Properties

Label 8464.2.a.by.1.6
Level $8464$
Weight $2$
Character 8464.1
Self dual yes
Analytic conductor $67.585$
Analytic rank $1$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8464,2,Mod(1,8464)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8464.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8464, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 8464 = 2^{4} \cdot 23^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8464.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,-4,0,0,0,0,0,10,0,0,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(67.5853802708\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.26849792.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 14x^{4} - 2x^{3} + 28x^{2} - 4x - 7 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 4232)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(-1.66832\) of defining polynomial
Character \(\chi\) \(=\) 8464.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.68133 q^{3} +1.77357 q^{5} -4.15133 q^{7} -0.173127 q^{9} +5.56554 q^{11} +1.68133 q^{13} +2.98195 q^{15} +0.359354 q^{17} -6.88844 q^{19} -6.97976 q^{21} -1.85446 q^{25} -5.33508 q^{27} -10.0604 q^{29} +1.17313 q^{31} +9.35752 q^{33} -7.36266 q^{35} +6.52909 q^{37} +2.82687 q^{39} -0.697737 q^{41} -5.90169 q^{43} -0.307053 q^{45} -1.81047 q^{47} +10.2335 q^{49} +0.604193 q^{51} -0.450667 q^{53} +9.87086 q^{55} -11.5818 q^{57} -6.50820 q^{59} +12.7901 q^{61} +0.718708 q^{63} +2.98195 q^{65} -11.0398 q^{67} -7.68133 q^{71} -9.42306 q^{73} -3.11796 q^{75} -23.1044 q^{77} -11.5818 q^{79} -8.45065 q^{81} +6.50589 q^{83} +0.637339 q^{85} -16.9149 q^{87} +11.3759 q^{89} -6.97976 q^{91} +1.97241 q^{93} -12.2171 q^{95} -12.2091 q^{97} -0.963547 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 4 q^{3} + 10 q^{9} - 4 q^{13} + 14 q^{25} - 40 q^{27} - 12 q^{29} - 4 q^{31} - 16 q^{35} + 28 q^{39} + 16 q^{41} - 28 q^{47} + 2 q^{49} + 28 q^{55} - 36 q^{59} - 32 q^{71} + 20 q^{73} - 80 q^{75}+ \cdots - 20 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.68133 0.970717 0.485358 0.874315i \(-0.338689\pi\)
0.485358 + 0.874315i \(0.338689\pi\)
\(4\) 0 0
\(5\) 1.77357 0.793164 0.396582 0.917999i \(-0.370196\pi\)
0.396582 + 0.917999i \(0.370196\pi\)
\(6\) 0 0
\(7\) −4.15133 −1.56905 −0.784527 0.620094i \(-0.787094\pi\)
−0.784527 + 0.620094i \(0.787094\pi\)
\(8\) 0 0
\(9\) −0.173127 −0.0577091
\(10\) 0 0
\(11\) 5.56554 1.67807 0.839037 0.544074i \(-0.183119\pi\)
0.839037 + 0.544074i \(0.183119\pi\)
\(12\) 0 0
\(13\) 1.68133 0.466317 0.233159 0.972439i \(-0.425094\pi\)
0.233159 + 0.972439i \(0.425094\pi\)
\(14\) 0 0
\(15\) 2.98195 0.769937
\(16\) 0 0
\(17\) 0.359354 0.0871562 0.0435781 0.999050i \(-0.486124\pi\)
0.0435781 + 0.999050i \(0.486124\pi\)
\(18\) 0 0
\(19\) −6.88844 −1.58032 −0.790159 0.612902i \(-0.790002\pi\)
−0.790159 + 0.612902i \(0.790002\pi\)
\(20\) 0 0
\(21\) −6.97976 −1.52311
\(22\) 0 0
\(23\) 0 0
\(24\) 0 0
\(25\) −1.85446 −0.370892
\(26\) 0 0
\(27\) −5.33508 −1.02674
\(28\) 0 0
\(29\) −10.0604 −1.86817 −0.934085 0.357052i \(-0.883782\pi\)
−0.934085 + 0.357052i \(0.883782\pi\)
\(30\) 0 0
\(31\) 1.17313 0.210700 0.105350 0.994435i \(-0.466404\pi\)
0.105350 + 0.994435i \(0.466404\pi\)
\(32\) 0 0
\(33\) 9.35752 1.62893
\(34\) 0 0
\(35\) −7.36266 −1.24452
\(36\) 0 0
\(37\) 6.52909 1.07338 0.536688 0.843781i \(-0.319675\pi\)
0.536688 + 0.843781i \(0.319675\pi\)
\(38\) 0 0
\(39\) 2.82687 0.452662
\(40\) 0 0
\(41\) −0.697737 −0.108968 −0.0544841 0.998515i \(-0.517351\pi\)
−0.0544841 + 0.998515i \(0.517351\pi\)
\(42\) 0 0
\(43\) −5.90169 −0.900000 −0.450000 0.893029i \(-0.648576\pi\)
−0.450000 + 0.893029i \(0.648576\pi\)
\(44\) 0 0
\(45\) −0.307053 −0.0457727
\(46\) 0 0
\(47\) −1.81047 −0.264084 −0.132042 0.991244i \(-0.542153\pi\)
−0.132042 + 0.991244i \(0.542153\pi\)
\(48\) 0 0
\(49\) 10.2335 1.46193
\(50\) 0 0
\(51\) 0.604193 0.0846039
\(52\) 0 0
\(53\) −0.450667 −0.0619038 −0.0309519 0.999521i \(-0.509854\pi\)
−0.0309519 + 0.999521i \(0.509854\pi\)
\(54\) 0 0
\(55\) 9.87086 1.33099
\(56\) 0 0
\(57\) −11.5818 −1.53404
\(58\) 0 0
\(59\) −6.50820 −0.847296 −0.423648 0.905827i \(-0.639251\pi\)
−0.423648 + 0.905827i \(0.639251\pi\)
\(60\) 0 0
\(61\) 12.7901 1.63761 0.818805 0.574072i \(-0.194637\pi\)
0.818805 + 0.574072i \(0.194637\pi\)
\(62\) 0 0
\(63\) 0.718708 0.0905487
\(64\) 0 0
\(65\) 2.98195 0.369866
\(66\) 0 0
\(67\) −11.0398 −1.34872 −0.674361 0.738401i \(-0.735581\pi\)
−0.674361 + 0.738401i \(0.735581\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −7.68133 −0.911606 −0.455803 0.890081i \(-0.650648\pi\)
−0.455803 + 0.890081i \(0.650648\pi\)
\(72\) 0 0
\(73\) −9.42306 −1.10289 −0.551443 0.834213i \(-0.685923\pi\)
−0.551443 + 0.834213i \(0.685923\pi\)
\(74\) 0 0
\(75\) −3.11796 −0.360031
\(76\) 0 0
\(77\) −23.1044 −2.63299
\(78\) 0 0
\(79\) −11.5818 −1.30305 −0.651524 0.758628i \(-0.725870\pi\)
−0.651524 + 0.758628i \(0.725870\pi\)
\(80\) 0 0
\(81\) −8.45065 −0.938961
\(82\) 0 0
\(83\) 6.50589 0.714114 0.357057 0.934083i \(-0.383780\pi\)
0.357057 + 0.934083i \(0.383780\pi\)
\(84\) 0 0
\(85\) 0.637339 0.0691291
\(86\) 0 0
\(87\) −16.9149 −1.81346
\(88\) 0 0
\(89\) 11.3759 1.20585 0.602923 0.797800i \(-0.294003\pi\)
0.602923 + 0.797800i \(0.294003\pi\)
\(90\) 0 0
\(91\) −6.97976 −0.731677
\(92\) 0 0
\(93\) 1.97241 0.204530
\(94\) 0 0
\(95\) −12.2171 −1.25345
\(96\) 0 0
\(97\) −12.2091 −1.23965 −0.619825 0.784740i \(-0.712797\pi\)
−0.619825 + 0.784740i \(0.712797\pi\)
\(98\) 0 0
\(99\) −0.963547 −0.0968401
\(100\) 0 0
\(101\) −0.129135 −0.0128494 −0.00642472 0.999979i \(-0.502045\pi\)
−0.00642472 + 0.999979i \(0.502045\pi\)
\(102\) 0 0
\(103\) 11.1992 1.10349 0.551745 0.834013i \(-0.313962\pi\)
0.551745 + 0.834013i \(0.313962\pi\)
\(104\) 0 0
\(105\) −12.3791 −1.20807
\(106\) 0 0
\(107\) 9.53425 0.921710 0.460855 0.887475i \(-0.347543\pi\)
0.460855 + 0.887475i \(0.347543\pi\)
\(108\) 0 0
\(109\) −3.72976 −0.357246 −0.178623 0.983918i \(-0.557164\pi\)
−0.178623 + 0.983918i \(0.557164\pi\)
\(110\) 0 0
\(111\) 10.9776 1.04194
\(112\) 0 0
\(113\) −19.2570 −1.81155 −0.905774 0.423762i \(-0.860709\pi\)
−0.905774 + 0.423762i \(0.860709\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −0.291084 −0.0269107
\(118\) 0 0
\(119\) −1.49180 −0.136753
\(120\) 0 0
\(121\) 19.9753 1.81593
\(122\) 0 0
\(123\) −1.17313 −0.105777
\(124\) 0 0
\(125\) −12.1568 −1.08734
\(126\) 0 0
\(127\) −6.02759 −0.534862 −0.267431 0.963577i \(-0.586175\pi\)
−0.267431 + 0.963577i \(0.586175\pi\)
\(128\) 0 0
\(129\) −9.92270 −0.873645
\(130\) 0 0
\(131\) 7.68133 0.671121 0.335560 0.942019i \(-0.391074\pi\)
0.335560 + 0.942019i \(0.391074\pi\)
\(132\) 0 0
\(133\) 28.5962 2.47960
\(134\) 0 0
\(135\) −9.46212 −0.814369
\(136\) 0 0
\(137\) 14.3870 1.22916 0.614581 0.788854i \(-0.289325\pi\)
0.614581 + 0.788854i \(0.289325\pi\)
\(138\) 0 0
\(139\) −16.3187 −1.38413 −0.692066 0.721834i \(-0.743299\pi\)
−0.692066 + 0.721834i \(0.743299\pi\)
\(140\) 0 0
\(141\) −3.04399 −0.256350
\(142\) 0 0
\(143\) 9.35752 0.782515
\(144\) 0 0
\(145\) −17.8428 −1.48176
\(146\) 0 0
\(147\) 17.2059 1.41912
\(148\) 0 0
\(149\) 8.08102 0.662023 0.331011 0.943627i \(-0.392610\pi\)
0.331011 + 0.943627i \(0.392610\pi\)
\(150\) 0 0
\(151\) −2.28586 −0.186020 −0.0930102 0.995665i \(-0.529649\pi\)
−0.0930102 + 0.995665i \(0.529649\pi\)
\(152\) 0 0
\(153\) −0.0622140 −0.00502970
\(154\) 0 0
\(155\) 2.08062 0.167119
\(156\) 0 0
\(157\) 2.10972 0.168374 0.0841870 0.996450i \(-0.473171\pi\)
0.0841870 + 0.996450i \(0.473171\pi\)
\(158\) 0 0
\(159\) −0.757719 −0.0600911
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −17.0440 −1.33499 −0.667494 0.744615i \(-0.732633\pi\)
−0.667494 + 0.744615i \(0.732633\pi\)
\(164\) 0 0
\(165\) 16.5962 1.29201
\(166\) 0 0
\(167\) 15.9037 1.23066 0.615332 0.788268i \(-0.289022\pi\)
0.615332 + 0.788268i \(0.289022\pi\)
\(168\) 0 0
\(169\) −10.1731 −0.782548
\(170\) 0 0
\(171\) 1.19258 0.0911987
\(172\) 0 0
\(173\) 21.7417 1.65299 0.826497 0.562942i \(-0.190330\pi\)
0.826497 + 0.562942i \(0.190330\pi\)
\(174\) 0 0
\(175\) 7.69846 0.581949
\(176\) 0 0
\(177\) −10.9424 −0.822484
\(178\) 0 0
\(179\) −13.2059 −0.987058 −0.493529 0.869729i \(-0.664293\pi\)
−0.493529 + 0.869729i \(0.664293\pi\)
\(180\) 0 0
\(181\) 6.71171 0.498878 0.249439 0.968391i \(-0.419754\pi\)
0.249439 + 0.968391i \(0.419754\pi\)
\(182\) 0 0
\(183\) 21.5044 1.58965
\(184\) 0 0
\(185\) 11.5798 0.851362
\(186\) 0 0
\(187\) 2.00000 0.146254
\(188\) 0 0
\(189\) 22.1477 1.61100
\(190\) 0 0
\(191\) −4.37296 −0.316417 −0.158208 0.987406i \(-0.550572\pi\)
−0.158208 + 0.987406i \(0.550572\pi\)
\(192\) 0 0
\(193\) −9.55220 −0.687582 −0.343791 0.939046i \(-0.611711\pi\)
−0.343791 + 0.939046i \(0.611711\pi\)
\(194\) 0 0
\(195\) 5.01365 0.359035
\(196\) 0 0
\(197\) 21.3267 1.51947 0.759734 0.650234i \(-0.225329\pi\)
0.759734 + 0.650234i \(0.225329\pi\)
\(198\) 0 0
\(199\) −10.7949 −0.765232 −0.382616 0.923907i \(-0.624977\pi\)
−0.382616 + 0.923907i \(0.624977\pi\)
\(200\) 0 0
\(201\) −18.5615 −1.30923
\(202\) 0 0
\(203\) 41.7640 2.93126
\(204\) 0 0
\(205\) −1.23748 −0.0864297
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −38.3379 −2.65189
\(210\) 0 0
\(211\) −6.82164 −0.469621 −0.234811 0.972041i \(-0.575447\pi\)
−0.234811 + 0.972041i \(0.575447\pi\)
\(212\) 0 0
\(213\) −12.9149 −0.884911
\(214\) 0 0
\(215\) −10.4671 −0.713847
\(216\) 0 0
\(217\) −4.87004 −0.330600
\(218\) 0 0
\(219\) −15.8433 −1.07059
\(220\) 0 0
\(221\) 0.604193 0.0406424
\(222\) 0 0
\(223\) −22.8461 −1.52989 −0.764945 0.644096i \(-0.777234\pi\)
−0.764945 + 0.644096i \(0.777234\pi\)
\(224\) 0 0
\(225\) 0.321057 0.0214038
\(226\) 0 0
\(227\) −5.06847 −0.336406 −0.168203 0.985752i \(-0.553796\pi\)
−0.168203 + 0.985752i \(0.553796\pi\)
\(228\) 0 0
\(229\) 22.2158 1.46806 0.734029 0.679118i \(-0.237637\pi\)
0.734029 + 0.679118i \(0.237637\pi\)
\(230\) 0 0
\(231\) −38.8461 −2.55589
\(232\) 0 0
\(233\) −13.4231 −0.879374 −0.439687 0.898151i \(-0.644911\pi\)
−0.439687 + 0.898151i \(0.644911\pi\)
\(234\) 0 0
\(235\) −3.21098 −0.209461
\(236\) 0 0
\(237\) −19.4728 −1.26489
\(238\) 0 0
\(239\) −17.6730 −1.14317 −0.571585 0.820543i \(-0.693671\pi\)
−0.571585 + 0.820543i \(0.693671\pi\)
\(240\) 0 0
\(241\) −21.1451 −1.36208 −0.681038 0.732248i \(-0.738471\pi\)
−0.681038 + 0.732248i \(0.738471\pi\)
\(242\) 0 0
\(243\) 1.79690 0.115271
\(244\) 0 0
\(245\) 18.1499 1.15955
\(246\) 0 0
\(247\) −11.5818 −0.736929
\(248\) 0 0
\(249\) 10.9385 0.693202
\(250\) 0 0
\(251\) 28.5854 1.80430 0.902148 0.431426i \(-0.141990\pi\)
0.902148 + 0.431426i \(0.141990\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 1.07158 0.0671048
\(256\) 0 0
\(257\) 9.71414 0.605952 0.302976 0.952998i \(-0.402020\pi\)
0.302976 + 0.952998i \(0.402020\pi\)
\(258\) 0 0
\(259\) −27.1044 −1.68418
\(260\) 0 0
\(261\) 1.74173 0.107810
\(262\) 0 0
\(263\) −19.1657 −1.18181 −0.590904 0.806742i \(-0.701229\pi\)
−0.590904 + 0.806742i \(0.701229\pi\)
\(264\) 0 0
\(265\) −0.799288 −0.0490998
\(266\) 0 0
\(267\) 19.1267 1.17053
\(268\) 0 0
\(269\) 9.04399 0.551422 0.275711 0.961241i \(-0.411087\pi\)
0.275711 + 0.961241i \(0.411087\pi\)
\(270\) 0 0
\(271\) 24.4999 1.48826 0.744130 0.668034i \(-0.232864\pi\)
0.744130 + 0.668034i \(0.232864\pi\)
\(272\) 0 0
\(273\) −11.7353 −0.710251
\(274\) 0 0
\(275\) −10.3211 −0.622384
\(276\) 0 0
\(277\) −24.6894 −1.48344 −0.741721 0.670708i \(-0.765990\pi\)
−0.741721 + 0.670708i \(0.765990\pi\)
\(278\) 0 0
\(279\) −0.203100 −0.0121593
\(280\) 0 0
\(281\) 10.2821 0.613376 0.306688 0.951810i \(-0.400779\pi\)
0.306688 + 0.951810i \(0.400779\pi\)
\(282\) 0 0
\(283\) 6.46687 0.384416 0.192208 0.981354i \(-0.438435\pi\)
0.192208 + 0.981354i \(0.438435\pi\)
\(284\) 0 0
\(285\) −20.5410 −1.21674
\(286\) 0 0
\(287\) 2.89654 0.170977
\(288\) 0 0
\(289\) −16.8709 −0.992404
\(290\) 0 0
\(291\) −20.5276 −1.20335
\(292\) 0 0
\(293\) 8.83874 0.516365 0.258182 0.966096i \(-0.416876\pi\)
0.258182 + 0.966096i \(0.416876\pi\)
\(294\) 0 0
\(295\) −11.5427 −0.672044
\(296\) 0 0
\(297\) −29.6926 −1.72294
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 24.4999 1.41215
\(302\) 0 0
\(303\) −0.217119 −0.0124732
\(304\) 0 0
\(305\) 22.6842 1.29889
\(306\) 0 0
\(307\) −21.5798 −1.23162 −0.615812 0.787893i \(-0.711172\pi\)
−0.615812 + 0.787893i \(0.711172\pi\)
\(308\) 0 0
\(309\) 18.8295 1.07118
\(310\) 0 0
\(311\) −5.97241 −0.338665 −0.169332 0.985559i \(-0.554161\pi\)
−0.169332 + 0.985559i \(0.554161\pi\)
\(312\) 0 0
\(313\) 14.2043 0.802877 0.401439 0.915886i \(-0.368510\pi\)
0.401439 + 0.915886i \(0.368510\pi\)
\(314\) 0 0
\(315\) 1.27468 0.0718199
\(316\) 0 0
\(317\) 8.50820 0.477868 0.238934 0.971036i \(-0.423202\pi\)
0.238934 + 0.971036i \(0.423202\pi\)
\(318\) 0 0
\(319\) −55.9916 −3.13493
\(320\) 0 0
\(321\) 16.0302 0.894720
\(322\) 0 0
\(323\) −2.47539 −0.137734
\(324\) 0 0
\(325\) −3.11796 −0.172953
\(326\) 0 0
\(327\) −6.27096 −0.346785
\(328\) 0 0
\(329\) 7.51584 0.414362
\(330\) 0 0
\(331\) −19.4231 −1.06759 −0.533794 0.845615i \(-0.679234\pi\)
−0.533794 + 0.845615i \(0.679234\pi\)
\(332\) 0 0
\(333\) −1.13036 −0.0619435
\(334\) 0 0
\(335\) −19.5798 −1.06976
\(336\) 0 0
\(337\) −0.0622140 −0.00338901 −0.00169451 0.999999i \(-0.500539\pi\)
−0.00169451 + 0.999999i \(0.500539\pi\)
\(338\) 0 0
\(339\) −32.3774 −1.75850
\(340\) 0 0
\(341\) 6.52909 0.353570
\(342\) 0 0
\(343\) −13.4234 −0.724797
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −19.7089 −1.05803 −0.529015 0.848612i \(-0.677438\pi\)
−0.529015 + 0.848612i \(0.677438\pi\)
\(348\) 0 0
\(349\) 0.826873 0.0442615 0.0221307 0.999755i \(-0.492955\pi\)
0.0221307 + 0.999755i \(0.492955\pi\)
\(350\) 0 0
\(351\) −8.97003 −0.478785
\(352\) 0 0
\(353\) 14.1484 0.753042 0.376521 0.926408i \(-0.377120\pi\)
0.376521 + 0.926408i \(0.377120\pi\)
\(354\) 0 0
\(355\) −13.6234 −0.723053
\(356\) 0 0
\(357\) −2.50820 −0.132748
\(358\) 0 0
\(359\) −10.0081 −0.528208 −0.264104 0.964494i \(-0.585076\pi\)
−0.264104 + 0.964494i \(0.585076\pi\)
\(360\) 0 0
\(361\) 28.4506 1.49740
\(362\) 0 0
\(363\) 33.5850 1.76276
\(364\) 0 0
\(365\) −16.7124 −0.874769
\(366\) 0 0
\(367\) −15.6359 −0.816186 −0.408093 0.912940i \(-0.633806\pi\)
−0.408093 + 0.912940i \(0.633806\pi\)
\(368\) 0 0
\(369\) 0.120797 0.00628846
\(370\) 0 0
\(371\) 1.87086 0.0971305
\(372\) 0 0
\(373\) 2.08062 0.107730 0.0538652 0.998548i \(-0.482846\pi\)
0.0538652 + 0.998548i \(0.482846\pi\)
\(374\) 0 0
\(375\) −20.4397 −1.05550
\(376\) 0 0
\(377\) −16.9149 −0.871159
\(378\) 0 0
\(379\) −3.79197 −0.194781 −0.0973903 0.995246i \(-0.531050\pi\)
−0.0973903 + 0.995246i \(0.531050\pi\)
\(380\) 0 0
\(381\) −10.1344 −0.519199
\(382\) 0 0
\(383\) −6.19294 −0.316444 −0.158222 0.987404i \(-0.550576\pi\)
−0.158222 + 0.987404i \(0.550576\pi\)
\(384\) 0 0
\(385\) −40.9772 −2.08839
\(386\) 0 0
\(387\) 1.02174 0.0519382
\(388\) 0 0
\(389\) 8.34906 0.423314 0.211657 0.977344i \(-0.432114\pi\)
0.211657 + 0.977344i \(0.432114\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 12.9149 0.651468
\(394\) 0 0
\(395\) −20.5410 −1.03353
\(396\) 0 0
\(397\) 6.22235 0.312291 0.156145 0.987734i \(-0.450093\pi\)
0.156145 + 0.987734i \(0.450093\pi\)
\(398\) 0 0
\(399\) 48.0796 2.40699
\(400\) 0 0
\(401\) 12.8424 0.641321 0.320660 0.947194i \(-0.396095\pi\)
0.320660 + 0.947194i \(0.396095\pi\)
\(402\) 0 0
\(403\) 1.97241 0.0982530
\(404\) 0 0
\(405\) −14.9878 −0.744749
\(406\) 0 0
\(407\) 36.3379 1.80120
\(408\) 0 0
\(409\) −3.74696 −0.185275 −0.0926376 0.995700i \(-0.529530\pi\)
−0.0926376 + 0.995700i \(0.529530\pi\)
\(410\) 0 0
\(411\) 24.1893 1.19317
\(412\) 0 0
\(413\) 27.0177 1.32945
\(414\) 0 0
\(415\) 11.5386 0.566409
\(416\) 0 0
\(417\) −27.4371 −1.34360
\(418\) 0 0
\(419\) −3.74557 −0.182983 −0.0914915 0.995806i \(-0.529163\pi\)
−0.0914915 + 0.995806i \(0.529163\pi\)
\(420\) 0 0
\(421\) −32.2530 −1.57191 −0.785957 0.618281i \(-0.787829\pi\)
−0.785957 + 0.618281i \(0.787829\pi\)
\(422\) 0 0
\(423\) 0.313441 0.0152400
\(424\) 0 0
\(425\) −0.666407 −0.0323255
\(426\) 0 0
\(427\) −53.0961 −2.56950
\(428\) 0 0
\(429\) 15.7331 0.759600
\(430\) 0 0
\(431\) −18.5906 −0.895478 −0.447739 0.894164i \(-0.647771\pi\)
−0.447739 + 0.894164i \(0.647771\pi\)
\(432\) 0 0
\(433\) −17.5398 −0.842907 −0.421454 0.906850i \(-0.638480\pi\)
−0.421454 + 0.906850i \(0.638480\pi\)
\(434\) 0 0
\(435\) −29.9996 −1.43837
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 13.8761 0.662270 0.331135 0.943583i \(-0.392568\pi\)
0.331135 + 0.943583i \(0.392568\pi\)
\(440\) 0 0
\(441\) −1.77170 −0.0843668
\(442\) 0 0
\(443\) 7.29392 0.346545 0.173272 0.984874i \(-0.444566\pi\)
0.173272 + 0.984874i \(0.444566\pi\)
\(444\) 0 0
\(445\) 20.1760 0.956433
\(446\) 0 0
\(447\) 13.5869 0.642637
\(448\) 0 0
\(449\) 18.4671 0.871514 0.435757 0.900064i \(-0.356481\pi\)
0.435757 + 0.900064i \(0.356481\pi\)
\(450\) 0 0
\(451\) −3.88329 −0.182857
\(452\) 0 0
\(453\) −3.84328 −0.180573
\(454\) 0 0
\(455\) −12.3791 −0.580340
\(456\) 0 0
\(457\) −22.6215 −1.05819 −0.529095 0.848563i \(-0.677469\pi\)
−0.529095 + 0.848563i \(0.677469\pi\)
\(458\) 0 0
\(459\) −1.91718 −0.0894864
\(460\) 0 0
\(461\) −20.8820 −0.972574 −0.486287 0.873799i \(-0.661649\pi\)
−0.486287 + 0.873799i \(0.661649\pi\)
\(462\) 0 0
\(463\) −36.8789 −1.71391 −0.856955 0.515392i \(-0.827646\pi\)
−0.856955 + 0.515392i \(0.827646\pi\)
\(464\) 0 0
\(465\) 3.49821 0.162226
\(466\) 0 0
\(467\) 21.1550 0.978937 0.489468 0.872021i \(-0.337191\pi\)
0.489468 + 0.872021i \(0.337191\pi\)
\(468\) 0 0
\(469\) 45.8297 2.11622
\(470\) 0 0
\(471\) 3.54714 0.163443
\(472\) 0 0
\(473\) −32.8461 −1.51027
\(474\) 0 0
\(475\) 12.7743 0.586126
\(476\) 0 0
\(477\) 0.0780227 0.00357241
\(478\) 0 0
\(479\) 7.74487 0.353872 0.176936 0.984222i \(-0.443381\pi\)
0.176936 + 0.984222i \(0.443381\pi\)
\(480\) 0 0
\(481\) 10.9776 0.500534
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −21.6537 −0.983246
\(486\) 0 0
\(487\) −0.859686 −0.0389561 −0.0194781 0.999810i \(-0.506200\pi\)
−0.0194781 + 0.999810i \(0.506200\pi\)
\(488\) 0 0
\(489\) −28.6566 −1.29590
\(490\) 0 0
\(491\) −19.0112 −0.857962 −0.428981 0.903313i \(-0.641127\pi\)
−0.428981 + 0.903313i \(0.641127\pi\)
\(492\) 0 0
\(493\) −3.61525 −0.162822
\(494\) 0 0
\(495\) −1.70892 −0.0768101
\(496\) 0 0
\(497\) 31.8877 1.43036
\(498\) 0 0
\(499\) 14.6566 0.656119 0.328059 0.944657i \(-0.393605\pi\)
0.328059 + 0.944657i \(0.393605\pi\)
\(500\) 0 0
\(501\) 26.7393 1.19463
\(502\) 0 0
\(503\) 15.6650 0.698466 0.349233 0.937036i \(-0.386442\pi\)
0.349233 + 0.937036i \(0.386442\pi\)
\(504\) 0 0
\(505\) −0.229030 −0.0101917
\(506\) 0 0
\(507\) −17.1044 −0.759633
\(508\) 0 0
\(509\) 40.4863 1.79452 0.897262 0.441499i \(-0.145553\pi\)
0.897262 + 0.441499i \(0.145553\pi\)
\(510\) 0 0
\(511\) 39.1182 1.73049
\(512\) 0 0
\(513\) 36.7504 1.62257
\(514\) 0 0
\(515\) 19.8625 0.875248
\(516\) 0 0
\(517\) −10.0762 −0.443152
\(518\) 0 0
\(519\) 36.5550 1.60459
\(520\) 0 0
\(521\) −23.2257 −1.01754 −0.508769 0.860903i \(-0.669899\pi\)
−0.508769 + 0.860903i \(0.669899\pi\)
\(522\) 0 0
\(523\) 21.5376 0.941772 0.470886 0.882194i \(-0.343934\pi\)
0.470886 + 0.882194i \(0.343934\pi\)
\(524\) 0 0
\(525\) 12.9437 0.564908
\(526\) 0 0
\(527\) 0.421568 0.0183638
\(528\) 0 0
\(529\) 0 0
\(530\) 0 0
\(531\) 1.12675 0.0488967
\(532\) 0 0
\(533\) −1.17313 −0.0508138
\(534\) 0 0
\(535\) 16.9096 0.731067
\(536\) 0 0
\(537\) −22.2036 −0.958154
\(538\) 0 0
\(539\) 56.9551 2.45323
\(540\) 0 0
\(541\) −42.7118 −1.83632 −0.918161 0.396208i \(-0.870326\pi\)
−0.918161 + 0.396208i \(0.870326\pi\)
\(542\) 0 0
\(543\) 11.2846 0.484269
\(544\) 0 0
\(545\) −6.61498 −0.283355
\(546\) 0 0
\(547\) 21.0112 0.898373 0.449187 0.893438i \(-0.351714\pi\)
0.449187 + 0.893438i \(0.351714\pi\)
\(548\) 0 0
\(549\) −2.21432 −0.0945049
\(550\) 0 0
\(551\) 69.3005 2.95230
\(552\) 0 0
\(553\) 48.0796 2.04455
\(554\) 0 0
\(555\) 19.4694 0.826432
\(556\) 0 0
\(557\) 14.4492 0.612232 0.306116 0.951994i \(-0.400970\pi\)
0.306116 + 0.951994i \(0.400970\pi\)
\(558\) 0 0
\(559\) −9.92270 −0.419685
\(560\) 0 0
\(561\) 3.36266 0.141972
\(562\) 0 0
\(563\) −9.14178 −0.385280 −0.192640 0.981270i \(-0.561705\pi\)
−0.192640 + 0.981270i \(0.561705\pi\)
\(564\) 0 0
\(565\) −34.1536 −1.43685
\(566\) 0 0
\(567\) 35.0814 1.47328
\(568\) 0 0
\(569\) −22.1244 −0.927505 −0.463753 0.885965i \(-0.653497\pi\)
−0.463753 + 0.885965i \(0.653497\pi\)
\(570\) 0 0
\(571\) 2.24004 0.0937429 0.0468714 0.998901i \(-0.485075\pi\)
0.0468714 + 0.998901i \(0.485075\pi\)
\(572\) 0 0
\(573\) −7.35240 −0.307151
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 3.49702 0.145583 0.0727915 0.997347i \(-0.476809\pi\)
0.0727915 + 0.997347i \(0.476809\pi\)
\(578\) 0 0
\(579\) −16.0604 −0.667447
\(580\) 0 0
\(581\) −27.0081 −1.12048
\(582\) 0 0
\(583\) −2.50820 −0.103879
\(584\) 0 0
\(585\) −0.516257 −0.0213446
\(586\) 0 0
\(587\) 15.0028 0.619233 0.309617 0.950861i \(-0.399799\pi\)
0.309617 + 0.950861i \(0.399799\pi\)
\(588\) 0 0
\(589\) −8.08102 −0.332973
\(590\) 0 0
\(591\) 35.8573 1.47497
\(592\) 0 0
\(593\) 7.86253 0.322875 0.161438 0.986883i \(-0.448387\pi\)
0.161438 + 0.986883i \(0.448387\pi\)
\(594\) 0 0
\(595\) −2.64580 −0.108467
\(596\) 0 0
\(597\) −18.1499 −0.742824
\(598\) 0 0
\(599\) 21.2747 0.869260 0.434630 0.900609i \(-0.356879\pi\)
0.434630 + 0.900609i \(0.356879\pi\)
\(600\) 0 0
\(601\) −1.08514 −0.0442639 −0.0221320 0.999755i \(-0.507045\pi\)
−0.0221320 + 0.999755i \(0.507045\pi\)
\(602\) 0 0
\(603\) 1.91129 0.0778336
\(604\) 0 0
\(605\) 35.4275 1.44033
\(606\) 0 0
\(607\) 7.95885 0.323040 0.161520 0.986869i \(-0.448360\pi\)
0.161520 + 0.986869i \(0.448360\pi\)
\(608\) 0 0
\(609\) 70.2191 2.84542
\(610\) 0 0
\(611\) −3.04399 −0.123147
\(612\) 0 0
\(613\) −26.1845 −1.05758 −0.528790 0.848753i \(-0.677354\pi\)
−0.528790 + 0.848753i \(0.677354\pi\)
\(614\) 0 0
\(615\) −2.08062 −0.0838987
\(616\) 0 0
\(617\) −4.54969 −0.183164 −0.0915819 0.995798i \(-0.529192\pi\)
−0.0915819 + 0.995798i \(0.529192\pi\)
\(618\) 0 0
\(619\) 27.6160 1.10998 0.554990 0.831857i \(-0.312722\pi\)
0.554990 + 0.831857i \(0.312722\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −47.2252 −1.89204
\(624\) 0 0
\(625\) −12.2887 −0.491548
\(626\) 0 0
\(627\) −64.4587 −2.57423
\(628\) 0 0
\(629\) 2.34625 0.0935513
\(630\) 0 0
\(631\) 27.2467 1.08467 0.542337 0.840161i \(-0.317539\pi\)
0.542337 + 0.840161i \(0.317539\pi\)
\(632\) 0 0
\(633\) −11.4694 −0.455869
\(634\) 0 0
\(635\) −10.6903 −0.424233
\(636\) 0 0
\(637\) 17.2059 0.681724
\(638\) 0 0
\(639\) 1.32985 0.0526080
\(640\) 0 0
\(641\) 36.1477 1.42775 0.713874 0.700275i \(-0.246939\pi\)
0.713874 + 0.700275i \(0.246939\pi\)
\(642\) 0 0
\(643\) 10.8107 0.426334 0.213167 0.977016i \(-0.431622\pi\)
0.213167 + 0.977016i \(0.431622\pi\)
\(644\) 0 0
\(645\) −17.5986 −0.692943
\(646\) 0 0
\(647\) 6.94767 0.273141 0.136571 0.990630i \(-0.456392\pi\)
0.136571 + 0.990630i \(0.456392\pi\)
\(648\) 0 0
\(649\) −36.2217 −1.42183
\(650\) 0 0
\(651\) −8.18814 −0.320919
\(652\) 0 0
\(653\) 29.1236 1.13970 0.569848 0.821750i \(-0.307002\pi\)
0.569848 + 0.821750i \(0.307002\pi\)
\(654\) 0 0
\(655\) 13.6234 0.532309
\(656\) 0 0
\(657\) 1.63139 0.0636465
\(658\) 0 0
\(659\) −26.3513 −1.02650 −0.513250 0.858239i \(-0.671559\pi\)
−0.513250 + 0.858239i \(0.671559\pi\)
\(660\) 0 0
\(661\) 10.9094 0.424328 0.212164 0.977234i \(-0.431949\pi\)
0.212164 + 0.977234i \(0.431949\pi\)
\(662\) 0 0
\(663\) 1.01585 0.0394523
\(664\) 0 0
\(665\) 50.7173 1.96673
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) −38.4119 −1.48509
\(670\) 0 0
\(671\) 71.1840 2.74803
\(672\) 0 0
\(673\) −48.7774 −1.88023 −0.940115 0.340857i \(-0.889283\pi\)
−0.940115 + 0.340857i \(0.889283\pi\)
\(674\) 0 0
\(675\) 9.89367 0.380808
\(676\) 0 0
\(677\) −14.9463 −0.574431 −0.287216 0.957866i \(-0.592730\pi\)
−0.287216 + 0.957866i \(0.592730\pi\)
\(678\) 0 0
\(679\) 50.6842 1.94508
\(680\) 0 0
\(681\) −8.52177 −0.326555
\(682\) 0 0
\(683\) 2.82687 0.108167 0.0540836 0.998536i \(-0.482776\pi\)
0.0540836 + 0.998536i \(0.482776\pi\)
\(684\) 0 0
\(685\) 25.5163 0.974927
\(686\) 0 0
\(687\) 37.3520 1.42507
\(688\) 0 0
\(689\) −0.757719 −0.0288668
\(690\) 0 0
\(691\) −1.53295 −0.0583161 −0.0291580 0.999575i \(-0.509283\pi\)
−0.0291580 + 0.999575i \(0.509283\pi\)
\(692\) 0 0
\(693\) 4.00000 0.151947
\(694\) 0 0
\(695\) −28.9423 −1.09784
\(696\) 0 0
\(697\) −0.250735 −0.00949726
\(698\) 0 0
\(699\) −22.5686 −0.853623
\(700\) 0 0
\(701\) 1.87078 0.0706582 0.0353291 0.999376i \(-0.488752\pi\)
0.0353291 + 0.999376i \(0.488752\pi\)
\(702\) 0 0
\(703\) −44.9753 −1.69627
\(704\) 0 0
\(705\) −5.39873 −0.203328
\(706\) 0 0
\(707\) 0.536083 0.0201615
\(708\) 0 0
\(709\) 39.7905 1.49436 0.747182 0.664619i \(-0.231406\pi\)
0.747182 + 0.664619i \(0.231406\pi\)
\(710\) 0 0
\(711\) 2.00512 0.0751978
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 16.5962 0.620662
\(716\) 0 0
\(717\) −29.7141 −1.10970
\(718\) 0 0
\(719\) 21.9672 0.819238 0.409619 0.912257i \(-0.365662\pi\)
0.409619 + 0.912257i \(0.365662\pi\)
\(720\) 0 0
\(721\) −46.4915 −1.73143
\(722\) 0 0
\(723\) −35.5519 −1.32219
\(724\) 0 0
\(725\) 18.6566 0.692888
\(726\) 0 0
\(727\) −30.3185 −1.12445 −0.562225 0.826984i \(-0.690055\pi\)
−0.562225 + 0.826984i \(0.690055\pi\)
\(728\) 0 0
\(729\) 28.3731 1.05086
\(730\) 0 0
\(731\) −2.12080 −0.0784405
\(732\) 0 0
\(733\) −10.2979 −0.380360 −0.190180 0.981749i \(-0.560907\pi\)
−0.190180 + 0.981749i \(0.560907\pi\)
\(734\) 0 0
\(735\) 30.5159 1.12560
\(736\) 0 0
\(737\) −61.4423 −2.26326
\(738\) 0 0
\(739\) 37.8984 1.39412 0.697059 0.717014i \(-0.254492\pi\)
0.697059 + 0.717014i \(0.254492\pi\)
\(740\) 0 0
\(741\) −19.4728 −0.715349
\(742\) 0 0
\(743\) −16.6270 −0.609986 −0.304993 0.952355i \(-0.598654\pi\)
−0.304993 + 0.952355i \(0.598654\pi\)
\(744\) 0 0
\(745\) 14.3322 0.525092
\(746\) 0 0
\(747\) −1.12635 −0.0412109
\(748\) 0 0
\(749\) −39.5798 −1.44621
\(750\) 0 0
\(751\) 32.7327 1.19443 0.597217 0.802079i \(-0.296273\pi\)
0.597217 + 0.802079i \(0.296273\pi\)
\(752\) 0 0
\(753\) 48.0616 1.75146
\(754\) 0 0
\(755\) −4.05412 −0.147545
\(756\) 0 0
\(757\) 6.84793 0.248892 0.124446 0.992226i \(-0.460285\pi\)
0.124446 + 0.992226i \(0.460285\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −45.2528 −1.64041 −0.820206 0.572068i \(-0.806141\pi\)
−0.820206 + 0.572068i \(0.806141\pi\)
\(762\) 0 0
\(763\) 15.4835 0.560539
\(764\) 0 0
\(765\) −0.110341 −0.00398938
\(766\) 0 0
\(767\) −10.9424 −0.395109
\(768\) 0 0
\(769\) −12.0773 −0.435519 −0.217760 0.976002i \(-0.569875\pi\)
−0.217760 + 0.976002i \(0.569875\pi\)
\(770\) 0 0
\(771\) 16.3327 0.588207
\(772\) 0 0
\(773\) −12.2032 −0.438920 −0.219460 0.975621i \(-0.570430\pi\)
−0.219460 + 0.975621i \(0.570430\pi\)
\(774\) 0 0
\(775\) −2.17552 −0.0781468
\(776\) 0 0
\(777\) −45.5714 −1.63487
\(778\) 0 0
\(779\) 4.80632 0.172204
\(780\) 0 0
\(781\) −42.7508 −1.52974
\(782\) 0 0
\(783\) 53.6730 1.91812
\(784\) 0 0
\(785\) 3.74173 0.133548
\(786\) 0 0
\(787\) 9.03717 0.322140 0.161070 0.986943i \(-0.448505\pi\)
0.161070 + 0.986943i \(0.448505\pi\)
\(788\) 0 0
\(789\) −32.2239 −1.14720
\(790\) 0 0
\(791\) 79.9422 2.84242
\(792\) 0 0
\(793\) 21.5044 0.763645
\(794\) 0 0
\(795\) −1.34387 −0.0476620
\(796\) 0 0
\(797\) −25.3122 −0.896605 −0.448303 0.893882i \(-0.647971\pi\)
−0.448303 + 0.893882i \(0.647971\pi\)
\(798\) 0 0
\(799\) −0.650598 −0.0230165
\(800\) 0 0
\(801\) −1.96948 −0.0695882
\(802\) 0 0
\(803\) −52.4444 −1.85072
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 15.2059 0.535274
\(808\) 0 0
\(809\) −19.3627 −0.680755 −0.340377 0.940289i \(-0.610555\pi\)
−0.340377 + 0.940289i \(0.610555\pi\)
\(810\) 0 0
\(811\) 5.77977 0.202955 0.101478 0.994838i \(-0.467643\pi\)
0.101478 + 0.994838i \(0.467643\pi\)
\(812\) 0 0
\(813\) 41.1924 1.44468
\(814\) 0 0
\(815\) −30.2287 −1.05886
\(816\) 0 0
\(817\) 40.6535 1.42229
\(818\) 0 0
\(819\) 1.20839 0.0422244
\(820\) 0 0
\(821\) 15.7745 0.550535 0.275268 0.961368i \(-0.411234\pi\)
0.275268 + 0.961368i \(0.411234\pi\)
\(822\) 0 0
\(823\) −0.0603987 −0.00210537 −0.00105268 0.999999i \(-0.500335\pi\)
−0.00105268 + 0.999999i \(0.500335\pi\)
\(824\) 0 0
\(825\) −17.3531 −0.604158
\(826\) 0 0
\(827\) 2.81262 0.0978043 0.0489022 0.998804i \(-0.484428\pi\)
0.0489022 + 0.998804i \(0.484428\pi\)
\(828\) 0 0
\(829\) −10.1515 −0.352576 −0.176288 0.984339i \(-0.556409\pi\)
−0.176288 + 0.984339i \(0.556409\pi\)
\(830\) 0 0
\(831\) −41.5110 −1.44000
\(832\) 0 0
\(833\) 3.67746 0.127416
\(834\) 0 0
\(835\) 28.2062 0.976117
\(836\) 0 0
\(837\) −6.25872 −0.216333
\(838\) 0 0
\(839\) −3.20359 −0.110600 −0.0553001 0.998470i \(-0.517612\pi\)
−0.0553001 + 0.998470i \(0.517612\pi\)
\(840\) 0 0
\(841\) 72.2116 2.49006
\(842\) 0 0
\(843\) 17.2875 0.595414
\(844\) 0 0
\(845\) −18.0427 −0.620689
\(846\) 0 0
\(847\) −82.9238 −2.84930
\(848\) 0 0
\(849\) 10.8730 0.373159
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 25.2007 0.862856 0.431428 0.902147i \(-0.358010\pi\)
0.431428 + 0.902147i \(0.358010\pi\)
\(854\) 0 0
\(855\) 2.11512 0.0723355
\(856\) 0 0
\(857\) 47.5767 1.62519 0.812594 0.582830i \(-0.198055\pi\)
0.812594 + 0.582830i \(0.198055\pi\)
\(858\) 0 0
\(859\) −39.6730 −1.35363 −0.676813 0.736155i \(-0.736639\pi\)
−0.676813 + 0.736155i \(0.736639\pi\)
\(860\) 0 0
\(861\) 4.87004 0.165970
\(862\) 0 0
\(863\) 16.7941 0.571676 0.285838 0.958278i \(-0.407728\pi\)
0.285838 + 0.958278i \(0.407728\pi\)
\(864\) 0 0
\(865\) 38.5604 1.31109
\(866\) 0 0
\(867\) −28.3655 −0.963343
\(868\) 0 0
\(869\) −64.4587 −2.18661
\(870\) 0 0
\(871\) −18.5615 −0.628933
\(872\) 0 0
\(873\) 2.11374 0.0715391
\(874\) 0 0
\(875\) 50.4671 1.70610
\(876\) 0 0
\(877\) −29.9037 −1.00978 −0.504888 0.863185i \(-0.668466\pi\)
−0.504888 + 0.863185i \(0.668466\pi\)
\(878\) 0 0
\(879\) 14.8608 0.501244
\(880\) 0 0
\(881\) 3.19957 0.107796 0.0538982 0.998546i \(-0.482835\pi\)
0.0538982 + 0.998546i \(0.482835\pi\)
\(882\) 0 0
\(883\) −22.6597 −0.762559 −0.381280 0.924460i \(-0.624517\pi\)
−0.381280 + 0.924460i \(0.624517\pi\)
\(884\) 0 0
\(885\) −19.4072 −0.652365
\(886\) 0 0
\(887\) −13.5110 −0.453656 −0.226828 0.973935i \(-0.572836\pi\)
−0.226828 + 0.973935i \(0.572836\pi\)
\(888\) 0 0
\(889\) 25.0225 0.839227
\(890\) 0 0
\(891\) −47.0324 −1.57565
\(892\) 0 0
\(893\) 12.4713 0.417336
\(894\) 0 0
\(895\) −23.4216 −0.782899
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −11.8021 −0.393623
\(900\) 0 0
\(901\) −0.161949 −0.00539530
\(902\) 0 0
\(903\) 41.1924 1.37080
\(904\) 0 0
\(905\) 11.9037 0.395692
\(906\) 0 0
\(907\) 53.0644 1.76198 0.880988 0.473139i \(-0.156879\pi\)
0.880988 + 0.473139i \(0.156879\pi\)
\(908\) 0 0
\(909\) 0.0223568 0.000741530 0
\(910\) 0 0
\(911\) −17.4094 −0.576800 −0.288400 0.957510i \(-0.593123\pi\)
−0.288400 + 0.957510i \(0.593123\pi\)
\(912\) 0 0
\(913\) 36.2088 1.19834
\(914\) 0 0
\(915\) 38.1396 1.26086
\(916\) 0 0
\(917\) −31.8877 −1.05303
\(918\) 0 0
\(919\) 30.9400 1.02062 0.510308 0.859992i \(-0.329531\pi\)
0.510308 + 0.859992i \(0.329531\pi\)
\(920\) 0 0
\(921\) −36.2827 −1.19556
\(922\) 0 0
\(923\) −12.9149 −0.425098
\(924\) 0 0
\(925\) −12.1079 −0.398106
\(926\) 0 0
\(927\) −1.93889 −0.0636814
\(928\) 0 0
\(929\) −33.2939 −1.09234 −0.546169 0.837675i \(-0.683914\pi\)
−0.546169 + 0.837675i \(0.683914\pi\)
\(930\) 0 0
\(931\) −70.4931 −2.31032
\(932\) 0 0
\(933\) −10.0416 −0.328747
\(934\) 0 0
\(935\) 3.54714 0.116004
\(936\) 0 0
\(937\) −5.97720 −0.195267 −0.0976333 0.995222i \(-0.531127\pi\)
−0.0976333 + 0.995222i \(0.531127\pi\)
\(938\) 0 0
\(939\) 23.8822 0.779366
\(940\) 0 0
\(941\) −31.4445 −1.02506 −0.512530 0.858669i \(-0.671292\pi\)
−0.512530 + 0.858669i \(0.671292\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 39.2804 1.27779
\(946\) 0 0
\(947\) −8.82687 −0.286835 −0.143417 0.989662i \(-0.545809\pi\)
−0.143417 + 0.989662i \(0.545809\pi\)
\(948\) 0 0
\(949\) −15.8433 −0.514295
\(950\) 0 0
\(951\) 14.3051 0.463875
\(952\) 0 0
\(953\) 36.0623 1.16817 0.584086 0.811692i \(-0.301453\pi\)
0.584086 + 0.811692i \(0.301453\pi\)
\(954\) 0 0
\(955\) −7.75575 −0.250970
\(956\) 0 0
\(957\) −94.1403 −3.04313
\(958\) 0 0
\(959\) −59.7251 −1.92862
\(960\) 0 0
\(961\) −29.6238 −0.955606
\(962\) 0 0
\(963\) −1.65064 −0.0531911
\(964\) 0 0
\(965\) −16.9415 −0.545365
\(966\) 0 0
\(967\) −45.5767 −1.46565 −0.732823 0.680419i \(-0.761798\pi\)
−0.732823 + 0.680419i \(0.761798\pi\)
\(968\) 0 0
\(969\) −4.16195 −0.133701
\(970\) 0 0
\(971\) −37.0998 −1.19059 −0.595295 0.803507i \(-0.702965\pi\)
−0.595295 + 0.803507i \(0.702965\pi\)
\(972\) 0 0
\(973\) 67.7442 2.17178
\(974\) 0 0
\(975\) −5.24232 −0.167888
\(976\) 0 0
\(977\) 19.1716 0.613354 0.306677 0.951814i \(-0.400783\pi\)
0.306677 + 0.951814i \(0.400783\pi\)
\(978\) 0 0
\(979\) 63.3132 2.02350
\(980\) 0 0
\(981\) 0.645723 0.0206164
\(982\) 0 0
\(983\) 14.7636 0.470887 0.235443 0.971888i \(-0.424346\pi\)
0.235443 + 0.971888i \(0.424346\pi\)
\(984\) 0 0
\(985\) 37.8244 1.20519
\(986\) 0 0
\(987\) 12.6366 0.402228
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 37.5163 1.19174 0.595872 0.803080i \(-0.296807\pi\)
0.595872 + 0.803080i \(0.296807\pi\)
\(992\) 0 0
\(993\) −32.6566 −1.03633
\(994\) 0 0
\(995\) −19.1455 −0.606954
\(996\) 0 0
\(997\) 29.0492 0.919998 0.459999 0.887919i \(-0.347850\pi\)
0.459999 + 0.887919i \(0.347850\pi\)
\(998\) 0 0
\(999\) −34.8332 −1.10207
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8464.2.a.by.1.6 6
4.3 odd 2 4232.2.a.v.1.2 yes 6
23.22 odd 2 inner 8464.2.a.by.1.5 6
92.91 even 2 4232.2.a.v.1.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4232.2.a.v.1.1 6 92.91 even 2
4232.2.a.v.1.2 yes 6 4.3 odd 2
8464.2.a.by.1.5 6 23.22 odd 2 inner
8464.2.a.by.1.6 6 1.1 even 1 trivial