Properties

Label 850.2.b.a
Level $850$
Weight $2$
Character orbit 850.b
Analytic conductor $6.787$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [850,2,Mod(101,850)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(850, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("850.101"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 850 = 2 \cdot 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 850.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-2,0,2,0,0,0,-2,-12,0,0,0,-2,0,0,2,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.78728417181\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 170)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{2} + 3 i q^{3} + q^{4} - 3 i q^{6} - 4 i q^{7} - q^{8} - 6 q^{9} - 2 i q^{11} + 3 i q^{12} - q^{13} + 4 i q^{14} + q^{16} + ( - i + 4) q^{17} + 6 q^{18} + 7 q^{19} + 12 q^{21} + 2 i q^{22} + \cdots + 12 i q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} + 2 q^{4} - 2 q^{8} - 12 q^{9} - 2 q^{13} + 2 q^{16} + 8 q^{17} + 12 q^{18} + 14 q^{19} + 24 q^{21} + 2 q^{26} - 2 q^{32} + 12 q^{33} - 8 q^{34} - 12 q^{36} - 14 q^{38} - 24 q^{42} + 16 q^{43}+ \cdots + 18 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/850\mathbb{Z}\right)^\times\).

\(n\) \(477\) \(751\)
\(\chi(n)\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
101.1
1.00000i
1.00000i
−1.00000 3.00000i 1.00000 0 3.00000i 4.00000i −1.00000 −6.00000 0
101.2 −1.00000 3.00000i 1.00000 0 3.00000i 4.00000i −1.00000 −6.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
17.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 850.2.b.a 2
5.b even 2 1 170.2.b.b 2
5.c odd 4 1 850.2.d.a 2
5.c odd 4 1 850.2.d.h 2
15.d odd 2 1 1530.2.c.b 2
17.b even 2 1 inner 850.2.b.a 2
20.d odd 2 1 1360.2.c.a 2
85.c even 2 1 170.2.b.b 2
85.g odd 4 1 850.2.d.a 2
85.g odd 4 1 850.2.d.h 2
85.j even 4 1 2890.2.a.a 1
85.j even 4 1 2890.2.a.l 1
255.h odd 2 1 1530.2.c.b 2
340.d odd 2 1 1360.2.c.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
170.2.b.b 2 5.b even 2 1
170.2.b.b 2 85.c even 2 1
850.2.b.a 2 1.a even 1 1 trivial
850.2.b.a 2 17.b even 2 1 inner
850.2.d.a 2 5.c odd 4 1
850.2.d.a 2 85.g odd 4 1
850.2.d.h 2 5.c odd 4 1
850.2.d.h 2 85.g odd 4 1
1360.2.c.a 2 20.d odd 2 1
1360.2.c.a 2 340.d odd 2 1
1530.2.c.b 2 15.d odd 2 1
1530.2.c.b 2 255.h odd 2 1
2890.2.a.a 1 85.j even 4 1
2890.2.a.l 1 85.j even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(850, [\chi])\):

\( T_{3}^{2} + 9 \) Copy content Toggle raw display
\( T_{7}^{2} + 16 \) Copy content Toggle raw display
\( T_{13} + 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 1)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 9 \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 16 \) Copy content Toggle raw display
$11$ \( T^{2} + 4 \) Copy content Toggle raw display
$13$ \( (T + 1)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} - 8T + 17 \) Copy content Toggle raw display
$19$ \( (T - 7)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 36 \) Copy content Toggle raw display
$29$ \( T^{2} + 9 \) Copy content Toggle raw display
$31$ \( T^{2} + 49 \) Copy content Toggle raw display
$37$ \( T^{2} + 4 \) Copy content Toggle raw display
$41$ \( T^{2} + 64 \) Copy content Toggle raw display
$43$ \( (T - 8)^{2} \) Copy content Toggle raw display
$47$ \( (T + 9)^{2} \) Copy content Toggle raw display
$53$ \( (T - 11)^{2} \) Copy content Toggle raw display
$59$ \( (T + 5)^{2} \) Copy content Toggle raw display
$61$ \( T^{2} + 1 \) Copy content Toggle raw display
$67$ \( (T - 10)^{2} \) Copy content Toggle raw display
$71$ \( T^{2} + 1 \) Copy content Toggle raw display
$73$ \( T^{2} + 81 \) Copy content Toggle raw display
$79$ \( T^{2} \) Copy content Toggle raw display
$83$ \( (T + 6)^{2} \) Copy content Toggle raw display
$89$ \( (T + 1)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + 1 \) Copy content Toggle raw display
show more
show less