Properties

Label 8526.2.a.cb
Level $8526$
Weight $2$
Character orbit 8526.a
Self dual yes
Analytic conductor $68.080$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8526,2,Mod(1,8526)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8526, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8526.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 8526 = 2 \cdot 3 \cdot 7^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8526.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,3,3,3,-1,3,0,3,3,-1,-7,3,-7] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(68.0804527633\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: \(\Q(\zeta_{14})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 2x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1218)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{2} + q^{3} + q^{4} - \beta_1 q^{5} + q^{6} + q^{8} + q^{9} - \beta_1 q^{10} + (\beta_{2} - 2) q^{11} + q^{12} + (2 \beta_{2} + \beta_1 - 2) q^{13} - \beta_1 q^{15} + q^{16} + ( - 3 \beta_{2} + \beta_1 - 2) q^{17}+ \cdots + (\beta_{2} - 2) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 3 q^{2} + 3 q^{3} + 3 q^{4} - q^{5} + 3 q^{6} + 3 q^{8} + 3 q^{9} - q^{10} - 7 q^{11} + 3 q^{12} - 7 q^{13} - q^{15} + 3 q^{16} - 2 q^{17} + 3 q^{18} + 2 q^{19} - q^{20} - 7 q^{22} - 8 q^{23}+ \cdots - 7 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of \(\nu = \zeta_{14} + \zeta_{14}^{-1}\):

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
1.80194
0.445042
−1.24698
1.00000 1.00000 1.00000 −1.80194 1.00000 0 1.00000 1.00000 −1.80194
1.2 1.00000 1.00000 1.00000 −0.445042 1.00000 0 1.00000 1.00000 −0.445042
1.3 1.00000 1.00000 1.00000 1.24698 1.00000 0 1.00000 1.00000 1.24698
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)
\(7\) \( +1 \)
\(29\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 8526.2.a.cb 3
7.b odd 2 1 8526.2.a.bz 3
7.c even 3 2 1218.2.i.a 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1218.2.i.a 6 7.c even 3 2
8526.2.a.bz 3 7.b odd 2 1
8526.2.a.cb 3 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(8526))\):

\( T_{5}^{3} + T_{5}^{2} - 2T_{5} - 1 \) Copy content Toggle raw display
\( T_{11}^{3} + 7T_{11}^{2} + 14T_{11} + 7 \) Copy content Toggle raw display
\( T_{13}^{3} + 7T_{13}^{2} - 49 \) Copy content Toggle raw display
\( T_{17}^{3} + 2T_{17}^{2} - 15T_{17} - 29 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 1)^{3} \) Copy content Toggle raw display
$3$ \( (T - 1)^{3} \) Copy content Toggle raw display
$5$ \( T^{3} + T^{2} - 2T - 1 \) Copy content Toggle raw display
$7$ \( T^{3} \) Copy content Toggle raw display
$11$ \( T^{3} + 7 T^{2} + \cdots + 7 \) Copy content Toggle raw display
$13$ \( T^{3} + 7T^{2} - 49 \) Copy content Toggle raw display
$17$ \( T^{3} + 2 T^{2} + \cdots - 29 \) Copy content Toggle raw display
$19$ \( T^{3} - 2 T^{2} + \cdots + 29 \) Copy content Toggle raw display
$23$ \( T^{3} + 8 T^{2} + \cdots - 113 \) Copy content Toggle raw display
$29$ \( (T + 1)^{3} \) Copy content Toggle raw display
$31$ \( T^{3} - 4 T^{2} + \cdots - 41 \) Copy content Toggle raw display
$37$ \( T^{3} + 15 T^{2} + \cdots - 617 \) Copy content Toggle raw display
$41$ \( T^{3} + 13 T^{2} + \cdots - 377 \) Copy content Toggle raw display
$43$ \( T^{3} + 11 T^{2} + \cdots - 43 \) Copy content Toggle raw display
$47$ \( T^{3} - T^{2} - 2T + 1 \) Copy content Toggle raw display
$53$ \( T^{3} + 14T^{2} - 392 \) Copy content Toggle raw display
$59$ \( T^{3} - 22 T^{2} + \cdots - 328 \) Copy content Toggle raw display
$61$ \( T^{3} + 4 T^{2} + \cdots - 533 \) Copy content Toggle raw display
$67$ \( T^{3} + 13 T^{2} + \cdots + 1 \) Copy content Toggle raw display
$71$ \( T^{3} + 3 T^{2} + \cdots - 433 \) Copy content Toggle raw display
$73$ \( T^{3} + 6 T^{2} + \cdots - 181 \) Copy content Toggle raw display
$79$ \( T^{3} + 15 T^{2} + \cdots - 1107 \) Copy content Toggle raw display
$83$ \( T^{3} + 9 T^{2} + \cdots + 13 \) Copy content Toggle raw display
$89$ \( T^{3} + 7 T^{2} + \cdots - 91 \) Copy content Toggle raw display
$97$ \( T^{3} + 17 T^{2} + \cdots + 43 \) Copy content Toggle raw display
show more
show less