Properties

Label 855.2.a.m.1.3
Level $855$
Weight $2$
Character 855.1
Self dual yes
Analytic conductor $6.827$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [855,2,Mod(1,855)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("855.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(855, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 855 = 3^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 855.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,2,0,8,4,0,4,12,0,2,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(6.82720937282\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.11344.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 4x^{2} + 4x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 95)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-0.552409\) of defining polynomial
Character \(\chi\) \(=\) 855.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.14243 q^{2} +2.59002 q^{4} +1.00000 q^{5} +3.10482 q^{7} +1.26409 q^{8} +2.14243 q^{10} +1.10482 q^{11} +1.77353 q^{13} +6.65187 q^{14} -2.47182 q^{16} -7.75669 q^{17} +1.00000 q^{19} +2.59002 q^{20} +2.36700 q^{22} +6.65187 q^{23} +1.00000 q^{25} +3.79966 q^{26} +8.04156 q^{28} -7.75669 q^{29} +6.57664 q^{31} -7.82389 q^{32} -16.6182 q^{34} +3.10482 q^{35} -1.40652 q^{37} +2.14243 q^{38} +1.26409 q^{40} -2.81995 q^{41} +3.10482 q^{43} +2.86151 q^{44} +14.2512 q^{46} -1.46492 q^{47} +2.63990 q^{49} +2.14243 q^{50} +4.59348 q^{52} +2.59348 q^{53} +1.10482 q^{55} +3.92477 q^{56} -16.6182 q^{58} +5.38969 q^{59} +4.07523 q^{61} +14.0900 q^{62} -11.8185 q^{64} +1.77353 q^{65} -15.8151 q^{67} -20.0900 q^{68} +6.65187 q^{70} -7.14638 q^{71} +0.243310 q^{73} -3.01339 q^{74} +2.59002 q^{76} +3.43026 q^{77} -9.38969 q^{79} -2.47182 q^{80} -6.04156 q^{82} -8.86151 q^{83} -7.75669 q^{85} +6.65187 q^{86} +1.39659 q^{88} -0.813048 q^{89} +5.50648 q^{91} +17.2285 q^{92} -3.13849 q^{94} +1.00000 q^{95} +3.19689 q^{97} +5.65581 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{2} + 8 q^{4} + 4 q^{5} + 4 q^{7} + 12 q^{8} + 2 q^{10} - 4 q^{11} + 2 q^{13} + 8 q^{14} + 4 q^{16} - 4 q^{17} + 4 q^{19} + 8 q^{20} + 4 q^{22} + 8 q^{23} + 4 q^{25} - 4 q^{26} - 8 q^{28} - 4 q^{29}+ \cdots - 38 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.14243 1.51493 0.757465 0.652876i \(-0.226438\pi\)
0.757465 + 0.652876i \(0.226438\pi\)
\(3\) 0 0
\(4\) 2.59002 1.29501
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) 3.10482 1.17351 0.586756 0.809764i \(-0.300405\pi\)
0.586756 + 0.809764i \(0.300405\pi\)
\(8\) 1.26409 0.446923
\(9\) 0 0
\(10\) 2.14243 0.677497
\(11\) 1.10482 0.333115 0.166558 0.986032i \(-0.446735\pi\)
0.166558 + 0.986032i \(0.446735\pi\)
\(12\) 0 0
\(13\) 1.77353 0.491888 0.245944 0.969284i \(-0.420902\pi\)
0.245944 + 0.969284i \(0.420902\pi\)
\(14\) 6.65187 1.77779
\(15\) 0 0
\(16\) −2.47182 −0.617955
\(17\) −7.75669 −1.88127 −0.940637 0.339415i \(-0.889771\pi\)
−0.940637 + 0.339415i \(0.889771\pi\)
\(18\) 0 0
\(19\) 1.00000 0.229416
\(20\) 2.59002 0.579147
\(21\) 0 0
\(22\) 2.36700 0.504647
\(23\) 6.65187 1.38701 0.693505 0.720451i \(-0.256065\pi\)
0.693505 + 0.720451i \(0.256065\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 3.79966 0.745175
\(27\) 0 0
\(28\) 8.04156 1.51971
\(29\) −7.75669 −1.44038 −0.720191 0.693776i \(-0.755946\pi\)
−0.720191 + 0.693776i \(0.755946\pi\)
\(30\) 0 0
\(31\) 6.57664 1.18120 0.590600 0.806965i \(-0.298891\pi\)
0.590600 + 0.806965i \(0.298891\pi\)
\(32\) −7.82389 −1.38308
\(33\) 0 0
\(34\) −16.6182 −2.85000
\(35\) 3.10482 0.524810
\(36\) 0 0
\(37\) −1.40652 −0.231231 −0.115616 0.993294i \(-0.536884\pi\)
−0.115616 + 0.993294i \(0.536884\pi\)
\(38\) 2.14243 0.347549
\(39\) 0 0
\(40\) 1.26409 0.199870
\(41\) −2.81995 −0.440402 −0.220201 0.975454i \(-0.570671\pi\)
−0.220201 + 0.975454i \(0.570671\pi\)
\(42\) 0 0
\(43\) 3.10482 0.473480 0.236740 0.971573i \(-0.423921\pi\)
0.236740 + 0.971573i \(0.423921\pi\)
\(44\) 2.86151 0.431389
\(45\) 0 0
\(46\) 14.2512 2.10122
\(47\) −1.46492 −0.213680 −0.106840 0.994276i \(-0.534073\pi\)
−0.106840 + 0.994276i \(0.534073\pi\)
\(48\) 0 0
\(49\) 2.63990 0.377129
\(50\) 2.14243 0.302986
\(51\) 0 0
\(52\) 4.59348 0.637001
\(53\) 2.59348 0.356241 0.178121 0.984009i \(-0.442998\pi\)
0.178121 + 0.984009i \(0.442998\pi\)
\(54\) 0 0
\(55\) 1.10482 0.148974
\(56\) 3.92477 0.524469
\(57\) 0 0
\(58\) −16.6182 −2.18208
\(59\) 5.38969 0.701678 0.350839 0.936436i \(-0.385897\pi\)
0.350839 + 0.936436i \(0.385897\pi\)
\(60\) 0 0
\(61\) 4.07523 0.521780 0.260890 0.965369i \(-0.415984\pi\)
0.260890 + 0.965369i \(0.415984\pi\)
\(62\) 14.0900 1.78943
\(63\) 0 0
\(64\) −11.8185 −1.47732
\(65\) 1.77353 0.219979
\(66\) 0 0
\(67\) −15.8151 −1.93212 −0.966060 0.258318i \(-0.916832\pi\)
−0.966060 + 0.258318i \(0.916832\pi\)
\(68\) −20.0900 −2.43627
\(69\) 0 0
\(70\) 6.65187 0.795051
\(71\) −7.14638 −0.848119 −0.424059 0.905634i \(-0.639395\pi\)
−0.424059 + 0.905634i \(0.639395\pi\)
\(72\) 0 0
\(73\) 0.243310 0.0284773 0.0142387 0.999899i \(-0.495468\pi\)
0.0142387 + 0.999899i \(0.495468\pi\)
\(74\) −3.01339 −0.350299
\(75\) 0 0
\(76\) 2.59002 0.297096
\(77\) 3.43026 0.390915
\(78\) 0 0
\(79\) −9.38969 −1.05642 −0.528211 0.849113i \(-0.677137\pi\)
−0.528211 + 0.849113i \(0.677137\pi\)
\(80\) −2.47182 −0.276358
\(81\) 0 0
\(82\) −6.04156 −0.667178
\(83\) −8.86151 −0.972677 −0.486338 0.873771i \(-0.661668\pi\)
−0.486338 + 0.873771i \(0.661668\pi\)
\(84\) 0 0
\(85\) −7.75669 −0.841331
\(86\) 6.65187 0.717290
\(87\) 0 0
\(88\) 1.39659 0.148877
\(89\) −0.813048 −0.0861829 −0.0430914 0.999071i \(-0.513721\pi\)
−0.0430914 + 0.999071i \(0.513721\pi\)
\(90\) 0 0
\(91\) 5.50648 0.577236
\(92\) 17.2285 1.79620
\(93\) 0 0
\(94\) −3.13849 −0.323711
\(95\) 1.00000 0.102598
\(96\) 0 0
\(97\) 3.19689 0.324595 0.162297 0.986742i \(-0.448110\pi\)
0.162297 + 0.986742i \(0.448110\pi\)
\(98\) 5.65581 0.571323
\(99\) 0 0
\(100\) 2.59002 0.259002
\(101\) 3.01887 0.300389 0.150195 0.988656i \(-0.452010\pi\)
0.150195 + 0.988656i \(0.452010\pi\)
\(102\) 0 0
\(103\) 6.05839 0.596951 0.298476 0.954417i \(-0.403522\pi\)
0.298476 + 0.954417i \(0.403522\pi\)
\(104\) 2.24190 0.219836
\(105\) 0 0
\(106\) 5.55635 0.539681
\(107\) −20.3848 −1.97068 −0.985338 0.170616i \(-0.945424\pi\)
−0.985338 + 0.170616i \(0.945424\pi\)
\(108\) 0 0
\(109\) 4.72710 0.452774 0.226387 0.974037i \(-0.427309\pi\)
0.226387 + 0.974037i \(0.427309\pi\)
\(110\) 2.36700 0.225685
\(111\) 0 0
\(112\) −7.67456 −0.725177
\(113\) 7.98316 0.750993 0.375496 0.926824i \(-0.377472\pi\)
0.375496 + 0.926824i \(0.377472\pi\)
\(114\) 0 0
\(115\) 6.65187 0.620290
\(116\) −20.0900 −1.86531
\(117\) 0 0
\(118\) 11.5471 1.06299
\(119\) −24.0831 −2.20770
\(120\) 0 0
\(121\) −9.77938 −0.889034
\(122\) 8.73091 0.790460
\(123\) 0 0
\(124\) 17.0337 1.52967
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) 4.63503 0.411293 0.205646 0.978626i \(-0.434070\pi\)
0.205646 + 0.978626i \(0.434070\pi\)
\(128\) −9.67265 −0.854950
\(129\) 0 0
\(130\) 3.79966 0.333252
\(131\) −15.5134 −1.35541 −0.677705 0.735334i \(-0.737025\pi\)
−0.677705 + 0.735334i \(0.737025\pi\)
\(132\) 0 0
\(133\) 3.10482 0.269222
\(134\) −33.8828 −2.92703
\(135\) 0 0
\(136\) −9.80515 −0.840785
\(137\) 0.813048 0.0694634 0.0347317 0.999397i \(-0.488942\pi\)
0.0347317 + 0.999397i \(0.488942\pi\)
\(138\) 0 0
\(139\) −12.7687 −1.08302 −0.541512 0.840693i \(-0.682148\pi\)
−0.541512 + 0.840693i \(0.682148\pi\)
\(140\) 8.04156 0.679636
\(141\) 0 0
\(142\) −15.3106 −1.28484
\(143\) 1.95942 0.163855
\(144\) 0 0
\(145\) −7.75669 −0.644158
\(146\) 0.521277 0.0431412
\(147\) 0 0
\(148\) −3.64293 −0.299447
\(149\) 13.7982 1.13040 0.565198 0.824955i \(-0.308800\pi\)
0.565198 + 0.824955i \(0.308800\pi\)
\(150\) 0 0
\(151\) 5.02269 0.408740 0.204370 0.978894i \(-0.434485\pi\)
0.204370 + 0.978894i \(0.434485\pi\)
\(152\) 1.26409 0.102531
\(153\) 0 0
\(154\) 7.34911 0.592208
\(155\) 6.57664 0.528248
\(156\) 0 0
\(157\) 7.18695 0.573581 0.286791 0.957993i \(-0.407412\pi\)
0.286791 + 0.957993i \(0.407412\pi\)
\(158\) −20.1168 −1.60041
\(159\) 0 0
\(160\) −7.82389 −0.618533
\(161\) 20.6529 1.62767
\(162\) 0 0
\(163\) 7.25528 0.568277 0.284139 0.958783i \(-0.408292\pi\)
0.284139 + 0.958783i \(0.408292\pi\)
\(164\) −7.30374 −0.570326
\(165\) 0 0
\(166\) −18.9852 −1.47354
\(167\) 7.33129 0.567312 0.283656 0.958926i \(-0.408453\pi\)
0.283656 + 0.958926i \(0.408453\pi\)
\(168\) 0 0
\(169\) −9.85461 −0.758047
\(170\) −16.6182 −1.27456
\(171\) 0 0
\(172\) 8.04156 0.613163
\(173\) 5.77353 0.438953 0.219477 0.975618i \(-0.429565\pi\)
0.219477 + 0.975618i \(0.429565\pi\)
\(174\) 0 0
\(175\) 3.10482 0.234702
\(176\) −2.73091 −0.205850
\(177\) 0 0
\(178\) −1.74190 −0.130561
\(179\) 4.48379 0.335134 0.167567 0.985861i \(-0.446409\pi\)
0.167567 + 0.985861i \(0.446409\pi\)
\(180\) 0 0
\(181\) −2.73400 −0.203217 −0.101608 0.994824i \(-0.532399\pi\)
−0.101608 + 0.994824i \(0.532399\pi\)
\(182\) 11.7973 0.874471
\(183\) 0 0
\(184\) 8.40856 0.619887
\(185\) −1.40652 −0.103410
\(186\) 0 0
\(187\) −8.56974 −0.626681
\(188\) −3.79418 −0.276719
\(189\) 0 0
\(190\) 2.14243 0.155429
\(191\) 17.7230 1.28239 0.641196 0.767377i \(-0.278438\pi\)
0.641196 + 0.767377i \(0.278438\pi\)
\(192\) 0 0
\(193\) −13.5371 −0.974423 −0.487212 0.873284i \(-0.661986\pi\)
−0.487212 + 0.873284i \(0.661986\pi\)
\(194\) 6.84912 0.491738
\(195\) 0 0
\(196\) 6.83741 0.488386
\(197\) 21.5134 1.53276 0.766382 0.642385i \(-0.222055\pi\)
0.766382 + 0.642385i \(0.222055\pi\)
\(198\) 0 0
\(199\) 7.09410 0.502888 0.251444 0.967872i \(-0.419095\pi\)
0.251444 + 0.967872i \(0.419095\pi\)
\(200\) 1.26409 0.0893846
\(201\) 0 0
\(202\) 6.46774 0.455068
\(203\) −24.0831 −1.69030
\(204\) 0 0
\(205\) −2.81995 −0.196954
\(206\) 12.9797 0.904339
\(207\) 0 0
\(208\) −4.38384 −0.303964
\(209\) 1.10482 0.0764219
\(210\) 0 0
\(211\) 11.0604 0.761431 0.380716 0.924692i \(-0.375678\pi\)
0.380716 + 0.924692i \(0.375678\pi\)
\(212\) 6.71717 0.461337
\(213\) 0 0
\(214\) −43.6731 −2.98543
\(215\) 3.10482 0.211747
\(216\) 0 0
\(217\) 20.4193 1.38615
\(218\) 10.1275 0.685921
\(219\) 0 0
\(220\) 2.86151 0.192923
\(221\) −13.7567 −0.925375
\(222\) 0 0
\(223\) −12.6350 −0.846104 −0.423052 0.906105i \(-0.639041\pi\)
−0.423052 + 0.906105i \(0.639041\pi\)
\(224\) −24.2918 −1.62306
\(225\) 0 0
\(226\) 17.1034 1.13770
\(227\) 6.62813 0.439925 0.219962 0.975508i \(-0.429407\pi\)
0.219962 + 0.975508i \(0.429407\pi\)
\(228\) 0 0
\(229\) −0.0752308 −0.00497139 −0.00248570 0.999997i \(-0.500791\pi\)
−0.00248570 + 0.999997i \(0.500791\pi\)
\(230\) 14.2512 0.939696
\(231\) 0 0
\(232\) −9.80515 −0.643740
\(233\) −9.51338 −0.623242 −0.311621 0.950206i \(-0.600872\pi\)
−0.311621 + 0.950206i \(0.600872\pi\)
\(234\) 0 0
\(235\) −1.46492 −0.0955607
\(236\) 13.9594 0.908681
\(237\) 0 0
\(238\) −51.5965 −3.34450
\(239\) 2.92984 0.189515 0.0947577 0.995500i \(-0.469792\pi\)
0.0947577 + 0.995500i \(0.469792\pi\)
\(240\) 0 0
\(241\) −9.42743 −0.607274 −0.303637 0.952788i \(-0.598201\pi\)
−0.303637 + 0.952788i \(0.598201\pi\)
\(242\) −20.9517 −1.34682
\(243\) 0 0
\(244\) 10.5549 0.675711
\(245\) 2.63990 0.168657
\(246\) 0 0
\(247\) 1.77353 0.112847
\(248\) 8.31346 0.527905
\(249\) 0 0
\(250\) 2.14243 0.135499
\(251\) 14.9298 0.942363 0.471181 0.882036i \(-0.343828\pi\)
0.471181 + 0.882036i \(0.343828\pi\)
\(252\) 0 0
\(253\) 7.34911 0.462035
\(254\) 9.93026 0.623080
\(255\) 0 0
\(256\) 2.91405 0.182128
\(257\) 15.1295 0.943755 0.471877 0.881664i \(-0.343576\pi\)
0.471877 + 0.881664i \(0.343576\pi\)
\(258\) 0 0
\(259\) −4.36700 −0.271352
\(260\) 4.59348 0.284875
\(261\) 0 0
\(262\) −33.2364 −2.05335
\(263\) 15.2216 0.938605 0.469302 0.883038i \(-0.344505\pi\)
0.469302 + 0.883038i \(0.344505\pi\)
\(264\) 0 0
\(265\) 2.59348 0.159316
\(266\) 6.65187 0.407852
\(267\) 0 0
\(268\) −40.9615 −2.50212
\(269\) −11.5203 −0.702404 −0.351202 0.936300i \(-0.614227\pi\)
−0.351202 + 0.936300i \(0.614227\pi\)
\(270\) 0 0
\(271\) 2.16118 0.131282 0.0656411 0.997843i \(-0.479091\pi\)
0.0656411 + 0.997843i \(0.479091\pi\)
\(272\) 19.1731 1.16254
\(273\) 0 0
\(274\) 1.74190 0.105232
\(275\) 1.10482 0.0666231
\(276\) 0 0
\(277\) 23.4205 1.40720 0.703602 0.710595i \(-0.251574\pi\)
0.703602 + 0.710595i \(0.251574\pi\)
\(278\) −27.3560 −1.64070
\(279\) 0 0
\(280\) 3.92477 0.234550
\(281\) −25.6824 −1.53209 −0.766043 0.642789i \(-0.777777\pi\)
−0.766043 + 0.642789i \(0.777777\pi\)
\(282\) 0 0
\(283\) 7.38587 0.439045 0.219522 0.975607i \(-0.429550\pi\)
0.219522 + 0.975607i \(0.429550\pi\)
\(284\) −18.5093 −1.09832
\(285\) 0 0
\(286\) 4.19794 0.248229
\(287\) −8.75543 −0.516817
\(288\) 0 0
\(289\) 43.1662 2.53919
\(290\) −16.6182 −0.975854
\(291\) 0 0
\(292\) 0.630180 0.0368785
\(293\) 24.1522 1.41099 0.705494 0.708716i \(-0.250725\pi\)
0.705494 + 0.708716i \(0.250725\pi\)
\(294\) 0 0
\(295\) 5.38969 0.313800
\(296\) −1.77797 −0.103343
\(297\) 0 0
\(298\) 29.5618 1.71247
\(299\) 11.7973 0.682253
\(300\) 0 0
\(301\) 9.63990 0.555635
\(302\) 10.7608 0.619213
\(303\) 0 0
\(304\) −2.47182 −0.141769
\(305\) 4.07523 0.233347
\(306\) 0 0
\(307\) 4.38482 0.250255 0.125127 0.992141i \(-0.460066\pi\)
0.125127 + 0.992141i \(0.460066\pi\)
\(308\) 8.88447 0.506239
\(309\) 0 0
\(310\) 14.0900 0.800259
\(311\) 15.7123 0.890963 0.445481 0.895291i \(-0.353033\pi\)
0.445481 + 0.895291i \(0.353033\pi\)
\(312\) 0 0
\(313\) 24.7794 1.40061 0.700307 0.713842i \(-0.253047\pi\)
0.700307 + 0.713842i \(0.253047\pi\)
\(314\) 15.3976 0.868935
\(315\) 0 0
\(316\) −24.3195 −1.36808
\(317\) 27.3798 1.53780 0.768900 0.639369i \(-0.220804\pi\)
0.768900 + 0.639369i \(0.220804\pi\)
\(318\) 0 0
\(319\) −8.56974 −0.479813
\(320\) −11.8185 −0.660676
\(321\) 0 0
\(322\) 44.2474 2.46581
\(323\) −7.75669 −0.431594
\(324\) 0 0
\(325\) 1.77353 0.0983775
\(326\) 15.5440 0.860900
\(327\) 0 0
\(328\) −3.56467 −0.196826
\(329\) −4.54831 −0.250756
\(330\) 0 0
\(331\) 4.70033 0.258354 0.129177 0.991622i \(-0.458767\pi\)
0.129177 + 0.991622i \(0.458767\pi\)
\(332\) −22.9515 −1.25963
\(333\) 0 0
\(334\) 15.7068 0.859439
\(335\) −15.8151 −0.864070
\(336\) 0 0
\(337\) −20.6360 −1.12412 −0.562058 0.827098i \(-0.689990\pi\)
−0.562058 + 0.827098i \(0.689990\pi\)
\(338\) −21.1128 −1.14839
\(339\) 0 0
\(340\) −20.0900 −1.08953
\(341\) 7.26600 0.393476
\(342\) 0 0
\(343\) −13.5373 −0.730947
\(344\) 3.92477 0.211609
\(345\) 0 0
\(346\) 12.3694 0.664983
\(347\) −30.0148 −1.61128 −0.805639 0.592407i \(-0.798178\pi\)
−0.805639 + 0.592407i \(0.798178\pi\)
\(348\) 0 0
\(349\) −14.7340 −0.788693 −0.394347 0.918962i \(-0.629029\pi\)
−0.394347 + 0.918962i \(0.629029\pi\)
\(350\) 6.65187 0.355557
\(351\) 0 0
\(352\) −8.64399 −0.460726
\(353\) 29.6302 1.57705 0.788527 0.615000i \(-0.210844\pi\)
0.788527 + 0.615000i \(0.210844\pi\)
\(354\) 0 0
\(355\) −7.14638 −0.379290
\(356\) −2.10581 −0.111608
\(357\) 0 0
\(358\) 9.60623 0.507705
\(359\) −21.7577 −1.14833 −0.574163 0.818741i \(-0.694672\pi\)
−0.574163 + 0.818741i \(0.694672\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) −5.85742 −0.307859
\(363\) 0 0
\(364\) 14.2619 0.747527
\(365\) 0.243310 0.0127355
\(366\) 0 0
\(367\) 30.0347 1.56780 0.783898 0.620889i \(-0.213228\pi\)
0.783898 + 0.620889i \(0.213228\pi\)
\(368\) −16.4422 −0.857111
\(369\) 0 0
\(370\) −3.01339 −0.156658
\(371\) 8.05227 0.418053
\(372\) 0 0
\(373\) −37.3055 −1.93161 −0.965803 0.259277i \(-0.916516\pi\)
−0.965803 + 0.259277i \(0.916516\pi\)
\(374\) −18.3601 −0.949378
\(375\) 0 0
\(376\) −1.85179 −0.0954987
\(377\) −13.7567 −0.708506
\(378\) 0 0
\(379\) −14.7794 −0.759166 −0.379583 0.925158i \(-0.623932\pi\)
−0.379583 + 0.925158i \(0.623932\pi\)
\(380\) 2.59002 0.132865
\(381\) 0 0
\(382\) 37.9704 1.94273
\(383\) 29.0020 1.48193 0.740967 0.671541i \(-0.234367\pi\)
0.740967 + 0.671541i \(0.234367\pi\)
\(384\) 0 0
\(385\) 3.43026 0.174822
\(386\) −29.0024 −1.47618
\(387\) 0 0
\(388\) 8.28001 0.420354
\(389\) −21.1987 −1.07481 −0.537407 0.843323i \(-0.680596\pi\)
−0.537407 + 0.843323i \(0.680596\pi\)
\(390\) 0 0
\(391\) −51.5965 −2.60935
\(392\) 3.33707 0.168548
\(393\) 0 0
\(394\) 46.0910 2.32203
\(395\) −9.38969 −0.472446
\(396\) 0 0
\(397\) 10.3856 0.521238 0.260619 0.965442i \(-0.416073\pi\)
0.260619 + 0.965442i \(0.416073\pi\)
\(398\) 15.1987 0.761840
\(399\) 0 0
\(400\) −2.47182 −0.123591
\(401\) −25.6638 −1.28159 −0.640796 0.767712i \(-0.721395\pi\)
−0.640796 + 0.767712i \(0.721395\pi\)
\(402\) 0 0
\(403\) 11.6638 0.581017
\(404\) 7.81896 0.389008
\(405\) 0 0
\(406\) −51.5965 −2.56069
\(407\) −1.55395 −0.0770266
\(408\) 0 0
\(409\) 5.71611 0.282644 0.141322 0.989964i \(-0.454865\pi\)
0.141322 + 0.989964i \(0.454865\pi\)
\(410\) −6.04156 −0.298371
\(411\) 0 0
\(412\) 15.6914 0.773059
\(413\) 16.7340 0.823427
\(414\) 0 0
\(415\) −8.86151 −0.434994
\(416\) −13.8759 −0.680321
\(417\) 0 0
\(418\) 2.36700 0.115774
\(419\) −15.4303 −0.753818 −0.376909 0.926250i \(-0.623013\pi\)
−0.376909 + 0.926250i \(0.623013\pi\)
\(420\) 0 0
\(421\) −1.18005 −0.0575121 −0.0287561 0.999586i \(-0.509155\pi\)
−0.0287561 + 0.999586i \(0.509155\pi\)
\(422\) 23.6962 1.15352
\(423\) 0 0
\(424\) 3.27839 0.159213
\(425\) −7.75669 −0.376255
\(426\) 0 0
\(427\) 12.6529 0.612315
\(428\) −52.7972 −2.55205
\(429\) 0 0
\(430\) 6.65187 0.320782
\(431\) 14.0255 0.675585 0.337792 0.941221i \(-0.390320\pi\)
0.337792 + 0.941221i \(0.390320\pi\)
\(432\) 0 0
\(433\) 25.5894 1.22975 0.614874 0.788625i \(-0.289207\pi\)
0.614874 + 0.788625i \(0.289207\pi\)
\(434\) 43.7470 2.09992
\(435\) 0 0
\(436\) 12.2433 0.586348
\(437\) 6.65187 0.318202
\(438\) 0 0
\(439\) −21.9732 −1.04873 −0.524363 0.851495i \(-0.675696\pi\)
−0.524363 + 0.851495i \(0.675696\pi\)
\(440\) 1.39659 0.0665798
\(441\) 0 0
\(442\) −29.4728 −1.40188
\(443\) 19.3721 0.920395 0.460197 0.887817i \(-0.347779\pi\)
0.460197 + 0.887817i \(0.347779\pi\)
\(444\) 0 0
\(445\) −0.813048 −0.0385422
\(446\) −27.0697 −1.28179
\(447\) 0 0
\(448\) −36.6944 −1.73365
\(449\) 19.1841 0.905355 0.452677 0.891674i \(-0.350469\pi\)
0.452677 + 0.891674i \(0.350469\pi\)
\(450\) 0 0
\(451\) −3.11553 −0.146705
\(452\) 20.6766 0.972545
\(453\) 0 0
\(454\) 14.2003 0.666455
\(455\) 5.50648 0.258148
\(456\) 0 0
\(457\) 8.36010 0.391069 0.195534 0.980697i \(-0.437356\pi\)
0.195534 + 0.980697i \(0.437356\pi\)
\(458\) −0.161177 −0.00753131
\(459\) 0 0
\(460\) 17.2285 0.803283
\(461\) 25.0268 1.16561 0.582806 0.812611i \(-0.301955\pi\)
0.582806 + 0.812611i \(0.301955\pi\)
\(462\) 0 0
\(463\) 32.3749 1.50459 0.752294 0.658827i \(-0.228947\pi\)
0.752294 + 0.658827i \(0.228947\pi\)
\(464\) 19.1731 0.890091
\(465\) 0 0
\(466\) −20.3818 −0.944168
\(467\) −15.2216 −0.704372 −0.352186 0.935930i \(-0.614562\pi\)
−0.352186 + 0.935930i \(0.614562\pi\)
\(468\) 0 0
\(469\) −49.1030 −2.26736
\(470\) −3.13849 −0.144768
\(471\) 0 0
\(472\) 6.81305 0.313596
\(473\) 3.43026 0.157724
\(474\) 0 0
\(475\) 1.00000 0.0458831
\(476\) −62.3759 −2.85899
\(477\) 0 0
\(478\) 6.27698 0.287103
\(479\) 20.0485 0.916038 0.458019 0.888943i \(-0.348559\pi\)
0.458019 + 0.888943i \(0.348559\pi\)
\(480\) 0 0
\(481\) −2.49451 −0.113740
\(482\) −20.1977 −0.919978
\(483\) 0 0
\(484\) −25.3288 −1.15131
\(485\) 3.19689 0.145163
\(486\) 0 0
\(487\) −31.6508 −1.43424 −0.717118 0.696952i \(-0.754539\pi\)
−0.717118 + 0.696952i \(0.754539\pi\)
\(488\) 5.15146 0.233195
\(489\) 0 0
\(490\) 5.65581 0.255504
\(491\) −24.8033 −1.11936 −0.559679 0.828710i \(-0.689076\pi\)
−0.559679 + 0.828710i \(0.689076\pi\)
\(492\) 0 0
\(493\) 60.1662 2.70975
\(494\) 3.79966 0.170955
\(495\) 0 0
\(496\) −16.2563 −0.729928
\(497\) −22.1882 −0.995277
\(498\) 0 0
\(499\) −33.0237 −1.47834 −0.739171 0.673518i \(-0.764783\pi\)
−0.739171 + 0.673518i \(0.764783\pi\)
\(500\) 2.59002 0.115829
\(501\) 0 0
\(502\) 31.9862 1.42761
\(503\) 3.54396 0.158017 0.0790087 0.996874i \(-0.474825\pi\)
0.0790087 + 0.996874i \(0.474825\pi\)
\(504\) 0 0
\(505\) 3.01887 0.134338
\(506\) 15.7450 0.699950
\(507\) 0 0
\(508\) 12.0049 0.532629
\(509\) 2.11679 0.0938250 0.0469125 0.998899i \(-0.485062\pi\)
0.0469125 + 0.998899i \(0.485062\pi\)
\(510\) 0 0
\(511\) 0.755435 0.0334185
\(512\) 25.5885 1.13086
\(513\) 0 0
\(514\) 32.4140 1.42972
\(515\) 6.05839 0.266965
\(516\) 0 0
\(517\) −1.61847 −0.0711802
\(518\) −9.35601 −0.411080
\(519\) 0 0
\(520\) 2.24190 0.0983136
\(521\) 8.60748 0.377101 0.188550 0.982064i \(-0.439621\pi\)
0.188550 + 0.982064i \(0.439621\pi\)
\(522\) 0 0
\(523\) 36.8349 1.61068 0.805340 0.592814i \(-0.201983\pi\)
0.805340 + 0.592814i \(0.201983\pi\)
\(524\) −40.1800 −1.75527
\(525\) 0 0
\(526\) 32.6113 1.42192
\(527\) −51.0130 −2.22216
\(528\) 0 0
\(529\) 21.2474 0.923799
\(530\) 5.55635 0.241353
\(531\) 0 0
\(532\) 8.04156 0.348646
\(533\) −5.00125 −0.216628
\(534\) 0 0
\(535\) −20.3848 −0.881313
\(536\) −19.9917 −0.863509
\(537\) 0 0
\(538\) −24.6814 −1.06409
\(539\) 2.91661 0.125627
\(540\) 0 0
\(541\) −32.0079 −1.37613 −0.688063 0.725651i \(-0.741539\pi\)
−0.688063 + 0.725651i \(0.741539\pi\)
\(542\) 4.63018 0.198883
\(543\) 0 0
\(544\) 60.6875 2.60196
\(545\) 4.72710 0.202487
\(546\) 0 0
\(547\) 17.6240 0.753550 0.376775 0.926305i \(-0.377033\pi\)
0.376775 + 0.926305i \(0.377033\pi\)
\(548\) 2.10581 0.0899559
\(549\) 0 0
\(550\) 2.36700 0.100929
\(551\) −7.75669 −0.330446
\(552\) 0 0
\(553\) −29.1533 −1.23972
\(554\) 50.1769 2.13181
\(555\) 0 0
\(556\) −33.0711 −1.40253
\(557\) 34.6865 1.46972 0.734858 0.678221i \(-0.237249\pi\)
0.734858 + 0.678221i \(0.237249\pi\)
\(558\) 0 0
\(559\) 5.50648 0.232899
\(560\) −7.67456 −0.324309
\(561\) 0 0
\(562\) −55.0229 −2.32100
\(563\) −13.5073 −0.569263 −0.284632 0.958637i \(-0.591871\pi\)
−0.284632 + 0.958637i \(0.591871\pi\)
\(564\) 0 0
\(565\) 7.98316 0.335854
\(566\) 15.8238 0.665122
\(567\) 0 0
\(568\) −9.03366 −0.379044
\(569\) −32.3588 −1.35655 −0.678276 0.734807i \(-0.737273\pi\)
−0.678276 + 0.734807i \(0.737273\pi\)
\(570\) 0 0
\(571\) −8.93293 −0.373831 −0.186916 0.982376i \(-0.559849\pi\)
−0.186916 + 0.982376i \(0.559849\pi\)
\(572\) 5.07496 0.212195
\(573\) 0 0
\(574\) −18.7579 −0.782941
\(575\) 6.65187 0.277402
\(576\) 0 0
\(577\) 14.9059 0.620541 0.310270 0.950648i \(-0.399580\pi\)
0.310270 + 0.950648i \(0.399580\pi\)
\(578\) 92.4808 3.84669
\(579\) 0 0
\(580\) −20.0900 −0.834193
\(581\) −27.5134 −1.14145
\(582\) 0 0
\(583\) 2.86532 0.118669
\(584\) 0.307566 0.0127272
\(585\) 0 0
\(586\) 51.7446 2.13755
\(587\) −7.37207 −0.304278 −0.152139 0.988359i \(-0.548616\pi\)
−0.152139 + 0.988359i \(0.548616\pi\)
\(588\) 0 0
\(589\) 6.57664 0.270986
\(590\) 11.5471 0.475385
\(591\) 0 0
\(592\) 3.47668 0.142890
\(593\) 17.6853 0.726247 0.363124 0.931741i \(-0.381710\pi\)
0.363124 + 0.931741i \(0.381710\pi\)
\(594\) 0 0
\(595\) −24.0831 −0.987312
\(596\) 35.7378 1.46388
\(597\) 0 0
\(598\) 25.2749 1.03357
\(599\) −5.30657 −0.216821 −0.108410 0.994106i \(-0.534576\pi\)
−0.108410 + 0.994106i \(0.534576\pi\)
\(600\) 0 0
\(601\) 43.7875 1.78613 0.893065 0.449927i \(-0.148550\pi\)
0.893065 + 0.449927i \(0.148550\pi\)
\(602\) 20.6529 0.841747
\(603\) 0 0
\(604\) 13.0089 0.529324
\(605\) −9.77938 −0.397588
\(606\) 0 0
\(607\) −7.24535 −0.294080 −0.147040 0.989131i \(-0.546975\pi\)
−0.147040 + 0.989131i \(0.546975\pi\)
\(608\) −7.82389 −0.317301
\(609\) 0 0
\(610\) 8.73091 0.353504
\(611\) −2.59807 −0.105107
\(612\) 0 0
\(613\) 20.8962 0.843988 0.421994 0.906599i \(-0.361330\pi\)
0.421994 + 0.906599i \(0.361330\pi\)
\(614\) 9.39419 0.379119
\(615\) 0 0
\(616\) 4.33616 0.174709
\(617\) 22.0494 0.887677 0.443839 0.896107i \(-0.353616\pi\)
0.443839 + 0.896107i \(0.353616\pi\)
\(618\) 0 0
\(619\) −0.0484607 −0.00194780 −0.000973900 1.00000i \(-0.500310\pi\)
−0.000973900 1.00000i \(0.500310\pi\)
\(620\) 17.0337 0.684088
\(621\) 0 0
\(622\) 33.6626 1.34975
\(623\) −2.52437 −0.101137
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 53.0882 2.12183
\(627\) 0 0
\(628\) 18.6144 0.742795
\(629\) 10.9100 0.435009
\(630\) 0 0
\(631\) −32.6182 −1.29851 −0.649255 0.760571i \(-0.724919\pi\)
−0.649255 + 0.760571i \(0.724919\pi\)
\(632\) −11.8694 −0.472140
\(633\) 0 0
\(634\) 58.6593 2.32966
\(635\) 4.63503 0.183936
\(636\) 0 0
\(637\) 4.68193 0.185505
\(638\) −18.3601 −0.726883
\(639\) 0 0
\(640\) −9.67265 −0.382345
\(641\) 13.4136 0.529806 0.264903 0.964275i \(-0.414660\pi\)
0.264903 + 0.964275i \(0.414660\pi\)
\(642\) 0 0
\(643\) 23.8052 0.938783 0.469392 0.882990i \(-0.344473\pi\)
0.469392 + 0.882990i \(0.344473\pi\)
\(644\) 53.4914 2.10786
\(645\) 0 0
\(646\) −16.6182 −0.653834
\(647\) 48.4580 1.90508 0.952540 0.304412i \(-0.0984601\pi\)
0.952540 + 0.304412i \(0.0984601\pi\)
\(648\) 0 0
\(649\) 5.95463 0.233740
\(650\) 3.79966 0.149035
\(651\) 0 0
\(652\) 18.7914 0.735926
\(653\) −22.2351 −0.870128 −0.435064 0.900399i \(-0.643274\pi\)
−0.435064 + 0.900399i \(0.643274\pi\)
\(654\) 0 0
\(655\) −15.5134 −0.606158
\(656\) 6.97041 0.272149
\(657\) 0 0
\(658\) −9.74445 −0.379878
\(659\) 10.7072 0.417095 0.208547 0.978012i \(-0.433126\pi\)
0.208547 + 0.978012i \(0.433126\pi\)
\(660\) 0 0
\(661\) −44.7980 −1.74244 −0.871220 0.490893i \(-0.836670\pi\)
−0.871220 + 0.490893i \(0.836670\pi\)
\(662\) 10.0702 0.391388
\(663\) 0 0
\(664\) −11.2017 −0.434712
\(665\) 3.10482 0.120400
\(666\) 0 0
\(667\) −51.5965 −1.99782
\(668\) 18.9882 0.734677
\(669\) 0 0
\(670\) −33.8828 −1.30901
\(671\) 4.50239 0.173813
\(672\) 0 0
\(673\) −43.2772 −1.66821 −0.834106 0.551604i \(-0.814016\pi\)
−0.834106 + 0.551604i \(0.814016\pi\)
\(674\) −44.2113 −1.70296
\(675\) 0 0
\(676\) −25.5237 −0.981680
\(677\) −11.5330 −0.443251 −0.221625 0.975132i \(-0.571136\pi\)
−0.221625 + 0.975132i \(0.571136\pi\)
\(678\) 0 0
\(679\) 9.92575 0.380915
\(680\) −9.80515 −0.376010
\(681\) 0 0
\(682\) 15.5669 0.596088
\(683\) −0.916090 −0.0350532 −0.0175266 0.999846i \(-0.505579\pi\)
−0.0175266 + 0.999846i \(0.505579\pi\)
\(684\) 0 0
\(685\) 0.813048 0.0310650
\(686\) −29.0028 −1.10733
\(687\) 0 0
\(688\) −7.67456 −0.292590
\(689\) 4.59960 0.175231
\(690\) 0 0
\(691\) 14.8278 0.564077 0.282039 0.959403i \(-0.408989\pi\)
0.282039 + 0.959403i \(0.408989\pi\)
\(692\) 14.9536 0.568450
\(693\) 0 0
\(694\) −64.3047 −2.44097
\(695\) −12.7687 −0.484343
\(696\) 0 0
\(697\) 21.8735 0.828517
\(698\) −31.5666 −1.19481
\(699\) 0 0
\(700\) 8.04156 0.303942
\(701\) −36.1722 −1.36620 −0.683102 0.730323i \(-0.739369\pi\)
−0.683102 + 0.730323i \(0.739369\pi\)
\(702\) 0 0
\(703\) −1.40652 −0.0530481
\(704\) −13.0573 −0.492117
\(705\) 0 0
\(706\) 63.4807 2.38913
\(707\) 9.37305 0.352510
\(708\) 0 0
\(709\) 10.4331 0.391823 0.195911 0.980622i \(-0.437234\pi\)
0.195911 + 0.980622i \(0.437234\pi\)
\(710\) −15.3106 −0.574598
\(711\) 0 0
\(712\) −1.02777 −0.0385171
\(713\) 43.7470 1.63834
\(714\) 0 0
\(715\) 1.95942 0.0732783
\(716\) 11.6131 0.434003
\(717\) 0 0
\(718\) −46.6144 −1.73963
\(719\) −7.73373 −0.288420 −0.144210 0.989547i \(-0.546064\pi\)
−0.144210 + 0.989547i \(0.546064\pi\)
\(720\) 0 0
\(721\) 18.8102 0.700529
\(722\) 2.14243 0.0797331
\(723\) 0 0
\(724\) −7.08114 −0.263168
\(725\) −7.75669 −0.288076
\(726\) 0 0
\(727\) −39.5241 −1.46587 −0.732934 0.680300i \(-0.761849\pi\)
−0.732934 + 0.680300i \(0.761849\pi\)
\(728\) 6.96068 0.257980
\(729\) 0 0
\(730\) 0.521277 0.0192933
\(731\) −24.0831 −0.890746
\(732\) 0 0
\(733\) 50.7498 1.87449 0.937243 0.348677i \(-0.113369\pi\)
0.937243 + 0.348677i \(0.113369\pi\)
\(734\) 64.3473 2.37510
\(735\) 0 0
\(736\) −52.0435 −1.91835
\(737\) −17.4728 −0.643619
\(738\) 0 0
\(739\) 0.419276 0.0154233 0.00771165 0.999970i \(-0.497545\pi\)
0.00771165 + 0.999970i \(0.497545\pi\)
\(740\) −3.64293 −0.133917
\(741\) 0 0
\(742\) 17.2515 0.633321
\(743\) −19.5511 −0.717259 −0.358630 0.933480i \(-0.616756\pi\)
−0.358630 + 0.933480i \(0.616756\pi\)
\(744\) 0 0
\(745\) 13.7982 0.505529
\(746\) −79.9246 −2.92625
\(747\) 0 0
\(748\) −22.1958 −0.811560
\(749\) −63.2912 −2.31261
\(750\) 0 0
\(751\) 8.76768 0.319937 0.159969 0.987122i \(-0.448861\pi\)
0.159969 + 0.987122i \(0.448861\pi\)
\(752\) 3.62102 0.132045
\(753\) 0 0
\(754\) −29.4728 −1.07334
\(755\) 5.02269 0.182794
\(756\) 0 0
\(757\) −48.0535 −1.74653 −0.873267 0.487241i \(-0.838003\pi\)
−0.873267 + 0.487241i \(0.838003\pi\)
\(758\) −31.6638 −1.15008
\(759\) 0 0
\(760\) 1.26409 0.0458533
\(761\) −29.3947 −1.06556 −0.532779 0.846254i \(-0.678852\pi\)
−0.532779 + 0.846254i \(0.678852\pi\)
\(762\) 0 0
\(763\) 14.6768 0.531336
\(764\) 45.9031 1.66071
\(765\) 0 0
\(766\) 62.1350 2.24503
\(767\) 9.55875 0.345146
\(768\) 0 0
\(769\) −13.3790 −0.482458 −0.241229 0.970468i \(-0.577551\pi\)
−0.241229 + 0.970468i \(0.577551\pi\)
\(770\) 7.34911 0.264844
\(771\) 0 0
\(772\) −35.0615 −1.26189
\(773\) −0.133625 −0.00480617 −0.00240309 0.999997i \(-0.500765\pi\)
−0.00240309 + 0.999997i \(0.500765\pi\)
\(774\) 0 0
\(775\) 6.57664 0.236240
\(776\) 4.04115 0.145069
\(777\) 0 0
\(778\) −45.4167 −1.62827
\(779\) −2.81995 −0.101035
\(780\) 0 0
\(781\) −7.89545 −0.282522
\(782\) −110.542 −3.95298
\(783\) 0 0
\(784\) −6.52536 −0.233049
\(785\) 7.18695 0.256513
\(786\) 0 0
\(787\) −4.84060 −0.172549 −0.0862744 0.996271i \(-0.527496\pi\)
−0.0862744 + 0.996271i \(0.527496\pi\)
\(788\) 55.7202 1.98495
\(789\) 0 0
\(790\) −20.1168 −0.715723
\(791\) 24.7863 0.881299
\(792\) 0 0
\(793\) 7.22753 0.256657
\(794\) 22.2505 0.789640
\(795\) 0 0
\(796\) 18.3739 0.651246
\(797\) −11.6993 −0.414410 −0.207205 0.978298i \(-0.566437\pi\)
−0.207205 + 0.978298i \(0.566437\pi\)
\(798\) 0 0
\(799\) 11.3629 0.401991
\(800\) −7.82389 −0.276616
\(801\) 0 0
\(802\) −54.9831 −1.94152
\(803\) 0.268814 0.00948624
\(804\) 0 0
\(805\) 20.6529 0.727917
\(806\) 24.9890 0.880200
\(807\) 0 0
\(808\) 3.81613 0.134251
\(809\) 33.1987 1.16720 0.583601 0.812040i \(-0.301643\pi\)
0.583601 + 0.812040i \(0.301643\pi\)
\(810\) 0 0
\(811\) −26.5766 −0.933232 −0.466616 0.884460i \(-0.654527\pi\)
−0.466616 + 0.884460i \(0.654527\pi\)
\(812\) −62.3759 −2.18896
\(813\) 0 0
\(814\) −3.32924 −0.116690
\(815\) 7.25528 0.254141
\(816\) 0 0
\(817\) 3.10482 0.108624
\(818\) 12.2464 0.428185
\(819\) 0 0
\(820\) −7.30374 −0.255058
\(821\) −25.5807 −0.892773 −0.446387 0.894840i \(-0.647289\pi\)
−0.446387 + 0.894840i \(0.647289\pi\)
\(822\) 0 0
\(823\) 12.9783 0.452395 0.226198 0.974081i \(-0.427371\pi\)
0.226198 + 0.974081i \(0.427371\pi\)
\(824\) 7.65835 0.266791
\(825\) 0 0
\(826\) 35.8515 1.24743
\(827\) 12.5167 0.435248 0.217624 0.976033i \(-0.430169\pi\)
0.217624 + 0.976033i \(0.430169\pi\)
\(828\) 0 0
\(829\) −19.4391 −0.675149 −0.337574 0.941299i \(-0.609606\pi\)
−0.337574 + 0.941299i \(0.609606\pi\)
\(830\) −18.9852 −0.658986
\(831\) 0 0
\(832\) −20.9605 −0.726674
\(833\) −20.4769 −0.709482
\(834\) 0 0
\(835\) 7.33129 0.253710
\(836\) 2.86151 0.0989673
\(837\) 0 0
\(838\) −33.0583 −1.14198
\(839\) 43.9972 1.51895 0.759475 0.650536i \(-0.225456\pi\)
0.759475 + 0.650536i \(0.225456\pi\)
\(840\) 0 0
\(841\) 31.1662 1.07470
\(842\) −2.52818 −0.0871268
\(843\) 0 0
\(844\) 28.6468 0.986063
\(845\) −9.85461 −0.339009
\(846\) 0 0
\(847\) −30.3632 −1.04329
\(848\) −6.41061 −0.220141
\(849\) 0 0
\(850\) −16.6182 −0.569999
\(851\) −9.35601 −0.320720
\(852\) 0 0
\(853\) 3.30374 0.113118 0.0565590 0.998399i \(-0.481987\pi\)
0.0565590 + 0.998399i \(0.481987\pi\)
\(854\) 27.1079 0.927614
\(855\) 0 0
\(856\) −25.7682 −0.880740
\(857\) −6.02374 −0.205767 −0.102883 0.994693i \(-0.532807\pi\)
−0.102883 + 0.994693i \(0.532807\pi\)
\(858\) 0 0
\(859\) −36.0158 −1.22884 −0.614421 0.788978i \(-0.710610\pi\)
−0.614421 + 0.788978i \(0.710610\pi\)
\(860\) 8.04156 0.274215
\(861\) 0 0
\(862\) 30.0487 1.02346
\(863\) −29.9250 −1.01866 −0.509329 0.860572i \(-0.670106\pi\)
−0.509329 + 0.860572i \(0.670106\pi\)
\(864\) 0 0
\(865\) 5.77353 0.196306
\(866\) 54.8236 1.86298
\(867\) 0 0
\(868\) 52.8864 1.79508
\(869\) −10.3739 −0.351911
\(870\) 0 0
\(871\) −28.0485 −0.950386
\(872\) 5.97548 0.202355
\(873\) 0 0
\(874\) 14.2512 0.482054
\(875\) 3.10482 0.104962
\(876\) 0 0
\(877\) 0.618980 0.0209015 0.0104507 0.999945i \(-0.496673\pi\)
0.0104507 + 0.999945i \(0.496673\pi\)
\(878\) −47.0762 −1.58874
\(879\) 0 0
\(880\) −2.73091 −0.0920591
\(881\) 21.2423 0.715672 0.357836 0.933784i \(-0.383515\pi\)
0.357836 + 0.933784i \(0.383515\pi\)
\(882\) 0 0
\(883\) −48.8971 −1.64552 −0.822760 0.568389i \(-0.807567\pi\)
−0.822760 + 0.568389i \(0.807567\pi\)
\(884\) −35.6302 −1.19837
\(885\) 0 0
\(886\) 41.5034 1.39433
\(887\) −58.2797 −1.95684 −0.978421 0.206622i \(-0.933753\pi\)
−0.978421 + 0.206622i \(0.933753\pi\)
\(888\) 0 0
\(889\) 14.3909 0.482657
\(890\) −1.74190 −0.0583887
\(891\) 0 0
\(892\) −32.7251 −1.09572
\(893\) −1.46492 −0.0490216
\(894\) 0 0
\(895\) 4.48379 0.149877
\(896\) −30.0318 −1.00329
\(897\) 0 0
\(898\) 41.1007 1.37155
\(899\) −51.0130 −1.70138
\(900\) 0 0
\(901\) −20.1168 −0.670187
\(902\) −6.67483 −0.222247
\(903\) 0 0
\(904\) 10.0914 0.335636
\(905\) −2.73400 −0.0908814
\(906\) 0 0
\(907\) −36.5154 −1.21247 −0.606237 0.795284i \(-0.707322\pi\)
−0.606237 + 0.795284i \(0.707322\pi\)
\(908\) 17.1670 0.569708
\(909\) 0 0
\(910\) 11.7973 0.391076
\(911\) −6.62735 −0.219574 −0.109787 0.993955i \(-0.535017\pi\)
−0.109787 + 0.993955i \(0.535017\pi\)
\(912\) 0 0
\(913\) −9.79036 −0.324014
\(914\) 17.9110 0.592442
\(915\) 0 0
\(916\) −0.194850 −0.00643802
\(917\) −48.1662 −1.59059
\(918\) 0 0
\(919\) 7.91688 0.261154 0.130577 0.991438i \(-0.458317\pi\)
0.130577 + 0.991438i \(0.458317\pi\)
\(920\) 8.40856 0.277222
\(921\) 0 0
\(922\) 53.6182 1.76582
\(923\) −12.6743 −0.417179
\(924\) 0 0
\(925\) −1.40652 −0.0462462
\(926\) 69.3611 2.27935
\(927\) 0 0
\(928\) 60.6875 1.99217
\(929\) −35.8597 −1.17652 −0.588259 0.808673i \(-0.700186\pi\)
−0.588259 + 0.808673i \(0.700186\pi\)
\(930\) 0 0
\(931\) 2.63990 0.0865192
\(932\) −24.6399 −0.807106
\(933\) 0 0
\(934\) −32.6113 −1.06707
\(935\) −8.56974 −0.280260
\(936\) 0 0
\(937\) −11.4420 −0.373793 −0.186896 0.982380i \(-0.559843\pi\)
−0.186896 + 0.982380i \(0.559843\pi\)
\(938\) −105.200 −3.43490
\(939\) 0 0
\(940\) −3.79418 −0.123752
\(941\) 0.360100 0.0117389 0.00586945 0.999983i \(-0.498132\pi\)
0.00586945 + 0.999983i \(0.498132\pi\)
\(942\) 0 0
\(943\) −18.7579 −0.610843
\(944\) −13.3223 −0.433605
\(945\) 0 0
\(946\) 7.34911 0.238940
\(947\) −2.63807 −0.0857256 −0.0428628 0.999081i \(-0.513648\pi\)
−0.0428628 + 0.999081i \(0.513648\pi\)
\(948\) 0 0
\(949\) 0.431517 0.0140076
\(950\) 2.14243 0.0695097
\(951\) 0 0
\(952\) −30.4432 −0.986670
\(953\) −10.4430 −0.338282 −0.169141 0.985592i \(-0.554099\pi\)
−0.169141 + 0.985592i \(0.554099\pi\)
\(954\) 0 0
\(955\) 17.7230 0.573503
\(956\) 7.58835 0.245425
\(957\) 0 0
\(958\) 42.9525 1.38773
\(959\) 2.52437 0.0815160
\(960\) 0 0
\(961\) 12.2522 0.395232
\(962\) −5.34432 −0.172308
\(963\) 0 0
\(964\) −24.4173 −0.786428
\(965\) −13.5371 −0.435775
\(966\) 0 0
\(967\) 33.2732 1.06999 0.534996 0.844854i \(-0.320313\pi\)
0.534996 + 0.844854i \(0.320313\pi\)
\(968\) −12.3620 −0.397330
\(969\) 0 0
\(970\) 6.84912 0.219912
\(971\) −23.5657 −0.756258 −0.378129 0.925753i \(-0.623432\pi\)
−0.378129 + 0.925753i \(0.623432\pi\)
\(972\) 0 0
\(973\) −39.6444 −1.27094
\(974\) −67.8098 −2.17277
\(975\) 0 0
\(976\) −10.0732 −0.322437
\(977\) −0.402439 −0.0128752 −0.00643759 0.999979i \(-0.502049\pi\)
−0.00643759 + 0.999979i \(0.502049\pi\)
\(978\) 0 0
\(979\) −0.898271 −0.0287089
\(980\) 6.83741 0.218413
\(981\) 0 0
\(982\) −53.1395 −1.69575
\(983\) −11.4927 −0.366561 −0.183281 0.983061i \(-0.558672\pi\)
−0.183281 + 0.983061i \(0.558672\pi\)
\(984\) 0 0
\(985\) 21.5134 0.685473
\(986\) 128.902 4.10508
\(987\) 0 0
\(988\) 4.59348 0.146138
\(989\) 20.6529 0.656723
\(990\) 0 0
\(991\) 6.05761 0.192426 0.0962132 0.995361i \(-0.469327\pi\)
0.0962132 + 0.995361i \(0.469327\pi\)
\(992\) −51.4549 −1.63370
\(993\) 0 0
\(994\) −47.5368 −1.50777
\(995\) 7.09410 0.224898
\(996\) 0 0
\(997\) −48.1086 −1.52362 −0.761808 0.647803i \(-0.775688\pi\)
−0.761808 + 0.647803i \(0.775688\pi\)
\(998\) −70.7510 −2.23959
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 855.2.a.m.1.3 4
3.2 odd 2 95.2.a.b.1.2 4
5.4 even 2 4275.2.a.bo.1.2 4
12.11 even 2 1520.2.a.t.1.4 4
15.2 even 4 475.2.b.e.324.2 8
15.8 even 4 475.2.b.e.324.7 8
15.14 odd 2 475.2.a.i.1.3 4
21.20 even 2 4655.2.a.y.1.2 4
24.5 odd 2 6080.2.a.cc.1.4 4
24.11 even 2 6080.2.a.ch.1.1 4
57.56 even 2 1805.2.a.p.1.3 4
60.59 even 2 7600.2.a.cf.1.1 4
285.284 even 2 9025.2.a.bf.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
95.2.a.b.1.2 4 3.2 odd 2
475.2.a.i.1.3 4 15.14 odd 2
475.2.b.e.324.2 8 15.2 even 4
475.2.b.e.324.7 8 15.8 even 4
855.2.a.m.1.3 4 1.1 even 1 trivial
1520.2.a.t.1.4 4 12.11 even 2
1805.2.a.p.1.3 4 57.56 even 2
4275.2.a.bo.1.2 4 5.4 even 2
4655.2.a.y.1.2 4 21.20 even 2
6080.2.a.cc.1.4 4 24.5 odd 2
6080.2.a.ch.1.1 4 24.11 even 2
7600.2.a.cf.1.1 4 60.59 even 2
9025.2.a.bf.1.2 4 285.284 even 2