Properties

Label 855.2.c.g.514.8
Level $855$
Weight $2$
Character 855.514
Analytic conductor $6.827$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [855,2,Mod(514,855)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(855, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("855.514"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 855 = 3^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 855.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14,0,0,-22,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.82720937282\)
Analytic rank: \(0\)
Dimension: \(14\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} + 25x^{12} + 242x^{10} + 1134x^{8} + 2605x^{6} + 2545x^{4} + 552x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{10} \)
Twist minimal: no (minimal twist has level 285)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 514.8
Root \(0.184902i\) of defining polynomial
Character \(\chi\) \(=\) 855.514
Dual form 855.2.c.g.514.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.184902i q^{2} +1.96581 q^{4} +(-1.94200 + 1.10844i) q^{5} -1.90997i q^{7} +0.733287i q^{8} +(-0.204953 - 0.359080i) q^{10} +3.94075 q^{11} +4.53675i q^{13} +0.353158 q^{14} +3.79604 q^{16} -4.68488i q^{17} -1.00000 q^{19} +(-3.81761 + 2.17898i) q^{20} +0.728653i q^{22} +6.18360i q^{23} +(2.54273 - 4.30517i) q^{25} -0.838856 q^{26} -3.75465i q^{28} +5.98837 q^{29} +7.31166 q^{31} +2.16847i q^{32} +0.866244 q^{34} +(2.11709 + 3.70917i) q^{35} +8.07490i q^{37} -0.184902i q^{38} +(-0.812803 - 1.42404i) q^{40} -0.0567471 q^{41} +0.822008i q^{43} +7.74677 q^{44} -1.14336 q^{46} -7.50487i q^{47} +3.35200 q^{49} +(0.796036 + 0.470156i) q^{50} +8.91840i q^{52} -1.28799i q^{53} +(-7.65293 + 4.36808i) q^{55} +1.40056 q^{56} +1.10726i q^{58} -8.28180 q^{59} -11.3330 q^{61} +1.35194i q^{62} +7.19112 q^{64} +(-5.02871 - 8.81038i) q^{65} +10.3415i q^{67} -9.20959i q^{68} +(-0.685833 + 0.391454i) q^{70} +10.3415 q^{71} -10.0984i q^{73} -1.49307 q^{74} -1.96581 q^{76} -7.52672i q^{77} -4.12580 q^{79} +(-7.37190 + 4.20767i) q^{80} -0.0104927i q^{82} +11.6295i q^{83} +(5.19290 + 9.09804i) q^{85} -0.151991 q^{86} +2.88970i q^{88} +7.17054 q^{89} +8.66508 q^{91} +12.1558i q^{92} +1.38767 q^{94} +(1.94200 - 1.10844i) q^{95} -2.70038i q^{97} +0.619793i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q - 22 q^{4} - 2 q^{5} + 2 q^{10} + 8 q^{11} - 8 q^{14} + 38 q^{16} - 14 q^{19} - 12 q^{20} - 4 q^{25} + 40 q^{26} - 12 q^{29} + 8 q^{31} - 4 q^{34} + 14 q^{35} + 18 q^{40} - 4 q^{41} - 64 q^{44} - 8 q^{46}+ \cdots + 2 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/855\mathbb{Z}\right)^\times\).

\(n\) \(172\) \(191\) \(496\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.184902i 0.130746i 0.997861 + 0.0653728i \(0.0208237\pi\)
−0.997861 + 0.0653728i \(0.979176\pi\)
\(3\) 0 0
\(4\) 1.96581 0.982906
\(5\) −1.94200 + 1.10844i −0.868489 + 0.495709i
\(6\) 0 0
\(7\) 1.90997i 0.721902i −0.932585 0.360951i \(-0.882452\pi\)
0.932585 0.360951i \(-0.117548\pi\)
\(8\) 0.733287i 0.259256i
\(9\) 0 0
\(10\) −0.204953 0.359080i −0.0648117 0.113551i
\(11\) 3.94075 1.18818 0.594090 0.804399i \(-0.297512\pi\)
0.594090 + 0.804399i \(0.297512\pi\)
\(12\) 0 0
\(13\) 4.53675i 1.25827i 0.777296 + 0.629135i \(0.216591\pi\)
−0.777296 + 0.629135i \(0.783409\pi\)
\(14\) 0.353158 0.0943855
\(15\) 0 0
\(16\) 3.79604 0.949009
\(17\) 4.68488i 1.13625i −0.822942 0.568125i \(-0.807669\pi\)
0.822942 0.568125i \(-0.192331\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) −3.81761 + 2.17898i −0.853643 + 0.487235i
\(21\) 0 0
\(22\) 0.728653i 0.155349i
\(23\) 6.18360i 1.28937i 0.764449 + 0.644684i \(0.223011\pi\)
−0.764449 + 0.644684i \(0.776989\pi\)
\(24\) 0 0
\(25\) 2.54273 4.30517i 0.508546 0.861035i
\(26\) −0.838856 −0.164513
\(27\) 0 0
\(28\) 3.75465i 0.709561i
\(29\) 5.98837 1.11201 0.556006 0.831178i \(-0.312333\pi\)
0.556006 + 0.831178i \(0.312333\pi\)
\(30\) 0 0
\(31\) 7.31166 1.31321 0.656607 0.754233i \(-0.271991\pi\)
0.656607 + 0.754233i \(0.271991\pi\)
\(32\) 2.16847i 0.383335i
\(33\) 0 0
\(34\) 0.866244 0.148560
\(35\) 2.11709 + 3.70917i 0.357853 + 0.626964i
\(36\) 0 0
\(37\) 8.07490i 1.32751i 0.747952 + 0.663753i \(0.231037\pi\)
−0.747952 + 0.663753i \(0.768963\pi\)
\(38\) 0.184902i 0.0299951i
\(39\) 0 0
\(40\) −0.812803 1.42404i −0.128515 0.225161i
\(41\) −0.0567471 −0.00886241 −0.00443121 0.999990i \(-0.501411\pi\)
−0.00443121 + 0.999990i \(0.501411\pi\)
\(42\) 0 0
\(43\) 0.822008i 0.125355i 0.998034 + 0.0626776i \(0.0199640\pi\)
−0.998034 + 0.0626776i \(0.980036\pi\)
\(44\) 7.74677 1.16787
\(45\) 0 0
\(46\) −1.14336 −0.168579
\(47\) 7.50487i 1.09470i −0.836905 0.547349i \(-0.815637\pi\)
0.836905 0.547349i \(-0.184363\pi\)
\(48\) 0 0
\(49\) 3.35200 0.478858
\(50\) 0.796036 + 0.470156i 0.112576 + 0.0664901i
\(51\) 0 0
\(52\) 8.91840i 1.23676i
\(53\) 1.28799i 0.176920i −0.996080 0.0884598i \(-0.971806\pi\)
0.996080 0.0884598i \(-0.0281945\pi\)
\(54\) 0 0
\(55\) −7.65293 + 4.36808i −1.03192 + 0.588991i
\(56\) 1.40056 0.187157
\(57\) 0 0
\(58\) 1.10726i 0.145391i
\(59\) −8.28180 −1.07820 −0.539099 0.842242i \(-0.681235\pi\)
−0.539099 + 0.842242i \(0.681235\pi\)
\(60\) 0 0
\(61\) −11.3330 −1.45104 −0.725521 0.688200i \(-0.758401\pi\)
−0.725521 + 0.688200i \(0.758401\pi\)
\(62\) 1.35194i 0.171697i
\(63\) 0 0
\(64\) 7.19112 0.898890
\(65\) −5.02871 8.81038i −0.623735 1.09279i
\(66\) 0 0
\(67\) 10.3415i 1.26342i 0.775205 + 0.631709i \(0.217646\pi\)
−0.775205 + 0.631709i \(0.782354\pi\)
\(68\) 9.20959i 1.11683i
\(69\) 0 0
\(70\) −0.685833 + 0.391454i −0.0819727 + 0.0467877i
\(71\) 10.3415 1.22731 0.613657 0.789573i \(-0.289698\pi\)
0.613657 + 0.789573i \(0.289698\pi\)
\(72\) 0 0
\(73\) 10.0984i 1.18192i −0.806699 0.590962i \(-0.798748\pi\)
0.806699 0.590962i \(-0.201252\pi\)
\(74\) −1.49307 −0.173566
\(75\) 0 0
\(76\) −1.96581 −0.225494
\(77\) 7.52672i 0.857749i
\(78\) 0 0
\(79\) −4.12580 −0.464189 −0.232094 0.972693i \(-0.574558\pi\)
−0.232094 + 0.972693i \(0.574558\pi\)
\(80\) −7.37190 + 4.20767i −0.824204 + 0.470432i
\(81\) 0 0
\(82\) 0.0104927i 0.00115872i
\(83\) 11.6295i 1.27651i 0.769827 + 0.638253i \(0.220343\pi\)
−0.769827 + 0.638253i \(0.779657\pi\)
\(84\) 0 0
\(85\) 5.19290 + 9.09804i 0.563249 + 0.986821i
\(86\) −0.151991 −0.0163896
\(87\) 0 0
\(88\) 2.88970i 0.308043i
\(89\) 7.17054 0.760075 0.380038 0.924971i \(-0.375911\pi\)
0.380038 + 0.924971i \(0.375911\pi\)
\(90\) 0 0
\(91\) 8.66508 0.908347
\(92\) 12.1558i 1.26733i
\(93\) 0 0
\(94\) 1.38767 0.143127
\(95\) 1.94200 1.10844i 0.199245 0.113723i
\(96\) 0 0
\(97\) 2.70038i 0.274182i −0.990558 0.137091i \(-0.956225\pi\)
0.990558 0.137091i \(-0.0437752\pi\)
\(98\) 0.619793i 0.0626085i
\(99\) 0 0
\(100\) 4.99853 8.46316i 0.499853 0.846316i
\(101\) −2.17791 −0.216710 −0.108355 0.994112i \(-0.534558\pi\)
−0.108355 + 0.994112i \(0.534558\pi\)
\(102\) 0 0
\(103\) 10.2701i 1.01195i −0.862549 0.505973i \(-0.831134\pi\)
0.862549 0.505973i \(-0.168866\pi\)
\(104\) −3.32674 −0.326214
\(105\) 0 0
\(106\) 0.238153 0.0231314
\(107\) 7.81995i 0.755983i −0.925809 0.377991i \(-0.876615\pi\)
0.925809 0.377991i \(-0.123385\pi\)
\(108\) 0 0
\(109\) −7.93162 −0.759712 −0.379856 0.925046i \(-0.624026\pi\)
−0.379856 + 0.925046i \(0.624026\pi\)
\(110\) −0.807667 1.41504i −0.0770080 0.134919i
\(111\) 0 0
\(112\) 7.25033i 0.685091i
\(113\) 9.54169i 0.897607i −0.893631 0.448803i \(-0.851850\pi\)
0.893631 0.448803i \(-0.148150\pi\)
\(114\) 0 0
\(115\) −6.85413 12.0085i −0.639151 1.11980i
\(116\) 11.7720 1.09300
\(117\) 0 0
\(118\) 1.53132i 0.140970i
\(119\) −8.94799 −0.820261
\(120\) 0 0
\(121\) 4.52949 0.411772
\(122\) 2.09550i 0.189717i
\(123\) 0 0
\(124\) 14.3733 1.29076
\(125\) −0.165961 + 11.1791i −0.0148440 + 0.999890i
\(126\) 0 0
\(127\) 7.84804i 0.696401i 0.937420 + 0.348201i \(0.113207\pi\)
−0.937420 + 0.348201i \(0.886793\pi\)
\(128\) 5.66659i 0.500861i
\(129\) 0 0
\(130\) 1.62906 0.929820i 0.142878 0.0815506i
\(131\) −1.36722 −0.119455 −0.0597273 0.998215i \(-0.519023\pi\)
−0.0597273 + 0.998215i \(0.519023\pi\)
\(132\) 0 0
\(133\) 1.90997i 0.165616i
\(134\) −1.91217 −0.165186
\(135\) 0 0
\(136\) 3.43536 0.294580
\(137\) 12.0300i 1.02779i −0.857853 0.513896i \(-0.828202\pi\)
0.857853 0.513896i \(-0.171798\pi\)
\(138\) 0 0
\(139\) −12.6898 −1.07634 −0.538169 0.842837i \(-0.680884\pi\)
−0.538169 + 0.842837i \(0.680884\pi\)
\(140\) 4.16179 + 7.29152i 0.351736 + 0.616246i
\(141\) 0 0
\(142\) 1.91217i 0.160466i
\(143\) 17.8782i 1.49505i
\(144\) 0 0
\(145\) −11.6294 + 6.63774i −0.965770 + 0.551234i
\(146\) 1.86721 0.154531
\(147\) 0 0
\(148\) 15.8737i 1.30481i
\(149\) −21.0429 −1.72390 −0.861951 0.506992i \(-0.830758\pi\)
−0.861951 + 0.506992i \(0.830758\pi\)
\(150\) 0 0
\(151\) −3.32628 −0.270689 −0.135344 0.990799i \(-0.543214\pi\)
−0.135344 + 0.990799i \(0.543214\pi\)
\(152\) 0.733287i 0.0594774i
\(153\) 0 0
\(154\) 1.39171 0.112147
\(155\) −14.1992 + 8.10453i −1.14051 + 0.650971i
\(156\) 0 0
\(157\) 16.3037i 1.30118i −0.759430 0.650589i \(-0.774522\pi\)
0.759430 0.650589i \(-0.225478\pi\)
\(158\) 0.762870i 0.0606906i
\(159\) 0 0
\(160\) −2.40361 4.21117i −0.190022 0.332922i
\(161\) 11.8105 0.930798
\(162\) 0 0
\(163\) 10.3731i 0.812486i −0.913765 0.406243i \(-0.866839\pi\)
0.913765 0.406243i \(-0.133161\pi\)
\(164\) −0.111554 −0.00871092
\(165\) 0 0
\(166\) −2.15032 −0.166897
\(167\) 24.4309i 1.89052i 0.326315 + 0.945261i \(0.394193\pi\)
−0.326315 + 0.945261i \(0.605807\pi\)
\(168\) 0 0
\(169\) −7.58214 −0.583242
\(170\) −1.68225 + 0.960178i −0.129022 + 0.0736423i
\(171\) 0 0
\(172\) 1.61591i 0.123212i
\(173\) 21.4851i 1.63348i −0.577002 0.816742i \(-0.695778\pi\)
0.577002 0.816742i \(-0.304222\pi\)
\(174\) 0 0
\(175\) −8.22277 4.85654i −0.621583 0.367120i
\(176\) 14.9592 1.12759
\(177\) 0 0
\(178\) 1.32585i 0.0993765i
\(179\) −14.7939 −1.10575 −0.552875 0.833264i \(-0.686469\pi\)
−0.552875 + 0.833264i \(0.686469\pi\)
\(180\) 0 0
\(181\) 17.8632 1.32776 0.663882 0.747837i \(-0.268908\pi\)
0.663882 + 0.747837i \(0.268908\pi\)
\(182\) 1.60219i 0.118762i
\(183\) 0 0
\(184\) −4.53435 −0.334277
\(185\) −8.95053 15.6815i −0.658056 1.15292i
\(186\) 0 0
\(187\) 18.4619i 1.35007i
\(188\) 14.7532i 1.07598i
\(189\) 0 0
\(190\) 0.204953 + 0.359080i 0.0148688 + 0.0260504i
\(191\) −12.8206 −0.927663 −0.463832 0.885923i \(-0.653526\pi\)
−0.463832 + 0.885923i \(0.653526\pi\)
\(192\) 0 0
\(193\) 15.8737i 1.14262i −0.820736 0.571308i \(-0.806436\pi\)
0.820736 0.571308i \(-0.193564\pi\)
\(194\) 0.499305 0.0358480
\(195\) 0 0
\(196\) 6.58941 0.470672
\(197\) 13.8571i 0.987277i 0.869667 + 0.493638i \(0.164333\pi\)
−0.869667 + 0.493638i \(0.835667\pi\)
\(198\) 0 0
\(199\) −26.5763 −1.88394 −0.941972 0.335693i \(-0.891030\pi\)
−0.941972 + 0.335693i \(0.891030\pi\)
\(200\) 3.15693 + 1.86455i 0.223229 + 0.131844i
\(201\) 0 0
\(202\) 0.402700i 0.0283338i
\(203\) 11.4376i 0.802764i
\(204\) 0 0
\(205\) 0.110203 0.0629007i 0.00769691 0.00439318i
\(206\) 1.89897 0.132307
\(207\) 0 0
\(208\) 17.2217i 1.19411i
\(209\) −3.94075 −0.272587
\(210\) 0 0
\(211\) −12.3339 −0.849101 −0.424550 0.905404i \(-0.639568\pi\)
−0.424550 + 0.905404i \(0.639568\pi\)
\(212\) 2.53195i 0.173895i
\(213\) 0 0
\(214\) 1.44592 0.0988414
\(215\) −0.911146 1.59634i −0.0621396 0.108870i
\(216\) 0 0
\(217\) 13.9651i 0.948011i
\(218\) 1.46657i 0.0993289i
\(219\) 0 0
\(220\) −15.0442 + 8.58681i −1.01428 + 0.578923i
\(221\) 21.2541 1.42971
\(222\) 0 0
\(223\) 25.8035i 1.72793i −0.503551 0.863966i \(-0.667973\pi\)
0.503551 0.863966i \(-0.332027\pi\)
\(224\) 4.14172 0.276730
\(225\) 0 0
\(226\) 1.76428 0.117358
\(227\) 14.1348i 0.938163i −0.883155 0.469081i \(-0.844585\pi\)
0.883155 0.469081i \(-0.155415\pi\)
\(228\) 0 0
\(229\) −14.7671 −0.975838 −0.487919 0.872889i \(-0.662244\pi\)
−0.487919 + 0.872889i \(0.662244\pi\)
\(230\) 2.22041 1.26734i 0.146409 0.0835662i
\(231\) 0 0
\(232\) 4.39119i 0.288296i
\(233\) 15.5104i 1.01612i 0.861322 + 0.508060i \(0.169637\pi\)
−0.861322 + 0.508060i \(0.830363\pi\)
\(234\) 0 0
\(235\) 8.31868 + 14.5745i 0.542651 + 0.950733i
\(236\) −16.2804 −1.05977
\(237\) 0 0
\(238\) 1.65450i 0.107246i
\(239\) 1.16086 0.0750897 0.0375448 0.999295i \(-0.488046\pi\)
0.0375448 + 0.999295i \(0.488046\pi\)
\(240\) 0 0
\(241\) −14.7586 −0.950685 −0.475343 0.879801i \(-0.657676\pi\)
−0.475343 + 0.879801i \(0.657676\pi\)
\(242\) 0.837513i 0.0538374i
\(243\) 0 0
\(244\) −22.2785 −1.42624
\(245\) −6.50959 + 3.71549i −0.415883 + 0.237374i
\(246\) 0 0
\(247\) 4.53675i 0.288667i
\(248\) 5.36155i 0.340459i
\(249\) 0 0
\(250\) −2.06704 0.0306866i −0.130731 0.00194079i
\(251\) 5.83488 0.368294 0.184147 0.982899i \(-0.441048\pi\)
0.184147 + 0.982899i \(0.441048\pi\)
\(252\) 0 0
\(253\) 24.3680i 1.53200i
\(254\) −1.45112 −0.0910514
\(255\) 0 0
\(256\) 13.3345 0.833404
\(257\) 2.19805i 0.137111i 0.997647 + 0.0685554i \(0.0218390\pi\)
−0.997647 + 0.0685554i \(0.978161\pi\)
\(258\) 0 0
\(259\) 15.4228 0.958329
\(260\) −9.88550 17.3195i −0.613073 1.07411i
\(261\) 0 0
\(262\) 0.252802i 0.0156182i
\(263\) 21.4529i 1.32284i −0.750015 0.661420i \(-0.769954\pi\)
0.750015 0.661420i \(-0.230046\pi\)
\(264\) 0 0
\(265\) 1.42766 + 2.50128i 0.0877005 + 0.153653i
\(266\) −0.353158 −0.0216535
\(267\) 0 0
\(268\) 20.3295i 1.24182i
\(269\) −0.680401 −0.0414848 −0.0207424 0.999785i \(-0.506603\pi\)
−0.0207424 + 0.999785i \(0.506603\pi\)
\(270\) 0 0
\(271\) 17.3272 1.05255 0.526276 0.850314i \(-0.323588\pi\)
0.526276 + 0.850314i \(0.323588\pi\)
\(272\) 17.7840i 1.07831i
\(273\) 0 0
\(274\) 2.22437 0.134379
\(275\) 10.0203 16.9656i 0.604244 1.02306i
\(276\) 0 0
\(277\) 25.8337i 1.55219i 0.630613 + 0.776097i \(0.282803\pi\)
−0.630613 + 0.776097i \(0.717197\pi\)
\(278\) 2.34638i 0.140726i
\(279\) 0 0
\(280\) −2.71988 + 1.55243i −0.162544 + 0.0927756i
\(281\) 6.31534 0.376741 0.188371 0.982098i \(-0.439679\pi\)
0.188371 + 0.982098i \(0.439679\pi\)
\(282\) 0 0
\(283\) 7.03773i 0.418350i −0.977878 0.209175i \(-0.932922\pi\)
0.977878 0.209175i \(-0.0670778\pi\)
\(284\) 20.3295 1.20633
\(285\) 0 0
\(286\) −3.30572 −0.195471
\(287\) 0.108385i 0.00639779i
\(288\) 0 0
\(289\) −4.94810 −0.291065
\(290\) −1.22733 2.15030i −0.0720714 0.126270i
\(291\) 0 0
\(292\) 19.8515i 1.16172i
\(293\) 16.3174i 0.953274i 0.879100 + 0.476637i \(0.158144\pi\)
−0.879100 + 0.476637i \(0.841856\pi\)
\(294\) 0 0
\(295\) 16.0832 9.17986i 0.936403 0.534472i
\(296\) −5.92122 −0.344164
\(297\) 0 0
\(298\) 3.89088i 0.225393i
\(299\) −28.0535 −1.62237
\(300\) 0 0
\(301\) 1.57001 0.0904941
\(302\) 0.615036i 0.0353913i
\(303\) 0 0
\(304\) −3.79604 −0.217718
\(305\) 22.0087 12.5619i 1.26021 0.719294i
\(306\) 0 0
\(307\) 18.3294i 1.04611i −0.852298 0.523056i \(-0.824792\pi\)
0.852298 0.523056i \(-0.175208\pi\)
\(308\) 14.7961i 0.843087i
\(309\) 0 0
\(310\) −1.49854 2.62547i −0.0851116 0.149117i
\(311\) 11.7605 0.666879 0.333439 0.942772i \(-0.391791\pi\)
0.333439 + 0.942772i \(0.391791\pi\)
\(312\) 0 0
\(313\) 17.1712i 0.970574i 0.874355 + 0.485287i \(0.161285\pi\)
−0.874355 + 0.485287i \(0.838715\pi\)
\(314\) 3.01459 0.170123
\(315\) 0 0
\(316\) −8.11055 −0.456254
\(317\) 11.8192i 0.663833i 0.943309 + 0.331916i \(0.107695\pi\)
−0.943309 + 0.331916i \(0.892305\pi\)
\(318\) 0 0
\(319\) 23.5987 1.32127
\(320\) −13.9652 + 7.97091i −0.780676 + 0.445587i
\(321\) 0 0
\(322\) 2.18379i 0.121698i
\(323\) 4.68488i 0.260674i
\(324\) 0 0
\(325\) 19.5315 + 11.5357i 1.08341 + 0.639888i
\(326\) 1.91801 0.106229
\(327\) 0 0
\(328\) 0.0416119i 0.00229764i
\(329\) −14.3341 −0.790264
\(330\) 0 0
\(331\) −25.0090 −1.37462 −0.687309 0.726365i \(-0.741208\pi\)
−0.687309 + 0.726365i \(0.741208\pi\)
\(332\) 22.8614i 1.25468i
\(333\) 0 0
\(334\) −4.51733 −0.247177
\(335\) −11.4629 20.0832i −0.626288 1.09727i
\(336\) 0 0
\(337\) 0.451357i 0.0245870i 0.999924 + 0.0122935i \(0.00391324\pi\)
−0.999924 + 0.0122935i \(0.996087\pi\)
\(338\) 1.40195i 0.0762563i
\(339\) 0 0
\(340\) 10.2083 + 17.8850i 0.553621 + 0.969952i
\(341\) 28.8134 1.56033
\(342\) 0 0
\(343\) 19.7720i 1.06759i
\(344\) −0.602768 −0.0324991
\(345\) 0 0
\(346\) 3.97265 0.213571
\(347\) 8.93849i 0.479843i 0.970792 + 0.239922i \(0.0771217\pi\)
−0.970792 + 0.239922i \(0.922878\pi\)
\(348\) 0 0
\(349\) 15.9394 0.853215 0.426607 0.904437i \(-0.359709\pi\)
0.426607 + 0.904437i \(0.359709\pi\)
\(350\) 0.897985 1.52041i 0.0479993 0.0812692i
\(351\) 0 0
\(352\) 8.54539i 0.455471i
\(353\) 8.53844i 0.454455i 0.973842 + 0.227228i \(0.0729662\pi\)
−0.973842 + 0.227228i \(0.927034\pi\)
\(354\) 0 0
\(355\) −20.0832 + 11.4629i −1.06591 + 0.608390i
\(356\) 14.0959 0.747082
\(357\) 0 0
\(358\) 2.73543i 0.144572i
\(359\) 16.7400 0.883503 0.441752 0.897137i \(-0.354357\pi\)
0.441752 + 0.897137i \(0.354357\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 3.30295i 0.173599i
\(363\) 0 0
\(364\) 17.0339 0.892819
\(365\) 11.1934 + 19.6110i 0.585890 + 1.02649i
\(366\) 0 0
\(367\) 0.300558i 0.0156890i −0.999969 0.00784451i \(-0.997503\pi\)
0.999969 0.00784451i \(-0.00249701\pi\)
\(368\) 23.4732i 1.22362i
\(369\) 0 0
\(370\) 2.89954 1.65497i 0.150740 0.0860379i
\(371\) −2.46003 −0.127719
\(372\) 0 0
\(373\) 25.3500i 1.31257i 0.754512 + 0.656287i \(0.227874\pi\)
−0.754512 + 0.656287i \(0.772126\pi\)
\(374\) 3.41365 0.176516
\(375\) 0 0
\(376\) 5.50322 0.283807
\(377\) 27.1678i 1.39921i
\(378\) 0 0
\(379\) −16.3050 −0.837530 −0.418765 0.908095i \(-0.637537\pi\)
−0.418765 + 0.908095i \(0.637537\pi\)
\(380\) 3.81761 2.17898i 0.195839 0.111779i
\(381\) 0 0
\(382\) 2.37055i 0.121288i
\(383\) 30.4652i 1.55670i 0.627832 + 0.778349i \(0.283943\pi\)
−0.627832 + 0.778349i \(0.716057\pi\)
\(384\) 0 0
\(385\) 8.34290 + 14.6169i 0.425194 + 0.744946i
\(386\) 2.93509 0.149392
\(387\) 0 0
\(388\) 5.30843i 0.269495i
\(389\) −1.28401 −0.0651017 −0.0325508 0.999470i \(-0.510363\pi\)
−0.0325508 + 0.999470i \(0.510363\pi\)
\(390\) 0 0
\(391\) 28.9694 1.46505
\(392\) 2.45798i 0.124147i
\(393\) 0 0
\(394\) −2.56221 −0.129082
\(395\) 8.01231 4.57320i 0.403143 0.230102i
\(396\) 0 0
\(397\) 12.5188i 0.628299i −0.949374 0.314149i \(-0.898281\pi\)
0.949374 0.314149i \(-0.101719\pi\)
\(398\) 4.91401i 0.246317i
\(399\) 0 0
\(400\) 9.65229 16.3426i 0.482615 0.817130i
\(401\) −1.22276 −0.0610620 −0.0305310 0.999534i \(-0.509720\pi\)
−0.0305310 + 0.999534i \(0.509720\pi\)
\(402\) 0 0
\(403\) 33.1712i 1.65238i
\(404\) −4.28135 −0.213005
\(405\) 0 0
\(406\) 2.11484 0.104958
\(407\) 31.8212i 1.57732i
\(408\) 0 0
\(409\) 27.7692 1.37310 0.686550 0.727083i \(-0.259124\pi\)
0.686550 + 0.727083i \(0.259124\pi\)
\(410\) 0.0116305 + 0.0203768i 0.000574388 + 0.00100634i
\(411\) 0 0
\(412\) 20.1891i 0.994647i
\(413\) 15.8180i 0.778353i
\(414\) 0 0
\(415\) −12.8906 22.5845i −0.632775 1.10863i
\(416\) −9.83781 −0.482338
\(417\) 0 0
\(418\) 0.728653i 0.0356396i
\(419\) −14.4570 −0.706273 −0.353136 0.935572i \(-0.614885\pi\)
−0.353136 + 0.935572i \(0.614885\pi\)
\(420\) 0 0
\(421\) 35.5761 1.73387 0.866937 0.498418i \(-0.166086\pi\)
0.866937 + 0.498418i \(0.166086\pi\)
\(422\) 2.28056i 0.111016i
\(423\) 0 0
\(424\) 0.944469 0.0458675
\(425\) −20.1692 11.9124i −0.978351 0.577835i
\(426\) 0 0
\(427\) 21.6457i 1.04751i
\(428\) 15.3725i 0.743060i
\(429\) 0 0
\(430\) 0.295167 0.168473i 0.0142342 0.00812448i
\(431\) −11.1892 −0.538966 −0.269483 0.963005i \(-0.586853\pi\)
−0.269483 + 0.963005i \(0.586853\pi\)
\(432\) 0 0
\(433\) 10.2174i 0.491018i 0.969394 + 0.245509i \(0.0789550\pi\)
−0.969394 + 0.245509i \(0.921045\pi\)
\(434\) 2.58217 0.123948
\(435\) 0 0
\(436\) −15.5921 −0.746725
\(437\) 6.18360i 0.295802i
\(438\) 0 0
\(439\) 4.79196 0.228708 0.114354 0.993440i \(-0.463520\pi\)
0.114354 + 0.993440i \(0.463520\pi\)
\(440\) −3.20305 5.61180i −0.152700 0.267532i
\(441\) 0 0
\(442\) 3.92994i 0.186928i
\(443\) 13.3293i 0.633296i −0.948543 0.316648i \(-0.897443\pi\)
0.948543 0.316648i \(-0.102557\pi\)
\(444\) 0 0
\(445\) −13.9252 + 7.94810i −0.660117 + 0.376776i
\(446\) 4.77113 0.225919
\(447\) 0 0
\(448\) 13.7348i 0.648910i
\(449\) 20.0362 0.945566 0.472783 0.881179i \(-0.343249\pi\)
0.472783 + 0.881179i \(0.343249\pi\)
\(450\) 0 0
\(451\) −0.223626 −0.0105301
\(452\) 18.7572i 0.882263i
\(453\) 0 0
\(454\) 2.61356 0.122661
\(455\) −16.8276 + 9.60470i −0.788889 + 0.450275i
\(456\) 0 0
\(457\) 14.4875i 0.677696i 0.940841 + 0.338848i \(0.110037\pi\)
−0.940841 + 0.338848i \(0.889963\pi\)
\(458\) 2.73047i 0.127586i
\(459\) 0 0
\(460\) −13.4739 23.6065i −0.628225 1.10066i
\(461\) −14.7512 −0.687031 −0.343515 0.939147i \(-0.611618\pi\)
−0.343515 + 0.939147i \(0.611618\pi\)
\(462\) 0 0
\(463\) 30.8315i 1.43286i −0.697658 0.716431i \(-0.745774\pi\)
0.697658 0.716431i \(-0.254226\pi\)
\(464\) 22.7321 1.05531
\(465\) 0 0
\(466\) −2.86790 −0.132853
\(467\) 20.0644i 0.928471i −0.885712 0.464235i \(-0.846329\pi\)
0.885712 0.464235i \(-0.153671\pi\)
\(468\) 0 0
\(469\) 19.7520 0.912064
\(470\) −2.69485 + 1.53814i −0.124304 + 0.0709492i
\(471\) 0 0
\(472\) 6.07293i 0.279529i
\(473\) 3.23933i 0.148944i
\(474\) 0 0
\(475\) −2.54273 + 4.30517i −0.116668 + 0.197535i
\(476\) −17.5901 −0.806239
\(477\) 0 0
\(478\) 0.214645i 0.00981764i
\(479\) −21.4676 −0.980879 −0.490440 0.871475i \(-0.663164\pi\)
−0.490440 + 0.871475i \(0.663164\pi\)
\(480\) 0 0
\(481\) −36.6339 −1.67036
\(482\) 2.72890i 0.124298i
\(483\) 0 0
\(484\) 8.90412 0.404733
\(485\) 2.99320 + 5.24413i 0.135914 + 0.238124i
\(486\) 0 0
\(487\) 0.118331i 0.00536207i −0.999996 0.00268103i \(-0.999147\pi\)
0.999996 0.00268103i \(-0.000853401\pi\)
\(488\) 8.31034i 0.376192i
\(489\) 0 0
\(490\) −0.687002 1.20364i −0.0310356 0.0543748i
\(491\) −6.96487 −0.314320 −0.157160 0.987573i \(-0.550234\pi\)
−0.157160 + 0.987573i \(0.550234\pi\)
\(492\) 0 0
\(493\) 28.0548i 1.26352i
\(494\) 0.838856 0.0377419
\(495\) 0 0
\(496\) 27.7553 1.24625
\(497\) 19.7520i 0.886000i
\(498\) 0 0
\(499\) 15.3967 0.689250 0.344625 0.938741i \(-0.388006\pi\)
0.344625 + 0.938741i \(0.388006\pi\)
\(500\) −0.326249 + 21.9760i −0.0145903 + 0.982797i
\(501\) 0 0
\(502\) 1.07888i 0.0481529i
\(503\) 5.79980i 0.258600i −0.991606 0.129300i \(-0.958727\pi\)
0.991606 0.129300i \(-0.0412731\pi\)
\(504\) 0 0
\(505\) 4.22949 2.41407i 0.188210 0.107425i
\(506\) −4.50569 −0.200303
\(507\) 0 0
\(508\) 15.4278i 0.684497i
\(509\) 33.9293 1.50389 0.751945 0.659226i \(-0.229116\pi\)
0.751945 + 0.659226i \(0.229116\pi\)
\(510\) 0 0
\(511\) −19.2876 −0.853234
\(512\) 13.7988i 0.609825i
\(513\) 0 0
\(514\) −0.406425 −0.0179266
\(515\) 11.3838 + 19.9446i 0.501630 + 0.878864i
\(516\) 0 0
\(517\) 29.5748i 1.30070i
\(518\) 2.85172i 0.125297i
\(519\) 0 0
\(520\) 6.46054 3.68749i 0.283313 0.161707i
\(521\) 8.82716 0.386725 0.193362 0.981127i \(-0.438061\pi\)
0.193362 + 0.981127i \(0.438061\pi\)
\(522\) 0 0
\(523\) 20.7651i 0.907995i 0.891003 + 0.453997i \(0.150002\pi\)
−0.891003 + 0.453997i \(0.849998\pi\)
\(524\) −2.68770 −0.117413
\(525\) 0 0
\(526\) 3.96668 0.172956
\(527\) 34.2543i 1.49214i
\(528\) 0 0
\(529\) −15.2369 −0.662472
\(530\) −0.462493 + 0.263978i −0.0200894 + 0.0114665i
\(531\) 0 0
\(532\) 3.75465i 0.162785i
\(533\) 0.257448i 0.0111513i
\(534\) 0 0
\(535\) 8.66793 + 15.1863i 0.374747 + 0.656563i
\(536\) −7.58331 −0.327549
\(537\) 0 0
\(538\) 0.125808i 0.00542395i
\(539\) 13.2094 0.568969
\(540\) 0 0
\(541\) 44.2527 1.90257 0.951286 0.308309i \(-0.0997631\pi\)
0.951286 + 0.308309i \(0.0997631\pi\)
\(542\) 3.20384i 0.137617i
\(543\) 0 0
\(544\) 10.1590 0.435564
\(545\) 15.4032 8.79171i 0.659801 0.376596i
\(546\) 0 0
\(547\) 18.6666i 0.798127i −0.916923 0.399064i \(-0.869335\pi\)
0.916923 0.399064i \(-0.130665\pi\)
\(548\) 23.6487i 1.01022i
\(549\) 0 0
\(550\) 3.13698 + 1.85277i 0.133761 + 0.0790022i
\(551\) −5.98837 −0.255113
\(552\) 0 0
\(553\) 7.88017i 0.335099i
\(554\) −4.77670 −0.202943
\(555\) 0 0
\(556\) −24.9458 −1.05794
\(557\) 4.34816i 0.184237i −0.995748 0.0921187i \(-0.970636\pi\)
0.995748 0.0921187i \(-0.0293639\pi\)
\(558\) 0 0
\(559\) −3.72925 −0.157730
\(560\) 8.03654 + 14.0801i 0.339606 + 0.594994i
\(561\) 0 0
\(562\) 1.16772i 0.0492573i
\(563\) 9.70917i 0.409193i 0.978846 + 0.204596i \(0.0655882\pi\)
−0.978846 + 0.204596i \(0.934412\pi\)
\(564\) 0 0
\(565\) 10.5764 + 18.5300i 0.444951 + 0.779562i
\(566\) 1.30129 0.0546974
\(567\) 0 0
\(568\) 7.58331i 0.318189i
\(569\) −36.6849 −1.53791 −0.768956 0.639301i \(-0.779224\pi\)
−0.768956 + 0.639301i \(0.779224\pi\)
\(570\) 0 0
\(571\) −33.6378 −1.40770 −0.703849 0.710350i \(-0.748537\pi\)
−0.703849 + 0.710350i \(0.748537\pi\)
\(572\) 35.1452i 1.46949i
\(573\) 0 0
\(574\) −0.0200407 −0.000836483
\(575\) 26.6215 + 15.7232i 1.11019 + 0.655703i
\(576\) 0 0
\(577\) 31.9286i 1.32920i 0.747197 + 0.664602i \(0.231399\pi\)
−0.747197 + 0.664602i \(0.768601\pi\)
\(578\) 0.914914i 0.0380554i
\(579\) 0 0
\(580\) −22.8612 + 13.0485i −0.949261 + 0.541811i
\(581\) 22.2121 0.921512
\(582\) 0 0
\(583\) 5.07566i 0.210212i
\(584\) 7.40500 0.306421
\(585\) 0 0
\(586\) −3.01713 −0.124636
\(587\) 16.0973i 0.664406i −0.943208 0.332203i \(-0.892208\pi\)
0.943208 0.332203i \(-0.107792\pi\)
\(588\) 0 0
\(589\) −7.31166 −0.301272
\(590\) 1.69738 + 2.97383i 0.0698798 + 0.122431i
\(591\) 0 0
\(592\) 30.6526i 1.25982i
\(593\) 30.3210i 1.24513i −0.782567 0.622566i \(-0.786090\pi\)
0.782567 0.622566i \(-0.213910\pi\)
\(594\) 0 0
\(595\) 17.3770 9.91830i 0.712388 0.406611i
\(596\) −41.3664 −1.69443
\(597\) 0 0
\(598\) 5.18714i 0.212118i
\(599\) 27.5881 1.12722 0.563610 0.826041i \(-0.309412\pi\)
0.563610 + 0.826041i \(0.309412\pi\)
\(600\) 0 0
\(601\) −7.71122 −0.314547 −0.157274 0.987555i \(-0.550270\pi\)
−0.157274 + 0.987555i \(0.550270\pi\)
\(602\) 0.290299i 0.0118317i
\(603\) 0 0
\(604\) −6.53883 −0.266061
\(605\) −8.79627 + 5.02066i −0.357619 + 0.204119i
\(606\) 0 0
\(607\) 30.1322i 1.22303i 0.791233 + 0.611515i \(0.209440\pi\)
−0.791233 + 0.611515i \(0.790560\pi\)
\(608\) 2.16847i 0.0879430i
\(609\) 0 0
\(610\) 2.32273 + 4.06946i 0.0940445 + 0.164767i
\(611\) 34.0478 1.37742
\(612\) 0 0
\(613\) 28.2790i 1.14218i 0.820888 + 0.571089i \(0.193479\pi\)
−0.820888 + 0.571089i \(0.806521\pi\)
\(614\) 3.38914 0.136775
\(615\) 0 0
\(616\) 5.51925 0.222377
\(617\) 1.58263i 0.0637143i −0.999492 0.0318572i \(-0.989858\pi\)
0.999492 0.0318572i \(-0.0101422\pi\)
\(618\) 0 0
\(619\) 6.99796 0.281272 0.140636 0.990061i \(-0.455085\pi\)
0.140636 + 0.990061i \(0.455085\pi\)
\(620\) −27.9130 + 15.9320i −1.12101 + 0.639843i
\(621\) 0 0
\(622\) 2.17455i 0.0871914i
\(623\) 13.6955i 0.548700i
\(624\) 0 0
\(625\) −12.0691 21.8938i −0.482762 0.875752i
\(626\) −3.17499 −0.126898
\(627\) 0 0
\(628\) 32.0500i 1.27893i
\(629\) 37.8300 1.50838
\(630\) 0 0
\(631\) 23.8697 0.950238 0.475119 0.879922i \(-0.342405\pi\)
0.475119 + 0.879922i \(0.342405\pi\)
\(632\) 3.02540i 0.120344i
\(633\) 0 0
\(634\) −2.18540 −0.0867932
\(635\) −8.69907 15.2409i −0.345212 0.604817i
\(636\) 0 0
\(637\) 15.2072i 0.602532i
\(638\) 4.36344i 0.172750i
\(639\) 0 0
\(640\) −6.28107 11.0045i −0.248281 0.434992i
\(641\) 24.5476 0.969572 0.484786 0.874633i \(-0.338897\pi\)
0.484786 + 0.874633i \(0.338897\pi\)
\(642\) 0 0
\(643\) 36.1097i 1.42403i 0.702165 + 0.712014i \(0.252217\pi\)
−0.702165 + 0.712014i \(0.747783\pi\)
\(644\) 23.2172 0.914886
\(645\) 0 0
\(646\) −0.866244 −0.0340819
\(647\) 7.25157i 0.285089i −0.989788 0.142544i \(-0.954472\pi\)
0.989788 0.142544i \(-0.0455284\pi\)
\(648\) 0 0
\(649\) −32.6365 −1.28109
\(650\) −2.13298 + 3.61142i −0.0836625 + 0.141652i
\(651\) 0 0
\(652\) 20.3916i 0.798597i
\(653\) 40.4550i 1.58312i −0.611088 0.791562i \(-0.709268\pi\)
0.611088 0.791562i \(-0.290732\pi\)
\(654\) 0 0
\(655\) 2.65514 1.51548i 0.103745 0.0592147i
\(656\) −0.215414 −0.00841051
\(657\) 0 0
\(658\) 2.65041i 0.103324i
\(659\) 6.41486 0.249887 0.124944 0.992164i \(-0.460125\pi\)
0.124944 + 0.992164i \(0.460125\pi\)
\(660\) 0 0
\(661\) 30.1068 1.17102 0.585510 0.810665i \(-0.300894\pi\)
0.585510 + 0.810665i \(0.300894\pi\)
\(662\) 4.62421i 0.179725i
\(663\) 0 0
\(664\) −8.52778 −0.330942
\(665\) −2.11709 3.70917i −0.0820971 0.143835i
\(666\) 0 0
\(667\) 37.0297i 1.43379i
\(668\) 48.0266i 1.85820i
\(669\) 0 0
\(670\) 3.71344 2.11952i 0.143463 0.0818843i
\(671\) −44.6605 −1.72410
\(672\) 0 0
\(673\) 32.5367i 1.25420i −0.778940 0.627099i \(-0.784242\pi\)
0.778940 0.627099i \(-0.215758\pi\)
\(674\) −0.0834569 −0.00321464
\(675\) 0 0
\(676\) −14.9051 −0.573271
\(677\) 7.19269i 0.276438i 0.990402 + 0.138219i \(0.0441377\pi\)
−0.990402 + 0.138219i \(0.955862\pi\)
\(678\) 0 0
\(679\) −5.15764 −0.197932
\(680\) −6.67147 + 3.80789i −0.255839 + 0.146026i
\(681\) 0 0
\(682\) 5.32766i 0.204007i
\(683\) 11.7394i 0.449195i −0.974452 0.224598i \(-0.927893\pi\)
0.974452 0.224598i \(-0.0721067\pi\)
\(684\) 0 0
\(685\) 13.3345 + 23.3623i 0.509485 + 0.892626i
\(686\) 3.65589 0.139583
\(687\) 0 0
\(688\) 3.12037i 0.118963i
\(689\) 5.84331 0.222612
\(690\) 0 0
\(691\) −26.8706 −1.02221 −0.511103 0.859520i \(-0.670763\pi\)
−0.511103 + 0.859520i \(0.670763\pi\)
\(692\) 42.2357i 1.60556i
\(693\) 0 0
\(694\) −1.65275 −0.0627374
\(695\) 24.6437 14.0659i 0.934788 0.533550i
\(696\) 0 0
\(697\) 0.265854i 0.0100699i
\(698\) 2.94722i 0.111554i
\(699\) 0 0
\(700\) −16.1644 9.54705i −0.610957 0.360845i
\(701\) −36.2813 −1.37033 −0.685163 0.728390i \(-0.740269\pi\)
−0.685163 + 0.728390i \(0.740269\pi\)
\(702\) 0 0
\(703\) 8.07490i 0.304551i
\(704\) 28.3384 1.06804
\(705\) 0 0
\(706\) −1.57878 −0.0594180
\(707\) 4.15974i 0.156443i
\(708\) 0 0
\(709\) 9.09197 0.341456 0.170728 0.985318i \(-0.445388\pi\)
0.170728 + 0.985318i \(0.445388\pi\)
\(710\) −2.11952 3.71344i −0.0795443 0.139363i
\(711\) 0 0
\(712\) 5.25806i 0.197054i
\(713\) 45.2124i 1.69322i
\(714\) 0 0
\(715\) −19.8169 34.7195i −0.741109 1.29843i
\(716\) −29.0821 −1.08685
\(717\) 0 0
\(718\) 3.09526i 0.115514i
\(719\) −26.9986 −1.00688 −0.503439 0.864031i \(-0.667932\pi\)
−0.503439 + 0.864031i \(0.667932\pi\)
\(720\) 0 0
\(721\) −19.6157 −0.730526
\(722\) 0.184902i 0.00688135i
\(723\) 0 0
\(724\) 35.1158 1.30507
\(725\) 15.2268 25.7810i 0.565509 0.957481i
\(726\) 0 0
\(727\) 6.30378i 0.233794i 0.993144 + 0.116897i \(0.0372948\pi\)
−0.993144 + 0.116897i \(0.962705\pi\)
\(728\) 6.35399i 0.235495i
\(729\) 0 0
\(730\) −3.62612 + 2.06969i −0.134209 + 0.0766026i
\(731\) 3.85101 0.142435
\(732\) 0 0
\(733\) 6.84548i 0.252843i 0.991977 + 0.126422i \(0.0403492\pi\)
−0.991977 + 0.126422i \(0.959651\pi\)
\(734\) 0.0555739 0.00205127
\(735\) 0 0
\(736\) −13.4089 −0.494260
\(737\) 40.7533i 1.50117i
\(738\) 0 0
\(739\) −18.4720 −0.679504 −0.339752 0.940515i \(-0.610343\pi\)
−0.339752 + 0.940515i \(0.610343\pi\)
\(740\) −17.5951 30.8268i −0.646807 1.13322i
\(741\) 0 0
\(742\) 0.454865i 0.0166986i
\(743\) 18.7512i 0.687916i 0.938985 + 0.343958i \(0.111768\pi\)
−0.938985 + 0.343958i \(0.888232\pi\)
\(744\) 0 0
\(745\) 40.8653 23.3248i 1.49719 0.854553i
\(746\) −4.68727 −0.171613
\(747\) 0 0
\(748\) 36.2927i 1.32699i
\(749\) −14.9359 −0.545745
\(750\) 0 0
\(751\) −3.19610 −0.116628 −0.0583138 0.998298i \(-0.518572\pi\)
−0.0583138 + 0.998298i \(0.518572\pi\)
\(752\) 28.4888i 1.03888i
\(753\) 0 0
\(754\) −5.02338 −0.182941
\(755\) 6.45963 3.68697i 0.235090 0.134183i
\(756\) 0 0
\(757\) 30.6268i 1.11315i −0.830798 0.556575i \(-0.812115\pi\)
0.830798 0.556575i \(-0.187885\pi\)
\(758\) 3.01482i 0.109503i
\(759\) 0 0
\(760\) 0.812803 + 1.42404i 0.0294835 + 0.0516555i
\(761\) −32.4024 −1.17458 −0.587292 0.809375i \(-0.699806\pi\)
−0.587292 + 0.809375i \(0.699806\pi\)
\(762\) 0 0
\(763\) 15.1492i 0.548437i
\(764\) −25.2028 −0.911805
\(765\) 0 0
\(766\) −5.63308 −0.203531
\(767\) 37.5725i 1.35666i
\(768\) 0 0
\(769\) 38.2846 1.38058 0.690288 0.723535i \(-0.257484\pi\)
0.690288 + 0.723535i \(0.257484\pi\)
\(770\) −2.70269 + 1.54262i −0.0973984 + 0.0555922i
\(771\) 0 0
\(772\) 31.2048i 1.12308i
\(773\) 33.4716i 1.20389i 0.798538 + 0.601944i \(0.205607\pi\)
−0.798538 + 0.601944i \(0.794393\pi\)
\(774\) 0 0
\(775\) 18.5916 31.4780i 0.667829 1.13072i
\(776\) 1.98015 0.0710833
\(777\) 0 0
\(778\) 0.237415i 0.00851176i
\(779\) 0.0567471 0.00203318
\(780\) 0 0
\(781\) 40.7533 1.45827
\(782\) 5.35651i 0.191548i
\(783\) 0 0
\(784\) 12.7243 0.454440
\(785\) 18.0717 + 31.6618i 0.645005 + 1.13006i
\(786\) 0 0
\(787\) 33.9153i 1.20895i 0.796625 + 0.604474i \(0.206617\pi\)
−0.796625 + 0.604474i \(0.793383\pi\)
\(788\) 27.2404i 0.970400i
\(789\) 0 0
\(790\) 0.845594 + 1.48149i 0.0300849 + 0.0527092i
\(791\) −18.2244 −0.647984
\(792\) 0 0
\(793\) 51.4151i 1.82580i
\(794\) 2.31475 0.0821473
\(795\) 0 0
\(796\) −52.2440 −1.85174
\(797\) 17.4970i 0.619777i 0.950773 + 0.309889i \(0.100292\pi\)
−0.950773 + 0.309889i \(0.899708\pi\)
\(798\) 0 0
\(799\) −35.1594 −1.24385
\(800\) 9.33564 + 5.51383i 0.330065 + 0.194943i
\(801\) 0 0
\(802\) 0.226092i 0.00798358i
\(803\) 39.7951i 1.40434i
\(804\) 0 0
\(805\) −22.9360 + 13.0912i −0.808388 + 0.461405i
\(806\) −6.13343 −0.216041
\(807\) 0 0
\(808\) 1.59703i 0.0561833i
\(809\) −24.8019 −0.871990 −0.435995 0.899949i \(-0.643603\pi\)
−0.435995 + 0.899949i \(0.643603\pi\)
\(810\) 0 0
\(811\) −33.9010 −1.19043 −0.595213 0.803568i \(-0.702932\pi\)
−0.595213 + 0.803568i \(0.702932\pi\)
\(812\) 22.4842i 0.789041i
\(813\) 0 0
\(814\) −5.88380 −0.206227
\(815\) 11.4980 + 20.1446i 0.402757 + 0.705635i
\(816\) 0 0
\(817\) 0.822008i 0.0287584i
\(818\) 5.13459i 0.179527i
\(819\) 0 0
\(820\) 0.216638 0.123651i 0.00756533 0.00431808i
\(821\) 27.2965 0.952654 0.476327 0.879268i \(-0.341968\pi\)
0.476327 + 0.879268i \(0.341968\pi\)
\(822\) 0 0
\(823\) 36.2799i 1.26464i −0.774708 0.632319i \(-0.782103\pi\)
0.774708 0.632319i \(-0.217897\pi\)
\(824\) 7.53095 0.262353
\(825\) 0 0
\(826\) −2.92478 −0.101766
\(827\) 20.8780i 0.725998i −0.931789 0.362999i \(-0.881753\pi\)
0.931789 0.362999i \(-0.118247\pi\)
\(828\) 0 0
\(829\) −45.3011 −1.57337 −0.786687 0.617353i \(-0.788205\pi\)
−0.786687 + 0.617353i \(0.788205\pi\)
\(830\) 4.17593 2.38350i 0.144949 0.0827325i
\(831\) 0 0
\(832\) 32.6243i 1.13105i
\(833\) 15.7037i 0.544102i
\(834\) 0 0
\(835\) −27.0802 47.4449i −0.937148 1.64190i
\(836\) −7.74677 −0.267927
\(837\) 0 0
\(838\) 2.67314i 0.0923421i
\(839\) −18.9618 −0.654633 −0.327317 0.944915i \(-0.606144\pi\)
−0.327317 + 0.944915i \(0.606144\pi\)
\(840\) 0 0
\(841\) 6.86057 0.236571
\(842\) 6.57810i 0.226696i
\(843\) 0 0
\(844\) −24.2461 −0.834586
\(845\) 14.7245 8.40433i 0.506539 0.289118i
\(846\) 0 0
\(847\) 8.65120i 0.297259i
\(848\) 4.88927i 0.167898i
\(849\) 0 0
\(850\) 2.20263 3.72933i 0.0755494 0.127915i
\(851\) −49.9319 −1.71165
\(852\) 0 0
\(853\) 37.9971i 1.30100i −0.759507 0.650499i \(-0.774560\pi\)
0.759507 0.650499i \(-0.225440\pi\)
\(854\) −4.00234 −0.136957
\(855\) 0 0
\(856\) 5.73426 0.195993
\(857\) 11.0179i 0.376363i 0.982134 + 0.188182i \(0.0602593\pi\)
−0.982134 + 0.188182i \(0.939741\pi\)
\(858\) 0 0
\(859\) −26.2271 −0.894858 −0.447429 0.894319i \(-0.647660\pi\)
−0.447429 + 0.894319i \(0.647660\pi\)
\(860\) −1.79114 3.13810i −0.0610774 0.107008i
\(861\) 0 0
\(862\) 2.06891i 0.0704674i
\(863\) 21.0735i 0.717351i 0.933462 + 0.358675i \(0.116771\pi\)
−0.933462 + 0.358675i \(0.883229\pi\)
\(864\) 0 0
\(865\) 23.8149 + 41.7241i 0.809733 + 1.41866i
\(866\) −1.88922 −0.0641984
\(867\) 0 0
\(868\) 27.4527i 0.931805i
\(869\) −16.2587 −0.551540
\(870\) 0 0
\(871\) −46.9170 −1.58972
\(872\) 5.81616i 0.196960i
\(873\) 0 0
\(874\) 1.14336 0.0386747
\(875\) 21.3518 + 0.316982i 0.721822 + 0.0107159i
\(876\) 0 0
\(877\) 2.20753i 0.0745431i 0.999305 + 0.0372716i \(0.0118667\pi\)
−0.999305 + 0.0372716i \(0.988133\pi\)
\(878\) 0.886043i 0.0299025i
\(879\) 0 0
\(880\) −29.0508 + 16.5814i −0.979303 + 0.558958i
\(881\) −17.6683 −0.595262 −0.297631 0.954681i \(-0.596196\pi\)
−0.297631 + 0.954681i \(0.596196\pi\)
\(882\) 0 0
\(883\) 19.7314i 0.664013i 0.943277 + 0.332007i \(0.107726\pi\)
−0.943277 + 0.332007i \(0.892274\pi\)
\(884\) 41.7816 1.40527
\(885\) 0 0
\(886\) 2.46462 0.0828007
\(887\) 42.4935i 1.42679i −0.700762 0.713396i \(-0.747156\pi\)
0.700762 0.713396i \(-0.252844\pi\)
\(888\) 0 0
\(889\) 14.9895 0.502733
\(890\) −1.46962 2.57480i −0.0492618 0.0863074i
\(891\) 0 0
\(892\) 50.7248i 1.69839i
\(893\) 7.50487i 0.251141i
\(894\) 0 0
\(895\) 28.7298 16.3982i 0.960332 0.548130i
\(896\) 10.8230 0.361572
\(897\) 0 0
\(898\) 3.70473i 0.123629i
\(899\) 43.7849 1.46031
\(900\) 0 0
\(901\) −6.03410 −0.201025
\(902\) 0.0413490i 0.00137677i
\(903\) 0 0
\(904\) 6.99680 0.232710
\(905\) −34.6904 + 19.8003i −1.15315 + 0.658184i
\(906\) 0 0
\(907\) 3.21385i 0.106714i 0.998575 + 0.0533571i \(0.0169922\pi\)
−0.998575 + 0.0533571i \(0.983008\pi\)
\(908\) 27.7864i 0.922126i
\(909\) 0 0
\(910\) −1.77593 3.11146i −0.0588715 0.103144i
\(911\) −50.5059 −1.67334 −0.836668 0.547710i \(-0.815500\pi\)
−0.836668 + 0.547710i \(0.815500\pi\)
\(912\) 0 0
\(913\) 45.8290i 1.51672i
\(914\) −2.67877 −0.0886057
\(915\) 0 0
\(916\) −29.0293 −0.959156
\(917\) 2.61135i 0.0862345i
\(918\) 0 0
\(919\) −15.9521 −0.526212 −0.263106 0.964767i \(-0.584747\pi\)
−0.263106 + 0.964767i \(0.584747\pi\)
\(920\) 8.80571 5.02605i 0.290316 0.165704i
\(921\) 0 0
\(922\) 2.72752i 0.0898262i
\(923\) 46.9170i 1.54429i
\(924\) 0 0
\(925\) 34.7639 + 20.5323i 1.14303 + 0.675098i
\(926\) 5.70082 0.187340
\(927\) 0 0
\(928\) 12.9856i 0.426273i
\(929\) −57.3866 −1.88279 −0.941396 0.337304i \(-0.890485\pi\)
−0.941396 + 0.337304i \(0.890485\pi\)
\(930\) 0 0
\(931\) −3.35200 −0.109857
\(932\) 30.4905i 0.998749i
\(933\) 0 0
\(934\) 3.70996 0.121393
\(935\) 20.4639 + 35.8531i 0.669241 + 1.17252i
\(936\) 0 0
\(937\) 43.8839i 1.43363i −0.697266 0.716813i \(-0.745600\pi\)
0.697266 0.716813i \(-0.254400\pi\)
\(938\) 3.65219i 0.119248i
\(939\) 0 0
\(940\) 16.3530 + 28.6506i 0.533375 + 0.934481i
\(941\) −56.0765 −1.82804 −0.914021 0.405667i \(-0.867039\pi\)
−0.914021 + 0.405667i \(0.867039\pi\)
\(942\) 0 0
\(943\) 0.350901i 0.0114269i
\(944\) −31.4380 −1.02322
\(945\) 0 0
\(946\) −0.598959 −0.0194738
\(947\) 46.3239i 1.50532i −0.658407 0.752662i \(-0.728769\pi\)
0.658407 0.752662i \(-0.271231\pi\)
\(948\) 0 0
\(949\) 45.8138 1.48718
\(950\) −0.796036 0.470156i −0.0258268 0.0152539i
\(951\) 0 0
\(952\) 6.56145i 0.212658i
\(953\) 40.2270i 1.30308i −0.758615 0.651540i \(-0.774123\pi\)
0.758615 0.651540i \(-0.225877\pi\)
\(954\) 0 0
\(955\) 24.8975 14.2108i 0.805665 0.459851i
\(956\) 2.28203 0.0738061
\(957\) 0 0
\(958\) 3.96940i 0.128246i
\(959\) −22.9770 −0.741965
\(960\) 0 0
\(961\) 22.4604 0.724529
\(962\) 6.77368i 0.218392i
\(963\) 0 0
\(964\) −29.0126 −0.934434
\(965\) 17.5951 + 30.8268i 0.566405 + 0.992350i
\(966\) 0 0
\(967\) 5.60792i 0.180339i −0.995926 0.0901693i \(-0.971259\pi\)
0.995926 0.0901693i \(-0.0287408\pi\)
\(968\) 3.32142i 0.106754i
\(969\) 0 0
\(970\) −0.969651 + 0.553449i −0.0311336 + 0.0177702i
\(971\) 18.2825 0.586712 0.293356 0.956003i \(-0.405228\pi\)
0.293356 + 0.956003i \(0.405228\pi\)
\(972\) 0 0
\(973\) 24.2372i 0.777010i
\(974\) 0.0218796 0.000701067
\(975\) 0 0
\(976\) −43.0205 −1.37705
\(977\) 4.99368i 0.159762i 0.996804 + 0.0798810i \(0.0254540\pi\)
−0.996804 + 0.0798810i \(0.974546\pi\)
\(978\) 0 0
\(979\) 28.2573 0.903106
\(980\) −12.7966 + 7.30395i −0.408773 + 0.233316i
\(981\) 0 0
\(982\) 1.28782i 0.0410960i
\(983\) 40.9361i 1.30566i 0.757505 + 0.652830i \(0.226418\pi\)
−0.757505 + 0.652830i \(0.773582\pi\)
\(984\) 0 0
\(985\) −15.3597 26.9105i −0.489402 0.857439i
\(986\) 5.18739 0.165200
\(987\) 0 0
\(988\) 8.91840i 0.283732i
\(989\) −5.08297 −0.161629
\(990\) 0 0
\(991\) −14.3877 −0.457039 −0.228520 0.973539i \(-0.573388\pi\)
−0.228520 + 0.973539i \(0.573388\pi\)
\(992\) 15.8551i 0.503400i
\(993\) 0 0
\(994\) 3.65219 0.115841
\(995\) 51.6112 29.4582i 1.63618 0.933887i
\(996\) 0 0
\(997\) 17.9495i 0.568467i −0.958755 0.284233i \(-0.908261\pi\)
0.958755 0.284233i \(-0.0917391\pi\)
\(998\) 2.84688i 0.0901163i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 855.2.c.g.514.8 14
3.2 odd 2 285.2.c.b.229.7 14
5.2 odd 4 4275.2.a.bw.1.3 7
5.3 odd 4 4275.2.a.bv.1.5 7
5.4 even 2 inner 855.2.c.g.514.7 14
15.2 even 4 1425.2.a.y.1.5 7
15.8 even 4 1425.2.a.z.1.3 7
15.14 odd 2 285.2.c.b.229.8 yes 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
285.2.c.b.229.7 14 3.2 odd 2
285.2.c.b.229.8 yes 14 15.14 odd 2
855.2.c.g.514.7 14 5.4 even 2 inner
855.2.c.g.514.8 14 1.1 even 1 trivial
1425.2.a.y.1.5 7 15.2 even 4
1425.2.a.z.1.3 7 15.8 even 4
4275.2.a.bv.1.5 7 5.3 odd 4
4275.2.a.bw.1.3 7 5.2 odd 4