gp: [N,k,chi] = [855,3,Mod(379,855)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(855, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 1, 1]))
N = Newforms(chi, 3, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("855.379");
S:= CuspForms(chi, 3);
N := Newforms(S);
Newform invariants
sage: traces = [2,0,0,-8,9]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of β = 1 2 ( 1 + − 19 ) \beta = \frac{1}{2}(1 + \sqrt{-19}) β = 2 1 ( 1 + − 1 9 ) .
We also show the integral q q q -expansion of the trace form .
Character values
We give the values of χ \chi χ on generators for ( Z / 855 Z ) × \left(\mathbb{Z}/855\mathbb{Z}\right)^\times ( Z / 8 5 5 Z ) × .
n n n
172 172 1 7 2
191 191 1 9 1
496 496 4 9 6
χ ( n ) \chi(n) χ ( n )
− 1 -1 − 1
1 1 1
− 1 -1 − 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 3 n e w ( 855 , [ χ ] ) S_{3}^{\mathrm{new}}(855, [\chi]) S 3 n e w ( 8 5 5 , [ χ ] ) :
T 2 T_{2} T 2
T2
T 11 − 3 T_{11} - 3 T 1 1 − 3
T11 - 3
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 2 T^{2} T 2
T^2
3 3 3
T 2 T^{2} T 2
T^2
5 5 5
T 2 − 9 T + 25 T^{2} - 9T + 25 T 2 − 9 T + 2 5
T^2 - 9*T + 25
7 7 7
T 2 + 171 T^{2} + 171 T 2 + 1 7 1
T^2 + 171
11 11 1 1
( T − 3 ) 2 (T - 3)^{2} ( T − 3 ) 2
(T - 3)^2
13 13 1 3
T 2 T^{2} T 2
T^2
17 17 1 7
T 2 + 931 T^{2} + 931 T 2 + 9 3 1
T^2 + 931
19 19 1 9
( T + 19 ) 2 (T + 19)^{2} ( T + 1 9 ) 2
(T + 19)^2
23 23 2 3
T 2 + 1216 T^{2} + 1216 T 2 + 1 2 1 6
T^2 + 1216
29 29 2 9
T 2 T^{2} T 2
T^2
31 31 3 1
T 2 T^{2} T 2
T^2
37 37 3 7
T 2 T^{2} T 2
T^2
41 41 4 1
T 2 T^{2} T 2
T^2
43 43 4 3
T 2 + 171 T^{2} + 171 T 2 + 1 7 1
T^2 + 171
47 47 4 7
T 2 + 3211 T^{2} + 3211 T 2 + 3 2 1 1
T^2 + 3211
53 53 5 3
T 2 T^{2} T 2
T^2
59 59 5 9
T 2 T^{2} T 2
T^2
61 61 6 1
( T + 103 ) 2 (T + 103)^{2} ( T + 1 0 3 ) 2
(T + 103)^2
67 67 6 7
T 2 T^{2} T 2
T^2
71 71 7 1
T 2 T^{2} T 2
T^2
73 73 7 3
T 2 + 20691 T^{2} + 20691 T 2 + 2 0 6 9 1
T^2 + 20691
79 79 7 9
T 2 T^{2} T 2
T^2
83 83 8 3
T 2 + 19456 T^{2} + 19456 T 2 + 1 9 4 5 6
T^2 + 19456
89 89 8 9
T 2 T^{2} T 2
T^2
97 97 9 7
T 2 T^{2} T 2
T^2
show more
show less