gp: [N,k,chi] = [8512,2,Mod(1,8512)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(8512, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("8512.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [2,0,-3,0,2,0,-2]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of β = 1 2 ( 1 + 5 ) \beta = \frac{1}{2}(1 + \sqrt{5}) β = 2 1 ( 1 + 5 ) .
We also show the integral q q q -expansion of the trace form .
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
p p p
Sign
2 2 2
− 1 -1 − 1
7 7 7
+ 1 +1 + 1
19 19 1 9
+ 1 +1 + 1
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 2 n e w ( Γ 0 ( 8512 ) ) S_{2}^{\mathrm{new}}(\Gamma_0(8512)) S 2 n e w ( Γ 0 ( 8 5 1 2 ) ) :
T 3 2 + 3 T 3 + 1 T_{3}^{2} + 3T_{3} + 1 T 3 2 + 3 T 3 + 1
T3^2 + 3*T3 + 1
T 5 − 1 T_{5} - 1 T 5 − 1
T5 - 1
T 11 2 − T 11 − 31 T_{11}^{2} - T_{11} - 31 T 1 1 2 − T 1 1 − 3 1
T11^2 - T11 - 31
T 23 2 − 4 T 23 − 41 T_{23}^{2} - 4T_{23} - 41 T 2 3 2 − 4 T 2 3 − 4 1
T23^2 - 4*T23 - 41
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 2 T^{2} T 2
T^2
3 3 3
T 2 + 3 T + 1 T^{2} + 3T + 1 T 2 + 3 T + 1
T^2 + 3*T + 1
5 5 5
( T − 1 ) 2 (T - 1)^{2} ( T − 1 ) 2
(T - 1)^2
7 7 7
( T + 1 ) 2 (T + 1)^{2} ( T + 1 ) 2
(T + 1)^2
11 11 1 1
T 2 − T − 31 T^{2} - T - 31 T 2 − T − 3 1
T^2 - T - 31
13 13 1 3
T 2 − 5 T^{2} - 5 T 2 − 5
T^2 - 5
17 17 1 7
T 2 + 13 T + 41 T^{2} + 13T + 41 T 2 + 1 3 T + 4 1
T^2 + 13*T + 41
19 19 1 9
( T + 1 ) 2 (T + 1)^{2} ( T + 1 ) 2
(T + 1)^2
23 23 2 3
T 2 − 4 T − 41 T^{2} - 4T - 41 T 2 − 4 T − 4 1
T^2 - 4*T - 41
29 29 2 9
T 2 − 5 T − 5 T^{2} - 5T - 5 T 2 − 5 T − 5
T^2 - 5*T - 5
31 31 3 1
T 2 − 7 T + 11 T^{2} - 7T + 11 T 2 − 7 T + 1 1
T^2 - 7*T + 11
37 37 3 7
T 2 − 45 T^{2} - 45 T 2 − 4 5
T^2 - 45
41 41 4 1
T 2 + 11 T − 1 T^{2} + 11T - 1 T 2 + 1 1 T − 1
T^2 + 11*T - 1
43 43 4 3
T 2 − 8 T − 4 T^{2} - 8T - 4 T 2 − 8 T − 4
T^2 - 8*T - 4
47 47 4 7
T 2 − 4 T − 41 T^{2} - 4T - 41 T 2 − 4 T − 4 1
T^2 - 4*T - 41
53 53 5 3
T 2 − 13 T − 19 T^{2} - 13T - 19 T 2 − 1 3 T − 1 9
T^2 - 13*T - 19
59 59 5 9
T 2 + 8 T − 29 T^{2} + 8T - 29 T 2 + 8 T − 2 9
T^2 + 8*T - 29
61 61 6 1
T 2 + 2 T − 19 T^{2} + 2T - 19 T 2 + 2 T − 1 9
T^2 + 2*T - 19
67 67 6 7
T 2 − 7 T − 19 T^{2} - 7T - 19 T 2 − 7 T − 1 9
T^2 - 7*T - 19
71 71 7 1
T 2 − 125 T^{2} - 125 T 2 − 1 2 5
T^2 - 125
73 73 7 3
T 2 + 13 T + 11 T^{2} + 13T + 11 T 2 + 1 3 T + 1 1
T^2 + 13*T + 11
79 79 7 9
T 2 + 4 T − 76 T^{2} + 4T - 76 T 2 + 4 T − 7 6
T^2 + 4*T - 76
83 83 8 3
T 2 − 27 T + 181 T^{2} - 27T + 181 T 2 − 2 7 T + 1 8 1
T^2 - 27*T + 181
89 89 8 9
T 2 + 2 T − 124 T^{2} + 2T - 124 T 2 + 2 T − 1 2 4
T^2 + 2*T - 124
97 97 9 7
T 2 − 4 T − 41 T^{2} - 4T - 41 T 2 − 4 T − 4 1
T^2 - 4*T - 41
show more
show less