Properties

Label 855.2.da.b.244.6
Level $855$
Weight $2$
Character 855.244
Analytic conductor $6.827$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [855,2,Mod(199,855)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(855, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([0, 9, 8])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("855.199"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 855 = 3^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 855.da (of order \(18\), degree \(6\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.82720937282\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(8\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 95)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 244.6
Character \(\chi\) \(=\) 855.244
Dual form 855.2.da.b.424.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.04072 - 1.24028i) q^{2} +(-0.107903 - 0.611947i) q^{4} +(-2.23519 - 0.0626993i) q^{5} +(-1.93288 + 1.11595i) q^{7} +(1.93303 + 1.11604i) q^{8} +(-2.40397 + 2.70701i) q^{10} +(2.82239 - 4.88852i) q^{11} +(1.60766 - 4.41702i) q^{13} +(-0.627496 + 3.55871i) q^{14} +(4.56376 - 1.66107i) q^{16} +(0.505129 - 0.601990i) q^{17} +(2.63014 - 3.47597i) q^{19} +(0.202814 + 1.37458i) q^{20} +(-3.12582 - 8.58813i) q^{22} +(-5.05247 + 0.890886i) q^{23} +(4.99214 + 0.280289i) q^{25} +(-3.80521 - 6.59082i) q^{26} +(0.891466 + 1.06241i) q^{28} +(2.32611 - 1.95184i) q^{29} +(-4.05208 - 7.01841i) q^{31} +(1.16257 - 3.19413i) q^{32} +(-0.220938 - 1.25300i) q^{34} +(4.39033 - 2.37317i) q^{35} +0.985141i q^{37} +(-1.57393 - 6.87961i) q^{38} +(-4.25071 - 2.61575i) q^{40} +(1.33247 - 0.484978i) q^{41} +(-1.49862 - 0.264247i) q^{43} +(-3.29606 - 1.19967i) q^{44} +(-4.15324 + 7.19363i) q^{46} +(0.617523 + 0.735935i) q^{47} +(-1.00930 + 1.74817i) q^{49} +(5.54304 - 5.89994i) q^{50} +(-2.87645 - 0.507196i) q^{52} +(4.34421 - 0.766002i) q^{53} +(-6.61508 + 10.7498i) q^{55} -4.98176 q^{56} -4.91635i q^{58} +(7.56739 + 6.34980i) q^{59} +(0.363973 + 2.06420i) q^{61} +(-12.9219 - 2.27847i) q^{62} +(2.10495 + 3.64588i) q^{64} +(-3.87038 + 9.77207i) q^{65} +(2.08785 + 2.48820i) q^{67} +(-0.422891 - 0.244156i) q^{68} +(1.62570 - 7.91504i) q^{70} +(-1.24628 + 7.06798i) q^{71} +(-5.18587 - 14.2481i) q^{73} +(1.22185 + 1.02525i) q^{74} +(-2.41091 - 1.23444i) q^{76} +12.5986i q^{77} +(1.25893 - 0.458214i) q^{79} +(-10.3050 + 3.42667i) q^{80} +(0.785214 - 2.15736i) q^{82} +(6.51723 - 3.76273i) q^{83} +(-1.16680 + 1.31389i) q^{85} +(-1.88738 + 1.58370i) q^{86} +(10.9115 - 6.29977i) q^{88} +(-3.19776 - 1.16389i) q^{89} +(1.82175 + 10.3317i) q^{91} +(1.09035 + 2.99571i) q^{92} +1.55543 q^{94} +(-6.09681 + 7.60453i) q^{95} +(-8.20200 + 9.77477i) q^{97} +(1.11781 + 3.07117i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 18 q^{4} + 6 q^{5} - 15 q^{10} + 12 q^{11} - 6 q^{14} - 42 q^{16} + 12 q^{19} - 42 q^{20} + 12 q^{25} - 12 q^{26} - 42 q^{31} - 36 q^{34} - 6 q^{35} + 66 q^{40} - 6 q^{41} + 6 q^{44} - 6 q^{46} + 12 q^{49}+ \cdots + 63 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/855\mathbb{Z}\right)^\times\).

\(n\) \(172\) \(191\) \(496\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{2}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.04072 1.24028i 0.735899 0.877010i −0.260173 0.965562i \(-0.583780\pi\)
0.996072 + 0.0885521i \(0.0282240\pi\)
\(3\) 0 0
\(4\) −0.107903 0.611947i −0.0539514 0.305973i
\(5\) −2.23519 0.0626993i −0.999607 0.0280400i
\(6\) 0 0
\(7\) −1.93288 + 1.11595i −0.730562 + 0.421790i −0.818628 0.574325i \(-0.805265\pi\)
0.0880659 + 0.996115i \(0.471931\pi\)
\(8\) 1.93303 + 1.11604i 0.683429 + 0.394578i
\(9\) 0 0
\(10\) −2.40397 + 2.70701i −0.760201 + 0.856031i
\(11\) 2.82239 4.88852i 0.850983 1.47395i −0.0293397 0.999569i \(-0.509340\pi\)
0.880322 0.474376i \(-0.157326\pi\)
\(12\) 0 0
\(13\) 1.60766 4.41702i 0.445886 1.22506i −0.489678 0.871903i \(-0.662886\pi\)
0.935564 0.353158i \(-0.114892\pi\)
\(14\) −0.627496 + 3.55871i −0.167705 + 0.951105i
\(15\) 0 0
\(16\) 4.56376 1.66107i 1.14094 0.415268i
\(17\) 0.505129 0.601990i 0.122512 0.146004i −0.701302 0.712864i \(-0.747398\pi\)
0.823814 + 0.566860i \(0.191842\pi\)
\(18\) 0 0
\(19\) 2.63014 3.47597i 0.603396 0.797442i
\(20\) 0.202814 + 1.37458i 0.0453507 + 0.307366i
\(21\) 0 0
\(22\) −3.12582 8.58813i −0.666428 1.83099i
\(23\) −5.05247 + 0.890886i −1.05351 + 0.185763i −0.673476 0.739209i \(-0.735200\pi\)
−0.380036 + 0.924972i \(0.624088\pi\)
\(24\) 0 0
\(25\) 4.99214 + 0.280289i 0.998428 + 0.0560579i
\(26\) −3.80521 6.59082i −0.746264 1.29257i
\(27\) 0 0
\(28\) 0.891466 + 1.06241i 0.168471 + 0.200776i
\(29\) 2.32611 1.95184i 0.431949 0.362448i −0.400738 0.916193i \(-0.631246\pi\)
0.832686 + 0.553745i \(0.186802\pi\)
\(30\) 0 0
\(31\) −4.05208 7.01841i −0.727775 1.26054i −0.957822 0.287364i \(-0.907221\pi\)
0.230047 0.973180i \(-0.426112\pi\)
\(32\) 1.16257 3.19413i 0.205515 0.564647i
\(33\) 0 0
\(34\) −0.220938 1.25300i −0.0378906 0.214888i
\(35\) 4.39033 2.37317i 0.742101 0.401139i
\(36\) 0 0
\(37\) 0.985141i 0.161956i 0.996716 + 0.0809781i \(0.0258044\pi\)
−0.996716 + 0.0809781i \(0.974196\pi\)
\(38\) −1.57393 6.87961i −0.255326 1.11602i
\(39\) 0 0
\(40\) −4.25071 2.61575i −0.672097 0.413586i
\(41\) 1.33247 0.484978i 0.208096 0.0757409i −0.235869 0.971785i \(-0.575794\pi\)
0.443965 + 0.896044i \(0.353571\pi\)
\(42\) 0 0
\(43\) −1.49862 0.264247i −0.228537 0.0402973i 0.0582066 0.998305i \(-0.481462\pi\)
−0.286744 + 0.958007i \(0.592573\pi\)
\(44\) −3.29606 1.19967i −0.496900 0.180857i
\(45\) 0 0
\(46\) −4.15324 + 7.19363i −0.612363 + 1.06064i
\(47\) 0.617523 + 0.735935i 0.0900749 + 0.107347i 0.809199 0.587534i \(-0.199901\pi\)
−0.719124 + 0.694881i \(0.755457\pi\)
\(48\) 0 0
\(49\) −1.00930 + 1.74817i −0.144186 + 0.249738i
\(50\) 5.54304 5.89994i 0.783905 0.834378i
\(51\) 0 0
\(52\) −2.87645 0.507196i −0.398892 0.0703355i
\(53\) 4.34421 0.766002i 0.596723 0.105218i 0.132875 0.991133i \(-0.457579\pi\)
0.463849 + 0.885914i \(0.346468\pi\)
\(54\) 0 0
\(55\) −6.61508 + 10.7498i −0.891977 + 1.44950i
\(56\) −4.98176 −0.665716
\(57\) 0 0
\(58\) 4.91635i 0.645548i
\(59\) 7.56739 + 6.34980i 0.985191 + 0.826673i 0.984864 0.173327i \(-0.0554516\pi\)
0.000326502 1.00000i \(0.499896\pi\)
\(60\) 0 0
\(61\) 0.363973 + 2.06420i 0.0466020 + 0.264293i 0.999202 0.0399312i \(-0.0127139\pi\)
−0.952600 + 0.304224i \(0.901603\pi\)
\(62\) −12.9219 2.27847i −1.64108 0.289366i
\(63\) 0 0
\(64\) 2.10495 + 3.64588i 0.263118 + 0.455735i
\(65\) −3.87038 + 9.77207i −0.480061 + 1.21208i
\(66\) 0 0
\(67\) 2.08785 + 2.48820i 0.255071 + 0.303982i 0.878350 0.478017i \(-0.158644\pi\)
−0.623279 + 0.781999i \(0.714200\pi\)
\(68\) −0.422891 0.244156i −0.0512830 0.0296083i
\(69\) 0 0
\(70\) 1.62570 7.91504i 0.194308 0.946028i
\(71\) −1.24628 + 7.06798i −0.147906 + 0.838815i 0.817082 + 0.576521i \(0.195590\pi\)
−0.964988 + 0.262294i \(0.915521\pi\)
\(72\) 0 0
\(73\) −5.18587 14.2481i −0.606960 1.66761i −0.736829 0.676079i \(-0.763678\pi\)
0.129869 0.991531i \(-0.458544\pi\)
\(74\) 1.22185 + 1.02525i 0.142037 + 0.119183i
\(75\) 0 0
\(76\) −2.41091 1.23444i −0.276550 0.141600i
\(77\) 12.5986i 1.43574i
\(78\) 0 0
\(79\) 1.25893 0.458214i 0.141641 0.0515531i −0.270227 0.962797i \(-0.587099\pi\)
0.411868 + 0.911244i \(0.364877\pi\)
\(80\) −10.3050 + 3.42667i −1.15214 + 0.383113i
\(81\) 0 0
\(82\) 0.785214 2.15736i 0.0867123 0.238240i
\(83\) 6.51723 3.76273i 0.715359 0.413013i −0.0976829 0.995218i \(-0.531143\pi\)
0.813042 + 0.582205i \(0.197810\pi\)
\(84\) 0 0
\(85\) −1.16680 + 1.31389i −0.126558 + 0.142511i
\(86\) −1.88738 + 1.58370i −0.203522 + 0.170775i
\(87\) 0 0
\(88\) 10.9115 6.29977i 1.16317 0.671558i
\(89\) −3.19776 1.16389i −0.338962 0.123372i 0.166930 0.985969i \(-0.446614\pi\)
−0.505892 + 0.862597i \(0.668837\pi\)
\(90\) 0 0
\(91\) 1.82175 + 10.3317i 0.190971 + 1.08305i
\(92\) 1.09035 + 2.99571i 0.113677 + 0.312324i
\(93\) 0 0
\(94\) 1.55543 0.160431
\(95\) −6.09681 + 7.60453i −0.625519 + 0.780209i
\(96\) 0 0
\(97\) −8.20200 + 9.77477i −0.832787 + 0.992477i 0.167191 + 0.985924i \(0.446530\pi\)
−0.999979 + 0.00655264i \(0.997914\pi\)
\(98\) 1.11781 + 3.07117i 0.112916 + 0.310235i
\(99\) 0 0
\(100\) −0.367143 3.08517i −0.0367143 0.308517i
\(101\) 5.23691 + 1.90608i 0.521092 + 0.189662i 0.589156 0.808019i \(-0.299460\pi\)
−0.0680647 + 0.997681i \(0.521682\pi\)
\(102\) 0 0
\(103\) 2.86453 + 1.65384i 0.282251 + 0.162958i 0.634442 0.772971i \(-0.281230\pi\)
−0.352191 + 0.935928i \(0.614563\pi\)
\(104\) 8.03721 6.74402i 0.788114 0.661306i
\(105\) 0 0
\(106\) 3.57104 6.18523i 0.346850 0.600763i
\(107\) 5.77870 3.33633i 0.558648 0.322536i −0.193955 0.981010i \(-0.562131\pi\)
0.752603 + 0.658475i \(0.228798\pi\)
\(108\) 0 0
\(109\) −2.72302 + 15.4430i −0.260818 + 1.47917i 0.519866 + 0.854248i \(0.325982\pi\)
−0.780684 + 0.624925i \(0.785129\pi\)
\(110\) 6.44833 + 19.3921i 0.614825 + 1.84896i
\(111\) 0 0
\(112\) −6.96755 + 8.30360i −0.658371 + 0.784616i
\(113\) 6.58139i 0.619125i −0.950879 0.309562i \(-0.899817\pi\)
0.950879 0.309562i \(-0.100183\pi\)
\(114\) 0 0
\(115\) 11.3491 1.67451i 1.05831 0.156149i
\(116\) −1.44542 1.21285i −0.134204 0.112610i
\(117\) 0 0
\(118\) 15.7510 2.77733i 1.45000 0.255674i
\(119\) −0.304565 + 1.72728i −0.0279195 + 0.158339i
\(120\) 0 0
\(121\) −10.4318 18.0684i −0.948343 1.64258i
\(122\) 2.93897 + 1.69682i 0.266082 + 0.153623i
\(123\) 0 0
\(124\) −3.85766 + 3.23696i −0.346428 + 0.290688i
\(125\) −11.1408 0.939503i −0.996463 0.0840317i
\(126\) 0 0
\(127\) −0.456461 + 1.25412i −0.0405044 + 0.111285i −0.958296 0.285778i \(-0.907748\pi\)
0.917792 + 0.397062i \(0.129970\pi\)
\(128\) 13.4075 + 2.36411i 1.18507 + 0.208960i
\(129\) 0 0
\(130\) 8.09213 + 14.9703i 0.709727 + 1.31298i
\(131\) −10.5552 8.85684i −0.922210 0.773826i 0.0521924 0.998637i \(-0.483379\pi\)
−0.974402 + 0.224811i \(0.927824\pi\)
\(132\) 0 0
\(133\) −1.20475 + 9.65376i −0.104465 + 0.837087i
\(134\) 5.25892 0.454302
\(135\) 0 0
\(136\) 1.64827 0.599922i 0.141338 0.0514429i
\(137\) 11.5639 2.03902i 0.987969 0.174206i 0.343762 0.939057i \(-0.388299\pi\)
0.644207 + 0.764851i \(0.277187\pi\)
\(138\) 0 0
\(139\) −8.77809 3.19496i −0.744548 0.270993i −0.0582382 0.998303i \(-0.518548\pi\)
−0.686310 + 0.727309i \(0.740771\pi\)
\(140\) −1.92598 2.43058i −0.162775 0.205421i
\(141\) 0 0
\(142\) 7.46925 + 8.90151i 0.626806 + 0.746998i
\(143\) −17.0553 20.3257i −1.42623 1.69972i
\(144\) 0 0
\(145\) −5.32168 + 4.21689i −0.441942 + 0.350194i
\(146\) −23.0686 8.39629i −1.90917 0.694882i
\(147\) 0 0
\(148\) 0.602854 0.106299i 0.0495543 0.00873776i
\(149\) −16.9364 + 6.16435i −1.38748 + 0.505003i −0.924439 0.381331i \(-0.875466\pi\)
−0.463046 + 0.886334i \(0.653244\pi\)
\(150\) 0 0
\(151\) −13.0159 −1.05922 −0.529611 0.848241i \(-0.677662\pi\)
−0.529611 + 0.848241i \(0.677662\pi\)
\(152\) 8.96345 3.78382i 0.727032 0.306908i
\(153\) 0 0
\(154\) 15.6258 + 13.1116i 1.25916 + 1.05656i
\(155\) 8.61711 + 15.9415i 0.692143 + 1.28045i
\(156\) 0 0
\(157\) 10.3475 + 1.82454i 0.825821 + 0.145614i 0.570558 0.821257i \(-0.306727\pi\)
0.255263 + 0.966872i \(0.417838\pi\)
\(158\) 0.741880 2.03830i 0.0590208 0.162158i
\(159\) 0 0
\(160\) −2.79883 + 7.06658i −0.221267 + 0.558662i
\(161\) 8.77165 7.36029i 0.691303 0.580072i
\(162\) 0 0
\(163\) −3.13838 1.81195i −0.245817 0.141923i 0.372030 0.928221i \(-0.378662\pi\)
−0.617847 + 0.786298i \(0.711995\pi\)
\(164\) −0.440558 0.763068i −0.0344018 0.0595856i
\(165\) 0 0
\(166\) 2.11577 11.9991i 0.164216 0.931313i
\(167\) −10.4783 + 1.84761i −0.810835 + 0.142972i −0.563669 0.826001i \(-0.690611\pi\)
−0.247166 + 0.968973i \(0.579499\pi\)
\(168\) 0 0
\(169\) −6.96691 5.84593i −0.535916 0.449687i
\(170\) 0.415276 + 2.81455i 0.0318502 + 0.215866i
\(171\) 0 0
\(172\) 0.945588i 0.0721004i
\(173\) −12.4770 + 14.8695i −0.948611 + 1.13051i 0.0427156 + 0.999087i \(0.486399\pi\)
−0.991326 + 0.131423i \(0.958045\pi\)
\(174\) 0 0
\(175\) −9.96202 + 5.02922i −0.753058 + 0.380173i
\(176\) 4.76052 26.9982i 0.358838 2.03507i
\(177\) 0 0
\(178\) −4.77152 + 2.75484i −0.357640 + 0.206484i
\(179\) −1.03526 + 1.79312i −0.0773789 + 0.134024i −0.902118 0.431489i \(-0.857988\pi\)
0.824739 + 0.565513i \(0.191322\pi\)
\(180\) 0 0
\(181\) 16.5714 13.9051i 1.23174 1.03356i 0.233619 0.972328i \(-0.424943\pi\)
0.998124 0.0612273i \(-0.0195014\pi\)
\(182\) 14.7101 + 8.49287i 1.09038 + 0.629533i
\(183\) 0 0
\(184\) −10.7608 3.91662i −0.793299 0.288737i
\(185\) 0.0617676 2.20198i 0.00454125 0.161892i
\(186\) 0 0
\(187\) −1.51717 4.16839i −0.110946 0.304823i
\(188\) 0.383721 0.457300i 0.0279857 0.0333521i
\(189\) 0 0
\(190\) 3.08669 + 15.4759i 0.223932 + 1.12274i
\(191\) 22.4061 1.62125 0.810626 0.585565i \(-0.199127\pi\)
0.810626 + 0.585565i \(0.199127\pi\)
\(192\) 0 0
\(193\) 6.70316 + 18.4168i 0.482504 + 1.32567i 0.907339 + 0.420399i \(0.138110\pi\)
−0.424835 + 0.905271i \(0.639668\pi\)
\(194\) 3.58747 + 20.3455i 0.257565 + 1.46073i
\(195\) 0 0
\(196\) 1.17869 + 0.429009i 0.0841923 + 0.0306435i
\(197\) −13.3885 + 7.72984i −0.953890 + 0.550729i −0.894287 0.447494i \(-0.852317\pi\)
−0.0596028 + 0.998222i \(0.518983\pi\)
\(198\) 0 0
\(199\) 1.05175 0.882524i 0.0745566 0.0625604i −0.604748 0.796417i \(-0.706726\pi\)
0.679304 + 0.733857i \(0.262282\pi\)
\(200\) 9.33714 + 6.11321i 0.660235 + 0.432269i
\(201\) 0 0
\(202\) 7.81421 4.51154i 0.549806 0.317431i
\(203\) −2.31795 + 6.36852i −0.162688 + 0.446982i
\(204\) 0 0
\(205\) −3.00872 + 1.00047i −0.210138 + 0.0698761i
\(206\) 5.03239 1.83164i 0.350623 0.127617i
\(207\) 0 0
\(208\) 22.8287i 1.58288i
\(209\) −9.56906 22.6681i −0.661905 1.56798i
\(210\) 0 0
\(211\) 7.33250 + 6.15270i 0.504790 + 0.423569i 0.859291 0.511486i \(-0.170905\pi\)
−0.354501 + 0.935056i \(0.615349\pi\)
\(212\) −0.937505 2.57577i −0.0643881 0.176905i
\(213\) 0 0
\(214\) 1.87601 10.6394i 0.128241 0.727293i
\(215\) 3.33313 + 0.684604i 0.227318 + 0.0466896i
\(216\) 0 0
\(217\) 15.6644 + 9.04385i 1.06337 + 0.613936i
\(218\) 16.3198 + 19.4491i 1.10531 + 1.31726i
\(219\) 0 0
\(220\) 7.29210 + 2.88814i 0.491633 + 0.194719i
\(221\) −1.84692 3.19896i −0.124237 0.215186i
\(222\) 0 0
\(223\) −6.43818 1.13522i −0.431132 0.0760203i −0.0461291 0.998935i \(-0.514689\pi\)
−0.385003 + 0.922915i \(0.625800\pi\)
\(224\) 1.31738 + 7.47124i 0.0880213 + 0.499194i
\(225\) 0 0
\(226\) −8.16276 6.84937i −0.542979 0.455613i
\(227\) 8.88867i 0.589962i −0.955503 0.294981i \(-0.904687\pi\)
0.955503 0.294981i \(-0.0953133\pi\)
\(228\) 0 0
\(229\) 7.22494 0.477438 0.238719 0.971089i \(-0.423273\pi\)
0.238719 + 0.971089i \(0.423273\pi\)
\(230\) 9.73432 15.8187i 0.641862 1.04306i
\(231\) 0 0
\(232\) 6.67477 1.17694i 0.438220 0.0772701i
\(233\) 24.5985 + 4.33738i 1.61150 + 0.284151i 0.905592 0.424151i \(-0.139427\pi\)
0.705910 + 0.708302i \(0.250538\pi\)
\(234\) 0 0
\(235\) −1.33414 1.68367i −0.0870295 0.109831i
\(236\) 3.06920 5.31600i 0.199788 0.346042i
\(237\) 0 0
\(238\) 1.82534 + 2.17535i 0.118319 + 0.141007i
\(239\) −8.40936 + 14.5654i −0.543956 + 0.942160i 0.454715 + 0.890637i \(0.349741\pi\)
−0.998672 + 0.0515232i \(0.983592\pi\)
\(240\) 0 0
\(241\) 10.1922 + 3.70965i 0.656536 + 0.238959i 0.648740 0.761010i \(-0.275296\pi\)
0.00779570 + 0.999970i \(0.497519\pi\)
\(242\) −33.2664 5.86576i −2.13844 0.377065i
\(243\) 0 0
\(244\) 1.22390 0.445465i 0.0783524 0.0285179i
\(245\) 2.36560 3.84420i 0.151132 0.245597i
\(246\) 0 0
\(247\) −11.1250 17.2056i −0.707869 1.09476i
\(248\) 18.0891i 1.14866i
\(249\) 0 0
\(250\) −12.7597 + 12.8399i −0.806993 + 0.812069i
\(251\) −1.10625 6.27388i −0.0698262 0.396004i −0.999611 0.0278997i \(-0.991118\pi\)
0.929785 0.368104i \(-0.119993\pi\)
\(252\) 0 0
\(253\) −9.90491 + 27.2135i −0.622717 + 1.71090i
\(254\) 1.08041 + 1.87132i 0.0677909 + 0.117417i
\(255\) 0 0
\(256\) 10.4357 8.75656i 0.652229 0.547285i
\(257\) 8.77180 + 10.4538i 0.547170 + 0.652092i 0.966779 0.255613i \(-0.0822774\pi\)
−0.419609 + 0.907705i \(0.637833\pi\)
\(258\) 0 0
\(259\) −1.09937 1.90416i −0.0683115 0.118319i
\(260\) 6.39761 + 1.31403i 0.396763 + 0.0814927i
\(261\) 0 0
\(262\) −21.9699 + 3.87389i −1.35731 + 0.239330i
\(263\) 3.49596 + 9.60508i 0.215570 + 0.592274i 0.999595 0.0284550i \(-0.00905874\pi\)
−0.784025 + 0.620730i \(0.786837\pi\)
\(264\) 0 0
\(265\) −9.75816 + 1.43978i −0.599439 + 0.0884450i
\(266\) 10.7195 + 11.5411i 0.657258 + 0.707628i
\(267\) 0 0
\(268\) 1.29736 1.54613i 0.0792490 0.0944452i
\(269\) 13.5785 4.94217i 0.827895 0.301329i 0.106900 0.994270i \(-0.465907\pi\)
0.720995 + 0.692941i \(0.243685\pi\)
\(270\) 0 0
\(271\) −2.81404 + 15.9592i −0.170941 + 0.969453i 0.771785 + 0.635884i \(0.219364\pi\)
−0.942725 + 0.333570i \(0.891747\pi\)
\(272\) 1.30534 3.58639i 0.0791479 0.217457i
\(273\) 0 0
\(274\) 9.50578 16.4645i 0.574265 0.994657i
\(275\) 15.4600 23.6131i 0.932271 1.42392i
\(276\) 0 0
\(277\) 24.7634 + 14.2971i 1.48789 + 0.859032i 0.999904 0.0138211i \(-0.00439952\pi\)
0.487983 + 0.872853i \(0.337733\pi\)
\(278\) −13.0982 + 7.56223i −0.785576 + 0.453552i
\(279\) 0 0
\(280\) 11.1352 + 0.312353i 0.665455 + 0.0186667i
\(281\) −1.24639 7.06866i −0.0743537 0.421681i −0.999150 0.0412185i \(-0.986876\pi\)
0.924796 0.380462i \(-0.124235\pi\)
\(282\) 0 0
\(283\) 6.66290 7.94053i 0.396068 0.472016i −0.530749 0.847529i \(-0.678089\pi\)
0.926817 + 0.375514i \(0.122534\pi\)
\(284\) 4.45970 0.264635
\(285\) 0 0
\(286\) −42.9592 −2.54023
\(287\) −2.03429 + 2.42438i −0.120080 + 0.143106i
\(288\) 0 0
\(289\) 2.84478 + 16.1336i 0.167340 + 0.949033i
\(290\) −0.308251 + 10.9890i −0.0181012 + 0.645294i
\(291\) 0 0
\(292\) −8.15949 + 4.71088i −0.477498 + 0.275684i
\(293\) −7.87266 4.54528i −0.459926 0.265538i 0.252087 0.967704i \(-0.418883\pi\)
−0.712013 + 0.702166i \(0.752216\pi\)
\(294\) 0 0
\(295\) −16.5164 14.6675i −0.961624 0.853973i
\(296\) −1.09945 + 1.90431i −0.0639044 + 0.110686i
\(297\) 0 0
\(298\) −9.98051 + 27.4212i −0.578156 + 1.58847i
\(299\) −4.18761 + 23.7491i −0.242175 + 1.37345i
\(300\) 0 0
\(301\) 3.19155 1.16163i 0.183958 0.0669551i
\(302\) −13.5459 + 16.1434i −0.779480 + 0.928948i
\(303\) 0 0
\(304\) 6.22951 20.2323i 0.357287 1.16040i
\(305\) −0.684125 4.63669i −0.0391729 0.265496i
\(306\) 0 0
\(307\) 5.01541 + 13.7797i 0.286245 + 0.786450i 0.996584 + 0.0825907i \(0.0263194\pi\)
−0.710339 + 0.703860i \(0.751458\pi\)
\(308\) 7.70967 1.35942i 0.439299 0.0774603i
\(309\) 0 0
\(310\) 28.7399 + 5.90301i 1.63232 + 0.335268i
\(311\) −15.7905 27.3500i −0.895400 1.55088i −0.833309 0.552807i \(-0.813557\pi\)
−0.0620906 0.998071i \(-0.519777\pi\)
\(312\) 0 0
\(313\) 5.77911 + 6.88727i 0.326654 + 0.389292i 0.904230 0.427046i \(-0.140446\pi\)
−0.577576 + 0.816337i \(0.696001\pi\)
\(314\) 13.0318 10.9350i 0.735426 0.617095i
\(315\) 0 0
\(316\) −0.416244 0.720957i −0.0234156 0.0405570i
\(317\) 3.56399 9.79199i 0.200174 0.549973i −0.798470 0.602035i \(-0.794357\pi\)
0.998644 + 0.0520614i \(0.0165791\pi\)
\(318\) 0 0
\(319\) −2.97642 16.8801i −0.166648 0.945106i
\(320\) −4.47636 8.28120i −0.250236 0.462933i
\(321\) 0 0
\(322\) 18.5393i 1.03315i
\(323\) −0.763934 3.33913i −0.0425064 0.185794i
\(324\) 0 0
\(325\) 9.26372 21.5998i 0.513859 1.19814i
\(326\) −5.51349 + 2.00675i −0.305364 + 0.111143i
\(327\) 0 0
\(328\) 3.11695 + 0.549603i 0.172105 + 0.0303467i
\(329\) −2.01487 0.733352i −0.111083 0.0404310i
\(330\) 0 0
\(331\) 2.01528 3.49056i 0.110770 0.191859i −0.805311 0.592852i \(-0.798002\pi\)
0.916081 + 0.400994i \(0.131335\pi\)
\(332\) −3.00582 3.58219i −0.164966 0.196598i
\(333\) 0 0
\(334\) −8.61341 + 14.9189i −0.471305 + 0.816324i
\(335\) −4.51072 5.69250i −0.246447 0.311015i
\(336\) 0 0
\(337\) −24.4051 4.30328i −1.32943 0.234414i −0.536590 0.843843i \(-0.680288\pi\)
−0.792841 + 0.609429i \(0.791399\pi\)
\(338\) −14.5012 + 2.55695i −0.788760 + 0.139080i
\(339\) 0 0
\(340\) 0.929932 + 0.572250i 0.0504326 + 0.0310346i
\(341\) −45.7462 −2.47730
\(342\) 0 0
\(343\) 20.1287i 1.08685i
\(344\) −2.60197 2.18331i −0.140289 0.117716i
\(345\) 0 0
\(346\) 5.45732 + 30.9500i 0.293387 + 1.66388i
\(347\) 28.1891 + 4.97049i 1.51327 + 0.266830i 0.867783 0.496943i \(-0.165544\pi\)
0.645485 + 0.763773i \(0.276655\pi\)
\(348\) 0 0
\(349\) 5.11084 + 8.85223i 0.273577 + 0.473849i 0.969775 0.244001i \(-0.0784599\pi\)
−0.696198 + 0.717850i \(0.745127\pi\)
\(350\) −4.13002 + 17.5897i −0.220759 + 0.940208i
\(351\) 0 0
\(352\) −12.3333 14.6983i −0.657369 0.783422i
\(353\) 15.4082 + 8.89593i 0.820096 + 0.473483i 0.850450 0.526057i \(-0.176330\pi\)
−0.0303537 + 0.999539i \(0.509663\pi\)
\(354\) 0 0
\(355\) 3.22882 15.7201i 0.171368 0.834338i
\(356\) −0.367192 + 2.08245i −0.0194611 + 0.110369i
\(357\) 0 0
\(358\) 1.14656 + 3.15014i 0.0605975 + 0.166490i
\(359\) −0.659251 0.553177i −0.0347939 0.0291956i 0.625225 0.780445i \(-0.285007\pi\)
−0.660019 + 0.751249i \(0.729452\pi\)
\(360\) 0 0
\(361\) −5.16469 18.2846i −0.271826 0.962346i
\(362\) 35.0244i 1.84084i
\(363\) 0 0
\(364\) 6.12586 2.22963i 0.321082 0.116864i
\(365\) 10.6981 + 32.1723i 0.559962 + 1.68397i
\(366\) 0 0
\(367\) 7.28874 20.0256i 0.380469 1.04533i −0.590690 0.806899i \(-0.701144\pi\)
0.971159 0.238432i \(-0.0766334\pi\)
\(368\) −21.5784 + 12.4583i −1.12485 + 0.649434i
\(369\) 0 0
\(370\) −2.66678 2.36825i −0.138639 0.123119i
\(371\) −7.54204 + 6.32852i −0.391563 + 0.328561i
\(372\) 0 0
\(373\) 12.2737 7.08623i 0.635509 0.366911i −0.147374 0.989081i \(-0.547082\pi\)
0.782882 + 0.622170i \(0.213749\pi\)
\(374\) −6.74891 2.45640i −0.348978 0.127018i
\(375\) 0 0
\(376\) 0.372360 + 2.11176i 0.0192030 + 0.108906i
\(377\) −4.88171 13.4124i −0.251421 0.690774i
\(378\) 0 0
\(379\) 3.54496 0.182092 0.0910462 0.995847i \(-0.470979\pi\)
0.0910462 + 0.995847i \(0.470979\pi\)
\(380\) 5.31143 + 2.91037i 0.272471 + 0.149299i
\(381\) 0 0
\(382\) 23.3185 27.7899i 1.19308 1.42185i
\(383\) −2.63645 7.24358i −0.134716 0.370130i 0.853931 0.520387i \(-0.174212\pi\)
−0.988647 + 0.150257i \(0.951990\pi\)
\(384\) 0 0
\(385\) 0.789923 28.1603i 0.0402582 1.43518i
\(386\) 29.8181 + 10.8529i 1.51770 + 0.552398i
\(387\) 0 0
\(388\) 6.86665 + 3.96447i 0.348602 + 0.201265i
\(389\) 1.37878 1.15693i 0.0699070 0.0586589i −0.607165 0.794576i \(-0.707693\pi\)
0.677072 + 0.735917i \(0.263249\pi\)
\(390\) 0 0
\(391\) −2.01584 + 3.49155i −0.101946 + 0.176575i
\(392\) −3.90203 + 2.25284i −0.197082 + 0.113786i
\(393\) 0 0
\(394\) −4.34647 + 24.6500i −0.218972 + 1.24185i
\(395\) −2.84268 + 0.945260i −0.143031 + 0.0475612i
\(396\) 0 0
\(397\) −11.3616 + 13.5403i −0.570224 + 0.679567i −0.971677 0.236313i \(-0.924061\pi\)
0.401453 + 0.915880i \(0.368505\pi\)
\(398\) 2.22292i 0.111425i
\(399\) 0 0
\(400\) 23.2485 7.01313i 1.16243 0.350657i
\(401\) 20.7714 + 17.4293i 1.03727 + 0.870375i 0.991698 0.128586i \(-0.0410437\pi\)
0.0455746 + 0.998961i \(0.485488\pi\)
\(402\) 0 0
\(403\) −37.5148 + 6.61488i −1.86875 + 0.329510i
\(404\) 0.601342 3.41038i 0.0299179 0.169673i
\(405\) 0 0
\(406\) 5.48641 + 9.50273i 0.272286 + 0.471613i
\(407\) 4.81588 + 2.78045i 0.238715 + 0.137822i
\(408\) 0 0
\(409\) −25.9468 + 21.7720i −1.28299 + 1.07655i −0.290162 + 0.956977i \(0.593709\pi\)
−0.992825 + 0.119577i \(0.961846\pi\)
\(410\) −1.89037 + 4.77287i −0.0933585 + 0.235715i
\(411\) 0 0
\(412\) 0.702970 1.93140i 0.0346329 0.0951530i
\(413\) −21.7130 3.82858i −1.06843 0.188392i
\(414\) 0 0
\(415\) −14.8032 + 8.00178i −0.726659 + 0.392792i
\(416\) −12.2395 10.2702i −0.600091 0.503536i
\(417\) 0 0
\(418\) −38.0734 11.7227i −1.86223 0.573378i
\(419\) −23.2338 −1.13505 −0.567524 0.823357i \(-0.692099\pi\)
−0.567524 + 0.823357i \(0.692099\pi\)
\(420\) 0 0
\(421\) −18.1808 + 6.61727i −0.886077 + 0.322506i −0.744660 0.667444i \(-0.767388\pi\)
−0.141418 + 0.989950i \(0.545166\pi\)
\(422\) 15.2621 2.69113i 0.742949 0.131002i
\(423\) 0 0
\(424\) 9.25238 + 3.36759i 0.449335 + 0.163545i
\(425\) 2.69041 2.86363i 0.130504 0.138907i
\(426\) 0 0
\(427\) −3.00706 3.58367i −0.145522 0.173426i
\(428\) −2.66520 3.17626i −0.128827 0.153530i
\(429\) 0 0
\(430\) 4.31795 3.42153i 0.208230 0.165001i
\(431\) −12.2685 4.46538i −0.590955 0.215090i 0.0291947 0.999574i \(-0.490706\pi\)
−0.620149 + 0.784484i \(0.712928\pi\)
\(432\) 0 0
\(433\) 5.74031 1.01217i 0.275862 0.0486418i −0.0340058 0.999422i \(-0.510826\pi\)
0.309867 + 0.950780i \(0.399715\pi\)
\(434\) 27.5191 10.0161i 1.32096 0.480790i
\(435\) 0 0
\(436\) 9.74413 0.466659
\(437\) −10.1920 + 19.9054i −0.487550 + 0.952203i
\(438\) 0 0
\(439\) 4.97166 + 4.17172i 0.237284 + 0.199105i 0.753674 0.657249i \(-0.228280\pi\)
−0.516390 + 0.856354i \(0.672724\pi\)
\(440\) −24.7843 + 13.3970i −1.18155 + 0.638679i
\(441\) 0 0
\(442\) −5.88973 1.03852i −0.280146 0.0493973i
\(443\) −3.14771 + 8.64826i −0.149552 + 0.410891i −0.991735 0.128300i \(-0.959048\pi\)
0.842183 + 0.539191i \(0.181270\pi\)
\(444\) 0 0
\(445\) 7.07463 + 2.80201i 0.335369 + 0.132828i
\(446\) −8.10832 + 6.80369i −0.383940 + 0.322164i
\(447\) 0 0
\(448\) −8.13724 4.69804i −0.384449 0.221961i
\(449\) 8.73231 + 15.1248i 0.412103 + 0.713783i 0.995120 0.0986770i \(-0.0314611\pi\)
−0.583017 + 0.812460i \(0.698128\pi\)
\(450\) 0 0
\(451\) 1.38991 7.88259i 0.0654485 0.371177i
\(452\) −4.02746 + 0.710150i −0.189436 + 0.0334026i
\(453\) 0 0
\(454\) −11.0244 9.25060i −0.517402 0.434152i
\(455\) −3.42417 23.2074i −0.160528 1.08798i
\(456\) 0 0
\(457\) 0.381827i 0.0178611i −0.999960 0.00893055i \(-0.997157\pi\)
0.999960 0.00893055i \(-0.00284272\pi\)
\(458\) 7.51913 8.96095i 0.351346 0.418718i
\(459\) 0 0
\(460\) −2.24931 6.76434i −0.104875 0.315389i
\(461\) −1.47897 + 8.38766i −0.0688826 + 0.390652i 0.930802 + 0.365525i \(0.119110\pi\)
−0.999684 + 0.0251278i \(0.992001\pi\)
\(462\) 0 0
\(463\) −32.0583 + 18.5089i −1.48988 + 0.860181i −0.999933 0.0115723i \(-0.996316\pi\)
−0.489945 + 0.871754i \(0.662983\pi\)
\(464\) 7.37368 12.7716i 0.342314 0.592906i
\(465\) 0 0
\(466\) 30.9797 25.9950i 1.43511 1.20420i
\(467\) −22.4636 12.9694i −1.03949 0.600151i −0.119803 0.992798i \(-0.538226\pi\)
−0.919689 + 0.392647i \(0.871560\pi\)
\(468\) 0 0
\(469\) −6.81228 2.47947i −0.314562 0.114491i
\(470\) −3.47668 0.0975244i −0.160367 0.00449847i
\(471\) 0 0
\(472\) 7.54140 + 20.7198i 0.347121 + 0.953707i
\(473\) −5.52147 + 6.58023i −0.253877 + 0.302559i
\(474\) 0 0
\(475\) 14.1043 16.6153i 0.647150 0.762362i
\(476\) 1.08986 0.0499539
\(477\) 0 0
\(478\) 9.31344 + 25.5885i 0.425987 + 1.17039i
\(479\) 2.05579 + 11.6589i 0.0939313 + 0.532711i 0.995070 + 0.0991792i \(0.0316217\pi\)
−0.901138 + 0.433532i \(0.857267\pi\)
\(480\) 0 0
\(481\) 4.35139 + 1.58378i 0.198406 + 0.0722139i
\(482\) 15.2082 8.78045i 0.692714 0.399938i
\(483\) 0 0
\(484\) −9.93126 + 8.33332i −0.451421 + 0.378787i
\(485\) 18.9459 21.3342i 0.860289 0.968736i
\(486\) 0 0
\(487\) 25.4449 14.6906i 1.15302 0.665696i 0.203398 0.979096i \(-0.434801\pi\)
0.949621 + 0.313400i \(0.101468\pi\)
\(488\) −1.60014 + 4.39636i −0.0724351 + 0.199014i
\(489\) 0 0
\(490\) −2.30597 6.93473i −0.104173 0.313279i
\(491\) −4.52780 + 1.64798i −0.204337 + 0.0743725i −0.442161 0.896936i \(-0.645788\pi\)
0.237824 + 0.971308i \(0.423566\pi\)
\(492\) 0 0
\(493\) 2.38623i 0.107470i
\(494\) −32.9177 4.10801i −1.48104 0.184828i
\(495\) 0 0
\(496\) −30.1508 25.2995i −1.35381 1.13598i
\(497\) −5.47862 15.0524i −0.245750 0.675191i
\(498\) 0 0
\(499\) −0.0326851 + 0.185366i −0.00146318 + 0.00829813i −0.985531 0.169498i \(-0.945786\pi\)
0.984067 + 0.177796i \(0.0568966\pi\)
\(500\) 0.627196 + 6.91895i 0.0280491 + 0.309425i
\(501\) 0 0
\(502\) −8.93266 5.15728i −0.398684 0.230181i
\(503\) 1.46289 + 1.74340i 0.0652269 + 0.0777343i 0.797671 0.603093i \(-0.206065\pi\)
−0.732444 + 0.680827i \(0.761621\pi\)
\(504\) 0 0
\(505\) −11.5860 4.58879i −0.515569 0.204199i
\(506\) 23.4442 + 40.6065i 1.04222 + 1.80518i
\(507\) 0 0
\(508\) 0.816707 + 0.144007i 0.0362355 + 0.00638930i
\(509\) −0.742270 4.20962i −0.0329006 0.186588i 0.963928 0.266161i \(-0.0857554\pi\)
−0.996829 + 0.0795731i \(0.974644\pi\)
\(510\) 0 0
\(511\) 25.9238 + 21.7527i 1.14680 + 0.962282i
\(512\) 5.17245i 0.228592i
\(513\) 0 0
\(514\) 22.0946 0.974552
\(515\) −6.29908 3.87625i −0.277571 0.170808i
\(516\) 0 0
\(517\) 5.34052 0.941679i 0.234876 0.0414150i
\(518\) −3.50583 0.618172i −0.154037 0.0271609i
\(519\) 0 0
\(520\) −18.3875 + 14.5702i −0.806347 + 0.638947i
\(521\) 16.1637 27.9963i 0.708143 1.22654i −0.257402 0.966304i \(-0.582866\pi\)
0.965545 0.260236i \(-0.0838002\pi\)
\(522\) 0 0
\(523\) −18.9726 22.6107i −0.829613 0.988695i −0.999995 0.00331656i \(-0.998944\pi\)
0.170381 0.985378i \(-0.445500\pi\)
\(524\) −4.28099 + 7.41488i −0.187016 + 0.323921i
\(525\) 0 0
\(526\) 15.5513 + 5.66021i 0.678069 + 0.246797i
\(527\) −6.27183 1.10589i −0.273205 0.0481735i
\(528\) 0 0
\(529\) 3.12081 1.13588i 0.135687 0.0493861i
\(530\) −8.36977 + 13.6013i −0.363559 + 0.590801i
\(531\) 0 0
\(532\) 6.03758 0.304422i 0.261762 0.0131984i
\(533\) 6.66521i 0.288702i
\(534\) 0 0
\(535\) −13.1257 + 7.09502i −0.567472 + 0.306744i
\(536\) 1.25895 + 7.13988i 0.0543785 + 0.308396i
\(537\) 0 0
\(538\) 8.00171 21.9845i 0.344978 0.947820i
\(539\) 5.69730 + 9.86802i 0.245400 + 0.425046i
\(540\) 0 0
\(541\) 14.4594 12.1328i 0.621656 0.521632i −0.276667 0.960966i \(-0.589230\pi\)
0.898324 + 0.439334i \(0.144786\pi\)
\(542\) 16.8653 + 20.0992i 0.724425 + 0.863336i
\(543\) 0 0
\(544\) −1.33558 2.31330i −0.0572627 0.0991819i
\(545\) 7.05473 34.3473i 0.302192 1.47128i
\(546\) 0 0
\(547\) 24.7374 4.36188i 1.05770 0.186500i 0.382362 0.924012i \(-0.375111\pi\)
0.675334 + 0.737512i \(0.264000\pi\)
\(548\) −2.49555 6.85647i −0.106605 0.292894i
\(549\) 0 0
\(550\) −13.1974 43.7492i −0.562738 1.86547i
\(551\) −0.666523 13.2191i −0.0283949 0.563153i
\(552\) 0 0
\(553\) −1.92203 + 2.29058i −0.0817328 + 0.0974054i
\(554\) 43.5042 15.8342i 1.84831 0.672731i
\(555\) 0 0
\(556\) −1.00797 + 5.71647i −0.0427473 + 0.242432i
\(557\) 9.63578 26.4741i 0.408281 1.12174i −0.549812 0.835288i \(-0.685301\pi\)
0.958094 0.286455i \(-0.0924770\pi\)
\(558\) 0 0
\(559\) −3.57646 + 6.19461i −0.151268 + 0.262004i
\(560\) 16.0944 18.1232i 0.680113 0.765847i
\(561\) 0 0
\(562\) −10.0643 5.81060i −0.424535 0.245105i
\(563\) 17.6927 10.2149i 0.745656 0.430505i −0.0784660 0.996917i \(-0.525002\pi\)
0.824122 + 0.566412i \(0.191669\pi\)
\(564\) 0 0
\(565\) −0.412648 + 14.7106i −0.0173602 + 0.618881i
\(566\) −2.91428 16.5277i −0.122496 0.694711i
\(567\) 0 0
\(568\) −10.2972 + 12.2717i −0.432061 + 0.514910i
\(569\) −35.8386 −1.50243 −0.751217 0.660056i \(-0.770533\pi\)
−0.751217 + 0.660056i \(0.770533\pi\)
\(570\) 0 0
\(571\) −2.82827 −0.118359 −0.0591797 0.998247i \(-0.518848\pi\)
−0.0591797 + 0.998247i \(0.518848\pi\)
\(572\) −10.5979 + 12.6301i −0.443121 + 0.528091i
\(573\) 0 0
\(574\) 0.889778 + 5.04618i 0.0371386 + 0.210624i
\(575\) −25.4723 + 3.03127i −1.06227 + 0.126413i
\(576\) 0 0
\(577\) 37.5103 21.6566i 1.56157 0.901575i 0.564476 0.825449i \(-0.309078\pi\)
0.997098 0.0761261i \(-0.0242552\pi\)
\(578\) 22.9707 + 13.2622i 0.955457 + 0.551633i
\(579\) 0 0
\(580\) 3.15474 + 2.80157i 0.130993 + 0.116329i
\(581\) −8.39804 + 14.5458i −0.348409 + 0.603463i
\(582\) 0 0
\(583\) 8.51645 23.3987i 0.352715 0.969077i
\(584\) 5.87690 33.3296i 0.243188 1.37919i
\(585\) 0 0
\(586\) −13.8306 + 5.03394i −0.571338 + 0.207950i
\(587\) −15.7959 + 18.8249i −0.651968 + 0.776985i −0.986209 0.165502i \(-0.947075\pi\)
0.334242 + 0.942487i \(0.391520\pi\)
\(588\) 0 0
\(589\) −35.0533 4.37452i −1.44435 0.180249i
\(590\) −35.3807 + 5.22029i −1.45660 + 0.214916i
\(591\) 0 0
\(592\) 1.63639 + 4.49595i 0.0672553 + 0.184782i
\(593\) 0.308954 0.0544770i 0.0126872 0.00223710i −0.167301 0.985906i \(-0.553505\pi\)
0.179988 + 0.983669i \(0.442394\pi\)
\(594\) 0 0
\(595\) 0.789060 3.84169i 0.0323483 0.157494i
\(596\) 5.59974 + 9.69903i 0.229374 + 0.397288i
\(597\) 0 0
\(598\) 25.0974 + 29.9099i 1.02631 + 1.22311i
\(599\) 18.7653 15.7460i 0.766731 0.643364i −0.173139 0.984897i \(-0.555391\pi\)
0.939869 + 0.341534i \(0.110946\pi\)
\(600\) 0 0
\(601\) 3.91522 + 6.78137i 0.159705 + 0.276618i 0.934762 0.355273i \(-0.115612\pi\)
−0.775057 + 0.631891i \(0.782279\pi\)
\(602\) 1.88076 5.16734i 0.0766539 0.210605i
\(603\) 0 0
\(604\) 1.40445 + 7.96506i 0.0571464 + 0.324094i
\(605\) 22.1841 + 41.0403i 0.901912 + 1.66852i
\(606\) 0 0
\(607\) 12.4142i 0.503876i 0.967743 + 0.251938i \(0.0810680\pi\)
−0.967743 + 0.251938i \(0.918932\pi\)
\(608\) −8.04496 12.4421i −0.326266 0.504592i
\(609\) 0 0
\(610\) −6.46277 3.97698i −0.261670 0.161023i
\(611\) 4.24341 1.54447i 0.171670 0.0624827i
\(612\) 0 0
\(613\) 1.04244 + 0.183811i 0.0421039 + 0.00742405i 0.194660 0.980871i \(-0.437640\pi\)
−0.152557 + 0.988295i \(0.548751\pi\)
\(614\) 22.3103 + 8.12030i 0.900372 + 0.327709i
\(615\) 0 0
\(616\) −14.0605 + 24.3535i −0.566513 + 0.981229i
\(617\) 18.3761 + 21.8998i 0.739794 + 0.881652i 0.996392 0.0848661i \(-0.0270462\pi\)
−0.256598 + 0.966518i \(0.582602\pi\)
\(618\) 0 0
\(619\) 4.70978 8.15758i 0.189302 0.327881i −0.755716 0.654900i \(-0.772711\pi\)
0.945018 + 0.327019i \(0.106044\pi\)
\(620\) 8.82556 6.99335i 0.354443 0.280860i
\(621\) 0 0
\(622\) −50.3552 8.87898i −2.01906 0.356015i
\(623\) 7.47975 1.31888i 0.299670 0.0528399i
\(624\) 0 0
\(625\) 24.8429 + 2.79849i 0.993715 + 0.111939i
\(626\) 14.5566 0.581797
\(627\) 0 0
\(628\) 6.52899i 0.260535i
\(629\) 0.593045 + 0.497624i 0.0236462 + 0.0198416i
\(630\) 0 0
\(631\) −6.88134 39.0260i −0.273942 1.55360i −0.742304 0.670064i \(-0.766267\pi\)
0.468362 0.883537i \(-0.344844\pi\)
\(632\) 2.94493 + 0.519271i 0.117143 + 0.0206555i
\(633\) 0 0
\(634\) −8.43570 14.6111i −0.335024 0.580279i
\(635\) 1.09891 2.77457i 0.0436089 0.110105i
\(636\) 0 0
\(637\) 6.09907 + 7.26858i 0.241654 + 0.287992i
\(638\) −24.0337 13.8759i −0.951503 0.549350i
\(639\) 0 0
\(640\) −29.8201 6.12487i −1.17874 0.242107i
\(641\) −3.41320 + 19.3572i −0.134813 + 0.764565i 0.840176 + 0.542314i \(0.182452\pi\)
−0.974989 + 0.222251i \(0.928660\pi\)
\(642\) 0 0
\(643\) 9.81994 + 26.9801i 0.387261 + 1.06399i 0.968229 + 0.250064i \(0.0804516\pi\)
−0.580969 + 0.813926i \(0.697326\pi\)
\(644\) −5.45059 4.57359i −0.214783 0.180225i
\(645\) 0 0
\(646\) −4.93650 2.52760i −0.194224 0.0994472i
\(647\) 17.4412i 0.685686i 0.939393 + 0.342843i \(0.111390\pi\)
−0.939393 + 0.342843i \(0.888610\pi\)
\(648\) 0 0
\(649\) 52.3993 19.0718i 2.05685 0.748633i
\(650\) −17.1488 33.9689i −0.672632 1.33237i
\(651\) 0 0
\(652\) −0.770175 + 2.11604i −0.0301624 + 0.0828704i
\(653\) −26.2837 + 15.1749i −1.02856 + 0.593839i −0.916572 0.399871i \(-0.869055\pi\)
−0.111988 + 0.993710i \(0.535722\pi\)
\(654\) 0 0
\(655\) 23.0375 + 20.4585i 0.900149 + 0.799381i
\(656\) 5.27547 4.42665i 0.205973 0.172832i
\(657\) 0 0
\(658\) −3.00647 + 1.73579i −0.117204 + 0.0676680i
\(659\) −6.14432 2.23635i −0.239349 0.0871158i 0.219561 0.975599i \(-0.429538\pi\)
−0.458909 + 0.888483i \(0.651760\pi\)
\(660\) 0 0
\(661\) 4.13276 + 23.4381i 0.160746 + 0.911635i 0.953343 + 0.301889i \(0.0976174\pi\)
−0.792597 + 0.609746i \(0.791272\pi\)
\(662\) −2.23194 6.13220i −0.0867467 0.238335i
\(663\) 0 0
\(664\) 16.7973 0.651863
\(665\) 3.29813 21.5024i 0.127896 0.833828i
\(666\) 0 0
\(667\) −10.0137 + 11.9339i −0.387734 + 0.462083i
\(668\) 2.26127 + 6.21280i 0.0874913 + 0.240380i
\(669\) 0 0
\(670\) −11.7547 0.329731i −0.454123 0.0127386i
\(671\) 11.1181 + 4.04667i 0.429211 + 0.156220i
\(672\) 0 0
\(673\) 43.2343 + 24.9614i 1.66656 + 0.962189i 0.969471 + 0.245206i \(0.0788555\pi\)
0.697090 + 0.716984i \(0.254478\pi\)
\(674\) −30.7361 + 25.7906i −1.18391 + 0.993418i
\(675\) 0 0
\(676\) −2.82565 + 4.89417i −0.108679 + 0.188237i
\(677\) 29.9494 17.2913i 1.15105 0.664558i 0.201906 0.979405i \(-0.435286\pi\)
0.949143 + 0.314847i \(0.101953\pi\)
\(678\) 0 0
\(679\) 4.94536 28.0465i 0.189786 1.07633i
\(680\) −3.72181 + 1.23759i −0.142725 + 0.0474595i
\(681\) 0 0
\(682\) −47.6089 + 56.7381i −1.82304 + 2.17261i
\(683\) 21.1277i 0.808429i −0.914664 0.404214i \(-0.867545\pi\)
0.914664 0.404214i \(-0.132455\pi\)
\(684\) 0 0
\(685\) −25.9753 + 3.83256i −0.992466 + 0.146435i
\(686\) −24.9652 20.9483i −0.953174 0.799808i
\(687\) 0 0
\(688\) −7.27827 + 1.28336i −0.277482 + 0.0489275i
\(689\) 3.60059 20.4199i 0.137171 0.777938i
\(690\) 0 0
\(691\) −13.9430 24.1500i −0.530418 0.918711i −0.999370 0.0354873i \(-0.988702\pi\)
0.468952 0.883224i \(-0.344632\pi\)
\(692\) 10.4457 + 6.03081i 0.397085 + 0.229257i
\(693\) 0 0
\(694\) 35.5017 29.7894i 1.34762 1.13079i
\(695\) 19.4204 + 7.69173i 0.736656 + 0.291764i
\(696\) 0 0
\(697\) 0.381116 1.04711i 0.0144358 0.0396620i
\(698\) 16.2982 + 2.87381i 0.616895 + 0.108775i
\(699\) 0 0
\(700\) 4.15254 + 5.55356i 0.156951 + 0.209905i
\(701\) 30.1319 + 25.2837i 1.13807 + 0.954952i 0.999374 0.0353834i \(-0.0112652\pi\)
0.138694 + 0.990335i \(0.455710\pi\)
\(702\) 0 0
\(703\) 3.42432 + 2.59106i 0.129151 + 0.0977237i
\(704\) 23.7639 0.895637
\(705\) 0 0
\(706\) 27.0690 9.85232i 1.01876 0.370797i
\(707\) −12.2494 + 2.15990i −0.460687 + 0.0812316i
\(708\) 0 0
\(709\) 4.02970 + 1.46669i 0.151339 + 0.0550828i 0.416579 0.909100i \(-0.363229\pi\)
−0.265240 + 0.964182i \(0.585451\pi\)
\(710\) −16.1371 20.3649i −0.605613 0.764280i
\(711\) 0 0
\(712\) −4.88243 5.81865i −0.182977 0.218063i
\(713\) 26.7256 + 31.8503i 1.00088 + 1.19280i
\(714\) 0 0
\(715\) 36.8473 + 46.5010i 1.37801 + 1.73904i
\(716\) 1.20900 + 0.440041i 0.0451825 + 0.0164451i
\(717\) 0 0
\(718\) −1.37219 + 0.241954i −0.0512096 + 0.00902964i
\(719\) 3.69536 1.34500i 0.137814 0.0501600i −0.272193 0.962243i \(-0.587749\pi\)
0.410006 + 0.912083i \(0.365527\pi\)
\(720\) 0 0
\(721\) −7.38242 −0.274936
\(722\) −28.0530 12.6234i −1.04402 0.469795i
\(723\) 0 0
\(724\) −10.2973 8.64043i −0.382695 0.321119i
\(725\) 12.1594 9.09188i 0.451587 0.337664i
\(726\) 0 0
\(727\) −19.7527 3.48294i −0.732587 0.129175i −0.205104 0.978740i \(-0.565753\pi\)
−0.527483 + 0.849565i \(0.676864\pi\)
\(728\) −8.00900 + 22.0046i −0.296833 + 0.815543i
\(729\) 0 0
\(730\) 51.0363 + 20.2137i 1.88894 + 0.748142i
\(731\) −0.916071 + 0.768675i −0.0338821 + 0.0284305i
\(732\) 0 0
\(733\) −0.178212 0.102891i −0.00658241 0.00380036i 0.496705 0.867919i \(-0.334543\pi\)
−0.503288 + 0.864119i \(0.667876\pi\)
\(734\) −17.2519 29.8811i −0.636778 1.10293i
\(735\) 0 0
\(736\) −3.02823 + 17.1739i −0.111622 + 0.633039i
\(737\) 18.0563 3.18382i 0.665114 0.117278i
\(738\) 0 0
\(739\) −24.9819 20.9623i −0.918976 0.771112i 0.0548297 0.998496i \(-0.482538\pi\)
−0.973805 + 0.227384i \(0.926983\pi\)
\(740\) −1.35416 + 0.199801i −0.0497798 + 0.00734482i
\(741\) 0 0
\(742\) 15.9404i 0.585192i
\(743\) 19.0010 22.6445i 0.697078 0.830745i −0.295114 0.955462i \(-0.595358\pi\)
0.992192 + 0.124717i \(0.0398021\pi\)
\(744\) 0 0
\(745\) 38.2426 12.7166i 1.40110 0.465900i
\(746\) 3.98457 22.5976i 0.145885 0.827357i
\(747\) 0 0
\(748\) −2.38712 + 1.37821i −0.0872819 + 0.0503922i
\(749\) −7.44637 + 12.8975i −0.272085 + 0.471264i
\(750\) 0 0
\(751\) −28.3787 + 23.8126i −1.03555 + 0.868932i −0.991501 0.130097i \(-0.958471\pi\)
−0.0440520 + 0.999029i \(0.514027\pi\)
\(752\) 4.04067 + 2.33288i 0.147348 + 0.0850714i
\(753\) 0 0
\(754\) −21.7156 7.90384i −0.790836 0.287841i
\(755\) 29.0931 + 0.816089i 1.05880 + 0.0297005i
\(756\) 0 0
\(757\) −10.4480 28.7057i −0.379740 1.04333i −0.971464 0.237187i \(-0.923775\pi\)
0.591724 0.806141i \(-0.298447\pi\)
\(758\) 3.68931 4.39674i 0.134002 0.159697i
\(759\) 0 0
\(760\) −20.2722 + 7.89554i −0.735351 + 0.286401i
\(761\) 46.0692 1.67001 0.835004 0.550244i \(-0.185465\pi\)
0.835004 + 0.550244i \(0.185465\pi\)
\(762\) 0 0
\(763\) −11.9704 32.8883i −0.433357 1.19064i
\(764\) −2.41768 13.7114i −0.0874687 0.496060i
\(765\) 0 0
\(766\) −11.7279 4.26859i −0.423745 0.154231i
\(767\) 40.2130 23.2170i 1.45201 0.838317i
\(768\) 0 0
\(769\) −11.2761 + 9.46178i −0.406627 + 0.341200i −0.823048 0.567971i \(-0.807728\pi\)
0.416422 + 0.909172i \(0.363284\pi\)
\(770\) −34.1045 30.2866i −1.22904 1.09145i
\(771\) 0 0
\(772\) 10.5468 6.08920i 0.379588 0.219155i
\(773\) 3.03195 8.33022i 0.109052 0.299617i −0.873148 0.487454i \(-0.837926\pi\)
0.982200 + 0.187837i \(0.0601478\pi\)
\(774\) 0 0
\(775\) −18.2614 36.1726i −0.655967 1.29936i
\(776\) −26.7637 + 9.74119i −0.960761 + 0.349688i
\(777\) 0 0
\(778\) 2.91412i 0.104476i
\(779\) 1.81881 5.90717i 0.0651656 0.211646i
\(780\) 0 0
\(781\) 31.0345 + 26.0410i 1.11050 + 0.931822i
\(782\) 2.23257 + 6.13393i 0.0798364 + 0.219349i
\(783\) 0 0
\(784\) −1.70239 + 9.65474i −0.0607997 + 0.344812i
\(785\) −23.0142 4.72698i −0.821413 0.168713i
\(786\) 0 0
\(787\) −11.4182 6.59229i −0.407014 0.234990i 0.282492 0.959270i \(-0.408839\pi\)
−0.689506 + 0.724280i \(0.742172\pi\)
\(788\) 6.17491 + 7.35897i 0.219972 + 0.262152i
\(789\) 0 0
\(790\) −1.78604 + 4.50947i −0.0635445 + 0.160440i
\(791\) 7.34451 + 12.7211i 0.261141 + 0.452309i
\(792\) 0 0
\(793\) 9.70274 + 1.71085i 0.344554 + 0.0607542i
\(794\) 4.96946 + 28.1832i 0.176360 + 1.00018i
\(795\) 0 0
\(796\) −0.653544 0.548389i −0.0231643 0.0194371i
\(797\) 38.1858i 1.35261i 0.736621 + 0.676306i \(0.236420\pi\)
−0.736621 + 0.676306i \(0.763580\pi\)
\(798\) 0 0
\(799\) 0.754954 0.0267084
\(800\) 6.69897 15.6197i 0.236844 0.552238i
\(801\) 0 0
\(802\) 43.2343 7.62337i 1.52666 0.269191i
\(803\) −84.2886 14.8623i −2.97448 0.524481i
\(804\) 0 0
\(805\) −20.0678 + 15.9017i −0.707296 + 0.560460i
\(806\) −30.8381 + 53.4131i −1.08622 + 1.88140i
\(807\) 0 0
\(808\) 7.99585 + 9.52908i 0.281293 + 0.335232i
\(809\) −21.8833 + 37.9031i −0.769377 + 1.33260i 0.168524 + 0.985698i \(0.446100\pi\)
−0.937901 + 0.346903i \(0.887233\pi\)
\(810\) 0 0
\(811\) 5.59328 + 2.03579i 0.196407 + 0.0714862i 0.438351 0.898804i \(-0.355563\pi\)
−0.241944 + 0.970290i \(0.577785\pi\)
\(812\) 4.14731 + 0.731282i 0.145542 + 0.0256630i
\(813\) 0 0
\(814\) 8.46052 3.07938i 0.296541 0.107932i
\(815\) 6.90127 + 4.24682i 0.241741 + 0.148759i
\(816\) 0 0
\(817\) −4.86010 + 4.51415i −0.170033 + 0.157930i
\(818\) 54.8398i 1.91743i
\(819\) 0 0
\(820\) 0.936886 + 1.73322i 0.0327175 + 0.0605268i
\(821\) 1.38401 + 7.84911i 0.0483023 + 0.273936i 0.999388 0.0349926i \(-0.0111408\pi\)
−0.951085 + 0.308928i \(0.900030\pi\)
\(822\) 0 0
\(823\) 9.64179 26.4906i 0.336092 0.923404i −0.650400 0.759592i \(-0.725399\pi\)
0.986492 0.163812i \(-0.0523791\pi\)
\(824\) 3.69149 + 6.39384i 0.128599 + 0.222740i
\(825\) 0 0
\(826\) −27.3456 + 22.9457i −0.951475 + 0.798382i
\(827\) −35.0380 41.7566i −1.21839 1.45202i −0.853600 0.520929i \(-0.825585\pi\)
−0.364789 0.931090i \(-0.618859\pi\)
\(828\) 0 0
\(829\) 4.20261 + 7.27913i 0.145963 + 0.252815i 0.929732 0.368238i \(-0.120039\pi\)
−0.783769 + 0.621052i \(0.786705\pi\)
\(830\) −5.48148 + 26.6877i −0.190265 + 0.926342i
\(831\) 0 0
\(832\) 19.4880 3.43625i 0.675623 0.119131i
\(833\) 0.542549 + 1.49064i 0.0187982 + 0.0516477i
\(834\) 0 0
\(835\) 23.5368 3.47277i 0.814525 0.120180i
\(836\) −12.8391 + 8.30170i −0.444050 + 0.287120i
\(837\) 0 0
\(838\) −24.1799 + 28.8165i −0.835280 + 0.995448i
\(839\) −35.4409 + 12.8994i −1.22356 + 0.445338i −0.871386 0.490597i \(-0.836779\pi\)
−0.352171 + 0.935936i \(0.614556\pi\)
\(840\) 0 0
\(841\) −3.43468 + 19.4790i −0.118437 + 0.671690i
\(842\) −10.7138 + 29.4360i −0.369222 + 1.01443i
\(843\) 0 0
\(844\) 2.97393 5.15099i 0.102367 0.177304i
\(845\) 15.2058 + 13.5036i 0.523096 + 0.464537i
\(846\) 0 0
\(847\) 40.3268 + 23.2827i 1.38565 + 0.800003i
\(848\) 18.5536 10.7119i 0.637132 0.367848i
\(849\) 0 0
\(850\) −0.751751 6.31709i −0.0257848 0.216674i
\(851\) −0.877648 4.97739i −0.0300854 0.170623i
\(852\) 0 0
\(853\) −26.5455 + 31.6357i −0.908902 + 1.08319i 0.0873063 + 0.996182i \(0.472174\pi\)
−0.996208 + 0.0870051i \(0.972270\pi\)
\(854\) −7.57426 −0.259186
\(855\) 0 0
\(856\) 14.8939 0.509062
\(857\) 2.20780 2.63115i 0.0754170 0.0898785i −0.727017 0.686620i \(-0.759094\pi\)
0.802434 + 0.596741i \(0.203538\pi\)
\(858\) 0 0
\(859\) 5.26017 + 29.8319i 0.179475 + 1.01785i 0.932851 + 0.360262i \(0.117313\pi\)
−0.753377 + 0.657589i \(0.771576\pi\)
\(860\) 0.0592877 2.11357i 0.00202169 0.0720721i
\(861\) 0 0
\(862\) −18.3064 + 10.5692i −0.623519 + 0.359989i
\(863\) 20.6624 + 11.9295i 0.703358 + 0.406084i 0.808597 0.588363i \(-0.200227\pi\)
−0.105239 + 0.994447i \(0.533561\pi\)
\(864\) 0 0
\(865\) 28.8208 32.4539i 0.979937 1.10347i
\(866\) 4.71867 8.17297i 0.160347 0.277729i
\(867\) 0 0
\(868\) 3.84412 10.5616i 0.130478 0.358485i
\(869\) 1.31321 7.44757i 0.0445475 0.252642i
\(870\) 0 0
\(871\) 14.3470 5.22188i 0.486129 0.176936i
\(872\) −22.4986 + 26.8128i −0.761900 + 0.907997i
\(873\) 0 0
\(874\) 14.0812 + 33.3568i 0.476304 + 1.12831i
\(875\) 22.5823 10.6166i 0.763422 0.358908i
\(876\) 0 0
\(877\) 4.54055 + 12.4751i 0.153324 + 0.421253i 0.992445 0.122691i \(-0.0391525\pi\)
−0.839121 + 0.543944i \(0.816930\pi\)
\(878\) 10.3482 1.82466i 0.349234 0.0615794i
\(879\) 0 0
\(880\) −12.3334 + 60.0477i −0.415760 + 2.02421i
\(881\) 10.0999 + 17.4935i 0.340274 + 0.589371i 0.984483 0.175478i \(-0.0561470\pi\)
−0.644210 + 0.764849i \(0.722814\pi\)
\(882\) 0 0
\(883\) 37.4427 + 44.6225i 1.26005 + 1.50167i 0.781922 + 0.623376i \(0.214239\pi\)
0.478126 + 0.878291i \(0.341316\pi\)
\(884\) −1.75831 + 1.47540i −0.0591383 + 0.0496229i
\(885\) 0 0
\(886\) 7.45038 + 12.9044i 0.250300 + 0.433533i
\(887\) −15.7612 + 43.3035i −0.529208 + 1.45399i 0.330797 + 0.943702i \(0.392683\pi\)
−0.860005 + 0.510286i \(0.829540\pi\)
\(888\) 0 0
\(889\) −0.517247 2.93345i −0.0173479 0.0983849i
\(890\) 10.8380 5.85841i 0.363289 0.196374i
\(891\) 0 0
\(892\) 4.06232i 0.136016i
\(893\) 4.18226 0.210874i 0.139954 0.00705664i
\(894\) 0 0
\(895\) 2.42643 3.94305i 0.0811065 0.131802i
\(896\) −28.5534 + 10.3926i −0.953903 + 0.347192i
\(897\) 0 0
\(898\) 27.8468 + 4.91015i 0.929261 + 0.163854i
\(899\) −23.1244 8.41660i −0.771243 0.280709i
\(900\) 0 0
\(901\) 1.73326 3.00210i 0.0577434 0.100015i
\(902\) −8.33011 9.92744i −0.277362 0.330548i
\(903\) 0 0
\(904\) 7.34506 12.7220i 0.244293 0.423128i
\(905\) −37.9121 + 30.0414i −1.26024 + 0.998611i
\(906\) 0 0
\(907\) −43.0236 7.58622i −1.42857 0.251896i −0.594743 0.803916i \(-0.702746\pi\)
−0.833831 + 0.552020i \(0.813857\pi\)
\(908\) −5.43939 + 0.959112i −0.180513 + 0.0318292i
\(909\) 0 0
\(910\) −32.3473 19.9055i −1.07230 0.659860i
\(911\) 30.7689 1.01942 0.509709 0.860347i \(-0.329753\pi\)
0.509709 + 0.860347i \(0.329753\pi\)
\(912\) 0 0
\(913\) 42.4795i 1.40587i
\(914\) −0.473572 0.397374i −0.0156644 0.0131440i
\(915\) 0 0
\(916\) −0.779591 4.42128i −0.0257584 0.146083i
\(917\) 30.2857 + 5.34019i 1.00012 + 0.176349i
\(918\) 0 0
\(919\) 6.04713 + 10.4739i 0.199476 + 0.345503i 0.948359 0.317200i \(-0.102743\pi\)
−0.748882 + 0.662703i \(0.769409\pi\)
\(920\) 23.8069 + 9.42908i 0.784891 + 0.310868i
\(921\) 0 0
\(922\) 8.86385 + 10.5635i 0.291915 + 0.347891i
\(923\) 29.2158 + 16.8678i 0.961650 + 0.555209i
\(924\) 0 0
\(925\) −0.276125 + 4.91796i −0.00907892 + 0.161702i
\(926\) −10.4075 + 59.0238i −0.342012 + 1.93964i
\(927\) 0 0
\(928\) −3.53016 9.69905i −0.115883 0.318387i
\(929\) 12.2297 + 10.2619i 0.401242 + 0.336682i 0.820974 0.570966i \(-0.193431\pi\)
−0.419731 + 0.907648i \(0.637876\pi\)
\(930\) 0 0
\(931\) 3.42195 + 8.10624i 0.112150 + 0.265671i
\(932\) 15.5210i 0.508407i
\(933\) 0 0
\(934\) −39.4639 + 14.3637i −1.29130 + 0.469995i
\(935\) 3.12980 + 9.41226i 0.102356 + 0.307814i
\(936\) 0 0
\(937\) 1.22430 3.36373i 0.0399961 0.109888i −0.918087 0.396379i \(-0.870267\pi\)
0.958083 + 0.286491i \(0.0924888\pi\)
\(938\) −10.1649 + 5.86870i −0.331895 + 0.191620i
\(939\) 0 0
\(940\) −0.886360 + 0.998094i −0.0289099 + 0.0325542i
\(941\) −26.5863 + 22.3086i −0.866689 + 0.727238i −0.963398 0.268074i \(-0.913613\pi\)
0.0967092 + 0.995313i \(0.469168\pi\)
\(942\) 0 0
\(943\) −6.30018 + 3.63741i −0.205162 + 0.118450i
\(944\) 45.0833 + 16.4090i 1.46733 + 0.534066i
\(945\) 0 0
\(946\) 2.41503 + 13.6963i 0.0785195 + 0.445306i
\(947\) −15.3805 42.2576i −0.499800 1.37319i −0.891469 0.453082i \(-0.850324\pi\)
0.391669 0.920106i \(-0.371898\pi\)
\(948\) 0 0
\(949\) −71.2711 −2.31356
\(950\) −5.92901 34.7851i −0.192362 1.12858i
\(951\) 0 0
\(952\) −2.51644 + 2.99897i −0.0815582 + 0.0971972i
\(953\) 0.572365 + 1.57256i 0.0185407 + 0.0509402i 0.948618 0.316424i \(-0.102482\pi\)
−0.930077 + 0.367365i \(0.880260\pi\)
\(954\) 0 0
\(955\) −50.0820 1.40485i −1.62061 0.0454598i
\(956\) 9.82067 + 3.57443i 0.317623 + 0.115605i
\(957\) 0 0
\(958\) 16.5998 + 9.58393i 0.536317 + 0.309643i
\(959\) −20.0762 + 16.8459i −0.648294 + 0.543984i
\(960\) 0 0
\(961\) −17.3387 + 30.0315i −0.559313 + 0.968758i
\(962\) 6.49289 3.74867i 0.209339 0.120862i
\(963\) 0 0
\(964\) 1.17034 6.63735i 0.0376942 0.213775i
\(965\) −13.8281 41.5853i −0.445143 1.33868i
\(966\) 0 0
\(967\) −11.6789 + 13.9183i −0.375568 + 0.447584i −0.920410 0.390954i \(-0.872145\pi\)
0.544842 + 0.838538i \(0.316589\pi\)
\(968\) 46.5689i 1.49678i
\(969\) 0 0
\(970\) −6.74302 45.7011i −0.216505 1.46737i
\(971\) −3.56175 2.98867i −0.114302 0.0959108i 0.583845 0.811865i \(-0.301547\pi\)
−0.698147 + 0.715954i \(0.745992\pi\)
\(972\) 0 0
\(973\) 20.5325 3.62043i 0.658240 0.116066i
\(974\) 8.26050 46.8476i 0.264683 1.50109i
\(975\) 0 0
\(976\) 5.08987 + 8.81591i 0.162923 + 0.282190i
\(977\) −11.8979 6.86928i −0.380649 0.219768i 0.297452 0.954737i \(-0.403863\pi\)
−0.678100 + 0.734969i \(0.737197\pi\)
\(978\) 0 0
\(979\) −14.7150 + 12.3474i −0.470295 + 0.394624i
\(980\) −2.60770 1.03282i −0.0832999 0.0329922i
\(981\) 0 0
\(982\) −2.66820 + 7.33082i −0.0851457 + 0.233936i
\(983\) −8.28423 1.46073i −0.264226 0.0465901i 0.0399657 0.999201i \(-0.487275\pi\)
−0.304191 + 0.952611i \(0.598386\pi\)
\(984\) 0 0
\(985\) 30.4104 16.4382i 0.968957 0.523765i
\(986\) −2.95959 2.48339i −0.0942526 0.0790873i
\(987\) 0 0
\(988\) −9.32848 + 8.66446i −0.296778 + 0.275653i
\(989\) 7.80714 0.248253
\(990\) 0 0
\(991\) −17.4575 + 6.35400i −0.554555 + 0.201841i −0.604069 0.796932i \(-0.706455\pi\)
0.0495142 + 0.998773i \(0.484233\pi\)
\(992\) −27.1285 + 4.78348i −0.861330 + 0.151876i
\(993\) 0 0
\(994\) −24.3708 8.87026i −0.772996 0.281348i
\(995\) −2.40619 + 1.90666i −0.0762815 + 0.0604453i
\(996\) 0 0
\(997\) 24.7222 + 29.4628i 0.782960 + 0.933096i 0.999063 0.0432750i \(-0.0137792\pi\)
−0.216103 + 0.976371i \(0.569335\pi\)
\(998\) 0.195890 + 0.233452i 0.00620079 + 0.00738981i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 855.2.da.b.244.6 48
3.2 odd 2 95.2.p.a.54.3 yes 48
5.4 even 2 inner 855.2.da.b.244.3 48
15.2 even 4 475.2.l.f.301.3 48
15.8 even 4 475.2.l.f.301.6 48
15.14 odd 2 95.2.p.a.54.6 yes 48
19.6 even 9 inner 855.2.da.b.424.3 48
57.5 odd 18 1805.2.b.k.1084.19 24
57.14 even 18 1805.2.b.l.1084.6 24
57.44 odd 18 95.2.p.a.44.6 yes 48
95.44 even 18 inner 855.2.da.b.424.6 48
285.14 even 18 1805.2.b.l.1084.19 24
285.44 odd 18 95.2.p.a.44.3 48
285.62 even 36 9025.2.a.cu.1.6 24
285.119 odd 18 1805.2.b.k.1084.6 24
285.128 odd 36 9025.2.a.ct.1.6 24
285.158 even 36 475.2.l.f.101.6 48
285.233 even 36 9025.2.a.cu.1.19 24
285.242 odd 36 9025.2.a.ct.1.19 24
285.272 even 36 475.2.l.f.101.3 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
95.2.p.a.44.3 48 285.44 odd 18
95.2.p.a.44.6 yes 48 57.44 odd 18
95.2.p.a.54.3 yes 48 3.2 odd 2
95.2.p.a.54.6 yes 48 15.14 odd 2
475.2.l.f.101.3 48 285.272 even 36
475.2.l.f.101.6 48 285.158 even 36
475.2.l.f.301.3 48 15.2 even 4
475.2.l.f.301.6 48 15.8 even 4
855.2.da.b.244.3 48 5.4 even 2 inner
855.2.da.b.244.6 48 1.1 even 1 trivial
855.2.da.b.424.3 48 19.6 even 9 inner
855.2.da.b.424.6 48 95.44 even 18 inner
1805.2.b.k.1084.6 24 285.119 odd 18
1805.2.b.k.1084.19 24 57.5 odd 18
1805.2.b.l.1084.6 24 57.14 even 18
1805.2.b.l.1084.19 24 285.14 even 18
9025.2.a.ct.1.6 24 285.128 odd 36
9025.2.a.ct.1.19 24 285.242 odd 36
9025.2.a.cu.1.6 24 285.62 even 36
9025.2.a.cu.1.19 24 285.233 even 36