Properties

Label 8464.2.a.bv.1.4
Level $8464$
Weight $2$
Character 8464.1
Self dual yes
Analytic conductor $67.585$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8464,2,Mod(1,8464)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8464.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8464, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 8464 = 2^{4} \cdot 23^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8464.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,0,0,0,2,0,-9,0,7,0,-1,0,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(67.5853802708\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: \(\Q(\zeta_{22})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 4x^{3} + 3x^{2} + 3x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 46)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-1.68251\) of defining polynomial
Character \(\chi\) \(=\) 8464.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.11546 q^{3} +1.08816 q^{5} -0.863693 q^{7} -1.75575 q^{9} +0.657415 q^{11} +6.20009 q^{13} +1.21379 q^{15} -5.69389 q^{17} -6.45317 q^{19} -0.963415 q^{21} -3.81592 q^{25} -5.30485 q^{27} +0.101861 q^{29} +1.54399 q^{31} +0.733320 q^{33} -0.939833 q^{35} +7.33771 q^{37} +6.91595 q^{39} +6.09398 q^{41} -5.37582 q^{43} -1.91053 q^{45} +7.84594 q^{47} -6.25403 q^{49} -6.35131 q^{51} +4.75696 q^{53} +0.715370 q^{55} -7.19825 q^{57} -5.68391 q^{59} -0.224463 q^{61} +1.51643 q^{63} +6.74666 q^{65} +2.37419 q^{67} -6.42031 q^{71} -4.17196 q^{73} -4.25650 q^{75} -0.567805 q^{77} -16.9996 q^{79} -0.650094 q^{81} -16.9937 q^{83} -6.19584 q^{85} +0.113622 q^{87} -5.06206 q^{89} -5.35498 q^{91} +1.72226 q^{93} -7.02206 q^{95} +9.83304 q^{97} -1.15426 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 2 q^{5} - 9 q^{7} + 7 q^{9} - q^{11} + q^{13} - 11 q^{15} - q^{17} - 10 q^{19} - 11 q^{25} + 10 q^{29} + 11 q^{33} + 3 q^{35} + 20 q^{37} + 22 q^{39} - 3 q^{41} - 27 q^{43} + 5 q^{45} + 11 q^{47}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.11546 0.644011 0.322005 0.946738i \(-0.395643\pi\)
0.322005 + 0.946738i \(0.395643\pi\)
\(4\) 0 0
\(5\) 1.08816 0.486638 0.243319 0.969946i \(-0.421764\pi\)
0.243319 + 0.969946i \(0.421764\pi\)
\(6\) 0 0
\(7\) −0.863693 −0.326445 −0.163223 0.986589i \(-0.552189\pi\)
−0.163223 + 0.986589i \(0.552189\pi\)
\(8\) 0 0
\(9\) −1.75575 −0.585250
\(10\) 0 0
\(11\) 0.657415 0.198218 0.0991091 0.995077i \(-0.468401\pi\)
0.0991091 + 0.995077i \(0.468401\pi\)
\(12\) 0 0
\(13\) 6.20009 1.71960 0.859798 0.510635i \(-0.170590\pi\)
0.859798 + 0.510635i \(0.170590\pi\)
\(14\) 0 0
\(15\) 1.21379 0.313400
\(16\) 0 0
\(17\) −5.69389 −1.38097 −0.690486 0.723346i \(-0.742603\pi\)
−0.690486 + 0.723346i \(0.742603\pi\)
\(18\) 0 0
\(19\) −6.45317 −1.48046 −0.740229 0.672354i \(-0.765283\pi\)
−0.740229 + 0.672354i \(0.765283\pi\)
\(20\) 0 0
\(21\) −0.963415 −0.210234
\(22\) 0 0
\(23\) 0 0
\(24\) 0 0
\(25\) −3.81592 −0.763183
\(26\) 0 0
\(27\) −5.30485 −1.02092
\(28\) 0 0
\(29\) 0.101861 0.0189151 0.00945756 0.999955i \(-0.496990\pi\)
0.00945756 + 0.999955i \(0.496990\pi\)
\(30\) 0 0
\(31\) 1.54399 0.277308 0.138654 0.990341i \(-0.455722\pi\)
0.138654 + 0.990341i \(0.455722\pi\)
\(32\) 0 0
\(33\) 0.733320 0.127655
\(34\) 0 0
\(35\) −0.939833 −0.158861
\(36\) 0 0
\(37\) 7.33771 1.20631 0.603156 0.797623i \(-0.293910\pi\)
0.603156 + 0.797623i \(0.293910\pi\)
\(38\) 0 0
\(39\) 6.91595 1.10744
\(40\) 0 0
\(41\) 6.09398 0.951720 0.475860 0.879521i \(-0.342137\pi\)
0.475860 + 0.879521i \(0.342137\pi\)
\(42\) 0 0
\(43\) −5.37582 −0.819805 −0.409903 0.912129i \(-0.634437\pi\)
−0.409903 + 0.912129i \(0.634437\pi\)
\(44\) 0 0
\(45\) −1.91053 −0.284805
\(46\) 0 0
\(47\) 7.84594 1.14445 0.572224 0.820097i \(-0.306081\pi\)
0.572224 + 0.820097i \(0.306081\pi\)
\(48\) 0 0
\(49\) −6.25403 −0.893433
\(50\) 0 0
\(51\) −6.35131 −0.889361
\(52\) 0 0
\(53\) 4.75696 0.653418 0.326709 0.945125i \(-0.394060\pi\)
0.326709 + 0.945125i \(0.394060\pi\)
\(54\) 0 0
\(55\) 0.715370 0.0964605
\(56\) 0 0
\(57\) −7.19825 −0.953432
\(58\) 0 0
\(59\) −5.68391 −0.739982 −0.369991 0.929035i \(-0.620639\pi\)
−0.369991 + 0.929035i \(0.620639\pi\)
\(60\) 0 0
\(61\) −0.224463 −0.0287395 −0.0143697 0.999897i \(-0.504574\pi\)
−0.0143697 + 0.999897i \(0.504574\pi\)
\(62\) 0 0
\(63\) 1.51643 0.191052
\(64\) 0 0
\(65\) 6.74666 0.836821
\(66\) 0 0
\(67\) 2.37419 0.290053 0.145027 0.989428i \(-0.453673\pi\)
0.145027 + 0.989428i \(0.453673\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −6.42031 −0.761950 −0.380975 0.924585i \(-0.624412\pi\)
−0.380975 + 0.924585i \(0.624412\pi\)
\(72\) 0 0
\(73\) −4.17196 −0.488291 −0.244146 0.969739i \(-0.578507\pi\)
−0.244146 + 0.969739i \(0.578507\pi\)
\(74\) 0 0
\(75\) −4.25650 −0.491498
\(76\) 0 0
\(77\) −0.567805 −0.0647074
\(78\) 0 0
\(79\) −16.9996 −1.91261 −0.956304 0.292373i \(-0.905555\pi\)
−0.956304 + 0.292373i \(0.905555\pi\)
\(80\) 0 0
\(81\) −0.650094 −0.0722327
\(82\) 0 0
\(83\) −16.9937 −1.86530 −0.932651 0.360781i \(-0.882510\pi\)
−0.932651 + 0.360781i \(0.882510\pi\)
\(84\) 0 0
\(85\) −6.19584 −0.672034
\(86\) 0 0
\(87\) 0.113622 0.0121815
\(88\) 0 0
\(89\) −5.06206 −0.536577 −0.268289 0.963339i \(-0.586458\pi\)
−0.268289 + 0.963339i \(0.586458\pi\)
\(90\) 0 0
\(91\) −5.35498 −0.561354
\(92\) 0 0
\(93\) 1.72226 0.178590
\(94\) 0 0
\(95\) −7.02206 −0.720448
\(96\) 0 0
\(97\) 9.83304 0.998394 0.499197 0.866488i \(-0.333628\pi\)
0.499197 + 0.866488i \(0.333628\pi\)
\(98\) 0 0
\(99\) −1.15426 −0.116007
\(100\) 0 0
\(101\) 0.613509 0.0610465 0.0305232 0.999534i \(-0.490283\pi\)
0.0305232 + 0.999534i \(0.490283\pi\)
\(102\) 0 0
\(103\) −8.57993 −0.845405 −0.422703 0.906268i \(-0.638919\pi\)
−0.422703 + 0.906268i \(0.638919\pi\)
\(104\) 0 0
\(105\) −1.04835 −0.102308
\(106\) 0 0
\(107\) −18.0072 −1.74082 −0.870409 0.492330i \(-0.836145\pi\)
−0.870409 + 0.492330i \(0.836145\pi\)
\(108\) 0 0
\(109\) 9.63966 0.923312 0.461656 0.887059i \(-0.347255\pi\)
0.461656 + 0.887059i \(0.347255\pi\)
\(110\) 0 0
\(111\) 8.18492 0.776878
\(112\) 0 0
\(113\) 9.67107 0.909778 0.454889 0.890548i \(-0.349679\pi\)
0.454889 + 0.890548i \(0.349679\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −10.8858 −1.00639
\(118\) 0 0
\(119\) 4.91778 0.450812
\(120\) 0 0
\(121\) −10.5678 −0.960710
\(122\) 0 0
\(123\) 6.79759 0.612918
\(124\) 0 0
\(125\) −9.59309 −0.858032
\(126\) 0 0
\(127\) −13.8867 −1.23225 −0.616123 0.787650i \(-0.711297\pi\)
−0.616123 + 0.787650i \(0.711297\pi\)
\(128\) 0 0
\(129\) −5.99651 −0.527964
\(130\) 0 0
\(131\) −9.52232 −0.831969 −0.415984 0.909372i \(-0.636563\pi\)
−0.415984 + 0.909372i \(0.636563\pi\)
\(132\) 0 0
\(133\) 5.57356 0.483289
\(134\) 0 0
\(135\) −5.77250 −0.496818
\(136\) 0 0
\(137\) −0.366843 −0.0313415 −0.0156707 0.999877i \(-0.504988\pi\)
−0.0156707 + 0.999877i \(0.504988\pi\)
\(138\) 0 0
\(139\) −1.12658 −0.0955552 −0.0477776 0.998858i \(-0.515214\pi\)
−0.0477776 + 0.998858i \(0.515214\pi\)
\(140\) 0 0
\(141\) 8.75183 0.737037
\(142\) 0 0
\(143\) 4.07603 0.340855
\(144\) 0 0
\(145\) 0.110841 0.00920482
\(146\) 0 0
\(147\) −6.97612 −0.575381
\(148\) 0 0
\(149\) −13.7182 −1.12384 −0.561918 0.827193i \(-0.689936\pi\)
−0.561918 + 0.827193i \(0.689936\pi\)
\(150\) 0 0
\(151\) 6.32863 0.515017 0.257508 0.966276i \(-0.417098\pi\)
0.257508 + 0.966276i \(0.417098\pi\)
\(152\) 0 0
\(153\) 9.99705 0.808214
\(154\) 0 0
\(155\) 1.68010 0.134949
\(156\) 0 0
\(157\) −11.8281 −0.943986 −0.471993 0.881602i \(-0.656465\pi\)
−0.471993 + 0.881602i \(0.656465\pi\)
\(158\) 0 0
\(159\) 5.30619 0.420809
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −5.47807 −0.429075 −0.214538 0.976716i \(-0.568824\pi\)
−0.214538 + 0.976716i \(0.568824\pi\)
\(164\) 0 0
\(165\) 0.797967 0.0621216
\(166\) 0 0
\(167\) 14.4648 1.11932 0.559660 0.828723i \(-0.310932\pi\)
0.559660 + 0.828723i \(0.310932\pi\)
\(168\) 0 0
\(169\) 25.4411 1.95701
\(170\) 0 0
\(171\) 11.3302 0.866438
\(172\) 0 0
\(173\) −8.19826 −0.623302 −0.311651 0.950197i \(-0.600882\pi\)
−0.311651 + 0.950197i \(0.600882\pi\)
\(174\) 0 0
\(175\) 3.29578 0.249138
\(176\) 0 0
\(177\) −6.34017 −0.476557
\(178\) 0 0
\(179\) 16.8855 1.26209 0.631043 0.775748i \(-0.282627\pi\)
0.631043 + 0.775748i \(0.282627\pi\)
\(180\) 0 0
\(181\) −16.6704 −1.23910 −0.619550 0.784958i \(-0.712685\pi\)
−0.619550 + 0.784958i \(0.712685\pi\)
\(182\) 0 0
\(183\) −0.250379 −0.0185086
\(184\) 0 0
\(185\) 7.98457 0.587037
\(186\) 0 0
\(187\) −3.74325 −0.273734
\(188\) 0 0
\(189\) 4.58176 0.333274
\(190\) 0 0
\(191\) 16.5264 1.19581 0.597903 0.801569i \(-0.296001\pi\)
0.597903 + 0.801569i \(0.296001\pi\)
\(192\) 0 0
\(193\) −12.3726 −0.890600 −0.445300 0.895382i \(-0.646903\pi\)
−0.445300 + 0.895382i \(0.646903\pi\)
\(194\) 0 0
\(195\) 7.52563 0.538922
\(196\) 0 0
\(197\) −1.04034 −0.0741211 −0.0370606 0.999313i \(-0.511799\pi\)
−0.0370606 + 0.999313i \(0.511799\pi\)
\(198\) 0 0
\(199\) 11.1980 0.793803 0.396901 0.917861i \(-0.370086\pi\)
0.396901 + 0.917861i \(0.370086\pi\)
\(200\) 0 0
\(201\) 2.64831 0.186798
\(202\) 0 0
\(203\) −0.0879767 −0.00617476
\(204\) 0 0
\(205\) 6.63120 0.463143
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −4.24241 −0.293454
\(210\) 0 0
\(211\) 8.55695 0.589085 0.294542 0.955638i \(-0.404833\pi\)
0.294542 + 0.955638i \(0.404833\pi\)
\(212\) 0 0
\(213\) −7.16159 −0.490704
\(214\) 0 0
\(215\) −5.84973 −0.398948
\(216\) 0 0
\(217\) −1.33353 −0.0905261
\(218\) 0 0
\(219\) −4.65365 −0.314465
\(220\) 0 0
\(221\) −35.3026 −2.37471
\(222\) 0 0
\(223\) 0.498819 0.0334034 0.0167017 0.999861i \(-0.494683\pi\)
0.0167017 + 0.999861i \(0.494683\pi\)
\(224\) 0 0
\(225\) 6.69979 0.446653
\(226\) 0 0
\(227\) −21.0494 −1.39710 −0.698550 0.715561i \(-0.746171\pi\)
−0.698550 + 0.715561i \(0.746171\pi\)
\(228\) 0 0
\(229\) −1.00627 −0.0664965 −0.0332483 0.999447i \(-0.510585\pi\)
−0.0332483 + 0.999447i \(0.510585\pi\)
\(230\) 0 0
\(231\) −0.633364 −0.0416723
\(232\) 0 0
\(233\) 15.4176 1.01004 0.505020 0.863107i \(-0.331485\pi\)
0.505020 + 0.863107i \(0.331485\pi\)
\(234\) 0 0
\(235\) 8.53760 0.556932
\(236\) 0 0
\(237\) −18.9624 −1.23174
\(238\) 0 0
\(239\) 4.20623 0.272078 0.136039 0.990703i \(-0.456563\pi\)
0.136039 + 0.990703i \(0.456563\pi\)
\(240\) 0 0
\(241\) 15.7101 1.01198 0.505989 0.862540i \(-0.331128\pi\)
0.505989 + 0.862540i \(0.331128\pi\)
\(242\) 0 0
\(243\) 15.1894 0.974400
\(244\) 0 0
\(245\) −6.80536 −0.434779
\(246\) 0 0
\(247\) −40.0102 −2.54579
\(248\) 0 0
\(249\) −18.9558 −1.20127
\(250\) 0 0
\(251\) 9.52734 0.601361 0.300680 0.953725i \(-0.402786\pi\)
0.300680 + 0.953725i \(0.402786\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) −6.91121 −0.432797
\(256\) 0 0
\(257\) 6.65848 0.415344 0.207672 0.978198i \(-0.433411\pi\)
0.207672 + 0.978198i \(0.433411\pi\)
\(258\) 0 0
\(259\) −6.33753 −0.393795
\(260\) 0 0
\(261\) −0.178843 −0.0110701
\(262\) 0 0
\(263\) −11.7940 −0.727250 −0.363625 0.931546i \(-0.618461\pi\)
−0.363625 + 0.931546i \(0.618461\pi\)
\(264\) 0 0
\(265\) 5.17631 0.317978
\(266\) 0 0
\(267\) −5.64652 −0.345562
\(268\) 0 0
\(269\) 11.5650 0.705128 0.352564 0.935788i \(-0.385310\pi\)
0.352564 + 0.935788i \(0.385310\pi\)
\(270\) 0 0
\(271\) 25.4681 1.54707 0.773537 0.633751i \(-0.218485\pi\)
0.773537 + 0.633751i \(0.218485\pi\)
\(272\) 0 0
\(273\) −5.97326 −0.361518
\(274\) 0 0
\(275\) −2.50864 −0.151277
\(276\) 0 0
\(277\) 25.8732 1.55457 0.777285 0.629149i \(-0.216596\pi\)
0.777285 + 0.629149i \(0.216596\pi\)
\(278\) 0 0
\(279\) −2.71086 −0.162295
\(280\) 0 0
\(281\) −28.5451 −1.70286 −0.851430 0.524468i \(-0.824264\pi\)
−0.851430 + 0.524468i \(0.824264\pi\)
\(282\) 0 0
\(283\) −0.192540 −0.0114453 −0.00572265 0.999984i \(-0.501822\pi\)
−0.00572265 + 0.999984i \(0.501822\pi\)
\(284\) 0 0
\(285\) −7.83282 −0.463976
\(286\) 0 0
\(287\) −5.26333 −0.310685
\(288\) 0 0
\(289\) 15.4204 0.907084
\(290\) 0 0
\(291\) 10.9684 0.642977
\(292\) 0 0
\(293\) −26.7110 −1.56047 −0.780237 0.625484i \(-0.784902\pi\)
−0.780237 + 0.625484i \(0.784902\pi\)
\(294\) 0 0
\(295\) −6.18498 −0.360103
\(296\) 0 0
\(297\) −3.48749 −0.202365
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 4.64306 0.267622
\(302\) 0 0
\(303\) 0.684345 0.0393146
\(304\) 0 0
\(305\) −0.244250 −0.0139857
\(306\) 0 0
\(307\) −9.10262 −0.519514 −0.259757 0.965674i \(-0.583642\pi\)
−0.259757 + 0.965674i \(0.583642\pi\)
\(308\) 0 0
\(309\) −9.57056 −0.544450
\(310\) 0 0
\(311\) 10.5193 0.596495 0.298248 0.954489i \(-0.403598\pi\)
0.298248 + 0.954489i \(0.403598\pi\)
\(312\) 0 0
\(313\) −11.0628 −0.625306 −0.312653 0.949867i \(-0.601218\pi\)
−0.312653 + 0.949867i \(0.601218\pi\)
\(314\) 0 0
\(315\) 1.65011 0.0929732
\(316\) 0 0
\(317\) −13.4320 −0.754418 −0.377209 0.926128i \(-0.623116\pi\)
−0.377209 + 0.926128i \(0.623116\pi\)
\(318\) 0 0
\(319\) 0.0669650 0.00374932
\(320\) 0 0
\(321\) −20.0863 −1.12111
\(322\) 0 0
\(323\) 36.7437 2.04447
\(324\) 0 0
\(325\) −23.6590 −1.31237
\(326\) 0 0
\(327\) 10.7527 0.594623
\(328\) 0 0
\(329\) −6.77648 −0.373600
\(330\) 0 0
\(331\) −20.1397 −1.10698 −0.553489 0.832856i \(-0.686704\pi\)
−0.553489 + 0.832856i \(0.686704\pi\)
\(332\) 0 0
\(333\) −12.8832 −0.705994
\(334\) 0 0
\(335\) 2.58349 0.141151
\(336\) 0 0
\(337\) −3.89740 −0.212305 −0.106153 0.994350i \(-0.533853\pi\)
−0.106153 + 0.994350i \(0.533853\pi\)
\(338\) 0 0
\(339\) 10.7877 0.585907
\(340\) 0 0
\(341\) 1.01504 0.0549676
\(342\) 0 0
\(343\) 11.4474 0.618103
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −4.96397 −0.266480 −0.133240 0.991084i \(-0.542538\pi\)
−0.133240 + 0.991084i \(0.542538\pi\)
\(348\) 0 0
\(349\) −15.8510 −0.848483 −0.424242 0.905549i \(-0.639459\pi\)
−0.424242 + 0.905549i \(0.639459\pi\)
\(350\) 0 0
\(351\) −32.8905 −1.75557
\(352\) 0 0
\(353\) −23.3603 −1.24335 −0.621673 0.783277i \(-0.713547\pi\)
−0.621673 + 0.783277i \(0.713547\pi\)
\(354\) 0 0
\(355\) −6.98629 −0.370794
\(356\) 0 0
\(357\) 5.48558 0.290328
\(358\) 0 0
\(359\) −11.0561 −0.583517 −0.291759 0.956492i \(-0.594240\pi\)
−0.291759 + 0.956492i \(0.594240\pi\)
\(360\) 0 0
\(361\) 22.6434 1.19176
\(362\) 0 0
\(363\) −11.7880 −0.618707
\(364\) 0 0
\(365\) −4.53974 −0.237621
\(366\) 0 0
\(367\) −26.5936 −1.38818 −0.694088 0.719890i \(-0.744192\pi\)
−0.694088 + 0.719890i \(0.744192\pi\)
\(368\) 0 0
\(369\) −10.6995 −0.556994
\(370\) 0 0
\(371\) −4.10855 −0.213305
\(372\) 0 0
\(373\) 13.7906 0.714049 0.357025 0.934095i \(-0.383791\pi\)
0.357025 + 0.934095i \(0.383791\pi\)
\(374\) 0 0
\(375\) −10.7007 −0.552582
\(376\) 0 0
\(377\) 0.631548 0.0325264
\(378\) 0 0
\(379\) −4.10337 −0.210776 −0.105388 0.994431i \(-0.533608\pi\)
−0.105388 + 0.994431i \(0.533608\pi\)
\(380\) 0 0
\(381\) −15.4901 −0.793580
\(382\) 0 0
\(383\) −4.02696 −0.205768 −0.102884 0.994693i \(-0.532807\pi\)
−0.102884 + 0.994693i \(0.532807\pi\)
\(384\) 0 0
\(385\) −0.617861 −0.0314891
\(386\) 0 0
\(387\) 9.43860 0.479791
\(388\) 0 0
\(389\) −9.14337 −0.463587 −0.231794 0.972765i \(-0.574459\pi\)
−0.231794 + 0.972765i \(0.574459\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) −10.6218 −0.535797
\(394\) 0 0
\(395\) −18.4983 −0.930748
\(396\) 0 0
\(397\) −16.8808 −0.847225 −0.423613 0.905843i \(-0.639238\pi\)
−0.423613 + 0.905843i \(0.639238\pi\)
\(398\) 0 0
\(399\) 6.21708 0.311243
\(400\) 0 0
\(401\) −27.8215 −1.38934 −0.694669 0.719330i \(-0.744449\pi\)
−0.694669 + 0.719330i \(0.744449\pi\)
\(402\) 0 0
\(403\) 9.57287 0.476858
\(404\) 0 0
\(405\) −0.707404 −0.0351512
\(406\) 0 0
\(407\) 4.82392 0.239113
\(408\) 0 0
\(409\) 7.88614 0.389944 0.194972 0.980809i \(-0.437538\pi\)
0.194972 + 0.980809i \(0.437538\pi\)
\(410\) 0 0
\(411\) −0.409198 −0.0201843
\(412\) 0 0
\(413\) 4.90916 0.241564
\(414\) 0 0
\(415\) −18.4918 −0.907727
\(416\) 0 0
\(417\) −1.25665 −0.0615386
\(418\) 0 0
\(419\) 8.56517 0.418436 0.209218 0.977869i \(-0.432908\pi\)
0.209218 + 0.977869i \(0.432908\pi\)
\(420\) 0 0
\(421\) 24.5681 1.19738 0.598688 0.800983i \(-0.295689\pi\)
0.598688 + 0.800983i \(0.295689\pi\)
\(422\) 0 0
\(423\) −13.7755 −0.669788
\(424\) 0 0
\(425\) 21.7274 1.05393
\(426\) 0 0
\(427\) 0.193867 0.00938188
\(428\) 0 0
\(429\) 4.54665 0.219514
\(430\) 0 0
\(431\) 1.81375 0.0873654 0.0436827 0.999045i \(-0.486091\pi\)
0.0436827 + 0.999045i \(0.486091\pi\)
\(432\) 0 0
\(433\) 32.1937 1.54713 0.773565 0.633717i \(-0.218472\pi\)
0.773565 + 0.633717i \(0.218472\pi\)
\(434\) 0 0
\(435\) 0.123638 0.00592801
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) −13.0953 −0.625003 −0.312502 0.949917i \(-0.601167\pi\)
−0.312502 + 0.949917i \(0.601167\pi\)
\(440\) 0 0
\(441\) 10.9805 0.522882
\(442\) 0 0
\(443\) −27.5077 −1.30693 −0.653464 0.756958i \(-0.726685\pi\)
−0.653464 + 0.756958i \(0.726685\pi\)
\(444\) 0 0
\(445\) −5.50831 −0.261119
\(446\) 0 0
\(447\) −15.3021 −0.723762
\(448\) 0 0
\(449\) −30.1186 −1.42139 −0.710693 0.703502i \(-0.751619\pi\)
−0.710693 + 0.703502i \(0.751619\pi\)
\(450\) 0 0
\(451\) 4.00628 0.188648
\(452\) 0 0
\(453\) 7.05934 0.331677
\(454\) 0 0
\(455\) −5.82705 −0.273176
\(456\) 0 0
\(457\) −18.8163 −0.880189 −0.440095 0.897951i \(-0.645055\pi\)
−0.440095 + 0.897951i \(0.645055\pi\)
\(458\) 0 0
\(459\) 30.2052 1.40986
\(460\) 0 0
\(461\) 8.21514 0.382617 0.191309 0.981530i \(-0.438727\pi\)
0.191309 + 0.981530i \(0.438727\pi\)
\(462\) 0 0
\(463\) 37.6613 1.75027 0.875135 0.483880i \(-0.160773\pi\)
0.875135 + 0.483880i \(0.160773\pi\)
\(464\) 0 0
\(465\) 1.87408 0.0869086
\(466\) 0 0
\(467\) −4.44458 −0.205670 −0.102835 0.994698i \(-0.532791\pi\)
−0.102835 + 0.994698i \(0.532791\pi\)
\(468\) 0 0
\(469\) −2.05057 −0.0946866
\(470\) 0 0
\(471\) −13.1938 −0.607938
\(472\) 0 0
\(473\) −3.53415 −0.162500
\(474\) 0 0
\(475\) 24.6248 1.12986
\(476\) 0 0
\(477\) −8.35203 −0.382413
\(478\) 0 0
\(479\) −28.6970 −1.31120 −0.655599 0.755109i \(-0.727584\pi\)
−0.655599 + 0.755109i \(0.727584\pi\)
\(480\) 0 0
\(481\) 45.4945 2.07437
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 10.6999 0.485857
\(486\) 0 0
\(487\) 32.5590 1.47539 0.737695 0.675134i \(-0.235914\pi\)
0.737695 + 0.675134i \(0.235914\pi\)
\(488\) 0 0
\(489\) −6.11056 −0.276329
\(490\) 0 0
\(491\) 36.1185 1.63001 0.815003 0.579456i \(-0.196735\pi\)
0.815003 + 0.579456i \(0.196735\pi\)
\(492\) 0 0
\(493\) −0.579986 −0.0261213
\(494\) 0 0
\(495\) −1.25601 −0.0564535
\(496\) 0 0
\(497\) 5.54518 0.248735
\(498\) 0 0
\(499\) 12.7414 0.570384 0.285192 0.958470i \(-0.407943\pi\)
0.285192 + 0.958470i \(0.407943\pi\)
\(500\) 0 0
\(501\) 16.1349 0.720854
\(502\) 0 0
\(503\) 4.09979 0.182800 0.0914002 0.995814i \(-0.470866\pi\)
0.0914002 + 0.995814i \(0.470866\pi\)
\(504\) 0 0
\(505\) 0.667594 0.0297075
\(506\) 0 0
\(507\) 28.3785 1.26033
\(508\) 0 0
\(509\) 10.1111 0.448168 0.224084 0.974570i \(-0.428061\pi\)
0.224084 + 0.974570i \(0.428061\pi\)
\(510\) 0 0
\(511\) 3.60329 0.159400
\(512\) 0 0
\(513\) 34.2331 1.51143
\(514\) 0 0
\(515\) −9.33630 −0.411407
\(516\) 0 0
\(517\) 5.15804 0.226850
\(518\) 0 0
\(519\) −9.14483 −0.401413
\(520\) 0 0
\(521\) −3.18180 −0.139397 −0.0696985 0.997568i \(-0.522204\pi\)
−0.0696985 + 0.997568i \(0.522204\pi\)
\(522\) 0 0
\(523\) 13.3261 0.582711 0.291355 0.956615i \(-0.405894\pi\)
0.291355 + 0.956615i \(0.405894\pi\)
\(524\) 0 0
\(525\) 3.67631 0.160447
\(526\) 0 0
\(527\) −8.79131 −0.382955
\(528\) 0 0
\(529\) 0 0
\(530\) 0 0
\(531\) 9.97952 0.433074
\(532\) 0 0
\(533\) 37.7832 1.63657
\(534\) 0 0
\(535\) −19.5946 −0.847148
\(536\) 0 0
\(537\) 18.8351 0.812797
\(538\) 0 0
\(539\) −4.11150 −0.177095
\(540\) 0 0
\(541\) −39.0800 −1.68018 −0.840089 0.542448i \(-0.817498\pi\)
−0.840089 + 0.542448i \(0.817498\pi\)
\(542\) 0 0
\(543\) −18.5951 −0.797993
\(544\) 0 0
\(545\) 10.4895 0.449319
\(546\) 0 0
\(547\) −33.5400 −1.43407 −0.717034 0.697038i \(-0.754501\pi\)
−0.717034 + 0.697038i \(0.754501\pi\)
\(548\) 0 0
\(549\) 0.394100 0.0168198
\(550\) 0 0
\(551\) −0.657327 −0.0280031
\(552\) 0 0
\(553\) 14.6825 0.624362
\(554\) 0 0
\(555\) 8.90647 0.378059
\(556\) 0 0
\(557\) 35.0746 1.48616 0.743080 0.669202i \(-0.233364\pi\)
0.743080 + 0.669202i \(0.233364\pi\)
\(558\) 0 0
\(559\) −33.3306 −1.40973
\(560\) 0 0
\(561\) −4.17545 −0.176288
\(562\) 0 0
\(563\) 8.52310 0.359206 0.179603 0.983739i \(-0.442519\pi\)
0.179603 + 0.983739i \(0.442519\pi\)
\(564\) 0 0
\(565\) 10.5236 0.442733
\(566\) 0 0
\(567\) 0.561482 0.0235800
\(568\) 0 0
\(569\) −21.1986 −0.888691 −0.444345 0.895856i \(-0.646564\pi\)
−0.444345 + 0.895856i \(0.646564\pi\)
\(570\) 0 0
\(571\) 34.9280 1.46169 0.730847 0.682542i \(-0.239125\pi\)
0.730847 + 0.682542i \(0.239125\pi\)
\(572\) 0 0
\(573\) 18.4345 0.770112
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −11.9882 −0.499077 −0.249538 0.968365i \(-0.580279\pi\)
−0.249538 + 0.968365i \(0.580279\pi\)
\(578\) 0 0
\(579\) −13.8011 −0.573556
\(580\) 0 0
\(581\) 14.6773 0.608919
\(582\) 0 0
\(583\) 3.12730 0.129519
\(584\) 0 0
\(585\) −11.8455 −0.489749
\(586\) 0 0
\(587\) −39.0013 −1.60976 −0.804878 0.593441i \(-0.797769\pi\)
−0.804878 + 0.593441i \(0.797769\pi\)
\(588\) 0 0
\(589\) −9.96362 −0.410544
\(590\) 0 0
\(591\) −1.16046 −0.0477348
\(592\) 0 0
\(593\) 32.3079 1.32673 0.663364 0.748297i \(-0.269128\pi\)
0.663364 + 0.748297i \(0.269128\pi\)
\(594\) 0 0
\(595\) 5.35131 0.219382
\(596\) 0 0
\(597\) 12.4909 0.511218
\(598\) 0 0
\(599\) −15.1294 −0.618171 −0.309085 0.951034i \(-0.600023\pi\)
−0.309085 + 0.951034i \(0.600023\pi\)
\(600\) 0 0
\(601\) −28.1895 −1.14987 −0.574937 0.818198i \(-0.694973\pi\)
−0.574937 + 0.818198i \(0.694973\pi\)
\(602\) 0 0
\(603\) −4.16848 −0.169754
\(604\) 0 0
\(605\) −11.4994 −0.467518
\(606\) 0 0
\(607\) 14.9696 0.607597 0.303798 0.952736i \(-0.401745\pi\)
0.303798 + 0.952736i \(0.401745\pi\)
\(608\) 0 0
\(609\) −0.0981345 −0.00397661
\(610\) 0 0
\(611\) 48.6455 1.96799
\(612\) 0 0
\(613\) −23.2654 −0.939680 −0.469840 0.882752i \(-0.655688\pi\)
−0.469840 + 0.882752i \(0.655688\pi\)
\(614\) 0 0
\(615\) 7.39684 0.298269
\(616\) 0 0
\(617\) −3.50364 −0.141051 −0.0705257 0.997510i \(-0.522468\pi\)
−0.0705257 + 0.997510i \(0.522468\pi\)
\(618\) 0 0
\(619\) 22.5589 0.906721 0.453360 0.891327i \(-0.350225\pi\)
0.453360 + 0.891327i \(0.350225\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 4.37207 0.175163
\(624\) 0 0
\(625\) 8.64080 0.345632
\(626\) 0 0
\(627\) −4.73224 −0.188987
\(628\) 0 0
\(629\) −41.7801 −1.66588
\(630\) 0 0
\(631\) −13.2803 −0.528681 −0.264341 0.964429i \(-0.585154\pi\)
−0.264341 + 0.964429i \(0.585154\pi\)
\(632\) 0 0
\(633\) 9.54493 0.379377
\(634\) 0 0
\(635\) −15.1109 −0.599658
\(636\) 0 0
\(637\) −38.7756 −1.53634
\(638\) 0 0
\(639\) 11.2725 0.445931
\(640\) 0 0
\(641\) 21.9810 0.868196 0.434098 0.900866i \(-0.357067\pi\)
0.434098 + 0.900866i \(0.357067\pi\)
\(642\) 0 0
\(643\) 28.4536 1.12210 0.561049 0.827782i \(-0.310398\pi\)
0.561049 + 0.827782i \(0.310398\pi\)
\(644\) 0 0
\(645\) −6.52514 −0.256927
\(646\) 0 0
\(647\) 4.85510 0.190874 0.0954368 0.995435i \(-0.469575\pi\)
0.0954368 + 0.995435i \(0.469575\pi\)
\(648\) 0 0
\(649\) −3.73669 −0.146678
\(650\) 0 0
\(651\) −1.48750 −0.0582998
\(652\) 0 0
\(653\) 26.9031 1.05280 0.526399 0.850237i \(-0.323542\pi\)
0.526399 + 0.850237i \(0.323542\pi\)
\(654\) 0 0
\(655\) −10.3618 −0.404868
\(656\) 0 0
\(657\) 7.32492 0.285772
\(658\) 0 0
\(659\) −14.0740 −0.548244 −0.274122 0.961695i \(-0.588387\pi\)
−0.274122 + 0.961695i \(0.588387\pi\)
\(660\) 0 0
\(661\) −8.41468 −0.327293 −0.163647 0.986519i \(-0.552326\pi\)
−0.163647 + 0.986519i \(0.552326\pi\)
\(662\) 0 0
\(663\) −39.3787 −1.52934
\(664\) 0 0
\(665\) 6.06490 0.235187
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0.556412 0.0215121
\(670\) 0 0
\(671\) −0.147565 −0.00569669
\(672\) 0 0
\(673\) 15.4924 0.597189 0.298594 0.954380i \(-0.403482\pi\)
0.298594 + 0.954380i \(0.403482\pi\)
\(674\) 0 0
\(675\) 20.2429 0.779148
\(676\) 0 0
\(677\) −12.9692 −0.498447 −0.249224 0.968446i \(-0.580175\pi\)
−0.249224 + 0.968446i \(0.580175\pi\)
\(678\) 0 0
\(679\) −8.49273 −0.325921
\(680\) 0 0
\(681\) −23.4798 −0.899747
\(682\) 0 0
\(683\) −0.822814 −0.0314841 −0.0157421 0.999876i \(-0.505011\pi\)
−0.0157421 + 0.999876i \(0.505011\pi\)
\(684\) 0 0
\(685\) −0.399182 −0.0152520
\(686\) 0 0
\(687\) −1.12246 −0.0428245
\(688\) 0 0
\(689\) 29.4936 1.12362
\(690\) 0 0
\(691\) 10.6220 0.404079 0.202039 0.979377i \(-0.435243\pi\)
0.202039 + 0.979377i \(0.435243\pi\)
\(692\) 0 0
\(693\) 0.996924 0.0378700
\(694\) 0 0
\(695\) −1.22589 −0.0465008
\(696\) 0 0
\(697\) −34.6985 −1.31430
\(698\) 0 0
\(699\) 17.1977 0.650477
\(700\) 0 0
\(701\) 14.1981 0.536256 0.268128 0.963383i \(-0.413595\pi\)
0.268128 + 0.963383i \(0.413595\pi\)
\(702\) 0 0
\(703\) −47.3515 −1.78590
\(704\) 0 0
\(705\) 9.52335 0.358670
\(706\) 0 0
\(707\) −0.529884 −0.0199283
\(708\) 0 0
\(709\) 0.881160 0.0330927 0.0165463 0.999863i \(-0.494733\pi\)
0.0165463 + 0.999863i \(0.494733\pi\)
\(710\) 0 0
\(711\) 29.8471 1.11935
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 4.43536 0.165873
\(716\) 0 0
\(717\) 4.69188 0.175221
\(718\) 0 0
\(719\) 30.3690 1.13257 0.566287 0.824208i \(-0.308379\pi\)
0.566287 + 0.824208i \(0.308379\pi\)
\(720\) 0 0
\(721\) 7.41043 0.275979
\(722\) 0 0
\(723\) 17.5240 0.651725
\(724\) 0 0
\(725\) −0.388693 −0.0144357
\(726\) 0 0
\(727\) −21.6876 −0.804349 −0.402174 0.915563i \(-0.631745\pi\)
−0.402174 + 0.915563i \(0.631745\pi\)
\(728\) 0 0
\(729\) 18.8934 0.699757
\(730\) 0 0
\(731\) 30.6094 1.13213
\(732\) 0 0
\(733\) 14.9194 0.551061 0.275530 0.961292i \(-0.411147\pi\)
0.275530 + 0.961292i \(0.411147\pi\)
\(734\) 0 0
\(735\) −7.59111 −0.280002
\(736\) 0 0
\(737\) 1.56083 0.0574938
\(738\) 0 0
\(739\) −27.6514 −1.01717 −0.508586 0.861011i \(-0.669832\pi\)
−0.508586 + 0.861011i \(0.669832\pi\)
\(740\) 0 0
\(741\) −44.6298 −1.63952
\(742\) 0 0
\(743\) −11.3882 −0.417792 −0.208896 0.977938i \(-0.566987\pi\)
−0.208896 + 0.977938i \(0.566987\pi\)
\(744\) 0 0
\(745\) −14.9275 −0.546901
\(746\) 0 0
\(747\) 29.8367 1.09167
\(748\) 0 0
\(749\) 15.5527 0.568282
\(750\) 0 0
\(751\) 44.8862 1.63792 0.818961 0.573849i \(-0.194550\pi\)
0.818961 + 0.573849i \(0.194550\pi\)
\(752\) 0 0
\(753\) 10.6274 0.387283
\(754\) 0 0
\(755\) 6.88654 0.250627
\(756\) 0 0
\(757\) −17.1715 −0.624108 −0.312054 0.950064i \(-0.601017\pi\)
−0.312054 + 0.950064i \(0.601017\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 7.27625 0.263764 0.131882 0.991265i \(-0.457898\pi\)
0.131882 + 0.991265i \(0.457898\pi\)
\(762\) 0 0
\(763\) −8.32571 −0.301411
\(764\) 0 0
\(765\) 10.8784 0.393308
\(766\) 0 0
\(767\) −35.2407 −1.27247
\(768\) 0 0
\(769\) 35.5696 1.28267 0.641337 0.767260i \(-0.278380\pi\)
0.641337 + 0.767260i \(0.278380\pi\)
\(770\) 0 0
\(771\) 7.42726 0.267486
\(772\) 0 0
\(773\) 27.3785 0.984736 0.492368 0.870387i \(-0.336132\pi\)
0.492368 + 0.870387i \(0.336132\pi\)
\(774\) 0 0
\(775\) −5.89173 −0.211637
\(776\) 0 0
\(777\) −7.06926 −0.253608
\(778\) 0 0
\(779\) −39.3255 −1.40898
\(780\) 0 0
\(781\) −4.22081 −0.151032
\(782\) 0 0
\(783\) −0.540357 −0.0193108
\(784\) 0 0
\(785\) −12.8708 −0.459380
\(786\) 0 0
\(787\) −7.78788 −0.277608 −0.138804 0.990320i \(-0.544326\pi\)
−0.138804 + 0.990320i \(0.544326\pi\)
\(788\) 0 0
\(789\) −13.1557 −0.468357
\(790\) 0 0
\(791\) −8.35284 −0.296993
\(792\) 0 0
\(793\) −1.39169 −0.0494203
\(794\) 0 0
\(795\) 5.77397 0.204782
\(796\) 0 0
\(797\) 12.6641 0.448586 0.224293 0.974522i \(-0.427993\pi\)
0.224293 + 0.974522i \(0.427993\pi\)
\(798\) 0 0
\(799\) −44.6739 −1.58045
\(800\) 0 0
\(801\) 8.88771 0.314032
\(802\) 0 0
\(803\) −2.74271 −0.0967882
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 12.9002 0.454110
\(808\) 0 0
\(809\) −21.4316 −0.753496 −0.376748 0.926316i \(-0.622958\pi\)
−0.376748 + 0.926316i \(0.622958\pi\)
\(810\) 0 0
\(811\) −15.8738 −0.557404 −0.278702 0.960378i \(-0.589904\pi\)
−0.278702 + 0.960378i \(0.589904\pi\)
\(812\) 0 0
\(813\) 28.4086 0.996333
\(814\) 0 0
\(815\) −5.96099 −0.208804
\(816\) 0 0
\(817\) 34.6911 1.21369
\(818\) 0 0
\(819\) 9.40200 0.328532
\(820\) 0 0
\(821\) 16.6377 0.580660 0.290330 0.956927i \(-0.406235\pi\)
0.290330 + 0.956927i \(0.406235\pi\)
\(822\) 0 0
\(823\) 37.3137 1.30067 0.650336 0.759647i \(-0.274628\pi\)
0.650336 + 0.759647i \(0.274628\pi\)
\(824\) 0 0
\(825\) −2.79829 −0.0974239
\(826\) 0 0
\(827\) 0.531764 0.0184913 0.00924563 0.999957i \(-0.497057\pi\)
0.00924563 + 0.999957i \(0.497057\pi\)
\(828\) 0 0
\(829\) 23.5271 0.817131 0.408565 0.912729i \(-0.366029\pi\)
0.408565 + 0.912729i \(0.366029\pi\)
\(830\) 0 0
\(831\) 28.8605 1.00116
\(832\) 0 0
\(833\) 35.6098 1.23381
\(834\) 0 0
\(835\) 15.7399 0.544703
\(836\) 0 0
\(837\) −8.19062 −0.283109
\(838\) 0 0
\(839\) −40.0857 −1.38391 −0.691955 0.721940i \(-0.743250\pi\)
−0.691955 + 0.721940i \(0.743250\pi\)
\(840\) 0 0
\(841\) −28.9896 −0.999642
\(842\) 0 0
\(843\) −31.8409 −1.09666
\(844\) 0 0
\(845\) 27.6839 0.952355
\(846\) 0 0
\(847\) 9.12734 0.313619
\(848\) 0 0
\(849\) −0.214770 −0.00737090
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) −10.3877 −0.355670 −0.177835 0.984060i \(-0.556909\pi\)
−0.177835 + 0.984060i \(0.556909\pi\)
\(854\) 0 0
\(855\) 12.3290 0.421642
\(856\) 0 0
\(857\) −53.9545 −1.84305 −0.921525 0.388320i \(-0.873056\pi\)
−0.921525 + 0.388320i \(0.873056\pi\)
\(858\) 0 0
\(859\) −50.5432 −1.72451 −0.862256 0.506472i \(-0.830949\pi\)
−0.862256 + 0.506472i \(0.830949\pi\)
\(860\) 0 0
\(861\) −5.87104 −0.200084
\(862\) 0 0
\(863\) 6.19287 0.210808 0.105404 0.994429i \(-0.466386\pi\)
0.105404 + 0.994429i \(0.466386\pi\)
\(864\) 0 0
\(865\) −8.92099 −0.303323
\(866\) 0 0
\(867\) 17.2009 0.584172
\(868\) 0 0
\(869\) −11.1758 −0.379114
\(870\) 0 0
\(871\) 14.7202 0.498774
\(872\) 0 0
\(873\) −17.2644 −0.584310
\(874\) 0 0
\(875\) 8.28549 0.280101
\(876\) 0 0
\(877\) 30.0802 1.01574 0.507868 0.861435i \(-0.330434\pi\)
0.507868 + 0.861435i \(0.330434\pi\)
\(878\) 0 0
\(879\) −29.7951 −1.00496
\(880\) 0 0
\(881\) −17.0221 −0.573490 −0.286745 0.958007i \(-0.592573\pi\)
−0.286745 + 0.958007i \(0.592573\pi\)
\(882\) 0 0
\(883\) −6.15095 −0.206996 −0.103498 0.994630i \(-0.533004\pi\)
−0.103498 + 0.994630i \(0.533004\pi\)
\(884\) 0 0
\(885\) −6.89910 −0.231911
\(886\) 0 0
\(887\) −4.83249 −0.162259 −0.0811295 0.996704i \(-0.525853\pi\)
−0.0811295 + 0.996704i \(0.525853\pi\)
\(888\) 0 0
\(889\) 11.9939 0.402261
\(890\) 0 0
\(891\) −0.427382 −0.0143178
\(892\) 0 0
\(893\) −50.6312 −1.69431
\(894\) 0 0
\(895\) 18.3741 0.614179
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0.157272 0.00524532
\(900\) 0 0
\(901\) −27.0856 −0.902353
\(902\) 0 0
\(903\) 5.17915 0.172351
\(904\) 0 0
\(905\) −18.1400 −0.602993
\(906\) 0 0
\(907\) 26.6831 0.885998 0.442999 0.896522i \(-0.353915\pi\)
0.442999 + 0.896522i \(0.353915\pi\)
\(908\) 0 0
\(909\) −1.07717 −0.0357274
\(910\) 0 0
\(911\) 59.5419 1.97271 0.986356 0.164627i \(-0.0526420\pi\)
0.986356 + 0.164627i \(0.0526420\pi\)
\(912\) 0 0
\(913\) −11.1719 −0.369737
\(914\) 0 0
\(915\) −0.272451 −0.00900697
\(916\) 0 0
\(917\) 8.22436 0.271592
\(918\) 0 0
\(919\) −25.3496 −0.836206 −0.418103 0.908400i \(-0.637305\pi\)
−0.418103 + 0.908400i \(0.637305\pi\)
\(920\) 0 0
\(921\) −10.1536 −0.334573
\(922\) 0 0
\(923\) −39.8065 −1.31025
\(924\) 0 0
\(925\) −28.0001 −0.920637
\(926\) 0 0
\(927\) 15.0642 0.494773
\(928\) 0 0
\(929\) −40.6950 −1.33516 −0.667579 0.744539i \(-0.732669\pi\)
−0.667579 + 0.744539i \(0.732669\pi\)
\(930\) 0 0
\(931\) 40.3583 1.32269
\(932\) 0 0
\(933\) 11.7339 0.384150
\(934\) 0 0
\(935\) −4.07324 −0.133209
\(936\) 0 0
\(937\) −15.4609 −0.505086 −0.252543 0.967586i \(-0.581267\pi\)
−0.252543 + 0.967586i \(0.581267\pi\)
\(938\) 0 0
\(939\) −12.3401 −0.402704
\(940\) 0 0
\(941\) −11.1007 −0.361871 −0.180936 0.983495i \(-0.557913\pi\)
−0.180936 + 0.983495i \(0.557913\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 4.98567 0.162184
\(946\) 0 0
\(947\) −32.9785 −1.07166 −0.535828 0.844327i \(-0.680001\pi\)
−0.535828 + 0.844327i \(0.680001\pi\)
\(948\) 0 0
\(949\) −25.8665 −0.839663
\(950\) 0 0
\(951\) −14.9829 −0.485853
\(952\) 0 0
\(953\) 8.55887 0.277249 0.138624 0.990345i \(-0.455732\pi\)
0.138624 + 0.990345i \(0.455732\pi\)
\(954\) 0 0
\(955\) 17.9833 0.581925
\(956\) 0 0
\(957\) 0.0746968 0.00241460
\(958\) 0 0
\(959\) 0.316839 0.0102313
\(960\) 0 0
\(961\) −28.6161 −0.923100
\(962\) 0 0
\(963\) 31.6161 1.01881
\(964\) 0 0
\(965\) −13.4633 −0.433400
\(966\) 0 0
\(967\) 11.0128 0.354148 0.177074 0.984197i \(-0.443337\pi\)
0.177074 + 0.984197i \(0.443337\pi\)
\(968\) 0 0
\(969\) 40.9861 1.31666
\(970\) 0 0
\(971\) 39.8078 1.27749 0.638746 0.769418i \(-0.279454\pi\)
0.638746 + 0.769418i \(0.279454\pi\)
\(972\) 0 0
\(973\) 0.973018 0.0311935
\(974\) 0 0
\(975\) −26.3907 −0.845178
\(976\) 0 0
\(977\) −55.7219 −1.78270 −0.891351 0.453313i \(-0.850242\pi\)
−0.891351 + 0.453313i \(0.850242\pi\)
\(978\) 0 0
\(979\) −3.32788 −0.106359
\(980\) 0 0
\(981\) −16.9248 −0.540368
\(982\) 0 0
\(983\) −7.29642 −0.232720 −0.116360 0.993207i \(-0.537123\pi\)
−0.116360 + 0.993207i \(0.537123\pi\)
\(984\) 0 0
\(985\) −1.13205 −0.0360702
\(986\) 0 0
\(987\) −7.55890 −0.240602
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) −38.9939 −1.23868 −0.619341 0.785122i \(-0.712600\pi\)
−0.619341 + 0.785122i \(0.712600\pi\)
\(992\) 0 0
\(993\) −22.4650 −0.712906
\(994\) 0 0
\(995\) 12.1851 0.386295
\(996\) 0 0
\(997\) 3.39347 0.107472 0.0537361 0.998555i \(-0.482887\pi\)
0.0537361 + 0.998555i \(0.482887\pi\)
\(998\) 0 0
\(999\) −38.9254 −1.23155
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8464.2.a.bv.1.4 5
4.3 odd 2 1058.2.a.k.1.2 5
12.11 even 2 9522.2.a.bw.1.2 5
23.11 odd 22 368.2.m.a.305.1 10
23.21 odd 22 368.2.m.a.257.1 10
23.22 odd 2 8464.2.a.bu.1.4 5
92.11 even 22 46.2.c.b.29.1 yes 10
92.67 even 22 46.2.c.b.27.1 10
92.91 even 2 1058.2.a.j.1.2 5
276.11 odd 22 414.2.i.c.397.1 10
276.251 odd 22 414.2.i.c.73.1 10
276.275 odd 2 9522.2.a.bz.1.4 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
46.2.c.b.27.1 10 92.67 even 22
46.2.c.b.29.1 yes 10 92.11 even 22
368.2.m.a.257.1 10 23.21 odd 22
368.2.m.a.305.1 10 23.11 odd 22
414.2.i.c.73.1 10 276.251 odd 22
414.2.i.c.397.1 10 276.11 odd 22
1058.2.a.j.1.2 5 92.91 even 2
1058.2.a.k.1.2 5 4.3 odd 2
8464.2.a.bu.1.4 5 23.22 odd 2
8464.2.a.bv.1.4 5 1.1 even 1 trivial
9522.2.a.bw.1.2 5 12.11 even 2
9522.2.a.bz.1.4 5 276.275 odd 2