Properties

Label 855.2.b.d.854.14
Level $855$
Weight $2$
Character 855.854
Analytic conductor $6.827$
Analytic rank $0$
Dimension $24$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [855,2,Mod(854,855)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(855, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("855.854"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 855 = 3^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 855.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,0,-56,0,0,0,0,0,0,0,0,0,0,0,8,0,0,32,0,0,0,0,0,-8,0,0,0, 0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(29)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.82720937282\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 854.14
Character \(\chi\) \(=\) 855.854
Dual form 855.2.b.d.854.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.53119i q^{2} -0.344558 q^{4} +(-0.586990 + 2.15765i) q^{5} +4.30101i q^{7} +2.53480i q^{8} +(-3.30378 - 0.898797i) q^{10} -0.183502i q^{11} +5.46922 q^{13} -6.58568 q^{14} -4.57040 q^{16} -5.69781 q^{17} +(2.39593 - 3.64136i) q^{19} +(0.202252 - 0.743434i) q^{20} +0.280977 q^{22} +2.02354 q^{23} +(-4.31088 - 2.53304i) q^{25} +8.37443i q^{26} -1.48195i q^{28} +8.36004 q^{29} -6.92686i q^{31} -1.92856i q^{32} -8.72445i q^{34} +(-9.28006 - 2.52465i) q^{35} +2.44641 q^{37} +(5.57563 + 3.66864i) q^{38} +(-5.46922 - 1.48791i) q^{40} -11.7353 q^{41} +7.66418i q^{43} +0.0632269i q^{44} +3.09843i q^{46} -0.384738 q^{47} -11.4987 q^{49} +(3.87857 - 6.60080i) q^{50} -1.88446 q^{52} +1.00361i q^{53} +(0.395932 + 0.107714i) q^{55} -10.9022 q^{56} +12.8008i q^{58} +2.60748 q^{59} +9.55005 q^{61} +10.6064 q^{62} -6.18780 q^{64} +(-3.21038 + 11.8006i) q^{65} -13.6658 q^{67} +1.96322 q^{68} +(3.86573 - 14.2096i) q^{70} +7.18858 q^{71} -4.69475i q^{73} +3.74594i q^{74} +(-0.825537 + 1.25466i) q^{76} +0.789242 q^{77} +9.31356i q^{79} +(2.68278 - 9.86130i) q^{80} -17.9691i q^{82} +11.2235 q^{83} +(3.34456 - 12.2939i) q^{85} -11.7353 q^{86} +0.465141 q^{88} -0.668196 q^{89} +23.5231i q^{91} -0.697224 q^{92} -0.589109i q^{94} +(6.45038 + 7.30702i) q^{95} -2.55766 q^{97} -17.6067i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 56 q^{4} + 8 q^{16} + 32 q^{19} - 8 q^{25} - 104 q^{49} - 16 q^{55} - 16 q^{61} - 72 q^{64} - 112 q^{76} + 128 q^{85}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/855\mathbb{Z}\right)^\times\).

\(n\) \(172\) \(191\) \(496\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.53119i 1.08272i 0.840791 + 0.541359i \(0.182090\pi\)
−0.840791 + 0.541359i \(0.817910\pi\)
\(3\) 0 0
\(4\) −0.344558 −0.172279
\(5\) −0.586990 + 2.15765i −0.262510 + 0.964929i
\(6\) 0 0
\(7\) 4.30101i 1.62563i 0.582523 + 0.812814i \(0.302066\pi\)
−0.582523 + 0.812814i \(0.697934\pi\)
\(8\) 2.53480i 0.896189i
\(9\) 0 0
\(10\) −3.30378 0.898797i −1.04475 0.284224i
\(11\) 0.183502i 0.0553278i −0.999617 0.0276639i \(-0.991193\pi\)
0.999617 0.0276639i \(-0.00880682\pi\)
\(12\) 0 0
\(13\) 5.46922 1.51689 0.758444 0.651739i \(-0.225960\pi\)
0.758444 + 0.651739i \(0.225960\pi\)
\(14\) −6.58568 −1.76010
\(15\) 0 0
\(16\) −4.57040 −1.14260
\(17\) −5.69781 −1.38192 −0.690961 0.722892i \(-0.742812\pi\)
−0.690961 + 0.722892i \(0.742812\pi\)
\(18\) 0 0
\(19\) 2.39593 3.64136i 0.549664 0.835386i
\(20\) 0.202252 0.743434i 0.0452249 0.166237i
\(21\) 0 0
\(22\) 0.280977 0.0599045
\(23\) 2.02354 0.421936 0.210968 0.977493i \(-0.432338\pi\)
0.210968 + 0.977493i \(0.432338\pi\)
\(24\) 0 0
\(25\) −4.31088 2.53304i −0.862177 0.506607i
\(26\) 8.37443i 1.64236i
\(27\) 0 0
\(28\) 1.48195i 0.280061i
\(29\) 8.36004 1.55242 0.776210 0.630474i \(-0.217140\pi\)
0.776210 + 0.630474i \(0.217140\pi\)
\(30\) 0 0
\(31\) 6.92686i 1.24410i −0.782977 0.622050i \(-0.786300\pi\)
0.782977 0.622050i \(-0.213700\pi\)
\(32\) 1.92856i 0.340924i
\(33\) 0 0
\(34\) 8.72445i 1.49623i
\(35\) −9.28006 2.52465i −1.56862 0.426744i
\(36\) 0 0
\(37\) 2.44641 0.402188 0.201094 0.979572i \(-0.435550\pi\)
0.201094 + 0.979572i \(0.435550\pi\)
\(38\) 5.57563 + 3.66864i 0.904487 + 0.595132i
\(39\) 0 0
\(40\) −5.46922 1.48791i −0.864759 0.235259i
\(41\) −11.7353 −1.83275 −0.916377 0.400317i \(-0.868900\pi\)
−0.916377 + 0.400317i \(0.868900\pi\)
\(42\) 0 0
\(43\) 7.66418i 1.16878i 0.811474 + 0.584388i \(0.198665\pi\)
−0.811474 + 0.584388i \(0.801335\pi\)
\(44\) 0.0632269i 0.00953181i
\(45\) 0 0
\(46\) 3.09843i 0.456838i
\(47\) −0.384738 −0.0561199 −0.0280599 0.999606i \(-0.508933\pi\)
−0.0280599 + 0.999606i \(0.508933\pi\)
\(48\) 0 0
\(49\) −11.4987 −1.64267
\(50\) 3.87857 6.60080i 0.548513 0.933495i
\(51\) 0 0
\(52\) −1.88446 −0.261328
\(53\) 1.00361i 0.137856i 0.997622 + 0.0689282i \(0.0219579\pi\)
−0.997622 + 0.0689282i \(0.978042\pi\)
\(54\) 0 0
\(55\) 0.395932 + 0.107714i 0.0533874 + 0.0145241i
\(56\) −10.9022 −1.45687
\(57\) 0 0
\(58\) 12.8008i 1.68083i
\(59\) 2.60748 0.339465 0.169733 0.985490i \(-0.445710\pi\)
0.169733 + 0.985490i \(0.445710\pi\)
\(60\) 0 0
\(61\) 9.55005 1.22276 0.611380 0.791337i \(-0.290615\pi\)
0.611380 + 0.791337i \(0.290615\pi\)
\(62\) 10.6064 1.34701
\(63\) 0 0
\(64\) −6.18780 −0.773474
\(65\) −3.21038 + 11.8006i −0.398198 + 1.46369i
\(66\) 0 0
\(67\) −13.6658 −1.66955 −0.834773 0.550595i \(-0.814401\pi\)
−0.834773 + 0.550595i \(0.814401\pi\)
\(68\) 1.96322 0.238076
\(69\) 0 0
\(70\) 3.86573 14.2096i 0.462043 1.69837i
\(71\) 7.18858 0.853127 0.426564 0.904458i \(-0.359724\pi\)
0.426564 + 0.904458i \(0.359724\pi\)
\(72\) 0 0
\(73\) 4.69475i 0.549479i −0.961519 0.274739i \(-0.911408\pi\)
0.961519 0.274739i \(-0.0885916\pi\)
\(74\) 3.74594i 0.435456i
\(75\) 0 0
\(76\) −0.825537 + 1.25466i −0.0946955 + 0.143919i
\(77\) 0.789242 0.0899425
\(78\) 0 0
\(79\) 9.31356i 1.04786i 0.851762 + 0.523929i \(0.175534\pi\)
−0.851762 + 0.523929i \(0.824466\pi\)
\(80\) 2.68278 9.86130i 0.299944 1.10253i
\(81\) 0 0
\(82\) 17.9691i 1.98436i
\(83\) 11.2235 1.23194 0.615971 0.787769i \(-0.288764\pi\)
0.615971 + 0.787769i \(0.288764\pi\)
\(84\) 0 0
\(85\) 3.34456 12.2939i 0.362768 1.33346i
\(86\) −11.7353 −1.26545
\(87\) 0 0
\(88\) 0.465141 0.0495842
\(89\) −0.668196 −0.0708286 −0.0354143 0.999373i \(-0.511275\pi\)
−0.0354143 + 0.999373i \(0.511275\pi\)
\(90\) 0 0
\(91\) 23.5231i 2.46590i
\(92\) −0.697224 −0.0726907
\(93\) 0 0
\(94\) 0.589109i 0.0607620i
\(95\) 6.45038 + 7.30702i 0.661795 + 0.749684i
\(96\) 0 0
\(97\) −2.55766 −0.259691 −0.129846 0.991534i \(-0.541448\pi\)
−0.129846 + 0.991534i \(0.541448\pi\)
\(98\) 17.6067i 1.77855i
\(99\) 0 0
\(100\) 1.48535 + 0.872777i 0.148535 + 0.0872777i
\(101\) 10.5321i 1.04798i 0.851724 + 0.523991i \(0.175557\pi\)
−0.851724 + 0.523991i \(0.824443\pi\)
\(102\) 0 0
\(103\) 0.857365 0.0844787 0.0422394 0.999108i \(-0.486551\pi\)
0.0422394 + 0.999108i \(0.486551\pi\)
\(104\) 13.8634i 1.35942i
\(105\) 0 0
\(106\) −1.53672 −0.149260
\(107\) 8.94714i 0.864952i −0.901645 0.432476i \(-0.857640\pi\)
0.901645 0.432476i \(-0.142360\pi\)
\(108\) 0 0
\(109\) 7.28272i 0.697558i −0.937205 0.348779i \(-0.886596\pi\)
0.937205 0.348779i \(-0.113404\pi\)
\(110\) −0.164931 + 0.606249i −0.0157255 + 0.0578036i
\(111\) 0 0
\(112\) 19.6573i 1.85744i
\(113\) 13.0131i 1.22417i −0.790791 0.612086i \(-0.790330\pi\)
0.790791 0.612086i \(-0.209670\pi\)
\(114\) 0 0
\(115\) −1.18780 + 4.36608i −0.110763 + 0.407139i
\(116\) −2.88051 −0.267449
\(117\) 0 0
\(118\) 3.99256i 0.367545i
\(119\) 24.5063i 2.24649i
\(120\) 0 0
\(121\) 10.9663 0.996939
\(122\) 14.6230i 1.32390i
\(123\) 0 0
\(124\) 2.38670i 0.214332i
\(125\) 7.99585 7.81450i 0.715170 0.698950i
\(126\) 0 0
\(127\) 9.63036 0.854556 0.427278 0.904120i \(-0.359473\pi\)
0.427278 + 0.904120i \(0.359473\pi\)
\(128\) 13.3318i 1.17838i
\(129\) 0 0
\(130\) −18.0691 4.91571i −1.58476 0.431136i
\(131\) 4.93845i 0.431475i −0.976451 0.215737i \(-0.930784\pi\)
0.976451 0.215737i \(-0.0692155\pi\)
\(132\) 0 0
\(133\) 15.6615 + 10.3049i 1.35803 + 0.893550i
\(134\) 20.9250i 1.80765i
\(135\) 0 0
\(136\) 14.4428i 1.23846i
\(137\) −11.2433 −0.960579 −0.480289 0.877110i \(-0.659468\pi\)
−0.480289 + 0.877110i \(0.659468\pi\)
\(138\) 0 0
\(139\) 17.9327 1.52103 0.760514 0.649322i \(-0.224947\pi\)
0.760514 + 0.649322i \(0.224947\pi\)
\(140\) 3.19752 + 0.869888i 0.270239 + 0.0735189i
\(141\) 0 0
\(142\) 11.0071i 0.923696i
\(143\) 1.00361i 0.0839261i
\(144\) 0 0
\(145\) −4.90726 + 18.0380i −0.407526 + 1.49798i
\(146\) 7.18858 0.594931
\(147\) 0 0
\(148\) −0.842930 −0.0692884
\(149\) 5.90358i 0.483640i 0.970321 + 0.241820i \(0.0777444\pi\)
−0.970321 + 0.241820i \(0.922256\pi\)
\(150\) 0 0
\(151\) 5.98189i 0.486799i 0.969926 + 0.243400i \(0.0782626\pi\)
−0.969926 + 0.243400i \(0.921737\pi\)
\(152\) 9.23014 + 6.07322i 0.748663 + 0.492603i
\(153\) 0 0
\(154\) 1.20848i 0.0973824i
\(155\) 14.9457 + 4.06600i 1.20047 + 0.326589i
\(156\) 0 0
\(157\) 12.0784i 0.963964i 0.876181 + 0.481982i \(0.160083\pi\)
−0.876181 + 0.481982i \(0.839917\pi\)
\(158\) −14.2609 −1.13453
\(159\) 0 0
\(160\) 4.16114 + 1.13204i 0.328967 + 0.0894959i
\(161\) 8.70324i 0.685912i
\(162\) 0 0
\(163\) 7.62153i 0.596964i 0.954415 + 0.298482i \(0.0964803\pi\)
−0.954415 + 0.298482i \(0.903520\pi\)
\(164\) 4.04350 0.315745
\(165\) 0 0
\(166\) 17.1854i 1.33385i
\(167\) 11.8006i 0.913161i 0.889682 + 0.456580i \(0.150926\pi\)
−0.889682 + 0.456580i \(0.849074\pi\)
\(168\) 0 0
\(169\) 16.9123 1.30095
\(170\) 18.8243 + 5.12117i 1.44376 + 0.392776i
\(171\) 0 0
\(172\) 2.64075i 0.201355i
\(173\) 11.9580i 0.909147i −0.890709 0.454574i \(-0.849792\pi\)
0.890709 0.454574i \(-0.150208\pi\)
\(174\) 0 0
\(175\) 10.8946 18.5412i 0.823555 1.40158i
\(176\) 0.838675i 0.0632175i
\(177\) 0 0
\(178\) 1.02314i 0.0766874i
\(179\) 20.8632 1.55939 0.779695 0.626160i \(-0.215374\pi\)
0.779695 + 0.626160i \(0.215374\pi\)
\(180\) 0 0
\(181\) 7.28272i 0.541320i 0.962675 + 0.270660i \(0.0872420\pi\)
−0.962675 + 0.270660i \(0.912758\pi\)
\(182\) −36.0185 −2.66987
\(183\) 0 0
\(184\) 5.12927i 0.378135i
\(185\) −1.43602 + 5.27850i −0.105578 + 0.388083i
\(186\) 0 0
\(187\) 1.04556i 0.0764587i
\(188\) 0.132565 0.00966826
\(189\) 0 0
\(190\) −11.1885 + 9.87680i −0.811697 + 0.716538i
\(191\) 5.57104i 0.403106i 0.979478 + 0.201553i \(0.0645989\pi\)
−0.979478 + 0.201553i \(0.935401\pi\)
\(192\) 0 0
\(193\) −17.8270 −1.28321 −0.641606 0.767034i \(-0.721732\pi\)
−0.641606 + 0.767034i \(0.721732\pi\)
\(194\) 3.91628i 0.281172i
\(195\) 0 0
\(196\) 3.96196 0.282997
\(197\) 5.45346 0.388543 0.194271 0.980948i \(-0.437766\pi\)
0.194271 + 0.980948i \(0.437766\pi\)
\(198\) 0 0
\(199\) −14.2055 −1.00700 −0.503500 0.863995i \(-0.667955\pi\)
−0.503500 + 0.863995i \(0.667955\pi\)
\(200\) 6.42075 10.9273i 0.454016 0.772673i
\(201\) 0 0
\(202\) −16.1267 −1.13467
\(203\) 35.9566i 2.52366i
\(204\) 0 0
\(205\) 6.88853 25.3207i 0.481116 1.76848i
\(206\) 1.31279i 0.0914666i
\(207\) 0 0
\(208\) −24.9965 −1.73319
\(209\) −0.668196 0.439657i −0.0462201 0.0304117i
\(210\) 0 0
\(211\) 17.6822i 1.21729i 0.793443 + 0.608645i \(0.208287\pi\)
−0.793443 + 0.608645i \(0.791713\pi\)
\(212\) 0.345801i 0.0237497i
\(213\) 0 0
\(214\) 13.6998 0.936500
\(215\) −16.5366 4.49880i −1.12779 0.306815i
\(216\) 0 0
\(217\) 29.7925 2.02245
\(218\) 11.1513 0.755259
\(219\) 0 0
\(220\) −0.136421 0.0371136i −0.00919752 0.00250220i
\(221\) −31.1625 −2.09622
\(222\) 0 0
\(223\) 12.3577 0.827536 0.413768 0.910382i \(-0.364212\pi\)
0.413768 + 0.910382i \(0.364212\pi\)
\(224\) 8.29474 0.554215
\(225\) 0 0
\(226\) 19.9256 1.32543
\(227\) 21.1451i 1.40345i −0.712447 0.701726i \(-0.752413\pi\)
0.712447 0.701726i \(-0.247587\pi\)
\(228\) 0 0
\(229\) −19.7422 −1.30460 −0.652301 0.757960i \(-0.726196\pi\)
−0.652301 + 0.757960i \(0.726196\pi\)
\(230\) −6.68531 1.81875i −0.440816 0.119925i
\(231\) 0 0
\(232\) 21.1911i 1.39126i
\(233\) −15.7473 −1.03164 −0.515821 0.856696i \(-0.672513\pi\)
−0.515821 + 0.856696i \(0.672513\pi\)
\(234\) 0 0
\(235\) 0.225838 0.830130i 0.0147320 0.0541517i
\(236\) −0.898428 −0.0584827
\(237\) 0 0
\(238\) 37.5240 2.43232
\(239\) 4.76438i 0.308182i 0.988057 + 0.154091i \(0.0492449\pi\)
−0.988057 + 0.154091i \(0.950755\pi\)
\(240\) 0 0
\(241\) 24.8240i 1.59905i 0.600631 + 0.799527i \(0.294916\pi\)
−0.600631 + 0.799527i \(0.705084\pi\)
\(242\) 16.7916i 1.07940i
\(243\) 0 0
\(244\) −3.29054 −0.210655
\(245\) 6.74961 24.8101i 0.431217 1.58506i
\(246\) 0 0
\(247\) 13.1039 19.9154i 0.833779 1.26719i
\(248\) 17.5582 1.11495
\(249\) 0 0
\(250\) 11.9655 + 12.2432i 0.756766 + 0.774328i
\(251\) 17.0526i 1.07635i −0.842832 0.538177i \(-0.819113\pi\)
0.842832 0.538177i \(-0.180887\pi\)
\(252\) 0 0
\(253\) 0.371322i 0.0233448i
\(254\) 14.7460i 0.925244i
\(255\) 0 0
\(256\) 8.03804 0.502378
\(257\) 2.21611i 0.138237i −0.997608 0.0691185i \(-0.977981\pi\)
0.997608 0.0691185i \(-0.0220187\pi\)
\(258\) 0 0
\(259\) 10.5220i 0.653808i
\(260\) 1.10616 4.06600i 0.0686011 0.252163i
\(261\) 0 0
\(262\) 7.56174 0.467166
\(263\) −15.0579 −0.928513 −0.464256 0.885701i \(-0.653678\pi\)
−0.464256 + 0.885701i \(0.653678\pi\)
\(264\) 0 0
\(265\) −2.16544 0.589109i −0.133022 0.0361887i
\(266\) −15.7788 + 23.9809i −0.967463 + 1.47036i
\(267\) 0 0
\(268\) 4.70866 0.287627
\(269\) 14.3428 0.874498 0.437249 0.899341i \(-0.355953\pi\)
0.437249 + 0.899341i \(0.355953\pi\)
\(270\) 0 0
\(271\) 30.2055 1.83485 0.917427 0.397905i \(-0.130263\pi\)
0.917427 + 0.397905i \(0.130263\pi\)
\(272\) 26.0412 1.57898
\(273\) 0 0
\(274\) 17.2157i 1.04004i
\(275\) −0.464816 + 0.791054i −0.0280295 + 0.0477024i
\(276\) 0 0
\(277\) 15.1129i 0.908048i 0.890990 + 0.454024i \(0.150012\pi\)
−0.890990 + 0.454024i \(0.849988\pi\)
\(278\) 27.4584i 1.64684i
\(279\) 0 0
\(280\) 6.39950 23.5231i 0.382443 1.40578i
\(281\) 11.9999 0.715854 0.357927 0.933750i \(-0.383484\pi\)
0.357927 + 0.933750i \(0.383484\pi\)
\(282\) 0 0
\(283\) 9.28179i 0.551745i −0.961194 0.275872i \(-0.911033\pi\)
0.961194 0.275872i \(-0.0889668\pi\)
\(284\) −2.47688 −0.146976
\(285\) 0 0
\(286\) 1.53672 0.0908683
\(287\) 50.4738i 2.97938i
\(288\) 0 0
\(289\) 15.4650 0.909706
\(290\) −27.6197 7.51397i −1.62189 0.441236i
\(291\) 0 0
\(292\) 1.61761i 0.0946636i
\(293\) 10.9855i 0.641780i −0.947116 0.320890i \(-0.896018\pi\)
0.947116 0.320890i \(-0.103982\pi\)
\(294\) 0 0
\(295\) −1.53057 + 5.62603i −0.0891130 + 0.327560i
\(296\) 6.20118i 0.360436i
\(297\) 0 0
\(298\) −9.03954 −0.523646
\(299\) 11.0671 0.640030
\(300\) 0 0
\(301\) −32.9637 −1.90000
\(302\) −9.15944 −0.527066
\(303\) 0 0
\(304\) −10.9504 + 16.6425i −0.628046 + 0.954511i
\(305\) −5.60579 + 20.6057i −0.320987 + 1.17988i
\(306\) 0 0
\(307\) −16.3932 −0.935610 −0.467805 0.883832i \(-0.654955\pi\)
−0.467805 + 0.883832i \(0.654955\pi\)
\(308\) −0.271939 −0.0154952
\(309\) 0 0
\(310\) −6.22584 + 22.8848i −0.353604 + 1.29977i
\(311\) 16.1069i 0.913336i 0.889637 + 0.456668i \(0.150957\pi\)
−0.889637 + 0.456668i \(0.849043\pi\)
\(312\) 0 0
\(313\) 16.4872i 0.931909i −0.884809 0.465955i \(-0.845711\pi\)
0.884809 0.465955i \(-0.154289\pi\)
\(314\) −18.4944 −1.04370
\(315\) 0 0
\(316\) 3.20906i 0.180524i
\(317\) 27.4272i 1.54047i 0.637762 + 0.770234i \(0.279860\pi\)
−0.637762 + 0.770234i \(0.720140\pi\)
\(318\) 0 0
\(319\) 1.53408i 0.0858920i
\(320\) 3.63218 13.3511i 0.203045 0.746348i
\(321\) 0 0
\(322\) −13.3264 −0.742649
\(323\) −13.6516 + 20.7478i −0.759593 + 1.15444i
\(324\) 0 0
\(325\) −23.5772 13.8537i −1.30783 0.768466i
\(326\) −11.6700 −0.646344
\(327\) 0 0
\(328\) 29.7468i 1.64249i
\(329\) 1.65476i 0.0912300i
\(330\) 0 0
\(331\) 23.5231i 1.29295i −0.762936 0.646474i \(-0.776243\pi\)
0.762936 0.646474i \(-0.223757\pi\)
\(332\) −3.86715 −0.212237
\(333\) 0 0
\(334\) −18.0691 −0.988696
\(335\) 8.02170 29.4860i 0.438273 1.61099i
\(336\) 0 0
\(337\) −10.2508 −0.558396 −0.279198 0.960234i \(-0.590069\pi\)
−0.279198 + 0.960234i \(0.590069\pi\)
\(338\) 25.8960i 1.40856i
\(339\) 0 0
\(340\) −1.15239 + 4.23594i −0.0624973 + 0.229726i
\(341\) −1.27109 −0.0688334
\(342\) 0 0
\(343\) 19.3489i 1.04474i
\(344\) −19.4272 −1.04744
\(345\) 0 0
\(346\) 18.3100 0.984350
\(347\) 31.6668 1.69996 0.849981 0.526813i \(-0.176613\pi\)
0.849981 + 0.526813i \(0.176613\pi\)
\(348\) 0 0
\(349\) −11.3242 −0.606171 −0.303086 0.952963i \(-0.598017\pi\)
−0.303086 + 0.952963i \(0.598017\pi\)
\(350\) 28.3901 + 16.6818i 1.51752 + 0.891678i
\(351\) 0 0
\(352\) −0.353893 −0.0188626
\(353\) 17.5702 0.935166 0.467583 0.883949i \(-0.345125\pi\)
0.467583 + 0.883949i \(0.345125\pi\)
\(354\) 0 0
\(355\) −4.21963 + 15.5104i −0.223954 + 0.823207i
\(356\) 0.230232 0.0122023
\(357\) 0 0
\(358\) 31.9456i 1.68838i
\(359\) 8.27301i 0.436633i −0.975878 0.218316i \(-0.929943\pi\)
0.975878 0.218316i \(-0.0700565\pi\)
\(360\) 0 0
\(361\) −7.51902 17.4489i −0.395738 0.918363i
\(362\) −11.1513 −0.586098
\(363\) 0 0
\(364\) 8.10508i 0.424822i
\(365\) 10.1296 + 2.75577i 0.530208 + 0.144244i
\(366\) 0 0
\(367\) 3.81644i 0.199217i −0.995027 0.0996083i \(-0.968241\pi\)
0.995027 0.0996083i \(-0.0317590\pi\)
\(368\) −9.24836 −0.482104
\(369\) 0 0
\(370\) −8.08241 2.19883i −0.420184 0.114312i
\(371\) −4.31654 −0.224103
\(372\) 0 0
\(373\) −25.8538 −1.33866 −0.669331 0.742965i \(-0.733419\pi\)
−0.669331 + 0.742965i \(0.733419\pi\)
\(374\) −1.60095 −0.0827832
\(375\) 0 0
\(376\) 0.975237i 0.0502940i
\(377\) 45.7228 2.35485
\(378\) 0 0
\(379\) 0.122615i 0.00629831i −0.999995 0.00314916i \(-0.998998\pi\)
0.999995 0.00314916i \(-0.00100241\pi\)
\(380\) −2.22253 2.51769i −0.114013 0.129155i
\(381\) 0 0
\(382\) −8.53035 −0.436451
\(383\) 15.4693i 0.790443i −0.918586 0.395222i \(-0.870668\pi\)
0.918586 0.395222i \(-0.129332\pi\)
\(384\) 0 0
\(385\) −0.463278 + 1.70291i −0.0236108 + 0.0867882i
\(386\) 27.2966i 1.38936i
\(387\) 0 0
\(388\) 0.881262 0.0447393
\(389\) 26.3064i 1.33379i −0.745153 0.666894i \(-0.767624\pi\)
0.745153 0.666894i \(-0.232376\pi\)
\(390\) 0 0
\(391\) −11.5297 −0.583083
\(392\) 29.1469i 1.47214i
\(393\) 0 0
\(394\) 8.35031i 0.420682i
\(395\) −20.0954 5.46697i −1.01111 0.275073i
\(396\) 0 0
\(397\) 18.8474i 0.945924i 0.881083 + 0.472962i \(0.156815\pi\)
−0.881083 + 0.472962i \(0.843185\pi\)
\(398\) 21.7514i 1.09030i
\(399\) 0 0
\(400\) 19.7024 + 11.5770i 0.985122 + 0.578849i
\(401\) −0.0996293 −0.00497525 −0.00248763 0.999997i \(-0.500792\pi\)
−0.00248763 + 0.999997i \(0.500792\pi\)
\(402\) 0 0
\(403\) 37.8845i 1.88716i
\(404\) 3.62891i 0.180545i
\(405\) 0 0
\(406\) −55.0566 −2.73241
\(407\) 0.448921i 0.0222522i
\(408\) 0 0
\(409\) 21.3697i 1.05666i −0.849038 0.528332i \(-0.822818\pi\)
0.849038 0.528332i \(-0.177182\pi\)
\(410\) 38.7710 + 10.5477i 1.91476 + 0.520913i
\(411\) 0 0
\(412\) −0.295412 −0.0145539
\(413\) 11.2148i 0.551844i
\(414\) 0 0
\(415\) −6.58810 + 24.2164i −0.323397 + 1.18874i
\(416\) 10.5477i 0.517143i
\(417\) 0 0
\(418\) 0.673201 1.02314i 0.0329273 0.0500433i
\(419\) 7.88716i 0.385313i −0.981266 0.192656i \(-0.938290\pi\)
0.981266 0.192656i \(-0.0617103\pi\)
\(420\) 0 0
\(421\) 3.11671i 0.151899i −0.997112 0.0759495i \(-0.975801\pi\)
0.997112 0.0759495i \(-0.0241988\pi\)
\(422\) −27.0748 −1.31798
\(423\) 0 0
\(424\) −2.54396 −0.123545
\(425\) 24.5626 + 14.4328i 1.19146 + 0.700091i
\(426\) 0 0
\(427\) 41.0749i 1.98775i
\(428\) 3.08280i 0.149013i
\(429\) 0 0
\(430\) 6.88853 25.3207i 0.332195 1.22107i
\(431\) −1.33639 −0.0643717 −0.0321859 0.999482i \(-0.510247\pi\)
−0.0321859 + 0.999482i \(0.510247\pi\)
\(432\) 0 0
\(433\) −2.85307 −0.137110 −0.0685550 0.997647i \(-0.521839\pi\)
−0.0685550 + 0.997647i \(0.521839\pi\)
\(434\) 45.6181i 2.18974i
\(435\) 0 0
\(436\) 2.50932i 0.120175i
\(437\) 4.84825 7.36842i 0.231923 0.352479i
\(438\) 0 0
\(439\) 13.8537i 0.661202i −0.943771 0.330601i \(-0.892749\pi\)
0.943771 0.330601i \(-0.107251\pi\)
\(440\) −0.273033 + 1.00361i −0.0130163 + 0.0478452i
\(441\) 0 0
\(442\) 47.7159i 2.26961i
\(443\) 25.3321 1.20356 0.601781 0.798661i \(-0.294458\pi\)
0.601781 + 0.798661i \(0.294458\pi\)
\(444\) 0 0
\(445\) 0.392224 1.44173i 0.0185932 0.0683446i
\(446\) 18.9221i 0.895988i
\(447\) 0 0
\(448\) 26.6138i 1.25738i
\(449\) 0.403636 0.0190487 0.00952437 0.999955i \(-0.496968\pi\)
0.00952437 + 0.999955i \(0.496968\pi\)
\(450\) 0 0
\(451\) 2.15346i 0.101402i
\(452\) 4.48377i 0.210899i
\(453\) 0 0
\(454\) 32.3773 1.51954
\(455\) −50.7547 13.8079i −2.37941 0.647322i
\(456\) 0 0
\(457\) 25.1914i 1.17840i −0.807987 0.589201i \(-0.799443\pi\)
0.807987 0.589201i \(-0.200557\pi\)
\(458\) 30.2292i 1.41252i
\(459\) 0 0
\(460\) 0.409264 1.50436i 0.0190820 0.0701414i
\(461\) 9.60888i 0.447530i 0.974643 + 0.223765i \(0.0718348\pi\)
−0.974643 + 0.223765i \(0.928165\pi\)
\(462\) 0 0
\(463\) 2.49592i 0.115995i −0.998317 0.0579977i \(-0.981528\pi\)
0.998317 0.0579977i \(-0.0184716\pi\)
\(464\) −38.2087 −1.77379
\(465\) 0 0
\(466\) 24.1123i 1.11698i
\(467\) −1.18592 −0.0548779 −0.0274389 0.999623i \(-0.508735\pi\)
−0.0274389 + 0.999623i \(0.508735\pi\)
\(468\) 0 0
\(469\) 58.7768i 2.71406i
\(470\) 1.27109 + 0.345801i 0.0586310 + 0.0159506i
\(471\) 0 0
\(472\) 6.60946i 0.304225i
\(473\) 1.40639 0.0646658
\(474\) 0 0
\(475\) −19.5523 + 9.62851i −0.897120 + 0.441786i
\(476\) 8.44384i 0.387023i
\(477\) 0 0
\(478\) −7.29519 −0.333674
\(479\) 7.97866i 0.364554i −0.983247 0.182277i \(-0.941653\pi\)
0.983247 0.182277i \(-0.0583468\pi\)
\(480\) 0 0
\(481\) 13.3800 0.610074
\(482\) −38.0103 −1.73132
\(483\) 0 0
\(484\) −3.77853 −0.171751
\(485\) 1.50132 5.51853i 0.0681715 0.250584i
\(486\) 0 0
\(487\) 12.8085 0.580406 0.290203 0.956965i \(-0.406277\pi\)
0.290203 + 0.956965i \(0.406277\pi\)
\(488\) 24.2075i 1.09582i
\(489\) 0 0
\(490\) 37.9891 + 10.3350i 1.71617 + 0.466887i
\(491\) 21.9529i 0.990721i 0.868688 + 0.495360i \(0.164964\pi\)
−0.868688 + 0.495360i \(0.835036\pi\)
\(492\) 0 0
\(493\) −47.6339 −2.14532
\(494\) 30.4943 + 20.0646i 1.37201 + 0.902748i
\(495\) 0 0
\(496\) 31.6585i 1.42151i
\(497\) 30.9181i 1.38687i
\(498\) 0 0
\(499\) −27.5837 −1.23482 −0.617409 0.786643i \(-0.711817\pi\)
−0.617409 + 0.786643i \(0.711817\pi\)
\(500\) −2.75503 + 2.69255i −0.123209 + 0.120414i
\(501\) 0 0
\(502\) 26.1109 1.16539
\(503\) −4.18746 −0.186710 −0.0933548 0.995633i \(-0.529759\pi\)
−0.0933548 + 0.995633i \(0.529759\pi\)
\(504\) 0 0
\(505\) −22.7245 6.18223i −1.01123 0.275106i
\(506\) 0.568566 0.0252759
\(507\) 0 0
\(508\) −3.31821 −0.147222
\(509\) −15.8132 −0.700907 −0.350453 0.936580i \(-0.613972\pi\)
−0.350453 + 0.936580i \(0.613972\pi\)
\(510\) 0 0
\(511\) 20.1922 0.893249
\(512\) 14.3559i 0.634445i
\(513\) 0 0
\(514\) 3.39329 0.149672
\(515\) −0.503265 + 1.84989i −0.0221765 + 0.0815160i
\(516\) 0 0
\(517\) 0.0706001i 0.00310499i
\(518\) −16.1113 −0.707890
\(519\) 0 0
\(520\) −29.9123 8.13768i −1.31174 0.356861i
\(521\) −39.0193 −1.70947 −0.854733 0.519067i \(-0.826279\pi\)
−0.854733 + 0.519067i \(0.826279\pi\)
\(522\) 0 0
\(523\) 15.0851 0.659627 0.329814 0.944046i \(-0.393014\pi\)
0.329814 + 0.944046i \(0.393014\pi\)
\(524\) 1.70158i 0.0743340i
\(525\) 0 0
\(526\) 23.0567i 1.00532i
\(527\) 39.4679i 1.71925i
\(528\) 0 0
\(529\) −18.9053 −0.821970
\(530\) 0.902041 3.31571i 0.0391822 0.144025i
\(531\) 0 0
\(532\) −5.39630 3.55064i −0.233959 0.153940i
\(533\) −64.1831 −2.78008
\(534\) 0 0
\(535\) 19.3048 + 5.25188i 0.834618 + 0.227059i
\(536\) 34.6402i 1.49623i
\(537\) 0 0
\(538\) 21.9617i 0.946835i
\(539\) 2.11003i 0.0908853i
\(540\) 0 0
\(541\) −20.0761 −0.863138 −0.431569 0.902080i \(-0.642040\pi\)
−0.431569 + 0.902080i \(0.642040\pi\)
\(542\) 46.2505i 1.98663i
\(543\) 0 0
\(544\) 10.9885i 0.471130i
\(545\) 15.7135 + 4.27489i 0.673094 + 0.183116i
\(546\) 0 0
\(547\) 9.17965 0.392494 0.196247 0.980555i \(-0.437125\pi\)
0.196247 + 0.980555i \(0.437125\pi\)
\(548\) 3.87396 0.165487
\(549\) 0 0
\(550\) −1.21126 0.711724i −0.0516482 0.0303480i
\(551\) 20.0301 30.4419i 0.853310 1.29687i
\(552\) 0 0
\(553\) −40.0577 −1.70343
\(554\) −23.1408 −0.983160
\(555\) 0 0
\(556\) −6.17883 −0.262041
\(557\) 33.9108 1.43685 0.718423 0.695606i \(-0.244864\pi\)
0.718423 + 0.695606i \(0.244864\pi\)
\(558\) 0 0
\(559\) 41.9170i 1.77290i
\(560\) 42.4135 + 11.5387i 1.79230 + 0.487597i
\(561\) 0 0
\(562\) 18.3742i 0.775069i
\(563\) 16.8702i 0.710996i −0.934677 0.355498i \(-0.884311\pi\)
0.934677 0.355498i \(-0.115689\pi\)
\(564\) 0 0
\(565\) 28.0778 + 7.63858i 1.18124 + 0.321358i
\(566\) 14.2122 0.597384
\(567\) 0 0
\(568\) 18.2216i 0.764563i
\(569\) 8.36004 0.350471 0.175236 0.984527i \(-0.443931\pi\)
0.175236 + 0.984527i \(0.443931\pi\)
\(570\) 0 0
\(571\) 6.56776 0.274852 0.137426 0.990512i \(-0.456117\pi\)
0.137426 + 0.990512i \(0.456117\pi\)
\(572\) 0.345801i 0.0144587i
\(573\) 0 0
\(574\) 77.2853 3.22582
\(575\) −8.72323 5.12569i −0.363784 0.213756i
\(576\) 0 0
\(577\) 30.6141i 1.27448i 0.770666 + 0.637240i \(0.219924\pi\)
−0.770666 + 0.637240i \(0.780076\pi\)
\(578\) 23.6799i 0.984956i
\(579\) 0 0
\(580\) 1.69083 6.21514i 0.0702081 0.258069i
\(581\) 48.2725i 2.00268i
\(582\) 0 0
\(583\) 0.184164 0.00762730
\(584\) 11.9003 0.492437
\(585\) 0 0
\(586\) 16.8209 0.694867
\(587\) −2.23618 −0.0922969 −0.0461485 0.998935i \(-0.514695\pi\)
−0.0461485 + 0.998935i \(0.514695\pi\)
\(588\) 0 0
\(589\) −25.2232 16.5963i −1.03930 0.683838i
\(590\) −8.61454 2.34360i −0.354655 0.0964843i
\(591\) 0 0
\(592\) −11.1811 −0.459539
\(593\) 6.02223 0.247303 0.123652 0.992326i \(-0.460539\pi\)
0.123652 + 0.992326i \(0.460539\pi\)
\(594\) 0 0
\(595\) 52.8760 + 14.3850i 2.16770 + 0.589726i
\(596\) 2.03412i 0.0833210i
\(597\) 0 0
\(598\) 16.9460i 0.692972i
\(599\) 9.53150 0.389447 0.194723 0.980858i \(-0.437619\pi\)
0.194723 + 0.980858i \(0.437619\pi\)
\(600\) 0 0
\(601\) 3.68754i 0.150418i −0.997168 0.0752089i \(-0.976038\pi\)
0.997168 0.0752089i \(-0.0239624\pi\)
\(602\) 50.4738i 2.05716i
\(603\) 0 0
\(604\) 2.06111i 0.0838652i
\(605\) −6.43713 + 23.6615i −0.261706 + 0.961975i
\(606\) 0 0
\(607\) 43.6425 1.77139 0.885697 0.464264i \(-0.153681\pi\)
0.885697 + 0.464264i \(0.153681\pi\)
\(608\) −7.02257 4.62069i −0.284803 0.187394i
\(609\) 0 0
\(610\) −31.5513 8.58356i −1.27747 0.347538i
\(611\) −2.10422 −0.0851275
\(612\) 0 0
\(613\) 15.8298i 0.639360i 0.947526 + 0.319680i \(0.103575\pi\)
−0.947526 + 0.319680i \(0.896425\pi\)
\(614\) 25.1012i 1.01300i
\(615\) 0 0
\(616\) 2.00058i 0.0806055i
\(617\) −41.0586 −1.65296 −0.826479 0.562967i \(-0.809660\pi\)
−0.826479 + 0.562967i \(0.809660\pi\)
\(618\) 0 0
\(619\) 5.57040 0.223893 0.111947 0.993714i \(-0.464291\pi\)
0.111947 + 0.993714i \(0.464291\pi\)
\(620\) −5.14966 1.40097i −0.206815 0.0562644i
\(621\) 0 0
\(622\) −24.6627 −0.988885
\(623\) 2.87392i 0.115141i
\(624\) 0 0
\(625\) 12.1675 + 21.8393i 0.486698 + 0.873570i
\(626\) 25.2450 1.00899
\(627\) 0 0
\(628\) 4.16172i 0.166071i
\(629\) −13.9392 −0.555792
\(630\) 0 0
\(631\) 0.116081 0.00462110 0.00231055 0.999997i \(-0.499265\pi\)
0.00231055 + 0.999997i \(0.499265\pi\)
\(632\) −23.6081 −0.939078
\(633\) 0 0
\(634\) −41.9965 −1.66789
\(635\) −5.65293 + 20.7789i −0.224330 + 0.824586i
\(636\) 0 0
\(637\) −62.8888 −2.49174
\(638\) 2.34898 0.0929969
\(639\) 0 0
\(640\) 28.7654 + 7.82566i 1.13705 + 0.309336i
\(641\) −20.7636 −0.820112 −0.410056 0.912060i \(-0.634491\pi\)
−0.410056 + 0.912060i \(0.634491\pi\)
\(642\) 0 0
\(643\) 4.54220i 0.179127i −0.995981 0.0895634i \(-0.971453\pi\)
0.995981 0.0895634i \(-0.0285472\pi\)
\(644\) 2.99877i 0.118168i
\(645\) 0 0
\(646\) −31.7689 20.9032i −1.24993 0.822425i
\(647\) 35.6822 1.40281 0.701405 0.712763i \(-0.252556\pi\)
0.701405 + 0.712763i \(0.252556\pi\)
\(648\) 0 0
\(649\) 0.478477i 0.0187819i
\(650\) 21.2127 36.1012i 0.832032 1.41601i
\(651\) 0 0
\(652\) 2.62606i 0.102844i
\(653\) −25.9809 −1.01671 −0.508356 0.861147i \(-0.669747\pi\)
−0.508356 + 0.861147i \(0.669747\pi\)
\(654\) 0 0
\(655\) 10.6554 + 2.89882i 0.416343 + 0.113266i
\(656\) 53.6352 2.09410
\(657\) 0 0
\(658\) 2.53376 0.0987764
\(659\) 32.3683 1.26089 0.630445 0.776234i \(-0.282872\pi\)
0.630445 + 0.776234i \(0.282872\pi\)
\(660\) 0 0
\(661\) 40.7085i 1.58338i −0.610924 0.791689i \(-0.709202\pi\)
0.610924 0.791689i \(-0.290798\pi\)
\(662\) 36.0185 1.39990
\(663\) 0 0
\(664\) 28.4494i 1.10405i
\(665\) −31.4276 + 27.7432i −1.21871 + 1.07583i
\(666\) 0 0
\(667\) 16.9168 0.655022
\(668\) 4.06600i 0.157318i
\(669\) 0 0
\(670\) 45.1488 + 12.2828i 1.74425 + 0.474526i
\(671\) 1.75245i 0.0676526i
\(672\) 0 0
\(673\) −11.3307 −0.436765 −0.218382 0.975863i \(-0.570078\pi\)
−0.218382 + 0.975863i \(0.570078\pi\)
\(674\) 15.6960i 0.604586i
\(675\) 0 0
\(676\) −5.82727 −0.224126
\(677\) 3.40819i 0.130987i −0.997853 0.0654937i \(-0.979138\pi\)
0.997853 0.0654937i \(-0.0208622\pi\)
\(678\) 0 0
\(679\) 11.0005i 0.422161i
\(680\) 31.1625 + 8.47780i 1.19503 + 0.325109i
\(681\) 0 0
\(682\) 1.94629i 0.0745272i
\(683\) 3.45975i 0.132384i 0.997807 + 0.0661918i \(0.0210849\pi\)
−0.997807 + 0.0661918i \(0.978915\pi\)
\(684\) 0 0
\(685\) 6.59970 24.2590i 0.252162 0.926890i
\(686\) 29.6269 1.13116
\(687\) 0 0
\(688\) 35.0283i 1.33544i
\(689\) 5.48896i 0.209113i
\(690\) 0 0
\(691\) 9.46765 0.360166 0.180083 0.983651i \(-0.442363\pi\)
0.180083 + 0.983651i \(0.442363\pi\)
\(692\) 4.12021i 0.156627i
\(693\) 0 0
\(694\) 48.4880i 1.84058i
\(695\) −10.5263 + 38.6923i −0.399285 + 1.46768i
\(696\) 0 0
\(697\) 66.8657 2.53272
\(698\) 17.3396i 0.656313i
\(699\) 0 0
\(700\) −3.75382 + 6.38850i −0.141881 + 0.241462i
\(701\) 28.9193i 1.09227i −0.837698 0.546134i \(-0.816099\pi\)
0.837698 0.546134i \(-0.183901\pi\)
\(702\) 0 0
\(703\) 5.86144 8.90827i 0.221068 0.335982i
\(704\) 1.13547i 0.0427947i
\(705\) 0 0
\(706\) 26.9034i 1.01252i
\(707\) −45.2986 −1.70363
\(708\) 0 0
\(709\) −26.2125 −0.984431 −0.492216 0.870473i \(-0.663813\pi\)
−0.492216 + 0.870473i \(0.663813\pi\)
\(710\) −23.7495 6.46107i −0.891302 0.242480i
\(711\) 0 0
\(712\) 1.69375i 0.0634758i
\(713\) 14.0167i 0.524931i
\(714\) 0 0
\(715\) 2.16544 + 0.589109i 0.0809827 + 0.0220314i
\(716\) −7.18858 −0.268650
\(717\) 0 0
\(718\) 12.6676 0.472750
\(719\) 52.8689i 1.97168i 0.167692 + 0.985839i \(0.446369\pi\)
−0.167692 + 0.985839i \(0.553631\pi\)
\(720\) 0 0
\(721\) 3.68754i 0.137331i
\(722\) 26.7177 11.5131i 0.994329 0.428473i
\(723\) 0 0
\(724\) 2.50932i 0.0932580i
\(725\) −36.0392 21.1763i −1.33846 0.786467i
\(726\) 0 0
\(727\) 38.9525i 1.44467i −0.691545 0.722333i \(-0.743070\pi\)
0.691545 0.722333i \(-0.256930\pi\)
\(728\) −59.6266 −2.20991
\(729\) 0 0
\(730\) −4.21963 + 15.5104i −0.156175 + 0.574066i
\(731\) 43.6690i 1.61516i
\(732\) 0 0
\(733\) 17.0592i 0.630096i 0.949076 + 0.315048i \(0.102021\pi\)
−0.949076 + 0.315048i \(0.897979\pi\)
\(734\) 5.84371 0.215695
\(735\) 0 0
\(736\) 3.90250i 0.143848i
\(737\) 2.50770i 0.0923723i
\(738\) 0 0
\(739\) 12.5324 0.461010 0.230505 0.973071i \(-0.425962\pi\)
0.230505 + 0.973071i \(0.425962\pi\)
\(740\) 0.494792 1.81875i 0.0181889 0.0668584i
\(741\) 0 0
\(742\) 6.60946i 0.242641i
\(743\) 23.4439i 0.860075i 0.902811 + 0.430038i \(0.141500\pi\)
−0.902811 + 0.430038i \(0.858500\pi\)
\(744\) 0 0
\(745\) −12.7379 3.46535i −0.466679 0.126960i
\(746\) 39.5873i 1.44939i
\(747\) 0 0
\(748\) 0.360255i 0.0131722i
\(749\) 38.4817 1.40609
\(750\) 0 0
\(751\) 8.95770i 0.326871i 0.986554 + 0.163436i \(0.0522576\pi\)
−0.986554 + 0.163436i \(0.947742\pi\)
\(752\) 1.75841 0.0641225
\(753\) 0 0
\(754\) 70.0106i 2.54964i
\(755\) −12.9068 3.51131i −0.469727 0.127790i
\(756\) 0 0
\(757\) 3.69403i 0.134262i 0.997744 + 0.0671309i \(0.0213845\pi\)
−0.997744 + 0.0671309i \(0.978615\pi\)
\(758\) 0.187747 0.00681930
\(759\) 0 0
\(760\) −18.5219 + 16.3505i −0.671859 + 0.593094i
\(761\) 21.5264i 0.780332i −0.920745 0.390166i \(-0.872418\pi\)
0.920745 0.390166i \(-0.127582\pi\)
\(762\) 0 0
\(763\) 31.3231 1.13397
\(764\) 1.91954i 0.0694467i
\(765\) 0 0
\(766\) 23.6865 0.855827
\(767\) 14.2609 0.514930
\(768\) 0 0
\(769\) −2.04068 −0.0735889 −0.0367944 0.999323i \(-0.511715\pi\)
−0.0367944 + 0.999323i \(0.511715\pi\)
\(770\) −2.60748 0.709368i −0.0939671 0.0255639i
\(771\) 0 0
\(772\) 6.14242 0.221070
\(773\) 7.76578i 0.279316i −0.990200 0.139658i \(-0.955400\pi\)
0.990200 0.139658i \(-0.0446003\pi\)
\(774\) 0 0
\(775\) −17.5460 + 29.8609i −0.630270 + 1.07264i
\(776\) 6.48317i 0.232732i
\(777\) 0 0
\(778\) 40.2802 1.44412
\(779\) −28.1171 + 42.7326i −1.00740 + 1.53106i
\(780\) 0 0
\(781\) 1.31912i 0.0472017i
\(782\) 17.6542i 0.631314i
\(783\) 0 0
\(784\) 52.5535 1.87691
\(785\) −26.0610 7.08992i −0.930157 0.253050i
\(786\) 0 0
\(787\) −18.5146 −0.659974 −0.329987 0.943985i \(-0.607044\pi\)
−0.329987 + 0.943985i \(0.607044\pi\)
\(788\) −1.87903 −0.0669377
\(789\) 0 0
\(790\) 8.37100 30.7699i 0.297827 1.09475i
\(791\) 55.9696 1.99005
\(792\) 0 0
\(793\) 52.2313 1.85479
\(794\) −28.8591 −1.02417
\(795\) 0 0
\(796\) 4.89461 0.173485
\(797\) 7.76578i 0.275078i −0.990496 0.137539i \(-0.956081\pi\)
0.990496 0.137539i \(-0.0439193\pi\)
\(798\) 0 0
\(799\) 2.19216 0.0775532
\(800\) −4.88510 + 8.31378i −0.172714 + 0.293937i
\(801\) 0 0
\(802\) 0.152552i 0.00538680i
\(803\) −0.861494 −0.0304015
\(804\) 0 0
\(805\) −18.7785 5.10872i −0.661856 0.180059i
\(806\) 58.0085 2.04326
\(807\) 0 0
\(808\) −26.6968 −0.939189
\(809\) 20.5769i 0.723445i −0.932286 0.361722i \(-0.882189\pi\)
0.932286 0.361722i \(-0.117811\pi\)
\(810\) 0 0
\(811\) 29.1309i 1.02292i −0.859306 0.511462i \(-0.829104\pi\)
0.859306 0.511462i \(-0.170896\pi\)
\(812\) 12.3891i 0.434773i
\(813\) 0 0
\(814\) 0.687385 0.0240928
\(815\) −16.4446 4.47376i −0.576028 0.156709i
\(816\) 0 0
\(817\) 27.9080 + 18.3628i 0.976378 + 0.642434i
\(818\) 32.7212 1.14407
\(819\) 0 0
\(820\) −2.37350 + 8.72445i −0.0828861 + 0.304671i
\(821\) 5.21346i 0.181951i 0.995853 + 0.0909756i \(0.0289985\pi\)
−0.995853 + 0.0909756i \(0.971001\pi\)
\(822\) 0 0
\(823\) 0.920958i 0.0321026i 0.999871 + 0.0160513i \(0.00510950\pi\)
−0.999871 + 0.0160513i \(0.994890\pi\)
\(824\) 2.17325i 0.0757089i
\(825\) 0 0
\(826\) −17.1720 −0.597492
\(827\) 4.24374i 0.147569i −0.997274 0.0737847i \(-0.976492\pi\)
0.997274 0.0737847i \(-0.0235078\pi\)
\(828\) 0 0
\(829\) 50.1630i 1.74223i −0.491076 0.871116i \(-0.663396\pi\)
0.491076 0.871116i \(-0.336604\pi\)
\(830\) −37.0800 10.0877i −1.28707 0.350148i
\(831\) 0 0
\(832\) −33.8424 −1.17327
\(833\) 65.5173 2.27004
\(834\) 0 0
\(835\) −25.4616 6.92686i −0.881136 0.239714i
\(836\) 0.230232 + 0.151487i 0.00796274 + 0.00523930i
\(837\) 0 0
\(838\) 12.0768 0.417185
\(839\) 0.767825 0.0265083 0.0132541 0.999912i \(-0.495781\pi\)
0.0132541 + 0.999912i \(0.495781\pi\)
\(840\) 0 0
\(841\) 40.8902 1.41001
\(842\) 4.77229 0.164464
\(843\) 0 0
\(844\) 6.09252i 0.209713i
\(845\) −9.92736 + 36.4908i −0.341512 + 1.25532i
\(846\) 0 0
\(847\) 47.1663i 1.62065i
\(848\) 4.58689i 0.157515i
\(849\) 0 0
\(850\) −22.0994 + 37.6101i −0.758002 + 1.29002i
\(851\) 4.95040 0.169698
\(852\) 0 0
\(853\) 38.4028i 1.31489i −0.753504 0.657444i \(-0.771638\pi\)
0.753504 0.657444i \(-0.228362\pi\)
\(854\) −62.8936 −2.15218
\(855\) 0 0
\(856\) 22.6792 0.775161
\(857\) 17.3707i 0.593373i −0.954975 0.296686i \(-0.904118\pi\)
0.954975 0.296686i \(-0.0958816\pi\)
\(858\) 0 0
\(859\) 43.6731 1.49011 0.745054 0.667004i \(-0.232424\pi\)
0.745054 + 0.667004i \(0.232424\pi\)
\(860\) 5.69781 + 1.55009i 0.194294 + 0.0528578i
\(861\) 0 0
\(862\) 2.04628i 0.0696964i
\(863\) 29.9661i 1.02006i 0.860157 + 0.510029i \(0.170365\pi\)
−0.860157 + 0.510029i \(0.829635\pi\)
\(864\) 0 0
\(865\) 25.8011 + 7.01921i 0.877263 + 0.238660i
\(866\) 4.36861i 0.148451i
\(867\) 0 0
\(868\) −10.2652 −0.348425
\(869\) 1.70905 0.0579757
\(870\) 0 0
\(871\) −74.7413 −2.53251
\(872\) 18.4603 0.625144
\(873\) 0 0
\(874\) 11.2825 + 7.42362i 0.381636 + 0.251108i
\(875\) 33.6102 + 34.3902i 1.13623 + 1.16260i
\(876\) 0 0
\(877\) −14.3151 −0.483387 −0.241694 0.970353i \(-0.577703\pi\)
−0.241694 + 0.970353i \(0.577703\pi\)
\(878\) 21.2127 0.715895
\(879\) 0 0
\(880\) −1.80957 0.492294i −0.0610004 0.0165952i
\(881\) 16.7238i 0.563440i 0.959497 + 0.281720i \(0.0909050\pi\)
−0.959497 + 0.281720i \(0.909095\pi\)
\(882\) 0 0
\(883\) 3.92750i 0.132171i 0.997814 + 0.0660854i \(0.0210510\pi\)
−0.997814 + 0.0660854i \(0.978949\pi\)
\(884\) 10.7373 0.361134
\(885\) 0 0
\(886\) 38.7883i 1.30312i
\(887\) 27.0814i 0.909306i 0.890669 + 0.454653i \(0.150237\pi\)
−0.890669 + 0.454653i \(0.849763\pi\)
\(888\) 0 0
\(889\) 41.4203i 1.38919i
\(890\) 2.20757 + 0.600572i 0.0739979 + 0.0201312i
\(891\) 0 0
\(892\) −4.25796 −0.142567
\(893\) −0.921807 + 1.40097i −0.0308471 + 0.0468817i
\(894\) 0 0
\(895\) −12.2465 + 45.0154i −0.409355 + 1.50470i
\(896\) 57.3403 1.91561
\(897\) 0 0
\(898\) 0.618045i 0.0206244i
\(899\) 57.9088i 1.93137i
\(900\) 0 0
\(901\) 5.71838i 0.190507i
\(902\) −3.29736 −0.109790
\(903\) 0 0
\(904\) 32.9858 1.09709
\(905\) −15.7135 4.27489i −0.522336 0.142102i
\(906\) 0 0
\(907\) −39.6511 −1.31659 −0.658296 0.752759i \(-0.728722\pi\)
−0.658296 + 0.752759i \(0.728722\pi\)
\(908\) 7.28572i 0.241785i
\(909\) 0 0
\(910\) 21.1425 77.7153i 0.700868 2.57624i
\(911\) 10.8026 0.357906 0.178953 0.983858i \(-0.442729\pi\)
0.178953 + 0.983858i \(0.442729\pi\)
\(912\) 0 0
\(913\) 2.05953i 0.0681606i
\(914\) 38.5729 1.27588
\(915\) 0 0
\(916\) 6.80233 0.224755
\(917\) 21.2403 0.701418
\(918\) 0 0
\(919\) 19.7085 0.650125 0.325062 0.945693i \(-0.394615\pi\)
0.325062 + 0.945693i \(0.394615\pi\)
\(920\) −11.0671 3.01083i −0.364873 0.0992641i
\(921\) 0 0
\(922\) −14.7131 −0.484549
\(923\) 39.3159 1.29410
\(924\) 0 0
\(925\) −10.5462 6.19685i −0.346757 0.203751i
\(926\) 3.82174 0.125590
\(927\) 0 0
\(928\) 16.1228i 0.529257i
\(929\) 43.0176i 1.41136i −0.708531 0.705680i \(-0.750642\pi\)
0.708531 0.705680i \(-0.249358\pi\)
\(930\) 0 0
\(931\) −27.5501 + 41.8708i −0.902917 + 1.37226i
\(932\) 5.42587 0.177730
\(933\) 0 0
\(934\) 1.81588i 0.0594173i
\(935\) −2.25594 0.613732i −0.0737772 0.0200712i
\(936\) 0 0
\(937\) 37.7397i 1.23290i −0.787394 0.616450i \(-0.788570\pi\)
0.787394 0.616450i \(-0.211430\pi\)
\(938\) 89.9988 2.93856
\(939\) 0 0
\(940\) −0.0778141 + 0.286027i −0.00253802 + 0.00932919i
\(941\) −29.2232 −0.952651 −0.476325 0.879269i \(-0.658032\pi\)
−0.476325 + 0.879269i \(0.658032\pi\)
\(942\) 0 0
\(943\) −23.7469 −0.773305
\(944\) −11.9172 −0.387873
\(945\) 0 0
\(946\) 2.15346i 0.0700149i
\(947\) −58.3211 −1.89518 −0.947590 0.319490i \(-0.896489\pi\)
−0.947590 + 0.319490i \(0.896489\pi\)
\(948\) 0 0
\(949\) 25.6766i 0.833498i
\(950\) −14.7431 29.9384i −0.478330 0.971329i
\(951\) 0 0
\(952\) 62.1187 2.01328
\(953\) 15.4381i 0.500090i 0.968234 + 0.250045i \(0.0804454\pi\)
−0.968234 + 0.250045i \(0.919555\pi\)
\(954\) 0 0
\(955\) −12.0203 3.27015i −0.388969 0.105819i
\(956\) 1.64160i 0.0530932i
\(957\) 0 0
\(958\) 12.2169 0.394710
\(959\) 48.3575i 1.56154i
\(960\) 0 0
\(961\) −16.9814 −0.547787
\(962\) 20.4873i 0.660538i
\(963\) 0 0
\(964\) 8.55329i 0.275483i
\(965\) 10.4643 38.4643i 0.336856 1.23821i
\(966\) 0 0
\(967\) 2.05181i 0.0659817i −0.999456 0.0329909i \(-0.989497\pi\)
0.999456 0.0329909i \(-0.0105032\pi\)
\(968\) 27.7975i 0.893445i
\(969\) 0 0
\(970\) 8.44995 + 2.29882i 0.271311 + 0.0738106i
\(971\) −15.4490 −0.495782 −0.247891 0.968788i \(-0.579737\pi\)
−0.247891 + 0.968788i \(0.579737\pi\)
\(972\) 0 0
\(973\) 77.1285i 2.47263i
\(974\) 19.6122i 0.628417i
\(975\) 0 0
\(976\) −43.6475 −1.39712
\(977\) 54.0909i 1.73052i −0.501322 0.865261i \(-0.667153\pi\)
0.501322 0.865261i \(-0.332847\pi\)
\(978\) 0 0
\(979\) 0.122615i 0.00391879i
\(980\) −2.32563 + 8.54851i −0.0742896 + 0.273072i
\(981\) 0 0
\(982\) −33.6142 −1.07267
\(983\) 23.8929i 0.762064i −0.924562 0.381032i \(-0.875569\pi\)
0.924562 0.381032i \(-0.124431\pi\)
\(984\) 0 0
\(985\) −3.20113 + 11.7666i −0.101996 + 0.374916i
\(986\) 72.9368i 2.32278i
\(987\) 0 0
\(988\) −4.51504 + 6.86200i −0.143642 + 0.218309i
\(989\) 15.5087i 0.493149i
\(990\) 0 0
\(991\) 12.3014i 0.390765i −0.980727 0.195383i \(-0.937405\pi\)
0.980727 0.195383i \(-0.0625949\pi\)
\(992\) −13.3588 −0.424144
\(993\) 0 0
\(994\) −47.3417 −1.50159
\(995\) 8.33849 30.6505i 0.264348 0.971685i
\(996\) 0 0
\(997\) 52.7136i 1.66946i −0.550663 0.834728i \(-0.685625\pi\)
0.550663 0.834728i \(-0.314375\pi\)
\(998\) 42.2361i 1.33696i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 855.2.b.d.854.14 yes 24
3.2 odd 2 inner 855.2.b.d.854.11 yes 24
5.4 even 2 inner 855.2.b.d.854.12 yes 24
15.14 odd 2 inner 855.2.b.d.854.13 yes 24
19.18 odd 2 inner 855.2.b.d.854.10 yes 24
57.56 even 2 inner 855.2.b.d.854.15 yes 24
95.94 odd 2 inner 855.2.b.d.854.16 yes 24
285.284 even 2 inner 855.2.b.d.854.9 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
855.2.b.d.854.9 24 285.284 even 2 inner
855.2.b.d.854.10 yes 24 19.18 odd 2 inner
855.2.b.d.854.11 yes 24 3.2 odd 2 inner
855.2.b.d.854.12 yes 24 5.4 even 2 inner
855.2.b.d.854.13 yes 24 15.14 odd 2 inner
855.2.b.d.854.14 yes 24 1.1 even 1 trivial
855.2.b.d.854.15 yes 24 57.56 even 2 inner
855.2.b.d.854.16 yes 24 95.94 odd 2 inner