Properties

Label 8464.2.a.by.1.4
Level $8464$
Weight $2$
Character 8464.1
Self dual yes
Analytic conductor $67.585$
Analytic rank $1$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8464,2,Mod(1,8464)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8464, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8464.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 8464 = 2^{4} \cdot 23^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8464.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,-4,0,0,0,0,0,10,0,0,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(67.5853802708\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.26849792.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 14x^{4} - 2x^{3} + 28x^{2} - 4x - 7 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 4232)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(3.52912\) of defining polynomial
Character \(\chi\) \(=\) 8464.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.357926 q^{3} +1.57672 q^{5} -2.08290 q^{7} -2.87189 q^{9} +0.668688 q^{11} -0.357926 q^{13} -0.564349 q^{15} +2.99093 q^{17} -5.58002 q^{19} +0.745525 q^{21} -2.51396 q^{25} +2.10170 q^{27} +5.53341 q^{29} +3.87189 q^{31} -0.239341 q^{33} -3.28415 q^{35} +2.58909 q^{37} +0.128111 q^{39} +10.8176 q^{41} +9.71832 q^{43} -4.52816 q^{45} -8.58774 q^{47} -2.66152 q^{49} -1.07053 q^{51} +3.33461 q^{53} +1.05433 q^{55} +1.99724 q^{57} -1.77018 q^{59} -4.13830 q^{61} +5.98186 q^{63} -0.564349 q^{65} -7.66292 q^{67} -5.64207 q^{71} +10.2493 q^{73} +0.899813 q^{75} -1.39281 q^{77} +1.99724 q^{79} +7.86341 q^{81} -10.7889 q^{83} +4.71585 q^{85} -1.98055 q^{87} -2.72409 q^{89} +0.745525 q^{91} -1.38585 q^{93} -8.79811 q^{95} -10.3102 q^{97} -1.92040 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 4 q^{3} + 10 q^{9} - 4 q^{13} + 14 q^{25} - 40 q^{27} - 12 q^{29} - 4 q^{31} - 16 q^{35} + 28 q^{39} + 16 q^{41} - 28 q^{47} + 2 q^{49} + 28 q^{55} - 36 q^{59} - 32 q^{71} + 20 q^{73} - 80 q^{75}+ \cdots - 20 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.357926 −0.206649 −0.103324 0.994648i \(-0.532948\pi\)
−0.103324 + 0.994648i \(0.532948\pi\)
\(4\) 0 0
\(5\) 1.57672 0.705129 0.352565 0.935787i \(-0.385310\pi\)
0.352565 + 0.935787i \(0.385310\pi\)
\(6\) 0 0
\(7\) −2.08290 −0.787263 −0.393631 0.919268i \(-0.628781\pi\)
−0.393631 + 0.919268i \(0.628781\pi\)
\(8\) 0 0
\(9\) −2.87189 −0.957296
\(10\) 0 0
\(11\) 0.668688 0.201617 0.100809 0.994906i \(-0.467857\pi\)
0.100809 + 0.994906i \(0.467857\pi\)
\(12\) 0 0
\(13\) −0.357926 −0.0992709 −0.0496355 0.998767i \(-0.515806\pi\)
−0.0496355 + 0.998767i \(0.515806\pi\)
\(14\) 0 0
\(15\) −0.564349 −0.145714
\(16\) 0 0
\(17\) 2.99093 0.725407 0.362704 0.931905i \(-0.381854\pi\)
0.362704 + 0.931905i \(0.381854\pi\)
\(18\) 0 0
\(19\) −5.58002 −1.28014 −0.640072 0.768315i \(-0.721095\pi\)
−0.640072 + 0.768315i \(0.721095\pi\)
\(20\) 0 0
\(21\) 0.745525 0.162687
\(22\) 0 0
\(23\) 0 0
\(24\) 0 0
\(25\) −2.51396 −0.502792
\(26\) 0 0
\(27\) 2.10170 0.404473
\(28\) 0 0
\(29\) 5.53341 1.02753 0.513764 0.857931i \(-0.328251\pi\)
0.513764 + 0.857931i \(0.328251\pi\)
\(30\) 0 0
\(31\) 3.87189 0.695412 0.347706 0.937604i \(-0.386961\pi\)
0.347706 + 0.937604i \(0.386961\pi\)
\(32\) 0 0
\(33\) −0.239341 −0.0416639
\(34\) 0 0
\(35\) −3.28415 −0.555122
\(36\) 0 0
\(37\) 2.58909 0.425643 0.212822 0.977091i \(-0.431735\pi\)
0.212822 + 0.977091i \(0.431735\pi\)
\(38\) 0 0
\(39\) 0.128111 0.0205142
\(40\) 0 0
\(41\) 10.8176 1.68942 0.844709 0.535225i \(-0.179773\pi\)
0.844709 + 0.535225i \(0.179773\pi\)
\(42\) 0 0
\(43\) 9.71832 1.48203 0.741015 0.671489i \(-0.234345\pi\)
0.741015 + 0.671489i \(0.234345\pi\)
\(44\) 0 0
\(45\) −4.52816 −0.675018
\(46\) 0 0
\(47\) −8.58774 −1.25265 −0.626325 0.779562i \(-0.715442\pi\)
−0.626325 + 0.779562i \(0.715442\pi\)
\(48\) 0 0
\(49\) −2.66152 −0.380217
\(50\) 0 0
\(51\) −1.07053 −0.149905
\(52\) 0 0
\(53\) 3.33461 0.458044 0.229022 0.973421i \(-0.426447\pi\)
0.229022 + 0.973421i \(0.426447\pi\)
\(54\) 0 0
\(55\) 1.05433 0.142166
\(56\) 0 0
\(57\) 1.99724 0.264540
\(58\) 0 0
\(59\) −1.77018 −0.230458 −0.115229 0.993339i \(-0.536760\pi\)
−0.115229 + 0.993339i \(0.536760\pi\)
\(60\) 0 0
\(61\) −4.13830 −0.529855 −0.264928 0.964268i \(-0.585348\pi\)
−0.264928 + 0.964268i \(0.585348\pi\)
\(62\) 0 0
\(63\) 5.98186 0.753644
\(64\) 0 0
\(65\) −0.564349 −0.0699988
\(66\) 0 0
\(67\) −7.66292 −0.936175 −0.468087 0.883682i \(-0.655057\pi\)
−0.468087 + 0.883682i \(0.655057\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −5.64207 −0.669591 −0.334795 0.942291i \(-0.608667\pi\)
−0.334795 + 0.942291i \(0.608667\pi\)
\(72\) 0 0
\(73\) 10.2493 1.19959 0.599793 0.800155i \(-0.295250\pi\)
0.599793 + 0.800155i \(0.295250\pi\)
\(74\) 0 0
\(75\) 0.899813 0.103902
\(76\) 0 0
\(77\) −1.39281 −0.158726
\(78\) 0 0
\(79\) 1.99724 0.224707 0.112353 0.993668i \(-0.464161\pi\)
0.112353 + 0.993668i \(0.464161\pi\)
\(80\) 0 0
\(81\) 7.86341 0.873712
\(82\) 0 0
\(83\) −10.7889 −1.18423 −0.592115 0.805853i \(-0.701707\pi\)
−0.592115 + 0.805853i \(0.701707\pi\)
\(84\) 0 0
\(85\) 4.71585 0.511506
\(86\) 0 0
\(87\) −1.98055 −0.212338
\(88\) 0 0
\(89\) −2.72409 −0.288753 −0.144376 0.989523i \(-0.546118\pi\)
−0.144376 + 0.989523i \(0.546118\pi\)
\(90\) 0 0
\(91\) 0.745525 0.0781523
\(92\) 0 0
\(93\) −1.38585 −0.143706
\(94\) 0 0
\(95\) −8.79811 −0.902667
\(96\) 0 0
\(97\) −10.3102 −1.04684 −0.523420 0.852075i \(-0.675344\pi\)
−0.523420 + 0.852075i \(0.675344\pi\)
\(98\) 0 0
\(99\) −1.92040 −0.193007
\(100\) 0 0
\(101\) −8.94567 −0.890127 −0.445064 0.895499i \(-0.646819\pi\)
−0.445064 + 0.895499i \(0.646819\pi\)
\(102\) 0 0
\(103\) −18.3661 −1.80967 −0.904833 0.425767i \(-0.860004\pi\)
−0.904833 + 0.425767i \(0.860004\pi\)
\(104\) 0 0
\(105\) 1.17548 0.114715
\(106\) 0 0
\(107\) 15.4027 1.48903 0.744516 0.667604i \(-0.232680\pi\)
0.744516 + 0.667604i \(0.232680\pi\)
\(108\) 0 0
\(109\) 9.49765 0.909710 0.454855 0.890566i \(-0.349691\pi\)
0.454855 + 0.890566i \(0.349691\pi\)
\(110\) 0 0
\(111\) −0.926702 −0.0879587
\(112\) 0 0
\(113\) 10.1388 0.953781 0.476891 0.878963i \(-0.341764\pi\)
0.476891 + 0.878963i \(0.341764\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 1.02792 0.0950317
\(118\) 0 0
\(119\) −6.22982 −0.571086
\(120\) 0 0
\(121\) −10.5529 −0.959351
\(122\) 0 0
\(123\) −3.87189 −0.349116
\(124\) 0 0
\(125\) −11.8474 −1.05966
\(126\) 0 0
\(127\) −9.38585 −0.832860 −0.416430 0.909168i \(-0.636719\pi\)
−0.416430 + 0.909168i \(0.636719\pi\)
\(128\) 0 0
\(129\) −3.47844 −0.306260
\(130\) 0 0
\(131\) 5.64207 0.492950 0.246475 0.969149i \(-0.420728\pi\)
0.246475 + 0.969149i \(0.420728\pi\)
\(132\) 0 0
\(133\) 11.6226 1.00781
\(134\) 0 0
\(135\) 3.31379 0.285206
\(136\) 0 0
\(137\) −18.2036 −1.55524 −0.777619 0.628735i \(-0.783573\pi\)
−0.777619 + 0.628735i \(0.783573\pi\)
\(138\) 0 0
\(139\) −18.3579 −1.55710 −0.778549 0.627583i \(-0.784044\pi\)
−0.778549 + 0.627583i \(0.784044\pi\)
\(140\) 0 0
\(141\) 3.07378 0.258859
\(142\) 0 0
\(143\) −0.239341 −0.0200147
\(144\) 0 0
\(145\) 8.72462 0.724540
\(146\) 0 0
\(147\) 0.952628 0.0785715
\(148\) 0 0
\(149\) 21.6052 1.76997 0.884984 0.465622i \(-0.154169\pi\)
0.884984 + 0.465622i \(0.154169\pi\)
\(150\) 0 0
\(151\) −23.2772 −1.89427 −0.947135 0.320834i \(-0.896037\pi\)
−0.947135 + 0.320834i \(0.896037\pi\)
\(152\) 0 0
\(153\) −8.58962 −0.694430
\(154\) 0 0
\(155\) 6.10487 0.490355
\(156\) 0 0
\(157\) −8.81029 −0.703138 −0.351569 0.936162i \(-0.614352\pi\)
−0.351569 + 0.936162i \(0.614352\pi\)
\(158\) 0 0
\(159\) −1.19355 −0.0946543
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −10.9262 −0.855808 −0.427904 0.903824i \(-0.640748\pi\)
−0.427904 + 0.903824i \(0.640748\pi\)
\(164\) 0 0
\(165\) −0.377373 −0.0293785
\(166\) 0 0
\(167\) −11.8649 −0.918136 −0.459068 0.888401i \(-0.651817\pi\)
−0.459068 + 0.888401i \(0.651817\pi\)
\(168\) 0 0
\(169\) −12.8719 −0.990145
\(170\) 0 0
\(171\) 16.0252 1.22548
\(172\) 0 0
\(173\) 4.10866 0.312376 0.156188 0.987727i \(-0.450079\pi\)
0.156188 + 0.987727i \(0.450079\pi\)
\(174\) 0 0
\(175\) 5.23634 0.395830
\(176\) 0 0
\(177\) 0.633596 0.0476240
\(178\) 0 0
\(179\) 3.04737 0.227771 0.113886 0.993494i \(-0.463670\pi\)
0.113886 + 0.993494i \(0.463670\pi\)
\(180\) 0 0
\(181\) −10.0620 −0.747902 −0.373951 0.927448i \(-0.621997\pi\)
−0.373951 + 0.927448i \(0.621997\pi\)
\(182\) 0 0
\(183\) 1.48121 0.109494
\(184\) 0 0
\(185\) 4.08226 0.300133
\(186\) 0 0
\(187\) 2.00000 0.146254
\(188\) 0 0
\(189\) −4.37764 −0.318427
\(190\) 0 0
\(191\) 15.3565 1.11116 0.555579 0.831464i \(-0.312497\pi\)
0.555579 + 0.831464i \(0.312497\pi\)
\(192\) 0 0
\(193\) 1.30359 0.0938348 0.0469174 0.998899i \(-0.485060\pi\)
0.0469174 + 0.998899i \(0.485060\pi\)
\(194\) 0 0
\(195\) 0.201995 0.0144652
\(196\) 0 0
\(197\) −26.1142 −1.86056 −0.930280 0.366852i \(-0.880436\pi\)
−0.930280 + 0.366852i \(0.880436\pi\)
\(198\) 0 0
\(199\) −11.7244 −0.831119 −0.415560 0.909566i \(-0.636414\pi\)
−0.415560 + 0.909566i \(0.636414\pi\)
\(200\) 0 0
\(201\) 2.74276 0.193459
\(202\) 0 0
\(203\) −11.5255 −0.808935
\(204\) 0 0
\(205\) 17.0562 1.19126
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −3.73129 −0.258099
\(210\) 0 0
\(211\) −26.4332 −1.81974 −0.909869 0.414896i \(-0.863818\pi\)
−0.909869 + 0.414896i \(0.863818\pi\)
\(212\) 0 0
\(213\) 2.01945 0.138370
\(214\) 0 0
\(215\) 15.3230 1.04502
\(216\) 0 0
\(217\) −8.06476 −0.547472
\(218\) 0 0
\(219\) −3.66848 −0.247893
\(220\) 0 0
\(221\) −1.07053 −0.0720118
\(222\) 0 0
\(223\) 16.4985 1.10482 0.552411 0.833572i \(-0.313708\pi\)
0.552411 + 0.833572i \(0.313708\pi\)
\(224\) 0 0
\(225\) 7.21982 0.481321
\(226\) 0 0
\(227\) 22.7526 1.51014 0.755071 0.655643i \(-0.227603\pi\)
0.755071 + 0.655643i \(0.227603\pi\)
\(228\) 0 0
\(229\) −24.0811 −1.59133 −0.795663 0.605740i \(-0.792877\pi\)
−0.795663 + 0.605740i \(0.792877\pi\)
\(230\) 0 0
\(231\) 0.498524 0.0328005
\(232\) 0 0
\(233\) 6.24926 0.409403 0.204701 0.978824i \(-0.434378\pi\)
0.204701 + 0.978824i \(0.434378\pi\)
\(234\) 0 0
\(235\) −13.5404 −0.883281
\(236\) 0 0
\(237\) −0.714863 −0.0464354
\(238\) 0 0
\(239\) 24.3704 1.57639 0.788195 0.615425i \(-0.211016\pi\)
0.788195 + 0.615425i \(0.211016\pi\)
\(240\) 0 0
\(241\) 1.50972 0.0972499 0.0486249 0.998817i \(-0.484516\pi\)
0.0486249 + 0.998817i \(0.484516\pi\)
\(242\) 0 0
\(243\) −9.11963 −0.585025
\(244\) 0 0
\(245\) −4.19647 −0.268102
\(246\) 0 0
\(247\) 1.99724 0.127081
\(248\) 0 0
\(249\) 3.86161 0.244720
\(250\) 0 0
\(251\) 4.53699 0.286372 0.143186 0.989696i \(-0.454265\pi\)
0.143186 + 0.989696i \(0.454265\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) −1.68793 −0.105702
\(256\) 0 0
\(257\) −11.2772 −0.703452 −0.351726 0.936103i \(-0.614405\pi\)
−0.351726 + 0.936103i \(0.614405\pi\)
\(258\) 0 0
\(259\) −5.39281 −0.335093
\(260\) 0 0
\(261\) −15.8913 −0.983649
\(262\) 0 0
\(263\) 3.81329 0.235138 0.117569 0.993065i \(-0.462490\pi\)
0.117569 + 0.993065i \(0.462490\pi\)
\(264\) 0 0
\(265\) 5.25774 0.322980
\(266\) 0 0
\(267\) 0.975023 0.0596704
\(268\) 0 0
\(269\) 2.92622 0.178415 0.0892074 0.996013i \(-0.471567\pi\)
0.0892074 + 0.996013i \(0.471567\pi\)
\(270\) 0 0
\(271\) −20.2423 −1.22963 −0.614816 0.788670i \(-0.710770\pi\)
−0.614816 + 0.788670i \(0.710770\pi\)
\(272\) 0 0
\(273\) −0.266843 −0.0161501
\(274\) 0 0
\(275\) −1.68106 −0.101372
\(276\) 0 0
\(277\) 26.8300 1.61206 0.806031 0.591874i \(-0.201612\pi\)
0.806031 + 0.591874i \(0.201612\pi\)
\(278\) 0 0
\(279\) −11.1196 −0.665715
\(280\) 0 0
\(281\) 6.46937 0.385930 0.192965 0.981206i \(-0.438190\pi\)
0.192965 + 0.981206i \(0.438190\pi\)
\(282\) 0 0
\(283\) −6.00053 −0.356695 −0.178347 0.983968i \(-0.557075\pi\)
−0.178347 + 0.983968i \(0.557075\pi\)
\(284\) 0 0
\(285\) 3.14908 0.186535
\(286\) 0 0
\(287\) −22.5319 −1.33002
\(288\) 0 0
\(289\) −8.05433 −0.473784
\(290\) 0 0
\(291\) 3.69028 0.216328
\(292\) 0 0
\(293\) 22.7987 1.33192 0.665959 0.745989i \(-0.268023\pi\)
0.665959 + 0.745989i \(0.268023\pi\)
\(294\) 0 0
\(295\) −2.79108 −0.162503
\(296\) 0 0
\(297\) 1.40538 0.0815487
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) −20.2423 −1.16675
\(302\) 0 0
\(303\) 3.20189 0.183944
\(304\) 0 0
\(305\) −6.52493 −0.373616
\(306\) 0 0
\(307\) −14.0823 −0.803717 −0.401858 0.915702i \(-0.631636\pi\)
−0.401858 + 0.915702i \(0.631636\pi\)
\(308\) 0 0
\(309\) 6.57371 0.373965
\(310\) 0 0
\(311\) −2.61415 −0.148235 −0.0741174 0.997250i \(-0.523614\pi\)
−0.0741174 + 0.997250i \(0.523614\pi\)
\(312\) 0 0
\(313\) −5.55251 −0.313847 −0.156923 0.987611i \(-0.550158\pi\)
−0.156923 + 0.987611i \(0.550158\pi\)
\(314\) 0 0
\(315\) 9.43171 0.531416
\(316\) 0 0
\(317\) 3.77018 0.211755 0.105877 0.994379i \(-0.466235\pi\)
0.105877 + 0.994379i \(0.466235\pi\)
\(318\) 0 0
\(319\) 3.70013 0.207167
\(320\) 0 0
\(321\) −5.51302 −0.307707
\(322\) 0 0
\(323\) −16.6894 −0.928626
\(324\) 0 0
\(325\) 0.899813 0.0499127
\(326\) 0 0
\(327\) −3.39946 −0.187991
\(328\) 0 0
\(329\) 17.8874 0.986165
\(330\) 0 0
\(331\) 0.249262 0.0137007 0.00685034 0.999977i \(-0.497819\pi\)
0.00685034 + 0.999977i \(0.497819\pi\)
\(332\) 0 0
\(333\) −7.43557 −0.407467
\(334\) 0 0
\(335\) −12.0823 −0.660124
\(336\) 0 0
\(337\) −8.58962 −0.467906 −0.233953 0.972248i \(-0.575166\pi\)
−0.233953 + 0.972248i \(0.575166\pi\)
\(338\) 0 0
\(339\) −3.62896 −0.197098
\(340\) 0 0
\(341\) 2.58909 0.140207
\(342\) 0 0
\(343\) 20.1240 1.08659
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −21.0279 −1.12884 −0.564419 0.825488i \(-0.690900\pi\)
−0.564419 + 0.825488i \(0.690900\pi\)
\(348\) 0 0
\(349\) −1.87189 −0.100200 −0.0501000 0.998744i \(-0.515954\pi\)
−0.0501000 + 0.998744i \(0.515954\pi\)
\(350\) 0 0
\(351\) −0.752255 −0.0401524
\(352\) 0 0
\(353\) −13.6810 −0.728164 −0.364082 0.931367i \(-0.618617\pi\)
−0.364082 + 0.931367i \(0.618617\pi\)
\(354\) 0 0
\(355\) −8.89596 −0.472148
\(356\) 0 0
\(357\) 2.22982 0.118014
\(358\) 0 0
\(359\) −25.4460 −1.34299 −0.671494 0.741010i \(-0.734347\pi\)
−0.671494 + 0.741010i \(0.734347\pi\)
\(360\) 0 0
\(361\) 12.1366 0.638768
\(362\) 0 0
\(363\) 3.77715 0.198249
\(364\) 0 0
\(365\) 16.1602 0.845863
\(366\) 0 0
\(367\) −34.7043 −1.81155 −0.905775 0.423759i \(-0.860710\pi\)
−0.905775 + 0.423759i \(0.860710\pi\)
\(368\) 0 0
\(369\) −31.0668 −1.61727
\(370\) 0 0
\(371\) −6.94567 −0.360601
\(372\) 0 0
\(373\) 6.10487 0.316098 0.158049 0.987431i \(-0.449480\pi\)
0.158049 + 0.987431i \(0.449480\pi\)
\(374\) 0 0
\(375\) 4.24050 0.218978
\(376\) 0 0
\(377\) −1.98055 −0.102004
\(378\) 0 0
\(379\) 0.908029 0.0466423 0.0233212 0.999728i \(-0.492576\pi\)
0.0233212 + 0.999728i \(0.492576\pi\)
\(380\) 0 0
\(381\) 3.35944 0.172110
\(382\) 0 0
\(383\) −12.9761 −0.663047 −0.331524 0.943447i \(-0.607563\pi\)
−0.331524 + 0.943447i \(0.607563\pi\)
\(384\) 0 0
\(385\) −2.19607 −0.111922
\(386\) 0 0
\(387\) −27.9099 −1.41874
\(388\) 0 0
\(389\) 30.9217 1.56779 0.783896 0.620893i \(-0.213230\pi\)
0.783896 + 0.620893i \(0.213230\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) −2.01945 −0.101868
\(394\) 0 0
\(395\) 3.14908 0.158447
\(396\) 0 0
\(397\) −19.5070 −0.979028 −0.489514 0.871995i \(-0.662826\pi\)
−0.489514 + 0.871995i \(0.662826\pi\)
\(398\) 0 0
\(399\) −4.16004 −0.208263
\(400\) 0 0
\(401\) −5.67553 −0.283422 −0.141711 0.989908i \(-0.545260\pi\)
−0.141711 + 0.989908i \(0.545260\pi\)
\(402\) 0 0
\(403\) −1.38585 −0.0690342
\(404\) 0 0
\(405\) 12.3984 0.616080
\(406\) 0 0
\(407\) 1.73129 0.0858169
\(408\) 0 0
\(409\) 36.1964 1.78980 0.894900 0.446268i \(-0.147247\pi\)
0.894900 + 0.446268i \(0.147247\pi\)
\(410\) 0 0
\(411\) 6.51555 0.321388
\(412\) 0 0
\(413\) 3.68712 0.181431
\(414\) 0 0
\(415\) −17.0110 −0.835036
\(416\) 0 0
\(417\) 6.57079 0.321773
\(418\) 0 0
\(419\) 27.6639 1.35147 0.675735 0.737145i \(-0.263826\pi\)
0.675735 + 0.737145i \(0.263826\pi\)
\(420\) 0 0
\(421\) 13.5503 0.660400 0.330200 0.943911i \(-0.392884\pi\)
0.330200 + 0.943911i \(0.392884\pi\)
\(422\) 0 0
\(423\) 24.6630 1.19916
\(424\) 0 0
\(425\) −7.51909 −0.364729
\(426\) 0 0
\(427\) 8.61967 0.417135
\(428\) 0 0
\(429\) 0.0856665 0.00413602
\(430\) 0 0
\(431\) 17.6579 0.850552 0.425276 0.905064i \(-0.360177\pi\)
0.425276 + 0.905064i \(0.360177\pi\)
\(432\) 0 0
\(433\) −25.1672 −1.20946 −0.604728 0.796432i \(-0.706718\pi\)
−0.604728 + 0.796432i \(0.706718\pi\)
\(434\) 0 0
\(435\) −3.12277 −0.149725
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) −17.2508 −0.823335 −0.411667 0.911334i \(-0.635053\pi\)
−0.411667 + 0.911334i \(0.635053\pi\)
\(440\) 0 0
\(441\) 7.64359 0.363981
\(442\) 0 0
\(443\) −21.1949 −1.00700 −0.503501 0.863995i \(-0.667955\pi\)
−0.503501 + 0.863995i \(0.667955\pi\)
\(444\) 0 0
\(445\) −4.29512 −0.203608
\(446\) 0 0
\(447\) −7.73307 −0.365762
\(448\) 0 0
\(449\) −7.32304 −0.345596 −0.172798 0.984957i \(-0.555281\pi\)
−0.172798 + 0.984957i \(0.555281\pi\)
\(450\) 0 0
\(451\) 7.23357 0.340616
\(452\) 0 0
\(453\) 8.33152 0.391449
\(454\) 0 0
\(455\) 1.17548 0.0551075
\(456\) 0 0
\(457\) −5.66568 −0.265029 −0.132515 0.991181i \(-0.542305\pi\)
−0.132515 + 0.991181i \(0.542305\pi\)
\(458\) 0 0
\(459\) 6.28605 0.293408
\(460\) 0 0
\(461\) −24.8998 −1.15970 −0.579850 0.814723i \(-0.696889\pi\)
−0.579850 + 0.814723i \(0.696889\pi\)
\(462\) 0 0
\(463\) 21.4178 0.995369 0.497684 0.867358i \(-0.334184\pi\)
0.497684 + 0.867358i \(0.334184\pi\)
\(464\) 0 0
\(465\) −2.18510 −0.101331
\(466\) 0 0
\(467\) 8.61712 0.398753 0.199376 0.979923i \(-0.436108\pi\)
0.199376 + 0.979923i \(0.436108\pi\)
\(468\) 0 0
\(469\) 15.9611 0.737015
\(470\) 0 0
\(471\) 3.15343 0.145303
\(472\) 0 0
\(473\) 6.49852 0.298802
\(474\) 0 0
\(475\) 14.0280 0.643647
\(476\) 0 0
\(477\) −9.57663 −0.438484
\(478\) 0 0
\(479\) 31.9922 1.46176 0.730881 0.682505i \(-0.239110\pi\)
0.730881 + 0.682505i \(0.239110\pi\)
\(480\) 0 0
\(481\) −0.926702 −0.0422540
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −16.2562 −0.738157
\(486\) 0 0
\(487\) 20.7911 0.942137 0.471068 0.882097i \(-0.343868\pi\)
0.471068 + 0.882097i \(0.343868\pi\)
\(488\) 0 0
\(489\) 3.91078 0.176852
\(490\) 0 0
\(491\) −31.8455 −1.43717 −0.718583 0.695441i \(-0.755209\pi\)
−0.718583 + 0.695441i \(0.755209\pi\)
\(492\) 0 0
\(493\) 16.5500 0.745377
\(494\) 0 0
\(495\) −3.02792 −0.136095
\(496\) 0 0
\(497\) 11.7519 0.527144
\(498\) 0 0
\(499\) −17.9108 −0.801797 −0.400898 0.916123i \(-0.631302\pi\)
−0.400898 + 0.916123i \(0.631302\pi\)
\(500\) 0 0
\(501\) 4.24677 0.189732
\(502\) 0 0
\(503\) 19.7891 0.882354 0.441177 0.897420i \(-0.354561\pi\)
0.441177 + 0.897420i \(0.354561\pi\)
\(504\) 0 0
\(505\) −14.1048 −0.627655
\(506\) 0 0
\(507\) 4.60719 0.204612
\(508\) 0 0
\(509\) −21.9497 −0.972902 −0.486451 0.873708i \(-0.661709\pi\)
−0.486451 + 0.873708i \(0.661709\pi\)
\(510\) 0 0
\(511\) −21.3482 −0.944389
\(512\) 0 0
\(513\) −11.7275 −0.517784
\(514\) 0 0
\(515\) −28.9582 −1.27605
\(516\) 0 0
\(517\) −5.74252 −0.252556
\(518\) 0 0
\(519\) −1.47060 −0.0645521
\(520\) 0 0
\(521\) −4.59515 −0.201317 −0.100659 0.994921i \(-0.532095\pi\)
−0.100659 + 0.994921i \(0.532095\pi\)
\(522\) 0 0
\(523\) 24.9860 1.09256 0.546281 0.837602i \(-0.316043\pi\)
0.546281 + 0.837602i \(0.316043\pi\)
\(524\) 0 0
\(525\) −1.87422 −0.0817978
\(526\) 0 0
\(527\) 11.5806 0.504457
\(528\) 0 0
\(529\) 0 0
\(530\) 0 0
\(531\) 5.08377 0.220617
\(532\) 0 0
\(533\) −3.87189 −0.167710
\(534\) 0 0
\(535\) 24.2857 1.04996
\(536\) 0 0
\(537\) −1.09073 −0.0470687
\(538\) 0 0
\(539\) −1.77973 −0.0766583
\(540\) 0 0
\(541\) −16.8609 −0.724908 −0.362454 0.932002i \(-0.618061\pi\)
−0.362454 + 0.932002i \(0.618061\pi\)
\(542\) 0 0
\(543\) 3.60145 0.154553
\(544\) 0 0
\(545\) 14.9751 0.641463
\(546\) 0 0
\(547\) 33.8455 1.44713 0.723564 0.690257i \(-0.242503\pi\)
0.723564 + 0.690257i \(0.242503\pi\)
\(548\) 0 0
\(549\) 11.8847 0.507228
\(550\) 0 0
\(551\) −30.8765 −1.31538
\(552\) 0 0
\(553\) −4.16004 −0.176903
\(554\) 0 0
\(555\) −1.46115 −0.0620223
\(556\) 0 0
\(557\) −9.61398 −0.407357 −0.203679 0.979038i \(-0.565290\pi\)
−0.203679 + 0.979038i \(0.565290\pi\)
\(558\) 0 0
\(559\) −3.47844 −0.147122
\(560\) 0 0
\(561\) −0.715853 −0.0302233
\(562\) 0 0
\(563\) 11.0930 0.467516 0.233758 0.972295i \(-0.424898\pi\)
0.233758 + 0.972295i \(0.424898\pi\)
\(564\) 0 0
\(565\) 15.9861 0.672539
\(566\) 0 0
\(567\) −16.3787 −0.687841
\(568\) 0 0
\(569\) 17.7556 0.744353 0.372176 0.928162i \(-0.378612\pi\)
0.372176 + 0.928162i \(0.378612\pi\)
\(570\) 0 0
\(571\) −19.9241 −0.833800 −0.416900 0.908952i \(-0.636883\pi\)
−0.416900 + 0.908952i \(0.636883\pi\)
\(572\) 0 0
\(573\) −5.49650 −0.229619
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −14.0753 −0.585962 −0.292981 0.956118i \(-0.594647\pi\)
−0.292981 + 0.956118i \(0.594647\pi\)
\(578\) 0 0
\(579\) −0.466591 −0.0193908
\(580\) 0 0
\(581\) 22.4721 0.932300
\(582\) 0 0
\(583\) 2.22982 0.0923495
\(584\) 0 0
\(585\) 1.62075 0.0670096
\(586\) 0 0
\(587\) −12.1670 −0.502186 −0.251093 0.967963i \(-0.580790\pi\)
−0.251093 + 0.967963i \(0.580790\pi\)
\(588\) 0 0
\(589\) −21.6052 −0.890227
\(590\) 0 0
\(591\) 9.34696 0.384482
\(592\) 0 0
\(593\) −40.9582 −1.68195 −0.840975 0.541074i \(-0.818018\pi\)
−0.840975 + 0.541074i \(0.818018\pi\)
\(594\) 0 0
\(595\) −9.82266 −0.402690
\(596\) 0 0
\(597\) 4.19647 0.171750
\(598\) 0 0
\(599\) 29.4317 1.20255 0.601273 0.799043i \(-0.294660\pi\)
0.601273 + 0.799043i \(0.294660\pi\)
\(600\) 0 0
\(601\) −16.0194 −0.653447 −0.326723 0.945120i \(-0.605945\pi\)
−0.326723 + 0.945120i \(0.605945\pi\)
\(602\) 0 0
\(603\) 22.0070 0.896196
\(604\) 0 0
\(605\) −16.6389 −0.676466
\(606\) 0 0
\(607\) −13.0932 −0.531438 −0.265719 0.964051i \(-0.585609\pi\)
−0.265719 + 0.964051i \(0.585609\pi\)
\(608\) 0 0
\(609\) 4.12530 0.167165
\(610\) 0 0
\(611\) 3.07378 0.124352
\(612\) 0 0
\(613\) 9.34714 0.377527 0.188764 0.982023i \(-0.439552\pi\)
0.188764 + 0.982023i \(0.439552\pi\)
\(614\) 0 0
\(615\) −6.10487 −0.246172
\(616\) 0 0
\(617\) −0.285516 −0.0114944 −0.00574722 0.999983i \(-0.501829\pi\)
−0.00574722 + 0.999983i \(0.501829\pi\)
\(618\) 0 0
\(619\) 30.9097 1.24237 0.621183 0.783666i \(-0.286653\pi\)
0.621183 + 0.783666i \(0.286653\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 5.67401 0.227324
\(624\) 0 0
\(625\) −6.11018 −0.244407
\(626\) 0 0
\(627\) 1.33553 0.0533358
\(628\) 0 0
\(629\) 7.74378 0.308765
\(630\) 0 0
\(631\) 17.7919 0.708285 0.354142 0.935192i \(-0.384773\pi\)
0.354142 + 0.935192i \(0.384773\pi\)
\(632\) 0 0
\(633\) 9.46115 0.376047
\(634\) 0 0
\(635\) −14.7988 −0.587274
\(636\) 0 0
\(637\) 0.952628 0.0377445
\(638\) 0 0
\(639\) 16.2034 0.640997
\(640\) 0 0
\(641\) 49.1803 1.94250 0.971252 0.238053i \(-0.0765092\pi\)
0.971252 + 0.238053i \(0.0765092\pi\)
\(642\) 0 0
\(643\) −6.44187 −0.254043 −0.127021 0.991900i \(-0.540542\pi\)
−0.127021 + 0.991900i \(0.540542\pi\)
\(644\) 0 0
\(645\) −5.48452 −0.215953
\(646\) 0 0
\(647\) −26.9387 −1.05907 −0.529535 0.848288i \(-0.677634\pi\)
−0.529535 + 0.848288i \(0.677634\pi\)
\(648\) 0 0
\(649\) −1.18370 −0.0464644
\(650\) 0 0
\(651\) 2.88659 0.113134
\(652\) 0 0
\(653\) −29.2338 −1.14401 −0.572004 0.820251i \(-0.693834\pi\)
−0.572004 + 0.820251i \(0.693834\pi\)
\(654\) 0 0
\(655\) 8.89596 0.347594
\(656\) 0 0
\(657\) −29.4347 −1.14836
\(658\) 0 0
\(659\) 3.83197 0.149272 0.0746361 0.997211i \(-0.476220\pi\)
0.0746361 + 0.997211i \(0.476220\pi\)
\(660\) 0 0
\(661\) 18.7768 0.730332 0.365166 0.930942i \(-0.381012\pi\)
0.365166 + 0.930942i \(0.381012\pi\)
\(662\) 0 0
\(663\) 0.383172 0.0148812
\(664\) 0 0
\(665\) 18.3256 0.710636
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) −5.90526 −0.228310
\(670\) 0 0
\(671\) −2.76723 −0.106828
\(672\) 0 0
\(673\) 14.9776 0.577344 0.288672 0.957428i \(-0.406786\pi\)
0.288672 + 0.957428i \(0.406786\pi\)
\(674\) 0 0
\(675\) −5.28360 −0.203366
\(676\) 0 0
\(677\) −13.8073 −0.530657 −0.265329 0.964158i \(-0.585480\pi\)
−0.265329 + 0.964158i \(0.585480\pi\)
\(678\) 0 0
\(679\) 21.4751 0.824137
\(680\) 0 0
\(681\) −8.14375 −0.312069
\(682\) 0 0
\(683\) 0.128111 0.00490204 0.00245102 0.999997i \(-0.499220\pi\)
0.00245102 + 0.999997i \(0.499220\pi\)
\(684\) 0 0
\(685\) −28.7019 −1.09664
\(686\) 0 0
\(687\) 8.61927 0.328846
\(688\) 0 0
\(689\) −1.19355 −0.0454705
\(690\) 0 0
\(691\) −27.3230 −1.03942 −0.519709 0.854344i \(-0.673960\pi\)
−0.519709 + 0.854344i \(0.673960\pi\)
\(692\) 0 0
\(693\) 4.00000 0.151947
\(694\) 0 0
\(695\) −28.9453 −1.09796
\(696\) 0 0
\(697\) 32.3546 1.22552
\(698\) 0 0
\(699\) −2.23678 −0.0846026
\(700\) 0 0
\(701\) −33.0419 −1.24798 −0.623988 0.781434i \(-0.714489\pi\)
−0.623988 + 0.781434i \(0.714489\pi\)
\(702\) 0 0
\(703\) −14.4471 −0.544884
\(704\) 0 0
\(705\) 4.84648 0.182529
\(706\) 0 0
\(707\) 18.6329 0.700764
\(708\) 0 0
\(709\) −42.1222 −1.58193 −0.790967 0.611859i \(-0.790422\pi\)
−0.790967 + 0.611859i \(0.790422\pi\)
\(710\) 0 0
\(711\) −5.73584 −0.215111
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) −0.377373 −0.0141130
\(716\) 0 0
\(717\) −8.72281 −0.325759
\(718\) 0 0
\(719\) 40.9193 1.52603 0.763015 0.646380i \(-0.223718\pi\)
0.763015 + 0.646380i \(0.223718\pi\)
\(720\) 0 0
\(721\) 38.2548 1.42468
\(722\) 0 0
\(723\) −0.540370 −0.0200966
\(724\) 0 0
\(725\) −13.9108 −0.516633
\(726\) 0 0
\(727\) 48.9353 1.81491 0.907454 0.420151i \(-0.138023\pi\)
0.907454 + 0.420151i \(0.138023\pi\)
\(728\) 0 0
\(729\) −20.3261 −0.752818
\(730\) 0 0
\(731\) 29.0668 1.07508
\(732\) 0 0
\(733\) 11.6969 0.432034 0.216017 0.976390i \(-0.430693\pi\)
0.216017 + 0.976390i \(0.430693\pi\)
\(734\) 0 0
\(735\) 1.50203 0.0554031
\(736\) 0 0
\(737\) −5.12410 −0.188749
\(738\) 0 0
\(739\) 32.4402 1.19333 0.596666 0.802490i \(-0.296492\pi\)
0.596666 + 0.802490i \(0.296492\pi\)
\(740\) 0 0
\(741\) −0.714863 −0.0262612
\(742\) 0 0
\(743\) 38.1277 1.39877 0.699386 0.714744i \(-0.253457\pi\)
0.699386 + 0.714744i \(0.253457\pi\)
\(744\) 0 0
\(745\) 34.0653 1.24806
\(746\) 0 0
\(747\) 30.9844 1.13366
\(748\) 0 0
\(749\) −32.0823 −1.17226
\(750\) 0 0
\(751\) −31.8001 −1.16040 −0.580200 0.814474i \(-0.697026\pi\)
−0.580200 + 0.814474i \(0.697026\pi\)
\(752\) 0 0
\(753\) −1.62391 −0.0591785
\(754\) 0 0
\(755\) −36.7015 −1.33571
\(756\) 0 0
\(757\) −49.4690 −1.79798 −0.898990 0.437969i \(-0.855698\pi\)
−0.898990 + 0.437969i \(0.855698\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 4.28816 0.155446 0.0777228 0.996975i \(-0.475235\pi\)
0.0777228 + 0.996975i \(0.475235\pi\)
\(762\) 0 0
\(763\) −19.7827 −0.716181
\(764\) 0 0
\(765\) −13.5434 −0.489663
\(766\) 0 0
\(767\) 0.633596 0.0228778
\(768\) 0 0
\(769\) 38.4133 1.38522 0.692609 0.721313i \(-0.256461\pi\)
0.692609 + 0.721313i \(0.256461\pi\)
\(770\) 0 0
\(771\) 4.03640 0.145367
\(772\) 0 0
\(773\) −38.6033 −1.38846 −0.694232 0.719752i \(-0.744256\pi\)
−0.694232 + 0.719752i \(0.744256\pi\)
\(774\) 0 0
\(775\) −9.73378 −0.349648
\(776\) 0 0
\(777\) 1.93023 0.0692466
\(778\) 0 0
\(779\) −60.3621 −2.16270
\(780\) 0 0
\(781\) −3.77279 −0.135001
\(782\) 0 0
\(783\) 11.6296 0.415608
\(784\) 0 0
\(785\) −13.8913 −0.495803
\(786\) 0 0
\(787\) −8.01859 −0.285832 −0.142916 0.989735i \(-0.545648\pi\)
−0.142916 + 0.989735i \(0.545648\pi\)
\(788\) 0 0
\(789\) −1.36488 −0.0485910
\(790\) 0 0
\(791\) −21.1182 −0.750877
\(792\) 0 0
\(793\) 1.48121 0.0525992
\(794\) 0 0
\(795\) −1.88188 −0.0667435
\(796\) 0 0
\(797\) 17.5931 0.623179 0.311589 0.950217i \(-0.399139\pi\)
0.311589 + 0.950217i \(0.399139\pi\)
\(798\) 0 0
\(799\) −25.6853 −0.908682
\(800\) 0 0
\(801\) 7.82328 0.276422
\(802\) 0 0
\(803\) 6.85356 0.241857
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −1.04737 −0.0368692
\(808\) 0 0
\(809\) −15.2841 −0.537362 −0.268681 0.963229i \(-0.586588\pi\)
−0.268681 + 0.963229i \(0.586588\pi\)
\(810\) 0 0
\(811\) −53.1157 −1.86514 −0.932572 0.360983i \(-0.882441\pi\)
−0.932572 + 0.360983i \(0.882441\pi\)
\(812\) 0 0
\(813\) 7.24525 0.254102
\(814\) 0 0
\(815\) −17.2276 −0.603455
\(816\) 0 0
\(817\) −54.2284 −1.89721
\(818\) 0 0
\(819\) −2.14107 −0.0748149
\(820\) 0 0
\(821\) −20.8106 −0.726295 −0.363147 0.931732i \(-0.618298\pi\)
−0.363147 + 0.931732i \(0.618298\pi\)
\(822\) 0 0
\(823\) 15.5334 0.541461 0.270730 0.962655i \(-0.412735\pi\)
0.270730 + 0.962655i \(0.412735\pi\)
\(824\) 0 0
\(825\) 0.601695 0.0209483
\(826\) 0 0
\(827\) 15.3378 0.533348 0.266674 0.963787i \(-0.414075\pi\)
0.266674 + 0.963787i \(0.414075\pi\)
\(828\) 0 0
\(829\) −44.6366 −1.55029 −0.775147 0.631781i \(-0.782324\pi\)
−0.775147 + 0.631781i \(0.782324\pi\)
\(830\) 0 0
\(831\) −9.60318 −0.333131
\(832\) 0 0
\(833\) −7.96042 −0.275812
\(834\) 0 0
\(835\) −18.7076 −0.647405
\(836\) 0 0
\(837\) 8.13756 0.281275
\(838\) 0 0
\(839\) 18.0037 0.621558 0.310779 0.950482i \(-0.399410\pi\)
0.310779 + 0.950482i \(0.399410\pi\)
\(840\) 0 0
\(841\) 1.61862 0.0558144
\(842\) 0 0
\(843\) −2.31556 −0.0797521
\(844\) 0 0
\(845\) −20.2953 −0.698181
\(846\) 0 0
\(847\) 21.9806 0.755261
\(848\) 0 0
\(849\) 2.14775 0.0737106
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 31.2577 1.07024 0.535122 0.844775i \(-0.320266\pi\)
0.535122 + 0.844775i \(0.320266\pi\)
\(854\) 0 0
\(855\) 25.2672 0.864120
\(856\) 0 0
\(857\) −22.2353 −0.759545 −0.379772 0.925080i \(-0.623998\pi\)
−0.379772 + 0.925080i \(0.623998\pi\)
\(858\) 0 0
\(859\) 2.37041 0.0808774 0.0404387 0.999182i \(-0.487124\pi\)
0.0404387 + 0.999182i \(0.487124\pi\)
\(860\) 0 0
\(861\) 8.06476 0.274846
\(862\) 0 0
\(863\) 33.0474 1.12495 0.562473 0.826816i \(-0.309850\pi\)
0.562473 + 0.826816i \(0.309850\pi\)
\(864\) 0 0
\(865\) 6.47820 0.220265
\(866\) 0 0
\(867\) 2.88286 0.0979070
\(868\) 0 0
\(869\) 1.33553 0.0453047
\(870\) 0 0
\(871\) 2.74276 0.0929349
\(872\) 0 0
\(873\) 29.6097 1.00214
\(874\) 0 0
\(875\) 24.6770 0.834233
\(876\) 0 0
\(877\) −2.13507 −0.0720963 −0.0360481 0.999350i \(-0.511477\pi\)
−0.0360481 + 0.999350i \(0.511477\pi\)
\(878\) 0 0
\(879\) −8.16027 −0.275239
\(880\) 0 0
\(881\) −56.4237 −1.90096 −0.950481 0.310782i \(-0.899409\pi\)
−0.950481 + 0.310782i \(0.899409\pi\)
\(882\) 0 0
\(883\) −52.4068 −1.76363 −0.881815 0.471596i \(-0.843678\pi\)
−0.881815 + 0.471596i \(0.843678\pi\)
\(884\) 0 0
\(885\) 0.999002 0.0335811
\(886\) 0 0
\(887\) 18.3968 0.617705 0.308852 0.951110i \(-0.400055\pi\)
0.308852 + 0.951110i \(0.400055\pi\)
\(888\) 0 0
\(889\) 19.5498 0.655679
\(890\) 0 0
\(891\) 5.25817 0.176155
\(892\) 0 0
\(893\) 47.9197 1.60357
\(894\) 0 0
\(895\) 4.80484 0.160608
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 21.4247 0.714555
\(900\) 0 0
\(901\) 9.97359 0.332269
\(902\) 0 0
\(903\) 7.24525 0.241107
\(904\) 0 0
\(905\) −15.8649 −0.527368
\(906\) 0 0
\(907\) −26.0903 −0.866316 −0.433158 0.901318i \(-0.642601\pi\)
−0.433158 + 0.901318i \(0.642601\pi\)
\(908\) 0 0
\(909\) 25.6910 0.852115
\(910\) 0 0
\(911\) −36.2810 −1.20204 −0.601022 0.799232i \(-0.705240\pi\)
−0.601022 + 0.799232i \(0.705240\pi\)
\(912\) 0 0
\(913\) −7.21438 −0.238761
\(914\) 0 0
\(915\) 2.33545 0.0772074
\(916\) 0 0
\(917\) −11.7519 −0.388081
\(918\) 0 0
\(919\) −8.33477 −0.274939 −0.137469 0.990506i \(-0.543897\pi\)
−0.137469 + 0.990506i \(0.543897\pi\)
\(920\) 0 0
\(921\) 5.04041 0.166087
\(922\) 0 0
\(923\) 2.01945 0.0664709
\(924\) 0 0
\(925\) −6.50886 −0.214010
\(926\) 0 0
\(927\) 52.7454 1.73239
\(928\) 0 0
\(929\) −4.80507 −0.157649 −0.0788246 0.996888i \(-0.525117\pi\)
−0.0788246 + 0.996888i \(0.525117\pi\)
\(930\) 0 0
\(931\) 14.8513 0.486733
\(932\) 0 0
\(933\) 0.935673 0.0306326
\(934\) 0 0
\(935\) 3.15343 0.103128
\(936\) 0 0
\(937\) −2.12239 −0.0693356 −0.0346678 0.999399i \(-0.511037\pi\)
−0.0346678 + 0.999399i \(0.511037\pi\)
\(938\) 0 0
\(939\) 1.98739 0.0648561
\(940\) 0 0
\(941\) −46.6307 −1.52012 −0.760058 0.649855i \(-0.774830\pi\)
−0.760058 + 0.649855i \(0.774830\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) −6.90230 −0.224532
\(946\) 0 0
\(947\) −6.12811 −0.199137 −0.0995684 0.995031i \(-0.531746\pi\)
−0.0995684 + 0.995031i \(0.531746\pi\)
\(948\) 0 0
\(949\) −3.66848 −0.119084
\(950\) 0 0
\(951\) −1.34945 −0.0437589
\(952\) 0 0
\(953\) 27.2127 0.881507 0.440753 0.897628i \(-0.354711\pi\)
0.440753 + 0.897628i \(0.354711\pi\)
\(954\) 0 0
\(955\) 24.2129 0.783510
\(956\) 0 0
\(957\) −1.32437 −0.0428109
\(958\) 0 0
\(959\) 37.9163 1.22438
\(960\) 0 0
\(961\) −16.0085 −0.516403
\(962\) 0 0
\(963\) −44.2348 −1.42545
\(964\) 0 0
\(965\) 2.05540 0.0661657
\(966\) 0 0
\(967\) 24.2353 0.779356 0.389678 0.920951i \(-0.372586\pi\)
0.389678 + 0.920951i \(0.372586\pi\)
\(968\) 0 0
\(969\) 5.97359 0.191899
\(970\) 0 0
\(971\) 18.8635 0.605357 0.302679 0.953093i \(-0.402119\pi\)
0.302679 + 0.953093i \(0.402119\pi\)
\(972\) 0 0
\(973\) 38.2378 1.22585
\(974\) 0 0
\(975\) −0.322067 −0.0103144
\(976\) 0 0
\(977\) −32.1064 −1.02717 −0.513587 0.858037i \(-0.671684\pi\)
−0.513587 + 0.858037i \(0.671684\pi\)
\(978\) 0 0
\(979\) −1.82157 −0.0582175
\(980\) 0 0
\(981\) −27.2762 −0.870862
\(982\) 0 0
\(983\) 26.4584 0.843891 0.421945 0.906621i \(-0.361347\pi\)
0.421945 + 0.906621i \(0.361347\pi\)
\(984\) 0 0
\(985\) −41.1747 −1.31193
\(986\) 0 0
\(987\) −6.40238 −0.203790
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) −16.7019 −0.530554 −0.265277 0.964172i \(-0.585463\pi\)
−0.265277 + 0.964172i \(0.585463\pi\)
\(992\) 0 0
\(993\) −0.0892174 −0.00283123
\(994\) 0 0
\(995\) −18.4860 −0.586047
\(996\) 0 0
\(997\) 0.621110 0.0196707 0.00983537 0.999952i \(-0.496869\pi\)
0.00983537 + 0.999952i \(0.496869\pi\)
\(998\) 0 0
\(999\) 5.44149 0.172161
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8464.2.a.by.1.4 6
4.3 odd 2 4232.2.a.v.1.4 yes 6
23.22 odd 2 inner 8464.2.a.by.1.3 6
92.91 even 2 4232.2.a.v.1.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4232.2.a.v.1.3 6 92.91 even 2
4232.2.a.v.1.4 yes 6 4.3 odd 2
8464.2.a.by.1.3 6 23.22 odd 2 inner
8464.2.a.by.1.4 6 1.1 even 1 trivial