Properties

Label 855.2.dl.a.307.8
Level $855$
Weight $2$
Character 855.307
Analytic conductor $6.827$
Analytic rank $0$
Dimension $96$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [855,2,Mod(127,855)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(855, base_ring=CyclotomicField(36)) chi = DirichletCharacter(H, H._module([0, 9, 10])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("855.127"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 855 = 3^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 855.dl (of order \(36\), degree \(12\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [96,12,0,0,12,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.82720937282\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(8\) over \(\Q(\zeta_{36})\)
Twist minimal: no (minimal twist has level 95)
Sato-Tate group: $\mathrm{SU}(2)[C_{36}]$

Embedding invariants

Embedding label 307.8
Character \(\chi\) \(=\) 855.307
Dual form 855.2.dl.a.298.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.46340 - 0.215520i) q^{2} +(4.05227 - 0.714525i) q^{4} +(1.91831 - 1.14895i) q^{5} +(0.801323 - 2.99058i) q^{7} +(5.05128 - 1.35349i) q^{8} +(4.47794 - 3.24376i) q^{10} +(-2.71405 + 4.70087i) q^{11} +(-0.828132 - 1.77593i) q^{13} +(1.32945 - 7.53969i) q^{14} +(4.41834 - 1.60814i) q^{16} +(0.146177 + 1.67081i) q^{17} +(-2.83929 + 3.30733i) q^{19} +(6.95256 - 6.02655i) q^{20} +(-5.67266 + 12.1651i) q^{22} +(-1.93732 - 1.35652i) q^{23} +(2.35981 - 4.40809i) q^{25} +(-2.42277 - 4.19636i) q^{26} +(1.11034 - 12.6912i) q^{28} +(0.236581 - 0.198515i) q^{29} +(-3.68657 + 2.12844i) q^{31} +(1.05854 - 0.493605i) q^{32} +(0.720185 + 4.08437i) q^{34} +(-1.89885 - 6.65753i) q^{35} +(3.08090 - 3.08090i) q^{37} +(-6.28150 + 8.75921i) q^{38} +(8.13481 - 8.40008i) q^{40} +(3.63501 + 9.98710i) q^{41} +(3.28576 + 4.69255i) q^{43} +(-7.63918 + 20.9885i) q^{44} +(-5.06474 - 2.92413i) q^{46} +(2.92349 + 0.255773i) q^{47} +(-2.23925 - 1.29283i) q^{49} +(4.86313 - 11.3675i) q^{50} +(-4.62477 - 6.60485i) q^{52} +(3.97255 - 5.67339i) q^{53} +(0.194697 + 12.1360i) q^{55} -16.1908i q^{56} +(0.540010 - 0.540010i) q^{58} +(1.92632 + 1.61638i) q^{59} +(1.00075 + 5.67553i) q^{61} +(-8.62279 + 6.03774i) q^{62} +(-5.64270 + 3.25782i) q^{64} +(-3.62908 - 2.45530i) q^{65} +(0.197751 - 2.26031i) q^{67} +(1.78619 + 6.66614i) q^{68} +(-6.11245 - 15.9909i) q^{70} +(-8.76383 - 1.54530i) q^{71} +(5.20427 - 11.1606i) q^{73} +(6.92550 - 8.25349i) q^{74} +(-9.14239 + 15.4310i) q^{76} +(11.8835 + 11.8835i) q^{77} +(14.4810 - 5.27064i) q^{79} +(6.62806 - 8.16138i) q^{80} +(11.1069 + 23.8188i) q^{82} +(-3.66649 - 0.982433i) q^{83} +(2.20010 + 3.03718i) q^{85} +(9.10547 + 10.8515i) q^{86} +(-7.34685 + 27.4188i) q^{88} +(-3.79487 - 1.38122i) q^{89} +(-5.97467 + 1.05350i) q^{91} +(-8.81981 - 4.11274i) q^{92} +7.25686 q^{94} +(-1.64666 + 9.60669i) q^{95} +(-13.4973 + 1.18086i) q^{97} +(-5.79481 - 2.70216i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q + 12 q^{2} + 12 q^{5} + 18 q^{8} - 12 q^{10} + 12 q^{11} - 12 q^{13} + 12 q^{16} + 30 q^{17} + 84 q^{20} - 24 q^{22} + 12 q^{25} + 48 q^{26} - 36 q^{31} - 18 q^{32} + 30 q^{35} - 54 q^{38} + 54 q^{40}+ \cdots + 90 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/855\mathbb{Z}\right)^\times\).

\(n\) \(172\) \(191\) \(496\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(1\) \(e\left(\frac{13}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.46340 0.215520i 1.74189 0.152395i 0.828634 0.559790i \(-0.189118\pi\)
0.913252 + 0.407395i \(0.133563\pi\)
\(3\) 0 0
\(4\) 4.05227 0.714525i 2.02614 0.357263i
\(5\) 1.91831 1.14895i 0.857894 0.513827i
\(6\) 0 0
\(7\) 0.801323 2.99058i 0.302871 1.13033i −0.631891 0.775058i \(-0.717721\pi\)
0.934762 0.355274i \(-0.115613\pi\)
\(8\) 5.05128 1.35349i 1.78590 0.478529i
\(9\) 0 0
\(10\) 4.47794 3.24376i 1.41605 1.02577i
\(11\) −2.71405 + 4.70087i −0.818316 + 1.41737i 0.0886055 + 0.996067i \(0.471759\pi\)
−0.906922 + 0.421299i \(0.861574\pi\)
\(12\) 0 0
\(13\) −0.828132 1.77593i −0.229682 0.492556i 0.757364 0.652993i \(-0.226487\pi\)
−0.987046 + 0.160438i \(0.948709\pi\)
\(14\) 1.32945 7.53969i 0.355311 2.01507i
\(15\) 0 0
\(16\) 4.41834 1.60814i 1.10458 0.402036i
\(17\) 0.146177 + 1.67081i 0.0354531 + 0.405231i 0.993099 + 0.117282i \(0.0374180\pi\)
−0.957646 + 0.287950i \(0.907026\pi\)
\(18\) 0 0
\(19\) −2.83929 + 3.30733i −0.651377 + 0.758754i
\(20\) 6.95256 6.02655i 1.55464 1.34758i
\(21\) 0 0
\(22\) −5.67266 + 12.1651i −1.20941 + 2.59360i
\(23\) −1.93732 1.35652i −0.403958 0.282855i 0.353888 0.935288i \(-0.384859\pi\)
−0.757846 + 0.652433i \(0.773748\pi\)
\(24\) 0 0
\(25\) 2.35981 4.40809i 0.471963 0.881618i
\(26\) −2.42277 4.19636i −0.475144 0.822973i
\(27\) 0 0
\(28\) 1.11034 12.6912i 0.209834 2.39841i
\(29\) 0.236581 0.198515i 0.0439320 0.0368633i −0.620557 0.784161i \(-0.713094\pi\)
0.664489 + 0.747298i \(0.268649\pi\)
\(30\) 0 0
\(31\) −3.68657 + 2.12844i −0.662128 + 0.382280i −0.793087 0.609108i \(-0.791528\pi\)
0.130959 + 0.991388i \(0.458194\pi\)
\(32\) 1.05854 0.493605i 0.187125 0.0872578i
\(33\) 0 0
\(34\) 0.720185 + 4.08437i 0.123511 + 0.700464i
\(35\) −1.89885 6.65753i −0.320964 1.12533i
\(36\) 0 0
\(37\) 3.08090 3.08090i 0.506497 0.506497i −0.406952 0.913449i \(-0.633409\pi\)
0.913449 + 0.406952i \(0.133409\pi\)
\(38\) −6.28150 + 8.75921i −1.01899 + 1.42093i
\(39\) 0 0
\(40\) 8.13481 8.40008i 1.28623 1.32817i
\(41\) 3.63501 + 9.98710i 0.567693 + 1.55972i 0.808097 + 0.589050i \(0.200498\pi\)
−0.240404 + 0.970673i \(0.577280\pi\)
\(42\) 0 0
\(43\) 3.28576 + 4.69255i 0.501073 + 0.715607i 0.987413 0.158163i \(-0.0505572\pi\)
−0.486340 + 0.873770i \(0.661668\pi\)
\(44\) −7.63918 + 20.9885i −1.15165 + 3.16413i
\(45\) 0 0
\(46\) −5.06474 2.92413i −0.746756 0.431139i
\(47\) 2.92349 + 0.255773i 0.426435 + 0.0373083i 0.298354 0.954455i \(-0.403562\pi\)
0.128082 + 0.991764i \(0.459118\pi\)
\(48\) 0 0
\(49\) −2.23925 1.29283i −0.319893 0.184691i
\(50\) 4.86313 11.3675i 0.687751 1.60760i
\(51\) 0 0
\(52\) −4.62477 6.60485i −0.641340 0.915928i
\(53\) 3.97255 5.67339i 0.545672 0.779300i −0.447707 0.894180i \(-0.647759\pi\)
0.993379 + 0.114880i \(0.0366482\pi\)
\(54\) 0 0
\(55\) 0.194697 + 12.1360i 0.0262529 + 1.63642i
\(56\) 16.1908i 2.16359i
\(57\) 0 0
\(58\) 0.540010 0.540010i 0.0709068 0.0709068i
\(59\) 1.92632 + 1.61638i 0.250786 + 0.210435i 0.759511 0.650495i \(-0.225438\pi\)
−0.508725 + 0.860929i \(0.669883\pi\)
\(60\) 0 0
\(61\) 1.00075 + 5.67553i 0.128133 + 0.726677i 0.979398 + 0.201941i \(0.0647249\pi\)
−0.851265 + 0.524736i \(0.824164\pi\)
\(62\) −8.62279 + 6.03774i −1.09509 + 0.766794i
\(63\) 0 0
\(64\) −5.64270 + 3.25782i −0.705338 + 0.407227i
\(65\) −3.62908 2.45530i −0.450132 0.304543i
\(66\) 0 0
\(67\) 0.197751 2.26031i 0.0241592 0.276141i −0.974501 0.224385i \(-0.927963\pi\)
0.998660 0.0517558i \(-0.0164817\pi\)
\(68\) 1.78619 + 6.66614i 0.216607 + 0.808388i
\(69\) 0 0
\(70\) −6.11245 15.9909i −0.730578 1.91128i
\(71\) −8.76383 1.54530i −1.04008 0.183393i −0.372574 0.928002i \(-0.621525\pi\)
−0.667501 + 0.744609i \(0.732636\pi\)
\(72\) 0 0
\(73\) 5.20427 11.1606i 0.609114 1.30625i −0.323791 0.946129i \(-0.604958\pi\)
0.932906 0.360121i \(-0.117265\pi\)
\(74\) 6.92550 8.25349i 0.805073 0.959448i
\(75\) 0 0
\(76\) −9.14239 + 15.4310i −1.04870 + 1.77005i
\(77\) 11.8835 + 11.8835i 1.35425 + 1.35425i
\(78\) 0 0
\(79\) 14.4810 5.27064i 1.62924 0.592993i 0.644125 0.764920i \(-0.277221\pi\)
0.985110 + 0.171927i \(0.0549993\pi\)
\(80\) 6.62806 8.16138i 0.741039 0.912470i
\(81\) 0 0
\(82\) 11.1069 + 23.8188i 1.22655 + 2.63035i
\(83\) −3.66649 0.982433i −0.402449 0.107836i 0.0519158 0.998651i \(-0.483467\pi\)
−0.454365 + 0.890815i \(0.650134\pi\)
\(84\) 0 0
\(85\) 2.20010 + 3.03718i 0.238634 + 0.329428i
\(86\) 9.10547 + 10.8515i 0.981868 + 1.17014i
\(87\) 0 0
\(88\) −7.34685 + 27.4188i −0.783177 + 2.92286i
\(89\) −3.79487 1.38122i −0.402256 0.146409i 0.132966 0.991121i \(-0.457550\pi\)
−0.535222 + 0.844711i \(0.679772\pi\)
\(90\) 0 0
\(91\) −5.97467 + 1.05350i −0.626315 + 0.110436i
\(92\) −8.81981 4.11274i −0.919529 0.428783i
\(93\) 0 0
\(94\) 7.25686 0.748488
\(95\) −1.64666 + 9.60669i −0.168943 + 0.985626i
\(96\) 0 0
\(97\) −13.4973 + 1.18086i −1.37044 + 0.119898i −0.748484 0.663153i \(-0.769218\pi\)
−0.621957 + 0.783051i \(0.713662\pi\)
\(98\) −5.79481 2.70216i −0.585364 0.272960i
\(99\) 0 0
\(100\) 6.41292 19.5489i 0.641292 1.95489i
\(101\) −13.6892 4.98245i −1.36212 0.495772i −0.445413 0.895325i \(-0.646943\pi\)
−0.916710 + 0.399553i \(0.869165\pi\)
\(102\) 0 0
\(103\) −4.84062 + 1.29704i −0.476961 + 0.127801i −0.489287 0.872123i \(-0.662743\pi\)
0.0123263 + 0.999924i \(0.496076\pi\)
\(104\) −6.58682 7.84987i −0.645891 0.769743i
\(105\) 0 0
\(106\) 8.56326 14.8320i 0.831737 1.44061i
\(107\) −17.1307 4.59016i −1.65609 0.443748i −0.694781 0.719221i \(-0.744499\pi\)
−0.961309 + 0.275473i \(0.911165\pi\)
\(108\) 0 0
\(109\) 0.821327 4.65798i 0.0786689 0.446154i −0.919875 0.392211i \(-0.871710\pi\)
0.998544 0.0539422i \(-0.0171787\pi\)
\(110\) 3.09517 + 29.8539i 0.295113 + 2.84646i
\(111\) 0 0
\(112\) −1.26876 14.5020i −0.119887 1.37031i
\(113\) 7.55406 + 7.55406i 0.710626 + 0.710626i 0.966666 0.256040i \(-0.0824180\pi\)
−0.256040 + 0.966666i \(0.582418\pi\)
\(114\) 0 0
\(115\) −5.27495 0.376345i −0.491892 0.0350943i
\(116\) 0.816847 0.973481i 0.0758424 0.0903854i
\(117\) 0 0
\(118\) 5.09367 + 3.56662i 0.468910 + 0.328334i
\(119\) 5.11382 + 0.901705i 0.468783 + 0.0826592i
\(120\) 0 0
\(121\) −9.23212 15.9905i −0.839283 1.45368i
\(122\) 3.68843 + 13.7654i 0.333935 + 1.24626i
\(123\) 0 0
\(124\) −13.4182 + 11.2592i −1.20499 + 1.01111i
\(125\) −0.537841 11.1674i −0.0481060 0.998842i
\(126\) 0 0
\(127\) 10.3632 4.83242i 0.919582 0.428808i 0.0955972 0.995420i \(-0.469524\pi\)
0.823985 + 0.566612i \(0.191746\pi\)
\(128\) −15.1116 + 10.5813i −1.33569 + 0.935260i
\(129\) 0 0
\(130\) −9.46903 5.26626i −0.830489 0.461882i
\(131\) −6.27923 5.26890i −0.548619 0.460346i 0.325854 0.945420i \(-0.394348\pi\)
−0.874473 + 0.485074i \(0.838793\pi\)
\(132\) 0 0
\(133\) 7.61565 + 11.1413i 0.660361 + 0.966077i
\(134\) 5.61067i 0.484688i
\(135\) 0 0
\(136\) 2.99980 + 8.24188i 0.257231 + 0.706735i
\(137\) −0.234107 + 0.334339i −0.0200011 + 0.0285645i −0.829028 0.559207i \(-0.811106\pi\)
0.809027 + 0.587772i \(0.199995\pi\)
\(138\) 0 0
\(139\) 1.44655 3.97436i 0.122695 0.337101i −0.863105 0.505024i \(-0.831484\pi\)
0.985800 + 0.167923i \(0.0537060\pi\)
\(140\) −12.4516 25.6214i −1.05235 2.16540i
\(141\) 0 0
\(142\) −21.9219 1.91791i −1.83964 0.160948i
\(143\) 10.5960 + 0.927032i 0.886084 + 0.0775223i
\(144\) 0 0
\(145\) 0.225751 0.652634i 0.0187476 0.0541983i
\(146\) 10.4149 28.6146i 0.861942 2.36817i
\(147\) 0 0
\(148\) 10.2833 14.6860i 0.845280 1.20718i
\(149\) −1.86104 5.11315i −0.152462 0.418886i 0.839824 0.542860i \(-0.182658\pi\)
−0.992286 + 0.123974i \(0.960436\pi\)
\(150\) 0 0
\(151\) 8.25723i 0.671964i 0.941868 + 0.335982i \(0.109068\pi\)
−0.941868 + 0.335982i \(0.890932\pi\)
\(152\) −9.86559 + 20.5492i −0.800205 + 1.66676i
\(153\) 0 0
\(154\) 31.8349 + 26.7126i 2.56533 + 2.15257i
\(155\) −4.62650 + 8.31871i −0.371610 + 0.668175i
\(156\) 0 0
\(157\) −10.5943 + 7.41820i −0.845516 + 0.592037i −0.914045 0.405612i \(-0.867058\pi\)
0.0685291 + 0.997649i \(0.478169\pi\)
\(158\) 34.5365 16.1046i 2.74757 1.28121i
\(159\) 0 0
\(160\) 1.46347 2.16310i 0.115698 0.171008i
\(161\) −5.60920 + 4.70668i −0.442067 + 0.370938i
\(162\) 0 0
\(163\) 0.363027 + 1.35483i 0.0284344 + 0.106119i 0.978685 0.205369i \(-0.0658394\pi\)
−0.950250 + 0.311488i \(0.899173\pi\)
\(164\) 21.8661 + 37.8732i 1.70745 + 2.95740i
\(165\) 0 0
\(166\) −9.24376 1.62992i −0.717455 0.126507i
\(167\) −5.35159 3.74723i −0.414119 0.289969i 0.347891 0.937535i \(-0.386898\pi\)
−0.762009 + 0.647566i \(0.775787\pi\)
\(168\) 0 0
\(169\) 5.88810 7.01716i 0.452931 0.539782i
\(170\) 6.07429 + 7.00763i 0.465877 + 0.537460i
\(171\) 0 0
\(172\) 16.6677 + 16.6677i 1.27090 + 1.27090i
\(173\) 0.0997187 + 1.13979i 0.00758147 + 0.0866566i 0.999043 0.0437450i \(-0.0139289\pi\)
−0.991461 + 0.130402i \(0.958373\pi\)
\(174\) 0 0
\(175\) −11.2918 10.5895i −0.853577 0.800492i
\(176\) −4.43191 + 25.1346i −0.334068 + 1.89459i
\(177\) 0 0
\(178\) −9.64597 2.58463i −0.722996 0.193726i
\(179\) −5.29184 + 9.16573i −0.395531 + 0.685079i −0.993169 0.116687i \(-0.962773\pi\)
0.597638 + 0.801766i \(0.296106\pi\)
\(180\) 0 0
\(181\) −2.44168 2.90988i −0.181489 0.216290i 0.667628 0.744495i \(-0.267310\pi\)
−0.849117 + 0.528205i \(0.822865\pi\)
\(182\) −14.4909 + 3.88284i −1.07414 + 0.287815i
\(183\) 0 0
\(184\) −11.6220 4.23005i −0.856782 0.311843i
\(185\) 2.37031 9.44993i 0.174268 0.694773i
\(186\) 0 0
\(187\) −8.25100 3.84750i −0.603373 0.281357i
\(188\) 12.0296 1.05245i 0.877345 0.0767578i
\(189\) 0 0
\(190\) −1.98594 + 24.0200i −0.144075 + 1.74259i
\(191\) 13.5399 0.979715 0.489857 0.871803i \(-0.337049\pi\)
0.489857 + 0.871803i \(0.337049\pi\)
\(192\) 0 0
\(193\) −13.7567 6.41484i −0.990227 0.461750i −0.141132 0.989991i \(-0.545074\pi\)
−0.849095 + 0.528241i \(0.822852\pi\)
\(194\) −32.9947 + 5.81785i −2.36888 + 0.417698i
\(195\) 0 0
\(196\) −9.99783 3.63891i −0.714131 0.259922i
\(197\) 1.71651 6.40611i 0.122296 0.456416i −0.877432 0.479700i \(-0.840745\pi\)
0.999729 + 0.0232837i \(0.00741211\pi\)
\(198\) 0 0
\(199\) 11.7318 + 13.9814i 0.831646 + 0.991118i 0.999985 + 0.00538842i \(0.00171520\pi\)
−0.168339 + 0.985729i \(0.553840\pi\)
\(200\) 5.95378 25.4605i 0.420996 1.80033i
\(201\) 0 0
\(202\) −34.7957 9.32348i −2.44822 0.655998i
\(203\) −0.404097 0.866589i −0.0283620 0.0608226i
\(204\) 0 0
\(205\) 18.4478 + 14.9819i 1.28845 + 1.04638i
\(206\) −11.6449 + 4.23838i −0.811336 + 0.295302i
\(207\) 0 0
\(208\) −6.51492 6.51492i −0.451729 0.451729i
\(209\) −7.84138 22.3234i −0.542400 1.54414i
\(210\) 0 0
\(211\) −9.92418 + 11.8272i −0.683209 + 0.814217i −0.990517 0.137394i \(-0.956127\pi\)
0.307308 + 0.951610i \(0.400572\pi\)
\(212\) 12.0441 25.8286i 0.827191 1.77392i
\(213\) 0 0
\(214\) −43.1891 7.61540i −2.95235 0.520578i
\(215\) 11.6946 + 5.22657i 0.797566 + 0.356449i
\(216\) 0 0
\(217\) 3.41114 + 12.7306i 0.231563 + 0.864206i
\(218\) 1.01937 11.6515i 0.0690406 0.789138i
\(219\) 0 0
\(220\) 9.46047 + 49.0394i 0.637825 + 3.30624i
\(221\) 2.84620 1.64325i 0.191456 0.110537i
\(222\) 0 0
\(223\) 9.78183 6.84931i 0.655040 0.458664i −0.198215 0.980159i \(-0.563514\pi\)
0.853254 + 0.521495i \(0.174625\pi\)
\(224\) −0.627932 3.56118i −0.0419555 0.237941i
\(225\) 0 0
\(226\) 20.2367 + 16.9806i 1.34613 + 1.12953i
\(227\) −5.86908 + 5.86908i −0.389545 + 0.389545i −0.874525 0.484980i \(-0.838827\pi\)
0.484980 + 0.874525i \(0.338827\pi\)
\(228\) 0 0
\(229\) 18.6144i 1.23007i −0.788498 0.615037i \(-0.789141\pi\)
0.788498 0.615037i \(-0.210859\pi\)
\(230\) −13.0754 + 0.209768i −0.862168 + 0.0138317i
\(231\) 0 0
\(232\) 0.926349 1.32296i 0.0608178 0.0868568i
\(233\) 11.4458 + 16.3464i 0.749842 + 1.07089i 0.994849 + 0.101364i \(0.0323207\pi\)
−0.245007 + 0.969521i \(0.578790\pi\)
\(234\) 0 0
\(235\) 5.90203 2.86831i 0.385006 0.187108i
\(236\) 8.96094 + 5.17360i 0.583307 + 0.336773i
\(237\) 0 0
\(238\) 12.7917 + 1.11913i 0.829165 + 0.0725425i
\(239\) 12.7575 + 7.36555i 0.825214 + 0.476438i 0.852211 0.523198i \(-0.175261\pi\)
−0.0269968 + 0.999636i \(0.508594\pi\)
\(240\) 0 0
\(241\) 6.89416 18.9416i 0.444092 1.22013i −0.492686 0.870207i \(-0.663985\pi\)
0.936778 0.349925i \(-0.113793\pi\)
\(242\) −26.1887 37.4013i −1.68347 2.40425i
\(243\) 0 0
\(244\) 8.11062 + 22.2837i 0.519229 + 1.42657i
\(245\) −5.78099 + 0.0927437i −0.369334 + 0.00592518i
\(246\) 0 0
\(247\) 8.22491 + 2.30348i 0.523338 + 0.146567i
\(248\) −15.7411 + 15.7411i −0.999560 + 0.999560i
\(249\) 0 0
\(250\) −3.73171 27.3938i −0.236014 1.73254i
\(251\) 1.07296 + 6.08505i 0.0677245 + 0.384085i 0.999764 + 0.0217279i \(0.00691676\pi\)
−0.932039 + 0.362357i \(0.881972\pi\)
\(252\) 0 0
\(253\) 11.6348 5.42540i 0.731474 0.341092i
\(254\) 24.4871 14.1377i 1.53646 0.887075i
\(255\) 0 0
\(256\) −24.9629 + 20.9464i −1.56018 + 1.30915i
\(257\) 1.14349 13.0701i 0.0713288 0.815292i −0.873307 0.487171i \(-0.838029\pi\)
0.944636 0.328121i \(-0.106416\pi\)
\(258\) 0 0
\(259\) −6.74488 11.6825i −0.419106 0.725913i
\(260\) −16.4604 7.35650i −1.02083 0.456231i
\(261\) 0 0
\(262\) −16.6038 11.6261i −1.02579 0.718264i
\(263\) 5.91407 12.6828i 0.364677 0.782053i −0.635275 0.772286i \(-0.719113\pi\)
0.999952 0.00976677i \(-0.00310891\pi\)
\(264\) 0 0
\(265\) 1.10212 15.4476i 0.0677026 0.948938i
\(266\) 21.1616 + 25.8043i 1.29750 + 1.58216i
\(267\) 0 0
\(268\) −0.813705 9.30069i −0.0497050 0.568130i
\(269\) 4.24483 1.54499i 0.258812 0.0941998i −0.209356 0.977840i \(-0.567137\pi\)
0.468167 + 0.883640i \(0.344914\pi\)
\(270\) 0 0
\(271\) −1.61764 + 9.17407i −0.0982644 + 0.557285i 0.895434 + 0.445195i \(0.146866\pi\)
−0.993698 + 0.112090i \(0.964245\pi\)
\(272\) 3.33276 + 7.14714i 0.202079 + 0.433359i
\(273\) 0 0
\(274\) −0.504642 + 0.874066i −0.0304866 + 0.0528043i
\(275\) 14.3172 + 23.0570i 0.863361 + 1.39039i
\(276\) 0 0
\(277\) 18.0239 4.82949i 1.08295 0.290176i 0.327147 0.944973i \(-0.393913\pi\)
0.755804 + 0.654798i \(0.227246\pi\)
\(278\) 2.70688 10.1022i 0.162348 0.605889i
\(279\) 0 0
\(280\) −18.6025 31.0590i −1.11171 1.85613i
\(281\) 16.8479 2.97074i 1.00506 0.177219i 0.353191 0.935551i \(-0.385096\pi\)
0.651869 + 0.758332i \(0.273985\pi\)
\(282\) 0 0
\(283\) 0.300543 0.0262941i 0.0178655 0.00156302i −0.0782195 0.996936i \(-0.524924\pi\)
0.0960850 + 0.995373i \(0.469368\pi\)
\(284\) −36.6176 −2.17286
\(285\) 0 0
\(286\) 26.3020 1.55527
\(287\) 32.7800 2.86788i 1.93494 0.169286i
\(288\) 0 0
\(289\) 13.9715 2.46355i 0.821852 0.144915i
\(290\) 0.415460 1.65635i 0.0243966 0.0972643i
\(291\) 0 0
\(292\) 13.1146 48.9444i 0.767475 2.86425i
\(293\) −17.1633 + 4.59890i −1.00269 + 0.268670i −0.722573 0.691295i \(-0.757041\pi\)
−0.280119 + 0.959965i \(0.590374\pi\)
\(294\) 0 0
\(295\) 5.55243 + 0.887455i 0.323275 + 0.0516696i
\(296\) 11.3925 19.7324i 0.662177 1.14692i
\(297\) 0 0
\(298\) −5.68646 12.1947i −0.329408 0.706417i
\(299\) −0.804743 + 4.56393i −0.0465395 + 0.263939i
\(300\) 0 0
\(301\) 16.6664 6.06606i 0.960634 0.349642i
\(302\) 1.77959 + 20.3409i 0.102404 + 1.17048i
\(303\) 0 0
\(304\) −7.22626 + 19.1789i −0.414454 + 1.09999i
\(305\) 8.44066 + 9.73760i 0.483311 + 0.557573i
\(306\) 0 0
\(307\) 2.95182 6.33019i 0.168469 0.361283i −0.803888 0.594780i \(-0.797239\pi\)
0.972358 + 0.233497i \(0.0750169\pi\)
\(308\) 56.6462 + 39.6641i 3.22772 + 2.26007i
\(309\) 0 0
\(310\) −9.60408 + 21.4894i −0.545475 + 1.22052i
\(311\) −6.76709 11.7209i −0.383726 0.664634i 0.607865 0.794040i \(-0.292026\pi\)
−0.991592 + 0.129407i \(0.958693\pi\)
\(312\) 0 0
\(313\) −1.99501 + 22.8030i −0.112764 + 1.28890i 0.703279 + 0.710914i \(0.251718\pi\)
−0.816044 + 0.577990i \(0.803837\pi\)
\(314\) −24.4992 + 20.5573i −1.38257 + 1.16011i
\(315\) 0 0
\(316\) 54.9148 31.7051i 3.08920 1.78355i
\(317\) 26.6863 12.4440i 1.49885 0.698927i 0.511769 0.859123i \(-0.328990\pi\)
0.987085 + 0.160196i \(0.0512126\pi\)
\(318\) 0 0
\(319\) 0.291101 + 1.65092i 0.0162985 + 0.0924336i
\(320\) −7.08137 + 12.7327i −0.395861 + 0.711780i
\(321\) 0 0
\(322\) −12.8033 + 12.8033i −0.713502 + 0.713502i
\(323\) −5.94097 4.26045i −0.330564 0.237058i
\(324\) 0 0
\(325\) −9.78272 0.540393i −0.542648 0.0299756i
\(326\) 1.18627 + 3.25926i 0.0657016 + 0.180514i
\(327\) 0 0
\(328\) 31.8788 + 45.5277i 1.76021 + 2.51384i
\(329\) 3.10757 8.53798i 0.171326 0.470714i
\(330\) 0 0
\(331\) −8.86318 5.11716i −0.487164 0.281264i 0.236233 0.971696i \(-0.424087\pi\)
−0.723397 + 0.690432i \(0.757420\pi\)
\(332\) −15.5596 1.36129i −0.853944 0.0747104i
\(333\) 0 0
\(334\) −13.9907 8.07754i −0.765538 0.441984i
\(335\) −2.21764 4.56318i −0.121163 0.249313i
\(336\) 0 0
\(337\) 0.174514 + 0.249231i 0.00950636 + 0.0135765i 0.823877 0.566768i \(-0.191807\pi\)
−0.814371 + 0.580345i \(0.802918\pi\)
\(338\) 12.9924 18.5551i 0.706694 1.00926i
\(339\) 0 0
\(340\) 11.0855 + 10.7355i 0.601198 + 0.582212i
\(341\) 23.1068i 1.25130i
\(342\) 0 0
\(343\) 9.66409 9.66409i 0.521812 0.521812i
\(344\) 22.9486 + 19.2561i 1.23730 + 1.03822i
\(345\) 0 0
\(346\) 0.491294 + 2.78627i 0.0264121 + 0.149791i
\(347\) −15.3106 + 10.7206i −0.821917 + 0.575512i −0.907130 0.420850i \(-0.861732\pi\)
0.0852133 + 0.996363i \(0.472843\pi\)
\(348\) 0 0
\(349\) 3.58331 2.06882i 0.191810 0.110742i −0.401020 0.916069i \(-0.631344\pi\)
0.592830 + 0.805328i \(0.298011\pi\)
\(350\) −30.0984 23.6526i −1.60883 1.26428i
\(351\) 0 0
\(352\) −0.552554 + 6.31572i −0.0294512 + 0.336629i
\(353\) 1.09756 + 4.09617i 0.0584175 + 0.218017i 0.988964 0.148157i \(-0.0473341\pi\)
−0.930546 + 0.366174i \(0.880667\pi\)
\(354\) 0 0
\(355\) −18.5872 + 7.10487i −0.986507 + 0.377087i
\(356\) −16.3648 2.88555i −0.867332 0.152934i
\(357\) 0 0
\(358\) −11.0605 + 23.7194i −0.584567 + 1.25361i
\(359\) 6.02747 7.18326i 0.318118 0.379118i −0.583162 0.812356i \(-0.698185\pi\)
0.901280 + 0.433238i \(0.142629\pi\)
\(360\) 0 0
\(361\) −2.87691 18.7809i −0.151416 0.988470i
\(362\) −6.64197 6.64197i −0.349094 0.349094i
\(363\) 0 0
\(364\) −23.4582 + 8.53810i −1.22955 + 0.447518i
\(365\) −2.83961 27.3889i −0.148632 1.43360i
\(366\) 0 0
\(367\) −3.73449 8.00863i −0.194939 0.418047i 0.784405 0.620248i \(-0.212968\pi\)
−0.979344 + 0.202201i \(0.935190\pi\)
\(368\) −10.7412 2.87810i −0.559924 0.150031i
\(369\) 0 0
\(370\) 3.80237 23.7898i 0.197676 1.23677i
\(371\) −13.7834 16.4264i −0.715600 0.852818i
\(372\) 0 0
\(373\) −5.66992 + 21.1604i −0.293577 + 1.09565i 0.648764 + 0.760990i \(0.275286\pi\)
−0.942341 + 0.334655i \(0.891380\pi\)
\(374\) −21.1547 7.69969i −1.09388 0.398141i
\(375\) 0 0
\(376\) 15.1136 2.66493i 0.779422 0.137433i
\(377\) −0.548470 0.255756i −0.0282476 0.0131721i
\(378\) 0 0
\(379\) −18.4965 −0.950102 −0.475051 0.879958i \(-0.657570\pi\)
−0.475051 + 0.879958i \(0.657570\pi\)
\(380\) 0.191525 + 40.1055i 0.00982504 + 2.05737i
\(381\) 0 0
\(382\) 33.3543 2.91812i 1.70655 0.149304i
\(383\) −32.0674 14.9533i −1.63857 0.764076i −0.638580 0.769555i \(-0.720478\pi\)
−0.999985 + 0.00547951i \(0.998256\pi\)
\(384\) 0 0
\(385\) 36.4498 + 9.14262i 1.85765 + 0.465951i
\(386\) −35.2707 12.8375i −1.79523 0.653411i
\(387\) 0 0
\(388\) −53.8509 + 14.4293i −2.73387 + 0.732537i
\(389\) −9.07995 10.8211i −0.460372 0.548650i 0.485055 0.874484i \(-0.338799\pi\)
−0.945427 + 0.325834i \(0.894355\pi\)
\(390\) 0 0
\(391\) 1.98330 3.43518i 0.100300 0.173725i
\(392\) −13.0609 3.49966i −0.659676 0.176760i
\(393\) 0 0
\(394\) 2.84781 16.1508i 0.143471 0.813663i
\(395\) 21.7232 26.7487i 1.09301 1.34587i
\(396\) 0 0
\(397\) 2.68339 + 30.6713i 0.134676 + 1.53935i 0.699796 + 0.714342i \(0.253274\pi\)
−0.565121 + 0.825008i \(0.691170\pi\)
\(398\) 31.9134 + 31.9134i 1.59968 + 1.59968i
\(399\) 0 0
\(400\) 3.33761 23.2714i 0.166881 1.16357i
\(401\) −8.65698 + 10.3170i −0.432309 + 0.515206i −0.937587 0.347751i \(-0.886946\pi\)
0.505278 + 0.862957i \(0.331390\pi\)
\(402\) 0 0
\(403\) 6.83295 + 4.78448i 0.340373 + 0.238332i
\(404\) −59.0323 10.4090i −2.93697 0.517867i
\(405\) 0 0
\(406\) −1.18222 2.04766i −0.0586725 0.101624i
\(407\) 6.12120 + 22.8446i 0.303417 + 1.13237i
\(408\) 0 0
\(409\) −18.4492 + 15.4807i −0.912253 + 0.765471i −0.972546 0.232709i \(-0.925241\pi\)
0.0602932 + 0.998181i \(0.480796\pi\)
\(410\) 48.6731 + 32.9305i 2.40379 + 1.62632i
\(411\) 0 0
\(412\) −18.6888 + 8.71472i −0.920730 + 0.429343i
\(413\) 6.37751 4.46558i 0.313817 0.219737i
\(414\) 0 0
\(415\) −8.16223 + 2.32802i −0.400668 + 0.114278i
\(416\) −1.75322 1.47113i −0.0859586 0.0721279i
\(417\) 0 0
\(418\) −24.1276 53.3014i −1.18012 2.60706i
\(419\) 2.43513i 0.118964i 0.998229 + 0.0594819i \(0.0189449\pi\)
−0.998229 + 0.0594819i \(0.981055\pi\)
\(420\) 0 0
\(421\) −1.44925 3.98178i −0.0706322 0.194060i 0.899354 0.437222i \(-0.144038\pi\)
−0.969986 + 0.243162i \(0.921815\pi\)
\(422\) −21.8982 + 31.2739i −1.06599 + 1.52239i
\(423\) 0 0
\(424\) 12.3876 34.0347i 0.601595 1.65287i
\(425\) 7.71004 + 3.29844i 0.373992 + 0.159998i
\(426\) 0 0
\(427\) 17.7750 + 1.55511i 0.860194 + 0.0752572i
\(428\) −72.6982 6.36027i −3.51400 0.307435i
\(429\) 0 0
\(430\) 29.9349 + 10.3547i 1.44359 + 0.499349i
\(431\) −7.01388 + 19.2705i −0.337847 + 0.928227i 0.648157 + 0.761506i \(0.275540\pi\)
−0.986004 + 0.166720i \(0.946682\pi\)
\(432\) 0 0
\(433\) 13.0904 18.6950i 0.629083 0.898424i −0.370454 0.928851i \(-0.620798\pi\)
0.999537 + 0.0304269i \(0.00968669\pi\)
\(434\) 11.1467 + 30.6253i 0.535058 + 1.47006i
\(435\) 0 0
\(436\) 19.4623i 0.932074i
\(437\) 9.98707 2.55579i 0.477746 0.122260i
\(438\) 0 0
\(439\) −2.59554 2.17792i −0.123878 0.103946i 0.578744 0.815509i \(-0.303543\pi\)
−0.702622 + 0.711563i \(0.747988\pi\)
\(440\) 17.4094 + 61.0389i 0.829961 + 2.90992i
\(441\) 0 0
\(442\) 6.65717 4.66140i 0.316649 0.221720i
\(443\) 2.63672 1.22952i 0.125275 0.0584165i −0.358970 0.933349i \(-0.616872\pi\)
0.484245 + 0.874932i \(0.339094\pi\)
\(444\) 0 0
\(445\) −8.86669 + 1.71052i −0.420322 + 0.0810866i
\(446\) 22.6204 18.9808i 1.07111 0.898766i
\(447\) 0 0
\(448\) 5.22113 + 19.4855i 0.246675 + 0.920604i
\(449\) −1.95617 3.38818i −0.0923173 0.159898i 0.816169 0.577814i \(-0.196094\pi\)
−0.908486 + 0.417916i \(0.862761\pi\)
\(450\) 0 0
\(451\) −56.8136 10.0178i −2.67525 0.471719i
\(452\) 36.0087 + 25.2135i 1.69371 + 1.18595i
\(453\) 0 0
\(454\) −13.1930 + 15.7228i −0.619178 + 0.737908i
\(455\) −10.2508 + 8.88554i −0.480567 + 0.416561i
\(456\) 0 0
\(457\) 24.4163 + 24.4163i 1.14214 + 1.14214i 0.988057 + 0.154088i \(0.0492439\pi\)
0.154088 + 0.988057i \(0.450756\pi\)
\(458\) −4.01176 45.8547i −0.187457 2.14265i
\(459\) 0 0
\(460\) −21.6445 + 2.24403i −1.00918 + 0.104629i
\(461\) 1.39327 7.90163i 0.0648911 0.368015i −0.935019 0.354598i \(-0.884618\pi\)
0.999910 0.0134177i \(-0.00427110\pi\)
\(462\) 0 0
\(463\) 18.7746 + 5.03065i 0.872532 + 0.233794i 0.667182 0.744895i \(-0.267500\pi\)
0.205350 + 0.978689i \(0.434167\pi\)
\(464\) 0.726055 1.25756i 0.0337062 0.0583809i
\(465\) 0 0
\(466\) 31.7186 + 37.8008i 1.46934 + 1.75109i
\(467\) 17.5390 4.69956i 0.811608 0.217470i 0.170934 0.985282i \(-0.445322\pi\)
0.640674 + 0.767813i \(0.278655\pi\)
\(468\) 0 0
\(469\) −6.60117 2.40263i −0.304814 0.110943i
\(470\) 13.9209 8.33779i 0.642123 0.384594i
\(471\) 0 0
\(472\) 11.9181 + 5.55752i 0.548577 + 0.255806i
\(473\) −30.9767 + 2.71011i −1.42431 + 0.124611i
\(474\) 0 0
\(475\) 7.87885 + 20.3205i 0.361506 + 0.932370i
\(476\) 21.3669 0.979351
\(477\) 0 0
\(478\) 33.0143 + 15.3948i 1.51004 + 0.704142i
\(479\) 28.0837 4.95191i 1.28318 0.226259i 0.509848 0.860264i \(-0.329701\pi\)
0.773328 + 0.634006i \(0.218590\pi\)
\(480\) 0 0
\(481\) −8.02287 2.92009i −0.365811 0.133144i
\(482\) 12.9008 48.1465i 0.587615 2.19301i
\(483\) 0 0
\(484\) −48.8367 58.2013i −2.21985 2.64551i
\(485\) −24.5352 + 17.7730i −1.11409 + 0.807030i
\(486\) 0 0
\(487\) 15.2837 + 4.09527i 0.692573 + 0.185574i 0.587901 0.808933i \(-0.299954\pi\)
0.104671 + 0.994507i \(0.466621\pi\)
\(488\) 12.7368 + 27.3142i 0.576568 + 1.23645i
\(489\) 0 0
\(490\) −14.2209 + 1.47438i −0.642434 + 0.0666057i
\(491\) −0.0823077 + 0.0299576i −0.00371449 + 0.00135197i −0.343877 0.939015i \(-0.611740\pi\)
0.340162 + 0.940367i \(0.389518\pi\)
\(492\) 0 0
\(493\) 0.366264 + 0.366264i 0.0164957 + 0.0164957i
\(494\) 20.7577 + 3.90176i 0.933932 + 0.175548i
\(495\) 0 0
\(496\) −12.8657 + 15.3327i −0.577687 + 0.688460i
\(497\) −11.6440 + 24.9706i −0.522305 + 1.12009i
\(498\) 0 0
\(499\) −7.86525 1.38686i −0.352097 0.0620842i −0.00519746 0.999986i \(-0.501654\pi\)
−0.346900 + 0.937902i \(0.612766\pi\)
\(500\) −10.1589 44.8690i −0.454318 2.00660i
\(501\) 0 0
\(502\) 3.95457 + 14.7587i 0.176501 + 0.658712i
\(503\) −3.66919 + 41.9391i −0.163601 + 1.86997i 0.262010 + 0.965065i \(0.415615\pi\)
−0.425611 + 0.904906i \(0.639941\pi\)
\(504\) 0 0
\(505\) −31.9846 + 6.17034i −1.42330 + 0.274576i
\(506\) 27.4919 15.8725i 1.22216 0.705617i
\(507\) 0 0
\(508\) 38.5415 26.9870i 1.71000 1.19736i
\(509\) −4.08730 23.1803i −0.181167 1.02745i −0.930782 0.365574i \(-0.880873\pi\)
0.749616 0.661873i \(-0.230238\pi\)
\(510\) 0 0
\(511\) −29.2063 24.5070i −1.29201 1.08413i
\(512\) −30.8901 + 30.8901i −1.36516 + 1.36516i
\(513\) 0 0
\(514\) 32.4434i 1.43102i
\(515\) −7.79557 + 8.04978i −0.343514 + 0.354715i
\(516\) 0 0
\(517\) −9.13686 + 13.0488i −0.401839 + 0.573885i
\(518\) −19.1331 27.3249i −0.840661 1.20059i
\(519\) 0 0
\(520\) −21.6547 7.49052i −0.949621 0.328481i
\(521\) 1.35610 + 0.782946i 0.0594119 + 0.0343015i 0.529412 0.848365i \(-0.322413\pi\)
−0.470000 + 0.882667i \(0.655746\pi\)
\(522\) 0 0
\(523\) −21.8473 1.91139i −0.955314 0.0835791i −0.401173 0.916002i \(-0.631397\pi\)
−0.554140 + 0.832423i \(0.686953\pi\)
\(524\) −29.2099 16.8644i −1.27604 0.736723i
\(525\) 0 0
\(526\) 11.8353 32.5173i 0.516045 1.41782i
\(527\) −4.09512 5.84844i −0.178386 0.254762i
\(528\) 0 0
\(529\) −5.95342 16.3569i −0.258845 0.711170i
\(530\) −0.614300 38.2911i −0.0266835 1.66326i
\(531\) 0 0
\(532\) 38.8215 + 39.7062i 1.68312 + 1.72148i
\(533\) 14.7262 14.7262i 0.637861 0.637861i
\(534\) 0 0
\(535\) −38.1359 + 10.8771i −1.64876 + 0.470256i
\(536\) −2.06040 11.6851i −0.0889957 0.504719i
\(537\) 0 0
\(538\) 10.1237 4.72077i 0.436465 0.203527i
\(539\) 12.1549 7.01763i 0.523548 0.302271i
\(540\) 0 0
\(541\) 18.0266 15.1261i 0.775024 0.650323i −0.166966 0.985963i \(-0.553397\pi\)
0.941990 + 0.335640i \(0.108953\pi\)
\(542\) −2.00769 + 22.9480i −0.0862378 + 0.985703i
\(543\) 0 0
\(544\) 0.979454 + 1.69646i 0.0419938 + 0.0727353i
\(545\) −3.77624 9.87911i −0.161756 0.423174i
\(546\) 0 0
\(547\) 5.84197 + 4.09059i 0.249785 + 0.174901i 0.691763 0.722125i \(-0.256834\pi\)
−0.441978 + 0.897026i \(0.645723\pi\)
\(548\) −0.709772 + 1.52211i −0.0303199 + 0.0650213i
\(549\) 0 0
\(550\) 40.2383 + 53.7129i 1.71577 + 2.29032i
\(551\) −0.0151658 + 1.34609i −0.000646083 + 0.0573455i
\(552\) 0 0
\(553\) −4.15833 47.5299i −0.176830 2.02118i
\(554\) 43.3592 15.7815i 1.84216 0.670490i
\(555\) 0 0
\(556\) 3.02203 17.1388i 0.128163 0.726847i
\(557\) 19.3619 + 41.5217i 0.820389 + 1.75933i 0.628331 + 0.777946i \(0.283738\pi\)
0.192058 + 0.981384i \(0.438484\pi\)
\(558\) 0 0
\(559\) 5.61261 9.72133i 0.237388 0.411169i
\(560\) −19.0960 26.3616i −0.806954 1.11398i
\(561\) 0 0
\(562\) 40.8628 10.9492i 1.72369 0.461862i
\(563\) −5.36843 + 20.0353i −0.226252 + 0.844386i 0.755646 + 0.654980i \(0.227323\pi\)
−0.981899 + 0.189406i \(0.939344\pi\)
\(564\) 0 0
\(565\) 23.1703 + 5.81175i 0.974780 + 0.244502i
\(566\) 0.734692 0.129546i 0.0308814 0.00544522i
\(567\) 0 0
\(568\) −46.3601 + 4.05598i −1.94523 + 0.170185i
\(569\) 9.83327 0.412232 0.206116 0.978528i \(-0.433918\pi\)
0.206116 + 0.978528i \(0.433918\pi\)
\(570\) 0 0
\(571\) −3.68436 −0.154186 −0.0770929 0.997024i \(-0.524564\pi\)
−0.0770929 + 0.997024i \(0.524564\pi\)
\(572\) 43.6004 3.81454i 1.82302 0.159494i
\(573\) 0 0
\(574\) 80.1322 14.1295i 3.34465 0.589752i
\(575\) −10.5514 + 5.33873i −0.440023 + 0.222640i
\(576\) 0 0
\(577\) 8.84916 33.0255i 0.368395 1.37487i −0.494363 0.869255i \(-0.664599\pi\)
0.862759 0.505615i \(-0.168735\pi\)
\(578\) 33.8864 9.07984i 1.40949 0.377672i
\(579\) 0 0
\(580\) 0.448481 2.80596i 0.0186222 0.116511i
\(581\) −5.87608 + 10.1777i −0.243781 + 0.422241i
\(582\) 0 0
\(583\) 15.8882 + 34.0723i 0.658021 + 1.41113i
\(584\) 11.1825 63.4192i 0.462736 2.62430i
\(585\) 0 0
\(586\) −41.2889 + 15.0279i −1.70563 + 0.620799i
\(587\) 0.100658 + 1.15053i 0.00415460 + 0.0474873i 0.997989 0.0633873i \(-0.0201903\pi\)
−0.993834 + 0.110875i \(0.964635\pi\)
\(588\) 0 0
\(589\) 3.42776 18.2360i 0.141239 0.751401i
\(590\) 13.8691 + 0.989500i 0.570982 + 0.0407371i
\(591\) 0 0
\(592\) 8.65793 18.5670i 0.355839 0.763099i
\(593\) 15.7132 + 11.0025i 0.645264 + 0.451819i 0.849846 0.527031i \(-0.176695\pi\)
−0.204582 + 0.978849i \(0.565584\pi\)
\(594\) 0 0
\(595\) 10.8459 4.14580i 0.444639 0.169961i
\(596\) −11.1949 19.3901i −0.458561 0.794251i
\(597\) 0 0
\(598\) −0.998789 + 11.4162i −0.0408435 + 0.466844i
\(599\) 4.65988 3.91010i 0.190397 0.159762i −0.542606 0.839987i \(-0.682562\pi\)
0.733003 + 0.680225i \(0.238118\pi\)
\(600\) 0 0
\(601\) −17.2461 + 9.95705i −0.703483 + 0.406156i −0.808644 0.588299i \(-0.799798\pi\)
0.105160 + 0.994455i \(0.466465\pi\)
\(602\) 39.7486 18.5351i 1.62003 0.755433i
\(603\) 0 0
\(604\) 5.90000 + 33.4606i 0.240068 + 1.36149i
\(605\) −36.0824 20.0674i −1.46696 0.815857i
\(606\) 0 0
\(607\) −1.67102 + 1.67102i −0.0678245 + 0.0678245i −0.740205 0.672381i \(-0.765272\pi\)
0.672381 + 0.740205i \(0.265272\pi\)
\(608\) −1.37298 + 4.90243i −0.0556816 + 0.198820i
\(609\) 0 0
\(610\) 22.8914 + 22.1685i 0.926844 + 0.897575i
\(611\) −1.96680 5.40375i −0.0795683 0.218612i
\(612\) 0 0
\(613\) −5.24933 7.49682i −0.212018 0.302794i 0.699031 0.715092i \(-0.253615\pi\)
−0.911049 + 0.412298i \(0.864726\pi\)
\(614\) 5.90722 16.2300i 0.238396 0.654988i
\(615\) 0 0
\(616\) 76.1109 + 43.9426i 3.06659 + 1.77050i
\(617\) 13.2416 + 1.15849i 0.533086 + 0.0466390i 0.350521 0.936555i \(-0.386005\pi\)
0.182565 + 0.983194i \(0.441560\pi\)
\(618\) 0 0
\(619\) 13.3404 + 7.70210i 0.536197 + 0.309573i 0.743536 0.668696i \(-0.233147\pi\)
−0.207339 + 0.978269i \(0.566480\pi\)
\(620\) −12.8039 + 37.0155i −0.514218 + 1.48658i
\(621\) 0 0
\(622\) −19.1961 27.4149i −0.769695 1.09924i
\(623\) −7.17156 + 10.2421i −0.287323 + 0.410339i
\(624\) 0 0
\(625\) −13.8626 20.8046i −0.554502 0.832182i
\(626\) 56.6029i 2.26231i
\(627\) 0 0
\(628\) −37.6305 + 37.6305i −1.50162 + 1.50162i
\(629\) 5.59796 + 4.69725i 0.223205 + 0.187292i
\(630\) 0 0
\(631\) −0.849162 4.81584i −0.0338046 0.191715i 0.963229 0.268681i \(-0.0865878\pi\)
−0.997034 + 0.0769659i \(0.975477\pi\)
\(632\) 66.0136 46.2232i 2.62588 1.83866i
\(633\) 0 0
\(634\) 63.0572 36.4061i 2.50432 1.44587i
\(635\) 14.3275 21.1769i 0.568570 0.840378i
\(636\) 0 0
\(637\) −0.441591 + 5.04740i −0.0174965 + 0.199985i
\(638\) 1.07290 + 4.00413i 0.0424767 + 0.158525i
\(639\) 0 0
\(640\) −16.8313 + 37.6606i −0.665317 + 1.48867i
\(641\) −42.5461 7.50202i −1.68047 0.296312i −0.749661 0.661821i \(-0.769784\pi\)
−0.930808 + 0.365509i \(0.880895\pi\)
\(642\) 0 0
\(643\) −0.745234 + 1.59816i −0.0293892 + 0.0630253i −0.920454 0.390850i \(-0.872181\pi\)
0.891065 + 0.453875i \(0.149959\pi\)
\(644\) −19.3670 + 23.0807i −0.763166 + 0.909506i
\(645\) 0 0
\(646\) −15.5532 9.21481i −0.611932 0.362552i
\(647\) −34.4348 34.4348i −1.35377 1.35377i −0.881400 0.472370i \(-0.843398\pi\)
−0.472370 0.881400i \(-0.656602\pi\)
\(648\) 0 0
\(649\) −12.8265 + 4.66847i −0.503485 + 0.183254i
\(650\) −24.2152 + 0.777164i −0.949799 + 0.0304829i
\(651\) 0 0
\(652\) 2.43915 + 5.23077i 0.0955243 + 0.204853i
\(653\) 38.2422 + 10.2470i 1.49653 + 0.400994i 0.911937 0.410331i \(-0.134587\pi\)
0.584595 + 0.811325i \(0.301253\pi\)
\(654\) 0 0
\(655\) −18.0992 2.89284i −0.707195 0.113032i
\(656\) 32.1214 + 38.2808i 1.25413 + 1.49461i
\(657\) 0 0
\(658\) 5.81508 21.7022i 0.226696 0.846039i
\(659\) 20.0906 + 7.31236i 0.782617 + 0.284849i 0.702263 0.711917i \(-0.252173\pi\)
0.0803534 + 0.996766i \(0.474395\pi\)
\(660\) 0 0
\(661\) 8.57682 1.51232i 0.333600 0.0588226i −0.00433950 0.999991i \(-0.501381\pi\)
0.337939 + 0.941168i \(0.390270\pi\)
\(662\) −22.9364 10.6954i −0.891448 0.415689i
\(663\) 0 0
\(664\) −19.8502 −0.770336
\(665\) 27.4100 + 12.6225i 1.06292 + 0.489480i
\(666\) 0 0
\(667\) −0.727623 + 0.0636588i −0.0281737 + 0.00246488i
\(668\) −24.3636 11.3609i −0.942657 0.439568i
\(669\) 0 0
\(670\) −6.44639 10.7630i −0.249046 0.415810i
\(671\) −29.3960 10.6993i −1.13482 0.413041i
\(672\) 0 0
\(673\) 41.2828 11.0617i 1.59133 0.426397i 0.648923 0.760854i \(-0.275220\pi\)
0.942411 + 0.334457i \(0.108553\pi\)
\(674\) 0.483611 + 0.576345i 0.0186280 + 0.0222000i
\(675\) 0 0
\(676\) 18.8463 32.6427i 0.724856 1.25549i
\(677\) 31.5745 + 8.46037i 1.21351 + 0.325158i 0.808137 0.588994i \(-0.200476\pi\)
0.405370 + 0.914153i \(0.367143\pi\)
\(678\) 0 0
\(679\) −7.28422 + 41.3109i −0.279543 + 1.58537i
\(680\) 15.2241 + 12.3638i 0.583817 + 0.474132i
\(681\) 0 0
\(682\) −4.97997 56.9213i −0.190693 2.17963i
\(683\) −18.2414 18.2414i −0.697987 0.697987i 0.265989 0.963976i \(-0.414302\pi\)
−0.963976 + 0.265989i \(0.914302\pi\)
\(684\) 0 0
\(685\) −0.0649491 + 0.910344i −0.00248158 + 0.0347825i
\(686\) 21.7237 25.8893i 0.829416 0.988459i
\(687\) 0 0
\(688\) 22.0639 + 15.4493i 0.841177 + 0.588999i
\(689\) −13.3654 2.35668i −0.509180 0.0897822i
\(690\) 0 0
\(691\) 23.6260 + 40.9214i 0.898775 + 1.55672i 0.829062 + 0.559157i \(0.188875\pi\)
0.0697129 + 0.997567i \(0.477792\pi\)
\(692\) 1.21850 + 4.54749i 0.0463203 + 0.172870i
\(693\) 0 0
\(694\) −35.4057 + 29.7089i −1.34398 + 1.12773i
\(695\) −1.79143 9.28606i −0.0679527 0.352240i
\(696\) 0 0
\(697\) −16.1552 + 7.53329i −0.611922 + 0.285344i
\(698\) 8.38125 5.86862i 0.317235 0.222130i
\(699\) 0 0
\(700\) −53.3238 34.8433i −2.01545 1.31695i
\(701\) 38.3021 + 32.1393i 1.44665 + 1.21388i 0.934978 + 0.354705i \(0.115419\pi\)
0.511673 + 0.859180i \(0.329026\pi\)
\(702\) 0 0
\(703\) 1.44201 + 18.9371i 0.0543863 + 0.714227i
\(704\) 35.3675i 1.33296i
\(705\) 0 0
\(706\) 3.58654 + 9.85395i 0.134981 + 0.370858i
\(707\) −25.8698 + 36.9460i −0.972935 + 1.38950i
\(708\) 0 0
\(709\) −12.3224 + 33.8554i −0.462776 + 1.27147i 0.460612 + 0.887601i \(0.347630\pi\)
−0.923389 + 0.383866i \(0.874592\pi\)
\(710\) −44.2565 + 21.5080i −1.66092 + 0.807182i
\(711\) 0 0
\(712\) −21.0384 1.84062i −0.788448 0.0689802i
\(713\) 10.0293 + 0.877454i 0.375602 + 0.0328609i
\(714\) 0 0
\(715\) 21.3916 10.3960i 0.799999 0.388788i
\(716\) −14.8948 + 40.9232i −0.556646 + 1.52937i
\(717\) 0 0
\(718\) 13.2999 18.9943i 0.496350 0.708861i
\(719\) −5.27833 14.5021i −0.196849 0.540837i 0.801518 0.597971i \(-0.204026\pi\)
−0.998367 + 0.0571336i \(0.981804\pi\)
\(720\) 0 0
\(721\) 15.5156i 0.577831i
\(722\) −11.1346 45.6449i −0.414388 1.69873i
\(723\) 0 0
\(724\) −11.9735 10.0470i −0.444993 0.373393i
\(725\) −0.316786 1.51133i −0.0117651 0.0561294i
\(726\) 0 0
\(727\) 8.70839 6.09768i 0.322976 0.226150i −0.400832 0.916152i \(-0.631279\pi\)
0.723808 + 0.690001i \(0.242390\pi\)
\(728\) −28.7538 + 13.4081i −1.06569 + 0.496938i
\(729\) 0 0
\(730\) −12.8979 66.8579i −0.477374 2.47452i
\(731\) −7.36006 + 6.17582i −0.272222 + 0.228421i
\(732\) 0 0
\(733\) 4.28018 + 15.9739i 0.158092 + 0.590008i 0.998821 + 0.0485512i \(0.0154604\pi\)
−0.840728 + 0.541457i \(0.817873\pi\)
\(734\) −10.9255 18.9236i −0.403269 0.698483i
\(735\) 0 0
\(736\) −2.72031 0.479664i −0.100272 0.0176807i
\(737\) 10.0887 + 7.06419i 0.371623 + 0.260213i
\(738\) 0 0
\(739\) 25.6826 30.6074i 0.944751 1.12591i −0.0471489 0.998888i \(-0.515014\pi\)
0.991900 0.127022i \(-0.0405420\pi\)
\(740\) 2.85292 39.9873i 0.104876 1.46996i
\(741\) 0 0
\(742\) −37.4943 37.4943i −1.37646 1.37646i
\(743\) −4.09692 46.8280i −0.150301 1.71795i −0.579693 0.814835i \(-0.696827\pi\)
0.429391 0.903119i \(-0.358728\pi\)
\(744\) 0 0
\(745\) −9.44481 7.67036i −0.346031 0.281020i
\(746\) −9.40679 + 53.3486i −0.344407 + 1.95323i
\(747\) 0 0
\(748\) −36.1844 9.69559i −1.32303 0.354506i
\(749\) −27.4545 + 47.5526i −1.00316 + 1.73753i
\(750\) 0 0
\(751\) 13.6766 + 16.2991i 0.499066 + 0.594764i 0.955499 0.294994i \(-0.0953177\pi\)
−0.456433 + 0.889758i \(0.650873\pi\)
\(752\) 13.3283 3.57131i 0.486033 0.130232i
\(753\) 0 0
\(754\) −1.40622 0.511823i −0.0512116 0.0186395i
\(755\) 9.48717 + 15.8399i 0.345273 + 0.576473i
\(756\) 0 0
\(757\) 17.5651 + 8.19074i 0.638415 + 0.297698i 0.714745 0.699385i \(-0.246543\pi\)
−0.0763306 + 0.997083i \(0.524320\pi\)
\(758\) −45.5643 + 3.98636i −1.65497 + 0.144791i
\(759\) 0 0
\(760\) 4.68481 + 50.7548i 0.169936 + 1.84107i
\(761\) 0.0276948 0.00100394 0.000501968 1.00000i \(-0.499840\pi\)
0.000501968 1.00000i \(0.499840\pi\)
\(762\) 0 0
\(763\) −13.2719 6.18879i −0.480475 0.224049i
\(764\) 54.8675 9.67462i 1.98504 0.350016i
\(765\) 0 0
\(766\) −82.2174 29.9247i −2.97064 1.08122i
\(767\) 1.27533 4.75960i 0.0460495 0.171859i
\(768\) 0 0
\(769\) 2.74069 + 3.26623i 0.0988319 + 0.117783i 0.813193 0.581994i \(-0.197727\pi\)
−0.714361 + 0.699777i \(0.753283\pi\)
\(770\) 91.7607 + 14.6663i 3.30683 + 0.528537i
\(771\) 0 0
\(772\) −60.3294 16.1652i −2.17130 0.581798i
\(773\) −2.51427 5.39187i −0.0904320 0.193932i 0.855890 0.517159i \(-0.173010\pi\)
−0.946322 + 0.323226i \(0.895232\pi\)
\(774\) 0 0
\(775\) 0.682752 + 21.2735i 0.0245252 + 0.764166i
\(776\) −66.5802 + 24.2332i −2.39009 + 0.869921i
\(777\) 0 0
\(778\) −24.6997 24.6997i −0.885527 0.885527i
\(779\) −43.3515 16.3341i −1.55323 0.585228i
\(780\) 0 0
\(781\) 31.0497 37.0036i 1.11105 1.32409i
\(782\) 4.14532 8.88967i 0.148236 0.317894i
\(783\) 0 0
\(784\) −11.9728 2.11114i −0.427602 0.0753977i
\(785\) −11.7999 + 26.4027i −0.421158 + 0.942354i
\(786\) 0 0
\(787\) 10.4752 + 39.0940i 0.373401 + 1.39355i 0.855668 + 0.517526i \(0.173147\pi\)
−0.482267 + 0.876024i \(0.660187\pi\)
\(788\) 2.37845 27.1858i 0.0847288 0.968454i
\(789\) 0 0
\(790\) 47.7481 70.5744i 1.69880 2.51092i
\(791\) 28.6442 16.5377i 1.01847 0.588015i
\(792\) 0 0
\(793\) 9.25061 6.47735i 0.328499 0.230017i
\(794\) 13.2205 + 74.9775i 0.469180 + 2.66085i
\(795\) 0 0
\(796\) 57.5306 + 48.2739i 2.03912 + 1.71102i
\(797\) 6.47982 6.47982i 0.229527 0.229527i −0.582968 0.812495i \(-0.698109\pi\)
0.812495 + 0.582968i \(0.198109\pi\)
\(798\) 0 0
\(799\) 4.92199i 0.174128i
\(800\) 0.322099 5.83095i 0.0113879 0.206155i
\(801\) 0 0
\(802\) −19.1021 + 27.2806i −0.674518 + 0.963312i
\(803\) 38.3399 + 54.7550i 1.35299 + 1.93226i
\(804\) 0 0
\(805\) −5.35243 + 15.4736i −0.188648 + 0.545372i
\(806\) 17.8634 + 10.3135i 0.629212 + 0.363276i
\(807\) 0 0
\(808\) −75.8914 6.63964i −2.66985 0.233582i
\(809\) −24.5586 14.1789i −0.863435 0.498504i 0.00172606 0.999999i \(-0.499451\pi\)
−0.865161 + 0.501494i \(0.832784\pi\)
\(810\) 0 0
\(811\) −13.5351 + 37.1874i −0.475282 + 1.30583i 0.438175 + 0.898890i \(0.355625\pi\)
−0.913457 + 0.406936i \(0.866597\pi\)
\(812\) −2.25671 3.22292i −0.0791950 0.113102i
\(813\) 0 0
\(814\) 20.0024 + 54.9562i 0.701085 + 1.92621i
\(815\) 2.25304 + 2.18189i 0.0789204 + 0.0764282i
\(816\) 0 0
\(817\) −24.8490 2.45639i −0.869357 0.0859382i
\(818\) −42.1113 + 42.1113i −1.47239 + 1.47239i
\(819\) 0 0
\(820\) 85.4604 + 47.5293i 2.98441 + 1.65980i
\(821\) −8.76478 49.7076i −0.305893 1.73481i −0.619271 0.785177i \(-0.712572\pi\)
0.313378 0.949629i \(-0.398539\pi\)
\(822\) 0 0
\(823\) −47.1143 + 21.9698i −1.64230 + 0.765818i −1.00000 0.000632369i \(-0.999799\pi\)
−0.642303 + 0.766451i \(0.722021\pi\)
\(824\) −22.6958 + 13.1034i −0.790646 + 0.456480i
\(825\) 0 0
\(826\) 14.7479 12.3750i 0.513146 0.430581i
\(827\) 3.98677 45.5690i 0.138633 1.58459i −0.534566 0.845127i \(-0.679525\pi\)
0.673199 0.739461i \(-0.264920\pi\)
\(828\) 0 0
\(829\) −8.78600 15.2178i −0.305150 0.528536i 0.672144 0.740420i \(-0.265373\pi\)
−0.977295 + 0.211884i \(0.932040\pi\)
\(830\) −19.6051 + 7.49395i −0.680503 + 0.260119i
\(831\) 0 0
\(832\) 10.4586 + 7.32317i 0.362586 + 0.253885i
\(833\) 1.83275 3.93035i 0.0635012 0.136179i
\(834\) 0 0
\(835\) −14.5714 1.03961i −0.504264 0.0359770i
\(836\) −47.7261 84.8576i −1.65064 2.93486i
\(837\) 0 0
\(838\) 0.524818 + 5.99870i 0.0181295 + 0.207222i
\(839\) −19.4605 + 7.08305i −0.671852 + 0.244534i −0.655345 0.755330i \(-0.727477\pi\)
−0.0165070 + 0.999864i \(0.505255\pi\)
\(840\) 0 0
\(841\) −5.01923 + 28.4655i −0.173077 + 0.981569i
\(842\) −4.42824 9.49638i −0.152607 0.327267i
\(843\) 0 0
\(844\) −31.7647 + 55.0181i −1.09339 + 1.89380i
\(845\) 3.23280 20.2262i 0.111212 0.695804i
\(846\) 0 0
\(847\) −55.2187 + 14.7958i −1.89734 + 0.508390i
\(848\) 8.42845 31.4554i 0.289434 1.08018i
\(849\) 0 0
\(850\) 19.7038 + 6.46371i 0.675834 + 0.221704i
\(851\) −10.1480 + 1.78937i −0.347869 + 0.0613387i
\(852\) 0 0
\(853\) −52.3721 + 4.58196i −1.79319 + 0.156883i −0.934580 0.355753i \(-0.884224\pi\)
−0.858606 + 0.512636i \(0.828669\pi\)
\(854\) 44.1222 1.50983
\(855\) 0 0
\(856\) −92.7448 −3.16995
\(857\) −35.1511 + 3.07532i −1.20074 + 0.105051i −0.669919 0.742434i \(-0.733671\pi\)
−0.530819 + 0.847485i \(0.678116\pi\)
\(858\) 0 0
\(859\) −5.19081 + 0.915280i −0.177108 + 0.0312290i −0.261499 0.965204i \(-0.584217\pi\)
0.0843906 + 0.996433i \(0.473106\pi\)
\(860\) 51.1243 + 12.8234i 1.74332 + 0.437274i
\(861\) 0 0
\(862\) −13.1248 + 48.9825i −0.447033 + 1.66835i
\(863\) 21.2517 5.69437i 0.723415 0.193839i 0.121720 0.992564i \(-0.461159\pi\)
0.601695 + 0.798726i \(0.294492\pi\)
\(864\) 0 0
\(865\) 1.50086 + 2.07190i 0.0510306 + 0.0704466i
\(866\) 28.2177 48.8745i 0.958876 1.66082i
\(867\) 0 0
\(868\) 22.9192 + 49.1504i 0.777928 + 1.66827i
\(869\) −14.5254 + 82.3779i −0.492742 + 2.79448i
\(870\) 0 0
\(871\) −4.17792 + 1.52064i −0.141564 + 0.0515249i
\(872\) −2.15576 24.6404i −0.0730031 0.834429i
\(873\) 0 0
\(874\) 24.0513 8.44835i 0.813548 0.285770i
\(875\) −33.8279 7.34023i −1.14359 0.248145i
\(876\) 0 0
\(877\) 3.55398 7.62154i 0.120009 0.257361i −0.837121 0.547017i \(-0.815763\pi\)
0.957131 + 0.289656i \(0.0935410\pi\)
\(878\) −6.86324 4.80569i −0.231623 0.162184i
\(879\) 0 0
\(880\) 20.3767 + 53.3080i 0.686899 + 1.79701i
\(881\) 4.46298 + 7.73011i 0.150362 + 0.260434i 0.931360 0.364099i \(-0.118623\pi\)
−0.780999 + 0.624532i \(0.785290\pi\)
\(882\) 0 0
\(883\) −0.291138 + 3.32772i −0.00979757 + 0.111987i −0.999519 0.0310246i \(-0.990123\pi\)
0.989721 + 0.143011i \(0.0456785\pi\)
\(884\) 10.3594 8.69259i 0.348425 0.292363i
\(885\) 0 0
\(886\) 6.23032 3.59708i 0.209312 0.120846i
\(887\) −45.7577 + 21.3372i −1.53639 + 0.716432i −0.992445 0.122687i \(-0.960849\pi\)
−0.543948 + 0.839119i \(0.683071\pi\)
\(888\) 0 0
\(889\) −6.14749 34.8642i −0.206180 1.16931i
\(890\) −21.4736 + 6.12465i −0.719795 + 0.205299i
\(891\) 0 0
\(892\) 34.7447 34.7447i 1.16334 1.16334i
\(893\) −9.14656 + 8.94276i −0.306078 + 0.299258i
\(894\) 0 0
\(895\) 0.379619 + 23.6628i 0.0126893 + 0.790959i
\(896\) 19.5348 + 53.6714i 0.652612 + 1.79304i
\(897\) 0 0
\(898\) −5.54904 7.92486i −0.185174 0.264456i
\(899\) −0.449645 + 1.23539i −0.0149965 + 0.0412026i
\(900\) 0 0
\(901\) 10.0599 + 5.80807i 0.335143 + 0.193495i
\(902\) −142.114 12.4333i −4.73187 0.413985i
\(903\) 0 0
\(904\) 48.3819 + 27.9333i 1.60916 + 0.929048i
\(905\) −8.02721 2.77667i −0.266833 0.0922997i
\(906\) 0 0
\(907\) −5.23635 7.47829i −0.173870 0.248312i 0.722753 0.691106i \(-0.242876\pi\)
−0.896624 + 0.442794i \(0.853987\pi\)
\(908\) −19.5895 + 27.9767i −0.650101 + 0.928441i
\(909\) 0 0
\(910\) −23.3369 + 24.0979i −0.773611 + 0.798838i
\(911\) 33.9640i 1.12528i 0.826703 + 0.562639i \(0.190214\pi\)
−0.826703 + 0.562639i \(0.809786\pi\)
\(912\) 0 0
\(913\) 14.5693 14.5693i 0.482174 0.482174i
\(914\) 65.4092 + 54.8849i 2.16354 + 1.81543i
\(915\) 0 0
\(916\) −13.3005 75.4306i −0.439459 2.49230i
\(917\) −20.7887 + 14.5564i −0.686505 + 0.480696i
\(918\) 0 0
\(919\) 4.54228 2.62249i 0.149836 0.0865079i −0.423208 0.906033i \(-0.639096\pi\)
0.573044 + 0.819525i \(0.305763\pi\)
\(920\) −27.1546 + 5.23855i −0.895261 + 0.172710i
\(921\) 0 0
\(922\) 1.72923 19.7651i 0.0569490 0.650930i
\(923\) 4.51326 + 16.8437i 0.148556 + 0.554417i
\(924\) 0 0
\(925\) −6.31054 20.8512i −0.207489 0.685585i
\(926\) 47.3337 + 8.34620i 1.55548 + 0.274273i
\(927\) 0 0
\(928\) 0.152442 0.326913i 0.00500416 0.0107315i
\(929\) 8.88045 10.5833i 0.291358 0.347227i −0.600433 0.799675i \(-0.705005\pi\)
0.891791 + 0.452448i \(0.149449\pi\)
\(930\) 0 0
\(931\) 10.6337 3.73523i 0.348506 0.122417i
\(932\) 58.0616 + 58.0616i 1.90187 + 1.90187i
\(933\) 0 0
\(934\) 42.1927 15.3569i 1.38059 0.502493i
\(935\) −20.2486 + 2.09931i −0.662199 + 0.0686548i
\(936\) 0 0
\(937\) 2.26833 + 4.86445i 0.0741031 + 0.158915i 0.939870 0.341534i \(-0.110946\pi\)
−0.865766 + 0.500448i \(0.833169\pi\)
\(938\) −16.7791 4.49595i −0.547858 0.146798i
\(939\) 0 0
\(940\) 21.8672 15.8403i 0.713229 0.516654i
\(941\) 8.71929 + 10.3912i 0.284241 + 0.338745i 0.889206 0.457507i \(-0.151257\pi\)
−0.604965 + 0.796252i \(0.706813\pi\)
\(942\) 0 0
\(943\) 6.50558 24.2791i 0.211851 0.790638i
\(944\) 11.1105 + 4.04390i 0.361617 + 0.131618i
\(945\) 0 0
\(946\) −75.7240 + 13.3522i −2.46200 + 0.434117i
\(947\) 52.4149 + 24.4415i 1.70326 + 0.794241i 0.996201 + 0.0870813i \(0.0277540\pi\)
0.707054 + 0.707160i \(0.250024\pi\)
\(948\) 0 0
\(949\) −24.1303 −0.783303
\(950\) 23.7882 + 48.3595i 0.771792 + 1.56899i
\(951\) 0 0
\(952\) 27.0518 2.36672i 0.876753 0.0767060i
\(953\) −29.4153 13.7166i −0.952855 0.444324i −0.116914 0.993142i \(-0.537300\pi\)
−0.835942 + 0.548818i \(0.815078\pi\)
\(954\) 0 0
\(955\) 25.9738 15.5567i 0.840491 0.503404i
\(956\) 56.9598 + 20.7317i 1.84221 + 0.670510i
\(957\) 0 0
\(958\) 68.1141 18.2511i 2.20067 0.589667i
\(959\) 0.812272 + 0.968029i 0.0262296 + 0.0312593i
\(960\) 0 0
\(961\) −6.43945 + 11.1534i −0.207724 + 0.359789i
\(962\) −20.3929 5.46425i −0.657492 0.176175i
\(963\) 0 0
\(964\) 14.4028 81.6824i 0.463883 2.63081i
\(965\) −33.7599 + 3.50013i −1.08677 + 0.112673i
\(966\) 0 0
\(967\) −1.08658 12.4197i −0.0349422 0.399391i −0.993445 0.114309i \(-0.963535\pi\)
0.958503 0.285082i \(-0.0920209\pi\)
\(968\) −68.2769 68.2769i −2.19450 2.19450i
\(969\) 0 0
\(970\) −56.6095 + 49.0698i −1.81762 + 1.57554i
\(971\) −32.5288 + 38.7663i −1.04390 + 1.24407i −0.0748516 + 0.997195i \(0.523848\pi\)
−0.969047 + 0.246875i \(0.920596\pi\)
\(972\) 0 0
\(973\) −10.7265 7.51076i −0.343875 0.240784i
\(974\) 38.5326 + 6.79433i 1.23466 + 0.217704i
\(975\) 0 0
\(976\) 13.5487 + 23.4671i 0.433684 + 0.751162i
\(977\) −8.10975 30.2660i −0.259454 0.968296i −0.965558 0.260188i \(-0.916216\pi\)
0.706104 0.708108i \(-0.250451\pi\)
\(978\) 0 0
\(979\) 16.7924 14.0905i 0.536688 0.450334i
\(980\) −23.3599 + 4.50648i −0.746204 + 0.143954i
\(981\) 0 0
\(982\) −0.196300 + 0.0915364i −0.00626420 + 0.00292104i
\(983\) −17.9317 + 12.5559i −0.571934 + 0.400472i −0.823457 0.567379i \(-0.807957\pi\)
0.251523 + 0.967851i \(0.419069\pi\)
\(984\) 0 0
\(985\) −4.06752 14.2611i −0.129602 0.454396i
\(986\) 0.981192 + 0.823318i 0.0312475 + 0.0262198i
\(987\) 0 0
\(988\) 34.9755 + 3.45742i 1.11272 + 0.109995i
\(989\) 13.5482i 0.430806i
\(990\) 0 0
\(991\) 18.6813 + 51.3264i 0.593431 + 1.63044i 0.764092 + 0.645107i \(0.223187\pi\)
−0.170661 + 0.985330i \(0.554590\pi\)
\(992\) −2.85177 + 4.07275i −0.0905438 + 0.129310i
\(993\) 0 0
\(994\) −23.3022 + 64.0221i −0.739100 + 2.03066i
\(995\) 38.5693 + 13.3414i 1.22273 + 0.422951i
\(996\) 0 0
\(997\) −40.6095 3.55287i −1.28612 0.112521i −0.576494 0.817102i \(-0.695579\pi\)
−0.709624 + 0.704581i \(0.751135\pi\)
\(998\) −19.6742 1.72127i −0.622774 0.0544857i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 855.2.dl.a.307.8 96
3.2 odd 2 95.2.r.a.22.1 yes 96
5.3 odd 4 inner 855.2.dl.a.478.1 96
15.2 even 4 475.2.bb.b.193.1 96
15.8 even 4 95.2.r.a.3.8 96
15.14 odd 2 475.2.bb.b.307.8 96
19.13 odd 18 inner 855.2.dl.a.127.1 96
57.32 even 18 95.2.r.a.32.8 yes 96
95.13 even 36 inner 855.2.dl.a.298.8 96
285.32 odd 36 475.2.bb.b.393.8 96
285.89 even 18 475.2.bb.b.32.1 96
285.203 odd 36 95.2.r.a.13.1 yes 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
95.2.r.a.3.8 96 15.8 even 4
95.2.r.a.13.1 yes 96 285.203 odd 36
95.2.r.a.22.1 yes 96 3.2 odd 2
95.2.r.a.32.8 yes 96 57.32 even 18
475.2.bb.b.32.1 96 285.89 even 18
475.2.bb.b.193.1 96 15.2 even 4
475.2.bb.b.307.8 96 15.14 odd 2
475.2.bb.b.393.8 96 285.32 odd 36
855.2.dl.a.127.1 96 19.13 odd 18 inner
855.2.dl.a.298.8 96 95.13 even 36 inner
855.2.dl.a.307.8 96 1.1 even 1 trivial
855.2.dl.a.478.1 96 5.3 odd 4 inner