
\(249\) 0 0
\(250\) −523.092 −0.132333
\(251\) −1174.41 −0.295331 −0.147665 0.989037i \(-0.547176\pi\)
−0.147665 + 0.989037i \(0.547176\pi\)
\(252\) 0 0
\(253\) −6519.65 −1.62011
\(254\) 4031.57 0.995919
\(255\) 0 0
\(256\) 2141.68 0.522870
\(257\) −781.504 −0.189684 −0.0948422 0.995492i \(-0.530235\pi\)
−0.0948422 + 0.995492i \(0.530235\pi\)
\(258\) 0 0
\(259\) −1016.75 −0.243930
\(260\) −916.440 −0.218597
\(261\) 0 0
\(262\) −4316.89 −1.01793
\(263\) 4299.03 1.00795 0.503973 0.863720i \(-0.331871\pi\)
0.503973 + 0.863720i \(0.331871\pi\)
\(264\) 0 0
\(265\) −786.804 −0.182389
\(266\) 900.629 0.207598
\(267\) 0 0
\(268\) −5868.95 −1.33770
\(269\) 2095.26 0.474907 0.237454 0.971399i \(-0.423687\pi\)
0.237454 + 0.971399i \(0.423687\pi\)
\(270\) 0 0
\(271\) 833.929 0.186928 0.0934641 0.995623i \(-0.470206\pi\)
0.0934641 + 0.995623i \(0.470206\pi\)
\(272\) 6032.25 1.34470
\(273\) 0 0
\(274\) 5209.13 1.14852
\(275\) 1218.02 0.267088
\(276\) 0 0
\(277\) 3902.66 0.846528 0.423264 0.906006i \(-0.360884\pi\)
0.423264 + 0.906006i \(0.360884\pi\)
\(278\) −11942.3 −2.57644
\(279\) 0 0
\(280\) 358.352 0.0764844
\(281\) 2292.03 0.486587 0.243293 0.969953i \(-0.421772\pi\)
0.243293 + 0.969953i \(0.421772\pi\)
\(282\) 0 0
\(283\) −4393.23 −0.922792 −0.461396 0.887194i \(-0.652651\pi\)
−0.461396 + 0.887194i \(0.652651\pi\)
\(284\) −3806.27 −0.795284
\(285\) 0 0
\(286\) 3928.65 0.812259
\(287\) 1412.94 0.290604
\(288\) 0 0
\(289\) 9867.17 2.00838
\(290\) −166.768 −0.0337688
\(291\) 0 0
\(292\) −6965.61 −1.39600
\(293\) −5036.77 −1.00427 −0.502135 0.864789i \(-0.667452\pi\)
−0.502135 + 0.864789i \(0.667452\pi\)
\(294\) 0 0
\(295\) 175.869 0.0347101
\(296\) 567.944 0.111524
\(297\) 0 0
\(298\) 11290.1 2.19468
\(299\) −2578.54 −0.498731
\(300\) 0 0
\(301\) 3062.64 0.586471
\(302\) 8375.53 1.59589
\(303\) 0 0
\(304\) 942.742 0.177862
\(305\) 2717.67 0.510208
\(306\) 0 0
\(307\) 7911.97 1.47088 0.735439 0.677590i \(-0.236976\pi\)
0.735439 + 0.677590i \(0.236976\pi\)
\(308\) −5249.39 −0.971143
\(309\) 0 0
\(310\) 2555.12 0.468132
\(311\) 2572.75 0.469091 0.234545 0.972105i \(-0.424640\pi\)
0.234545 + 0.972105i \(0.424640\pi\)
\(312\) 0 0
\(313\) 1444.77 0.260905 0.130452 0.991455i \(-0.458357\pi\)
0.130452 + 0.991455i \(0.458357\pi\)
\(314\) −8967.64 −1.61170
\(315\) 0 0
\(316\) −8596.85 −1.53041
\(317\) −8509.32 −1.50767 −0.753835 0.657064i \(-0.771798\pi\)
−0.753835 + 0.657064i \(0.771798\pi\)
\(318\) 0 0
\(319\) 388.319 0.0681557
\(320\) 3418.94 0.597265
\(321\) 0 0
\(322\) 6343.12 1.09779
\(323\) 2309.90 0.397914
\(324\) 0 0
\(325\) 481.729 0.0822200
\(326\) 15467.4 2.62780
\(327\) 0 0
\(328\) −789.250 −0.132863
\(329\) −4392.36 −0.736044
\(330\) 0 0
\(331\) 7671.09 1.27384 0.636920 0.770930i \(-0.280208\pi\)
0.636920 + 0.770930i \(0.280208\pi\)
\(332\) 8664.74 1.43235
\(333\) 0 0
\(334\) −8106.66 −1.32807
\(335\) 3085.03 0.503144
\(336\) 0 0
\(337\) −3317.95 −0.536321 −0.268161 0.963374i \(-0.586416\pi\)
−0.268161 + 0.963374i \(0.586416\pi\)
\(338\) −7640.06 −1.22948
\(339\) 0 0
\(340\) 5782.04 0.922280
\(341\) −5949.58 −0.944833
\(342\) 0 0
\(343\) 6317.13 0.994441
\(344\) −1710.75 −0.268132
\(345\) 0 0
\(346\) 15900.9 2.47063
\(347\) −6378.17 −0.986738 −0.493369 0.869820i \(-0.664235\pi\)
−0.493369 + 0.869820i \(0.664235\pi\)
\(348\) 0 0
\(349\) 9217.85 1.41381 0.706905 0.707308i \(-0.250091\pi\)
0.706905 + 0.707308i \(0.250091\pi\)
\(350\) −1185.04 −0.180980
\(351\) 0 0
\(352\) −12582.4 −1.90524
\(353\) −3047.35 −0.459473 −0.229737 0.973253i \(-0.573786\pi\)
−0.229737 + 0.973253i \(0.573786\pi\)
\(354\) 0 0
\(355\) 2000.78 0.299127
\(356\) −7033.73 −1.04715
\(357\) 0 0
\(358\) −510.207 −0.0753220
\(359\) −12092.0 −1.77769 −0.888844 0.458210i \(-0.848491\pi\)
−0.888844 + 0.458210i \(0.848491\pi\)
\(360\) 0 0
\(361\) 361.000 0.0526316
\(362\) 942.425 0.136831
\(363\) 0 0
\(364\) −2076.15 −0.298955
\(365\) 3661.49 0.525072
\(366\) 0 0
\(367\) −10108.3 −1.43774 −0.718869 0.695146i \(-0.755340\pi\)
−0.718869 + 0.695146i \(0.755340\pi\)
\(368\) 6639.73 0.940543
\(369\) 0 0
\(370\) −1878.14 −0.263892
\(371\) −1782.47 −0.249437
\(372\) 0 0
\(373\) −805.021 −0.111749 −0.0558745 0.998438i \(-0.517795\pi\)
−0.0558745 + 0.998438i \(0.517795\pi\)
\(374\) −24786.8 −3.42699
\(375\) 0 0
\(376\) 2453.51 0.336517
\(377\) 153.581 0.0209810
\(378\) 0 0
\(379\) −11059.9 −1.49896 −0.749482 0.662025i \(-0.769697\pi\)
−0.749482 + 0.662025i \(0.769697\pi\)
\(380\) 903.639 0.121989
\(381\) 0 0
\(382\) 12517.7 1.67660
\(383\) 6847.47 0.913549 0.456774 0.889583i \(-0.349005\pi\)
0.456774 + 0.889583i \(0.349005\pi\)
\(384\) 0 0
\(385\) 2759.36 0.365272
\(386\) 17921.5 2.36317
\(387\) 0 0
\(388\) 16837.9 2.20313
\(389\) −898.568 −0.117119 −0.0585594 0.998284i \(-0.518651\pi\)
−0.0585594 + 0.998284i \(0.518651\pi\)
\(390\) 0 0
\(391\) 16268.6 2.10419
\(392\) −1358.42 −0.175027
\(393\) 0 0
\(394\) −12912.1 −1.65101
\(395\) 4518.95 0.575629
\(396\) 0 0
\(397\) −10647.3 −1.34603 −0.673014 0.739630i \(-0.735001\pi\)
−0.673014 + 0.739630i \(0.735001\pi\)
\(398\) −18211.7 −2.29364
\(399\) 0 0
\(400\) −1240.45 −0.155056
\(401\) 1337.87 0.166608 0.0833041 0.996524i \(-0.473453\pi\)
0.0833041 + 0.996524i \(0.473453\pi\)
\(402\) 0 0
\(403\) −2353.08 −0.290856
\(404\) 3166.25 0.389917
\(405\) 0 0
\(406\) −377.804 −0.0461826
\(407\) 4373.24 0.532613
\(408\) 0 0
\(409\) −10307.7 −1.24617 −0.623086 0.782153i \(-0.714121\pi\)
−0.623086 + 0.782153i \(0.714121\pi\)
\(410\) 2609.98 0.314385
\(411\) 0 0
\(412\) 5424.34 0.648636
\(413\) 398.423 0.0474700
\(414\) 0 0
\(415\) −4554.64 −0.538744
\(416\) −4976.38 −0.586507
\(417\) 0 0
\(418\) −3873.78 −0.453284
\(419\) 10471.2 1.22088 0.610442 0.792061i \(-0.290992\pi\)
0.610442 + 0.792061i \(0.290992\pi\)
\(420\) 0 0
\(421\) −10698.7 −1.23854 −0.619268 0.785180i \(-0.712571\pi\)
−0.619268 + 0.785180i \(0.712571\pi\)
\(422\) −2257.57 −0.260419
\(423\) 0 0
\(424\) 995.662 0.114042
\(425\) −3039.34 −0.346894
\(426\) 0 0
\(427\) 6156.75 0.697766
\(428\) 6444.51 0.727820
\(429\) 0 0
\(430\) 5657.30 0.634463
\(431\) 12717.5 1.42130 0.710649 0.703547i \(-0.248401\pi\)
0.710649 + 0.703547i \(0.248401\pi\)
\(432\) 0 0
\(433\) −14511.6 −1.61058 −0.805290 0.592881i \(-0.797991\pi\)
−0.805290 + 0.592881i \(0.797991\pi\)
\(434\) 5788.49 0.640223
\(435\) 0 0
\(436\) −8763.60 −0.962616
\(437\) 2542.52 0.278319
\(438\) 0 0
\(439\) 1878.49 0.204226 0.102113 0.994773i \(-0.467440\pi\)
0.102113 + 0.994773i \(0.467440\pi\)
\(440\) −1541.34 −0.167001
\(441\) 0 0
\(442\) −9803.25 −1.05496
\(443\) −18219.3 −1.95401 −0.977004 0.213220i \(-0.931605\pi\)
−0.977004 + 0.213220i \(0.931605\pi\)
\(444\) 0 0
\(445\) 3697.30 0.393863
\(446\) −2341.42 −0.248586
\(447\) 0 0
\(448\) 7745.45 0.816826
\(449\) −8127.70 −0.854276 −0.427138 0.904186i \(-0.640478\pi\)
−0.427138 + 0.904186i \(0.640478\pi\)
\(450\) 0 0
\(451\) −6077.33 −0.634524
\(452\) 17649.8 1.83667
\(453\) 0 0
\(454\) 1917.21 0.198192
\(455\) 1091.33 0.112445
\(456\) 0 0
\(457\) 6526.93 0.668089 0.334045 0.942557i \(-0.391586\pi\)
0.334045 + 0.942557i \(0.391586\pi\)
\(458\) −11424.0 −1.16552
\(459\) 0 0
\(460\) 6364.32 0.645082
\(461\) −8800.09 −0.889070 −0.444535 0.895762i \(-0.646631\pi\)
−0.444535 + 0.895762i \(0.646631\pi\)
\(462\) 0 0
\(463\) −12267.1 −1.23131 −0.615657 0.788014i \(-0.711109\pi\)
−0.615657 + 0.788014i \(0.711109\pi\)
\(464\) −395.471 −0.0395674
\(465\) 0 0
\(466\) 15243.1 1.51529
\(467\) −1041.33 −0.103184 −0.0515920 0.998668i \(-0.516430\pi\)
−0.0515920 + 0.998668i \(0.516430\pi\)
\(468\) 0 0
\(469\) 6988.99 0.688105
\(470\) −8113.55 −0.796276
\(471\) 0 0
\(472\) −222.554 −0.0217031
\(473\) −13173.0 −1.28054
\(474\) 0 0
\(475\) −475.000 −0.0458831
\(476\) 13098.9 1.26132
\(477\) 0 0
\(478\) −21235.7 −2.03201
\(479\) 6828.11 0.651324 0.325662 0.945486i \(-0.394413\pi\)
0.325662 + 0.945486i \(0.394413\pi\)
\(480\) 0 0
\(481\) 1729.63 0.163959
\(482\) −6586.82 −0.622451
\(483\) 0 0
\(484\) 9918.20 0.931461
\(485\) −8850.89 −0.828656
\(486\) 0 0
\(487\) −4134.06 −0.384666 −0.192333 0.981330i \(-0.561605\pi\)
−0.192333 + 0.981330i \(0.561605\pi\)
\(488\) −3439.08 −0.319016
\(489\) 0 0
\(490\) 4492.17 0.414154
\(491\) 3776.58 0.347117 0.173559 0.984824i \(-0.444473\pi\)
0.173559 + 0.984824i \(0.444473\pi\)
\(492\) 0 0
\(493\) −968.979 −0.0885206
\(494\) −1532.09 −0.139538
\(495\) 0 0
\(496\) 6059.16 0.548517
\(497\) 4532.66 0.409090
\(498\) 0 0
\(499\) −4548.80 −0.408081 −0.204040 0.978962i \(-0.565407\pi\)
−0.204040 + 0.978962i \(0.565407\pi\)
\(500\) −1189.00 −0.106347
\(501\) 0 0
\(502\) −4914.58 −0.436949
\(503\) 18001.2 1.59569 0.797847 0.602861i \(-0.205972\pi\)
0.797847 + 0.602861i \(0.205972\pi\)
\(504\) 0 0
\(505\) −1664.35 −0.146658
\(506\) −27283.0 −2.39699
\(507\) 0 0
\(508\) 9163.85 0.800355
\(509\) 565.749 0.0492660 0.0246330 0.999697i \(-0.492158\pi\)
0.0246330 + 0.999697i \(0.492158\pi\)
\(510\) 0 0
\(511\) 8294.93 0.718094
\(512\) 15325.7 1.32287
\(513\) 0 0
\(514\) −3270.39 −0.280643
\(515\) −2851.32 −0.243969
\(516\) 0 0
\(517\) 18892.4 1.60713
\(518\) −4254.83 −0.360901
\(519\) 0 0
\(520\) −609.604 −0.0514094
\(521\) 13187.9 1.10897 0.554483 0.832195i \(-0.312916\pi\)
0.554483 + 0.832195i \(0.312916\pi\)
\(522\) 0 0
\(523\) −9251.41 −0.773491 −0.386745 0.922187i \(-0.626401\pi\)
−0.386745 + 0.922187i \(0.626401\pi\)
\(524\) −9812.39 −0.818046
\(525\) 0 0
\(526\) 17990.3 1.49128
\(527\) 14846.1 1.22715
\(528\) 0 0
\(529\) 5739.95 0.471764
\(530\) −3292.57 −0.269849
\(531\) 0 0
\(532\) 2047.15 0.166833
\(533\) −2403.60 −0.195331
\(534\) 0 0
\(535\) −3387.57 −0.273752
\(536\) −3903.95 −0.314599
\(537\) 0 0
\(538\) 8768.09 0.702638
\(539\) −10460.0 −0.835889
\(540\) 0 0
\(541\) −5305.50 −0.421629 −0.210814 0.977526i \(-0.567612\pi\)
−0.210814 + 0.977526i \(0.567612\pi\)
\(542\) 3489.77 0.276565
\(543\) 0 0
\(544\) 31397.2 2.47453
\(545\) 4606.61 0.362065
\(546\) 0 0
\(547\) 2840.53 0.222034 0.111017 0.993819i \(-0.464589\pi\)
0.111017 + 0.993819i \(0.464589\pi\)
\(548\) 11840.5 0.922992
\(549\) 0 0
\(550\) 5097.08 0.395164
\(551\) −151.436 −0.0117085
\(552\) 0 0
\(553\) 10237.5 0.787236
\(554\) 16331.6 1.25246
\(555\) 0 0
\(556\) −27145.0 −2.07051
\(557\) 5667.19 0.431107 0.215553 0.976492i \(-0.430844\pi\)
0.215553 + 0.976492i \(0.430844\pi\)
\(558\) 0 0
\(559\) −5209.96 −0.394200
\(560\) −2810.18 −0.212057
\(561\) 0 0
\(562\) 9591.52 0.719918
\(563\) 9405.63 0.704086 0.352043 0.935984i \(-0.385487\pi\)
0.352043 + 0.935984i \(0.385487\pi\)
\(564\) 0 0
\(565\) −9277.65 −0.690820
\(566\) −18384.5 −1.36530
\(567\) 0 0
\(568\) −2531.88 −0.187034
\(569\) −10443.6 −0.769452 −0.384726 0.923031i \(-0.625704\pi\)
−0.384726 + 0.923031i \(0.625704\pi\)
\(570\) 0 0
\(571\) 892.063 0.0653795 0.0326897 0.999466i \(-0.489593\pi\)
0.0326897 + 0.999466i \(0.489593\pi\)
\(572\) 8929.91 0.652760
\(573\) 0 0
\(574\) 5912.78 0.429956
\(575\) −3345.42 −0.242633
\(576\) 0 0
\(577\) −10933.3 −0.788838 −0.394419 0.918931i \(-0.629054\pi\)
−0.394419 + 0.918931i \(0.629054\pi\)
\(578\) 41291.5 2.97145
\(579\) 0 0
\(580\) −379.067 −0.0271378
\(581\) −10318.3 −0.736792
\(582\) 0 0
\(583\) 7666.73 0.544637
\(584\) −4633.44 −0.328310
\(585\) 0 0
\(586\) −21077.5 −1.48584
\(587\) −16737.3 −1.17687 −0.588434 0.808545i \(-0.700255\pi\)
−0.588434 + 0.808545i \(0.700255\pi\)
\(588\) 0 0
\(589\) 2320.21 0.162313
\(590\) 735.965 0.0513546
\(591\) 0 0
\(592\) −4453.79 −0.309206
\(593\) −18886.9 −1.30792 −0.653958 0.756531i \(-0.726893\pi\)
−0.653958 + 0.756531i \(0.726893\pi\)
\(594\) 0 0
\(595\) −6885.48 −0.474416
\(596\) 25662.5 1.76372
\(597\) 0 0
\(598\) −10790.5 −0.737886
\(599\) 25827.3 1.76173 0.880864 0.473369i \(-0.156962\pi\)
0.880864 + 0.473369i \(0.156962\pi\)
\(600\) 0 0
\(601\) −440.830 −0.0299199 −0.0149599 0.999888i \(-0.504762\pi\)
−0.0149599 + 0.999888i \(0.504762\pi\)
\(602\) 12816.3 0.867699
\(603\) 0 0
\(604\) 19037.8 1.28251
\(605\) −5213.53 −0.350347
\(606\) 0 0
\(607\) 21991.1 1.47050 0.735249 0.677797i \(-0.237065\pi\)
0.735249 + 0.677797i \(0.237065\pi\)
\(608\) 4906.87 0.327302
\(609\) 0 0
\(610\) 11372.7 0.754866
\(611\) 7471.98 0.494736
\(612\) 0 0
\(613\) −20231.6 −1.33303 −0.666514 0.745493i \(-0.732214\pi\)
−0.666514 + 0.745493i \(0.732214\pi\)
\(614\) 33109.5 2.17620
\(615\) 0 0
\(616\) −3491.83 −0.228393
\(617\) 7126.86 0.465019 0.232509 0.972594i \(-0.425306\pi\)
0.232509 + 0.972594i \(0.425306\pi\)
\(618\) 0 0
\(619\) −16585.6 −1.07695 −0.538474 0.842642i \(-0.680999\pi\)
−0.538474 + 0.842642i \(0.680999\pi\)
\(620\) 5807.84 0.376207
\(621\) 0 0
\(622\) 10766.3 0.694032
\(623\) 8376.05 0.538651
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) 6045.97 0.386016
\(627\) 0 0
\(628\) −20383.6 −1.29522
\(629\) −10912.6 −0.691758
\(630\) 0 0
\(631\) 5112.66 0.322554 0.161277 0.986909i \(-0.448439\pi\)
0.161277 + 0.986909i \(0.448439\pi\)
\(632\) −5718.51 −0.359921
\(633\) 0 0
\(634\) −35609.2 −2.23064
\(635\) −4817.00 −0.301035
\(636\) 0 0
\(637\) −4136.96 −0.257319
\(638\) 1625.01 0.100838
\(639\) 0 0
\(640\) 3977.12 0.245640
\(641\) 11167.5 0.688127 0.344064 0.938946i \(-0.388196\pi\)
0.344064 + 0.938946i \(0.388196\pi\)
\(642\) 0 0
\(643\) −17105.3 −1.04909 −0.524547 0.851381i \(-0.675765\pi\)
−0.524547 + 0.851381i \(0.675765\pi\)
\(644\) 14418.1 0.882222
\(645\) 0 0
\(646\) 9666.32 0.588725
\(647\) −17613.1 −1.07024 −0.535118 0.844777i \(-0.679733\pi\)
−0.535118 + 0.844777i \(0.679733\pi\)
\(648\) 0 0
\(649\) −1713.69 −0.103649
\(650\) 2015.91 0.121647
\(651\) 0 0
\(652\) 35157.8 2.11179
\(653\) 10574.2 0.633690 0.316845 0.948477i \(-0.397376\pi\)
0.316845 + 0.948477i \(0.397376\pi\)
\(654\) 0 0
\(655\) 5157.91 0.307689
\(656\) 6189.26 0.368369
\(657\) 0 0
\(658\) −18380.8 −1.08900
\(659\) −32462.1 −1.91888 −0.959440 0.281912i \(-0.909031\pi\)
−0.959440 + 0.281912i \(0.909031\pi\)
\(660\) 0 0
\(661\) 9572.61 0.563285 0.281642 0.959519i \(-0.409121\pi\)
0.281642 + 0.959519i \(0.409121\pi\)
\(662\) 32101.5 1.88468
\(663\) 0 0
\(664\) 5763.68 0.336858
\(665\) −1076.09 −0.0627503
\(666\) 0 0
\(667\) −1066.56 −0.0619151
\(668\) −18426.6 −1.06729
\(669\) 0 0
\(670\) 12910.0 0.744415
\(671\) −26481.4 −1.52355
\(672\) 0 0
\(673\) 18179.6 1.04127 0.520634 0.853780i \(-0.325696\pi\)
0.520634 + 0.853780i \(0.325696\pi\)
\(674\) −13884.7 −0.793501
\(675\) 0 0
\(676\) −17366.0 −0.988053
\(677\) −23894.9 −1.35651 −0.678255 0.734827i \(-0.737263\pi\)
−0.678255 + 0.734827i \(0.737263\pi\)
\(678\) 0 0
\(679\) −20051.3 −1.13328
\(680\) 3846.14 0.216901
\(681\) 0 0
\(682\) −24897.4 −1.39791
\(683\) −854.033 −0.0478458 −0.0239229 0.999714i \(-0.507616\pi\)
−0.0239229 + 0.999714i \(0.507616\pi\)
\(684\) 0 0
\(685\) −6223.97 −0.347161
\(686\) 26435.5 1.47130
\(687\) 0 0
\(688\) 13415.6 0.743410
\(689\) 3032.21 0.167660
\(690\) 0 0
\(691\) −25872.2 −1.42435 −0.712173 0.702004i \(-0.752289\pi\)
−0.712173 + 0.702004i \(0.752289\pi\)
\(692\) 36143.1 1.98548
\(693\) 0 0
\(694\) −26690.9 −1.45990
\(695\) 14268.9 0.778775
\(696\) 0 0
\(697\) 15164.9 0.824119
\(698\) 38574.2 2.09177
\(699\) 0 0
\(700\) −2693.62 −0.145442
\(701\) 9573.42 0.515810 0.257905 0.966170i \(-0.416968\pi\)
0.257905 + 0.966170i \(0.416968\pi\)
\(702\) 0 0
\(703\) −1705.47 −0.0914979
\(704\) −33314.7 −1.78351
\(705\) 0 0
\(706\) −12752.3 −0.679803
\(707\) −3770.49 −0.200571
\(708\) 0 0
\(709\) −13262.4 −0.702511 −0.351256 0.936280i \(-0.614245\pi\)
−0.351256 + 0.936280i \(0.614245\pi\)
\(710\) 8372.71 0.442567
\(711\) 0 0
\(712\) −4678.75 −0.246269
\(713\) 16341.2 0.858321
\(714\) 0 0
\(715\) −4694.03 −0.245520
\(716\) −1159.71 −0.0605313
\(717\) 0 0
\(718\) −50601.7 −2.63014
\(719\) −12144.1 −0.629900 −0.314950 0.949108i \(-0.601988\pi\)
−0.314950 + 0.949108i \(0.601988\pi\)
\(720\) 0 0
\(721\) −6459.53 −0.333655
\(722\) 1510.69 0.0778698
\(723\) 0 0
\(724\) 2142.15 0.109962
\(725\) 199.258 0.0102072
\(726\) 0 0
\(727\) 34831.7 1.77694 0.888471 0.458934i \(-0.151768\pi\)
0.888471 + 0.458934i \(0.151768\pi\)
\(728\) −1381.03 −0.0703081
\(729\) 0 0
\(730\) 15322.4 0.776858
\(731\) 32870.9 1.66316
\(732\) 0 0
\(733\) 11266.2 0.567704 0.283852 0.958868i \(-0.408388\pi\)
0.283852 + 0.958868i \(0.408388\pi\)
\(734\) −42300.6 −2.12717
\(735\) 0 0
\(736\) 34559.0 1.73079
\(737\) −30061.0 −1.50246
\(738\) 0 0
\(739\) 33847.1 1.68482 0.842412 0.538834i \(-0.181135\pi\)
0.842412 + 0.538834i \(0.181135\pi\)
\(740\) −4269.05 −0.212072
\(741\) 0 0
\(742\) −7459.14 −0.369048
\(743\) 6060.32 0.299235 0.149618 0.988744i \(-0.452196\pi\)
0.149618 + 0.988744i \(0.452196\pi\)
\(744\) 0 0
\(745\) −13489.6 −0.663383
\(746\) −3368.80 −0.165336
\(747\) 0 0
\(748\) −56341.0 −2.75405
\(749\) −7674.38 −0.374387
\(750\) 0 0
\(751\) −8585.76 −0.417176 −0.208588 0.978004i \(-0.566887\pi\)
−0.208588 + 0.978004i \(0.566887\pi\)
\(752\) −19240.3 −0.933009
\(753\) 0 0
\(754\) 642.695 0.0310419
\(755\) −10007.3 −0.482386
\(756\) 0 0
\(757\) 1170.67 0.0562071 0.0281035 0.999605i \(-0.491053\pi\)
0.0281035 + 0.999605i \(0.491053\pi\)
\(758\) −46282.6 −2.21776
\(759\) 0 0
\(760\) 601.089 0.0286892
\(761\) −1595.31 −0.0759923 −0.0379961 0.999278i \(-0.512097\pi\)
−0.0379961 + 0.999278i \(0.512097\pi\)
\(762\) 0 0
\(763\) 10436.0 0.495164
\(764\) 28453.0 1.34737
\(765\) 0 0
\(766\) 28654.8 1.35162
\(767\) −677.770 −0.0319072
\(768\) 0 0
\(769\) 29719.0 1.39362 0.696810 0.717255i \(-0.254602\pi\)
0.696810 + 0.717255i \(0.254602\pi\)
\(770\) 11547.2 0.540430
\(771\) 0 0
\(772\) 40736.0 1.89912
\(773\) 27460.3 1.27772 0.638860 0.769323i \(-0.279406\pi\)
0.638860 + 0.769323i \(0.279406\pi\)
\(774\) 0 0
\(775\) −3052.90 −0.141501
\(776\) 11200.4 0.518131
\(777\) 0 0
\(778\) −3760.27 −0.173280
\(779\) 2370.03 0.109005
\(780\) 0 0
\(781\) −19495.8 −0.893234
\(782\) 68079.8 3.11321
\(783\) 0 0
\(784\) 10652.7 0.485271
\(785\) 10714.7 0.487165
\(786\) 0 0
\(787\) −30349.6 −1.37464 −0.687322 0.726353i \(-0.741214\pi\)
−0.687322 + 0.726353i \(0.741214\pi\)
\(788\) −29349.4 −1.32681
\(789\) 0 0
\(790\) 18910.6 0.851658
\(791\) −21018.0 −0.944773
\(792\) 0 0
\(793\) −10473.4 −0.469008
\(794\) −44556.1 −1.99148
\(795\) 0 0
\(796\) −41395.6 −1.84325
\(797\) −20761.2 −0.922711 −0.461355 0.887215i \(-0.652637\pi\)
−0.461355 + 0.887215i \(0.652637\pi\)
\(798\) 0 0
\(799\) −47142.5 −2.08734
\(800\) −6456.40 −0.285335
\(801\) 0 0
\(802\) 5598.62 0.246501
\(803\) −35678.1 −1.56794
\(804\) 0 0
\(805\) −7578.89 −0.331827
\(806\) −9846.99 −0.430329
\(807\) 0 0
\(808\) 2106.15 0.0917005
\(809\) −14067.6 −0.611362 −0.305681 0.952134i \(-0.598884\pi\)
−0.305681 + 0.952134i \(0.598884\pi\)
\(810\) 0 0
\(811\) −22623.9 −0.979571 −0.489786 0.871843i \(-0.662925\pi\)
−0.489786 + 0.871843i \(0.662925\pi\)
\(812\) −858.757 −0.0371139
\(813\) 0 0
\(814\) 18300.9 0.788016
\(815\) −18480.8 −0.794300
\(816\) 0 0
\(817\) 5137.18 0.219984
\(818\) −43135.1 −1.84374
\(819\) 0 0
\(820\) 5932.54 0.252650
\(821\) −21609.9 −0.918626 −0.459313 0.888275i \(-0.651904\pi\)
−0.459313 + 0.888275i \(0.651904\pi\)
\(822\) 0 0
\(823\) −25.9937 −0.00110095 −0.000550476 1.00000i \(-0.500175\pi\)
−0.000550476 1.00000i \(0.500175\pi\)
\(824\) 3608.20 0.152546
\(825\) 0 0
\(826\) 1667.29 0.0702331
\(827\) 12550.9 0.527735 0.263867 0.964559i \(-0.415002\pi\)
0.263867 + 0.964559i \(0.415002\pi\)
\(828\) 0 0
\(829\) −27280.3 −1.14293 −0.571463 0.820628i \(-0.693624\pi\)
−0.571463 + 0.820628i \(0.693624\pi\)
\(830\) −19060.0 −0.797086
\(831\) 0 0
\(832\) −13176.0 −0.549035
\(833\) 26101.1 1.08565
\(834\) 0 0
\(835\) 9686.00 0.401434
\(836\) −8805.18 −0.364274
\(837\) 0 0
\(838\) 43819.1 1.80633
\(839\) −36581.3 −1.50528 −0.752638 0.658434i \(-0.771219\pi\)
−0.752638 + 0.658434i \(0.771219\pi\)
\(840\) 0 0
\(841\) −24325.5 −0.997395
\(842\) −44771.3 −1.83245
\(843\) 0 0
\(844\) −5131.51 −0.209282
\(845\) 9128.50 0.371633
\(846\) 0 0
\(847\) −11811.0 −0.479139
\(848\) −7807.93 −0.316186
\(849\) 0 0
\(850\) −12718.8 −0.513238
\(851\) −12011.6 −0.483846
\(852\) 0 0
\(853\) 24834.5 0.996855 0.498427 0.866931i \(-0.333911\pi\)
0.498427 + 0.866931i \(0.333911\pi\)
\(854\) 25764.4 1.03236
\(855\) 0 0
\(856\) 4286.80 0.171168
\(857\) −37743.1 −1.50441 −0.752205 0.658930i \(-0.771009\pi\)
−0.752205 + 0.658930i \(0.771009\pi\)
\(858\) 0 0
\(859\) 18336.6 0.728330 0.364165 0.931334i \(-0.381354\pi\)
0.364165 + 0.931334i \(0.381354\pi\)
\(860\) 12859.2 0.509877
\(861\) 0 0
\(862\) 53219.3 2.10285
\(863\) 36481.1 1.43897 0.719484 0.694509i \(-0.244378\pi\)
0.719484 + 0.694509i \(0.244378\pi\)
\(864\) 0 0
\(865\) −18998.7 −0.746793
\(866\) −60727.0 −2.38290
\(867\) 0 0
\(868\) 13157.4 0.514505
\(869\) −44033.3 −1.71890
\(870\) 0 0
\(871\) −11889.2 −0.462514
\(872\) −5829.44 −0.226387
\(873\) 0 0
\(874\) 10639.8 0.411780
\(875\) 1415.91 0.0547044
\(876\) 0 0
\(877\) 24426.3 0.940498 0.470249 0.882534i \(-0.344164\pi\)
0.470249 + 0.882534i \(0.344164\pi\)
\(878\) 7860.97 0.302158
\(879\) 0 0
\(880\) 12087.1 0.463019
\(881\) −50770.3 −1.94154 −0.970768 0.240018i \(-0.922847\pi\)
−0.970768 + 0.240018i \(0.922847\pi\)
\(882\) 0 0
\(883\) −760.639 −0.0289893 −0.0144946 0.999895i \(-0.504614\pi\)
−0.0144946 + 0.999895i \(0.504614\pi\)
\(884\) −22283.0 −0.847804
\(885\) 0 0
\(886\) −76243.0 −2.89101
\(887\) 15947.7 0.603688 0.301844 0.953357i \(-0.402398\pi\)
0.301844 + 0.953357i \(0.402398\pi\)
\(888\) 0 0
\(889\) −10912.7 −0.411698
\(890\) 15472.2 0.582730
\(891\) 0 0
\(892\) −5322.10 −0.199772
\(893\) −7367.61 −0.276089
\(894\) 0 0
\(895\) 609.605 0.0227674
\(896\) 9009.96 0.335939
\(897\) 0 0
\(898\) −34012.2 −1.26392
\(899\) −973.303 −0.0361084
\(900\) 0 0
\(901\) −19130.9 −0.707374
\(902\) −25432.0 −0.938795
\(903\) 0 0
\(904\) 11740.4 0.431947
\(905\) −1126.03 −0.0413596
\(906\) 0 0
\(907\) 36524.4 1.33712 0.668562 0.743656i \(-0.266910\pi\)
0.668562 + 0.743656i \(0.266910\pi\)
\(908\) 4357.87 0.159274
\(909\) 0 0
\(910\) 4566.94 0.166365
\(911\) −27341.7 −0.994370 −0.497185 0.867645i \(-0.665633\pi\)
−0.497185 + 0.867645i \(0.665633\pi\)
\(912\) 0 0
\(913\) 44381.1 1.60876
\(914\) 27313.4 0.988455
\(915\) 0 0
\(916\) −25967.1 −0.936655
\(917\) 11685.0 0.420798
\(918\) 0 0
\(919\) 1790.82 0.0642804 0.0321402 0.999483i \(-0.489768\pi\)
0.0321402 + 0.999483i \(0.489768\pi\)
\(920\) 4233.47 0.151710
\(921\) 0 0
\(922\) −36826.0 −1.31540
\(923\) −7710.65 −0.274972
\(924\) 0 0
\(925\) 2244.04 0.0797660
\(926\) −51334.4 −1.82176
\(927\) 0 0
\(928\) −2058.38 −0.0728121
\(929\) −38812.1 −1.37070 −0.685352 0.728212i \(-0.740352\pi\)
−0.685352 + 0.728212i \(0.740352\pi\)
\(930\) 0 0
\(931\) 4079.17 0.143598
\(932\) 34647.9 1.21774
\(933\) 0 0
\(934\) −4357.68 −0.152663
\(935\) 29615.8 1.03587
\(936\) 0 0
\(937\) −29469.3 −1.02745 −0.513725 0.857955i \(-0.671735\pi\)
−0.513725 + 0.857955i \(0.671735\pi\)
\(938\) 29247.0 1.01807
\(939\) 0 0
\(940\) −18442.3 −0.639915
\(941\) 9329.66 0.323207 0.161604 0.986856i \(-0.448333\pi\)
0.161604 + 0.986856i \(0.448333\pi\)
\(942\) 0 0
\(943\) 16692.1 0.576425
\(944\) 1745.25 0.0601729
\(945\) 0 0
\(946\) −55125.5 −1.89459
\(947\) 38365.3 1.31648 0.658240 0.752808i \(-0.271301\pi\)
0.658240 + 0.752808i \(0.271301\pi\)
\(948\) 0 0
\(949\) −14110.8 −0.482671
\(950\) −1987.75 −0.0678853
\(951\) 0 0
\(952\) 8713.24 0.296636
\(953\) −39507.7 −1.34290 −0.671448 0.741052i \(-0.734327\pi\)
−0.671448 + 0.741052i \(0.734327\pi\)
\(954\) 0 0
\(955\) −14956.4 −0.506782
\(956\) −48269.3 −1.63299
\(957\) 0 0
\(958\) 28573.8 0.963651
\(959\) −14100.1 −0.474782
\(960\) 0 0
\(961\) −14878.6 −0.499434
\(962\) 7238.04 0.242582
\(963\) 0 0
\(964\) −14972.0 −0.500223
\(965\) −21413.0 −0.714310
\(966\) 0 0
\(967\) −19476.8 −0.647707 −0.323854 0.946107i \(-0.604979\pi\)
−0.323854 + 0.946107i \(0.604979\pi\)
\(968\) 6597.46 0.219060
\(969\) 0 0
\(970\) −37038.6 −1.22602
\(971\) 22849.2 0.755166 0.377583 0.925976i \(-0.376755\pi\)
0.377583 + 0.925976i \(0.376755\pi\)
\(972\) 0 0
\(973\) 32325.4 1.06506
\(974\) −17299.9 −0.569123
\(975\) 0 0
\(976\) 26969.1 0.884488
\(977\) 52540.4 1.72049 0.860243 0.509884i \(-0.170312\pi\)
0.860243 + 0.509884i \(0.170312\pi\)
\(978\) 0 0
\(979\) −36027.0 −1.17613
\(980\) 10210.8 0.332829
\(981\) 0 0
\(982\) 15804.0 0.513569
\(983\) −14871.4 −0.482527 −0.241263 0.970460i \(-0.577562\pi\)
−0.241263 + 0.970460i \(0.577562\pi\)
\(984\) 0 0
\(985\) 15427.6 0.499049
\(986\) −4054.92 −0.130969
\(987\) 0 0
\(988\) −3482.47 −0.112138
\(989\) 36181.2 1.16329
\(990\) 0 0
\(991\) −2772.58 −0.0888738 −0.0444369 0.999012i \(-0.514149\pi\)
−0.0444369 + 0.999012i \(0.514149\pi\)
\(992\) 31537.3 1.00938
\(993\) 0 0
\(994\) 18968.0 0.605259
\(995\) 21759.7 0.693296
\(996\) 0 0
\(997\) −10476.8 −0.332803 −0.166402 0.986058i \(-0.553215\pi\)
−0.166402 + 0.986058i \(0.553215\pi\)
\(998\) −19035.5 −0.603766
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 855.4.a.h.1.3 3
3.2 odd 2 285.4.a.c.1.1 3
15.14 odd 2 1425.4.a.h.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
285.4.a.c.1.1 3 3.2 odd 2
855.4.a.h.1.3 3 1.1 even 1 trivial
1425.4.a.h.1.3 3 15.14 odd 2