Properties

Label 855.3.g.a
Level 855855
Weight 33
Character orbit 855.g
Analytic conductor 23.29723.297
Analytic rank 00
Dimension 22
CM discriminant -19
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [855,3,Mod(379,855)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(855, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("855.379"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: N N == 855=32519 855 = 3^{2} \cdot 5 \cdot 19
Weight: k k == 3 3
Character orbit: [χ][\chi] == 855.g (of order 22, degree 11, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,-8,9] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 23.297062602823.2970626028
Analytic rank: 00
Dimension: 22
Coefficient field: Q(19)\Q(\sqrt{-19})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x2x+5 x^{2} - x + 5 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 95)
Sato-Tate group: U(1)[D2]\mathrm{U}(1)[D_{2}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of β=12(1+19)\beta = \frac{1}{2}(1 + \sqrt{-19}). We also show the integral qq-expansion of the trace form.

f(q)f(q) == q4q4+(β+5)q5+(6β+3)q7+3q11+16q16+(14β+7)q1719q19+(4β20)q20+(16β8)q23+(9β+20)q25+(24β12)q28++(19β95)q95+O(q100) q - 4 q^{4} + ( - \beta + 5) q^{5} + ( - 6 \beta + 3) q^{7} + 3 q^{11} + 16 q^{16} + ( - 14 \beta + 7) q^{17} - 19 q^{19} + (4 \beta - 20) q^{20} + (16 \beta - 8) q^{23} + ( - 9 \beta + 20) q^{25} + (24 \beta - 12) q^{28}+ \cdots + (19 \beta - 95) q^{95}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q8q4+9q5+6q11+32q1638q1936q20+31q2557q3524q44244q49+27q55206q61128q64+152q76+144q80133q85171q95+O(q100) 2 q - 8 q^{4} + 9 q^{5} + 6 q^{11} + 32 q^{16} - 38 q^{19} - 36 q^{20} + 31 q^{25} - 57 q^{35} - 24 q^{44} - 244 q^{49} + 27 q^{55} - 206 q^{61} - 128 q^{64} + 152 q^{76} + 144 q^{80} - 133 q^{85} - 171 q^{95}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/855Z)×\left(\mathbb{Z}/855\mathbb{Z}\right)^\times.

nn 172172 191191 496496
χ(n)\chi(n) 1-1 11 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
379.1
0.500000 + 2.17945i
0.500000 2.17945i
0 0 −4.00000 4.50000 2.17945i 0 13.0767i 0 0 0
379.2 0 0 −4.00000 4.50000 + 2.17945i 0 13.0767i 0 0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
19.b odd 2 1 CM by Q(19)\Q(\sqrt{-19})
5.b even 2 1 inner
95.d odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 855.3.g.a 2
3.b odd 2 1 95.3.d.a 2
5.b even 2 1 inner 855.3.g.a 2
15.d odd 2 1 95.3.d.a 2
15.e even 4 2 475.3.c.c 2
19.b odd 2 1 CM 855.3.g.a 2
57.d even 2 1 95.3.d.a 2
95.d odd 2 1 inner 855.3.g.a 2
285.b even 2 1 95.3.d.a 2
285.j odd 4 2 475.3.c.c 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
95.3.d.a 2 3.b odd 2 1
95.3.d.a 2 15.d odd 2 1
95.3.d.a 2 57.d even 2 1
95.3.d.a 2 285.b even 2 1
475.3.c.c 2 15.e even 4 2
475.3.c.c 2 285.j odd 4 2
855.3.g.a 2 1.a even 1 1 trivial
855.3.g.a 2 5.b even 2 1 inner
855.3.g.a 2 19.b odd 2 1 CM
855.3.g.a 2 95.d odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S3new(855,[χ])S_{3}^{\mathrm{new}}(855, [\chi]):

T2 T_{2} Copy content Toggle raw display
T113 T_{11} - 3 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T2 T^{2} Copy content Toggle raw display
55 T29T+25 T^{2} - 9T + 25 Copy content Toggle raw display
77 T2+171 T^{2} + 171 Copy content Toggle raw display
1111 (T3)2 (T - 3)^{2} Copy content Toggle raw display
1313 T2 T^{2} Copy content Toggle raw display
1717 T2+931 T^{2} + 931 Copy content Toggle raw display
1919 (T+19)2 (T + 19)^{2} Copy content Toggle raw display
2323 T2+1216 T^{2} + 1216 Copy content Toggle raw display
2929 T2 T^{2} Copy content Toggle raw display
3131 T2 T^{2} Copy content Toggle raw display
3737 T2 T^{2} Copy content Toggle raw display
4141 T2 T^{2} Copy content Toggle raw display
4343 T2+171 T^{2} + 171 Copy content Toggle raw display
4747 T2+3211 T^{2} + 3211 Copy content Toggle raw display
5353 T2 T^{2} Copy content Toggle raw display
5959 T2 T^{2} Copy content Toggle raw display
6161 (T+103)2 (T + 103)^{2} Copy content Toggle raw display
6767 T2 T^{2} Copy content Toggle raw display
7171 T2 T^{2} Copy content Toggle raw display
7373 T2+20691 T^{2} + 20691 Copy content Toggle raw display
7979 T2 T^{2} Copy content Toggle raw display
8383 T2+19456 T^{2} + 19456 Copy content Toggle raw display
8989 T2 T^{2} Copy content Toggle raw display
9797 T2 T^{2} Copy content Toggle raw display
show more
show less