Properties

Label 841.4.a.h.1.7
Level $841$
Weight $4$
Character 841.1
Self dual yes
Analytic conductor $49.621$
Analytic rank $0$
Dimension $21$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [841,4,Mod(1,841)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("841.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(841, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 841 = 29^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 841.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [21,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(49.6206063148\)
Analytic rank: \(0\)
Dimension: \(21\)
Twist minimal: no (minimal twist has level 29)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Character \(\chi\) \(=\) 841.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.89852 q^{2} +4.45749 q^{3} +0.401406 q^{4} -3.28305 q^{5} -12.9201 q^{6} -34.7925 q^{7} +22.0247 q^{8} -7.13078 q^{9} +9.51599 q^{10} -6.91603 q^{11} +1.78926 q^{12} -52.4886 q^{13} +100.847 q^{14} -14.6342 q^{15} -67.0501 q^{16} -43.9870 q^{17} +20.6687 q^{18} +72.5657 q^{19} -1.31784 q^{20} -155.087 q^{21} +20.0462 q^{22} -66.1265 q^{23} +98.1747 q^{24} -114.222 q^{25} +152.139 q^{26} -152.138 q^{27} -13.9659 q^{28} +42.4174 q^{30} -64.1840 q^{31} +18.1487 q^{32} -30.8281 q^{33} +127.497 q^{34} +114.226 q^{35} -2.86234 q^{36} +119.933 q^{37} -210.333 q^{38} -233.968 q^{39} -72.3082 q^{40} -377.848 q^{41} +449.524 q^{42} +108.081 q^{43} -2.77613 q^{44} +23.4107 q^{45} +191.669 q^{46} +238.804 q^{47} -298.875 q^{48} +867.521 q^{49} +331.073 q^{50} -196.072 q^{51} -21.0692 q^{52} -544.106 q^{53} +440.974 q^{54} +22.7057 q^{55} -766.294 q^{56} +323.461 q^{57} -350.082 q^{59} -5.87425 q^{60} +780.765 q^{61} +186.038 q^{62} +248.098 q^{63} +483.797 q^{64} +172.323 q^{65} +89.3559 q^{66} +301.306 q^{67} -17.6566 q^{68} -294.758 q^{69} -331.086 q^{70} +993.619 q^{71} -157.053 q^{72} +396.506 q^{73} -347.628 q^{74} -509.141 q^{75} +29.1283 q^{76} +240.626 q^{77} +678.159 q^{78} -1344.36 q^{79} +220.129 q^{80} -485.621 q^{81} +1095.20 q^{82} -775.934 q^{83} -62.2530 q^{84} +144.412 q^{85} -313.275 q^{86} -152.323 q^{88} +83.7886 q^{89} -67.8565 q^{90} +1826.21 q^{91} -26.5436 q^{92} -286.099 q^{93} -692.177 q^{94} -238.237 q^{95} +80.8976 q^{96} -141.626 q^{97} -2514.53 q^{98} +49.3167 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 21 q - 6 q^{2} + q^{3} + 90 q^{4} + 35 q^{5} + 26 q^{6} + 37 q^{7} - 51 q^{8} + 188 q^{9} - 37 q^{10} + 7 q^{11} + 68 q^{12} + 97 q^{13} + 68 q^{14} + 330 q^{15} + 310 q^{16} - 70 q^{17} - 305 q^{18} + 73 q^{19}+ \cdots - 8702 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.89852 −1.02478 −0.512390 0.858753i \(-0.671240\pi\)
−0.512390 + 0.858753i \(0.671240\pi\)
\(3\) 4.45749 0.857844 0.428922 0.903341i \(-0.358893\pi\)
0.428922 + 0.903341i \(0.358893\pi\)
\(4\) 0.401406 0.0501757
\(5\) −3.28305 −0.293645 −0.146823 0.989163i \(-0.546905\pi\)
−0.146823 + 0.989163i \(0.546905\pi\)
\(6\) −12.9201 −0.879102
\(7\) −34.7925 −1.87862 −0.939311 0.343068i \(-0.888534\pi\)
−0.939311 + 0.343068i \(0.888534\pi\)
\(8\) 22.0247 0.973362
\(9\) −7.13078 −0.264103
\(10\) 9.51599 0.300922
\(11\) −6.91603 −0.189569 −0.0947846 0.995498i \(-0.530216\pi\)
−0.0947846 + 0.995498i \(0.530216\pi\)
\(12\) 1.78926 0.0430430
\(13\) −52.4886 −1.11983 −0.559913 0.828552i \(-0.689165\pi\)
−0.559913 + 0.828552i \(0.689165\pi\)
\(14\) 100.847 1.92517
\(15\) −14.6342 −0.251902
\(16\) −67.0501 −1.04766
\(17\) −43.9870 −0.627554 −0.313777 0.949497i \(-0.601594\pi\)
−0.313777 + 0.949497i \(0.601594\pi\)
\(18\) 20.6687 0.270648
\(19\) 72.5657 0.876196 0.438098 0.898927i \(-0.355652\pi\)
0.438098 + 0.898927i \(0.355652\pi\)
\(20\) −1.31784 −0.0147339
\(21\) −155.087 −1.61156
\(22\) 20.0462 0.194267
\(23\) −66.1265 −0.599493 −0.299746 0.954019i \(-0.596902\pi\)
−0.299746 + 0.954019i \(0.596902\pi\)
\(24\) 98.1747 0.834993
\(25\) −114.222 −0.913772
\(26\) 152.139 1.14758
\(27\) −152.138 −1.08440
\(28\) −13.9659 −0.0942612
\(29\) 0 0
\(30\) 42.4174 0.258144
\(31\) −64.1840 −0.371864 −0.185932 0.982563i \(-0.559530\pi\)
−0.185932 + 0.982563i \(0.559530\pi\)
\(32\) 18.1487 0.100258
\(33\) −30.8281 −0.162621
\(34\) 127.497 0.643105
\(35\) 114.226 0.551648
\(36\) −2.86234 −0.0132516
\(37\) 119.933 0.532888 0.266444 0.963850i \(-0.414151\pi\)
0.266444 + 0.963850i \(0.414151\pi\)
\(38\) −210.333 −0.897909
\(39\) −233.968 −0.960636
\(40\) −72.3082 −0.285823
\(41\) −377.848 −1.43927 −0.719633 0.694355i \(-0.755690\pi\)
−0.719633 + 0.694355i \(0.755690\pi\)
\(42\) 449.524 1.65150
\(43\) 108.081 0.383307 0.191653 0.981463i \(-0.438615\pi\)
0.191653 + 0.981463i \(0.438615\pi\)
\(44\) −2.77613 −0.00951177
\(45\) 23.4107 0.0775526
\(46\) 191.669 0.614349
\(47\) 238.804 0.741130 0.370565 0.928807i \(-0.379164\pi\)
0.370565 + 0.928807i \(0.379164\pi\)
\(48\) −298.875 −0.898728
\(49\) 867.521 2.52922
\(50\) 331.073 0.936416
\(51\) −196.072 −0.538343
\(52\) −21.0692 −0.0561880
\(53\) −544.106 −1.41017 −0.705083 0.709125i \(-0.749090\pi\)
−0.705083 + 0.709125i \(0.749090\pi\)
\(54\) 440.974 1.11128
\(55\) 22.7057 0.0556661
\(56\) −766.294 −1.82858
\(57\) 323.461 0.751640
\(58\) 0 0
\(59\) −350.082 −0.772488 −0.386244 0.922397i \(-0.626228\pi\)
−0.386244 + 0.922397i \(0.626228\pi\)
\(60\) −5.87425 −0.0126394
\(61\) 780.765 1.63880 0.819399 0.573223i \(-0.194307\pi\)
0.819399 + 0.573223i \(0.194307\pi\)
\(62\) 186.038 0.381079
\(63\) 248.098 0.496149
\(64\) 483.797 0.944915
\(65\) 172.323 0.328832
\(66\) 89.3559 0.166651
\(67\) 301.306 0.549408 0.274704 0.961529i \(-0.411420\pi\)
0.274704 + 0.961529i \(0.411420\pi\)
\(68\) −17.6566 −0.0314880
\(69\) −294.758 −0.514271
\(70\) −331.086 −0.565319
\(71\) 993.619 1.66086 0.830429 0.557125i \(-0.188096\pi\)
0.830429 + 0.557125i \(0.188096\pi\)
\(72\) −157.053 −0.257068
\(73\) 396.506 0.635719 0.317859 0.948138i \(-0.397036\pi\)
0.317859 + 0.948138i \(0.397036\pi\)
\(74\) −347.628 −0.546094
\(75\) −509.141 −0.783875
\(76\) 29.1283 0.0439638
\(77\) 240.626 0.356129
\(78\) 678.159 0.984441
\(79\) −1344.36 −1.91459 −0.957293 0.289121i \(-0.906637\pi\)
−0.957293 + 0.289121i \(0.906637\pi\)
\(80\) 220.129 0.307640
\(81\) −485.621 −0.666147
\(82\) 1095.20 1.47493
\(83\) −775.934 −1.02614 −0.513071 0.858346i \(-0.671492\pi\)
−0.513071 + 0.858346i \(0.671492\pi\)
\(84\) −62.2530 −0.0808614
\(85\) 144.412 0.184278
\(86\) −313.275 −0.392805
\(87\) 0 0
\(88\) −152.323 −0.184519
\(89\) 83.7886 0.0997930 0.0498965 0.998754i \(-0.484111\pi\)
0.0498965 + 0.998754i \(0.484111\pi\)
\(90\) −67.8565 −0.0794744
\(91\) 1826.21 2.10373
\(92\) −26.5436 −0.0300800
\(93\) −286.099 −0.319001
\(94\) −692.177 −0.759495
\(95\) −238.237 −0.257291
\(96\) 80.8976 0.0860060
\(97\) −141.626 −0.148247 −0.0741235 0.997249i \(-0.523616\pi\)
−0.0741235 + 0.997249i \(0.523616\pi\)
\(98\) −2514.53 −2.59189
\(99\) 49.3167 0.0500658
\(100\) −45.8492 −0.0458492
\(101\) 1365.75 1.34551 0.672756 0.739864i \(-0.265110\pi\)
0.672756 + 0.739864i \(0.265110\pi\)
\(102\) 568.317 0.551684
\(103\) −1602.75 −1.53324 −0.766619 0.642102i \(-0.778063\pi\)
−0.766619 + 0.642102i \(0.778063\pi\)
\(104\) −1156.04 −1.09000
\(105\) 509.161 0.473228
\(106\) 1577.10 1.44511
\(107\) −808.713 −0.730666 −0.365333 0.930877i \(-0.619045\pi\)
−0.365333 + 0.930877i \(0.619045\pi\)
\(108\) −61.0689 −0.0544107
\(109\) 744.458 0.654185 0.327093 0.944992i \(-0.393931\pi\)
0.327093 + 0.944992i \(0.393931\pi\)
\(110\) −65.8129 −0.0570456
\(111\) 534.600 0.457135
\(112\) 2332.84 1.96815
\(113\) 37.8473 0.0315077 0.0157539 0.999876i \(-0.494985\pi\)
0.0157539 + 0.999876i \(0.494985\pi\)
\(114\) −937.558 −0.770266
\(115\) 217.097 0.176038
\(116\) 0 0
\(117\) 374.285 0.295749
\(118\) 1014.72 0.791630
\(119\) 1530.42 1.17894
\(120\) −322.313 −0.245192
\(121\) −1283.17 −0.964063
\(122\) −2263.06 −1.67941
\(123\) −1684.25 −1.23467
\(124\) −25.7638 −0.0186585
\(125\) 785.377 0.561970
\(126\) −719.117 −0.508444
\(127\) −117.904 −0.0823805 −0.0411903 0.999151i \(-0.513115\pi\)
−0.0411903 + 0.999151i \(0.513115\pi\)
\(128\) −1547.48 −1.06859
\(129\) 481.770 0.328818
\(130\) −499.482 −0.336980
\(131\) 299.782 0.199939 0.0999697 0.994990i \(-0.468125\pi\)
0.0999697 + 0.994990i \(0.468125\pi\)
\(132\) −12.3746 −0.00815962
\(133\) −2524.75 −1.64604
\(134\) −873.340 −0.563023
\(135\) 499.476 0.318430
\(136\) −968.799 −0.610837
\(137\) 2248.81 1.40240 0.701201 0.712964i \(-0.252648\pi\)
0.701201 + 0.712964i \(0.252648\pi\)
\(138\) 854.362 0.527016
\(139\) −541.475 −0.330412 −0.165206 0.986259i \(-0.552829\pi\)
−0.165206 + 0.986259i \(0.552829\pi\)
\(140\) 45.8509 0.0276793
\(141\) 1064.46 0.635774
\(142\) −2880.02 −1.70201
\(143\) 363.013 0.212285
\(144\) 478.120 0.276690
\(145\) 0 0
\(146\) −1149.28 −0.651473
\(147\) 3866.97 2.16967
\(148\) 48.1418 0.0267380
\(149\) 2104.33 1.15700 0.578502 0.815681i \(-0.303638\pi\)
0.578502 + 0.815681i \(0.303638\pi\)
\(150\) 1475.76 0.803300
\(151\) 1800.21 0.970192 0.485096 0.874461i \(-0.338785\pi\)
0.485096 + 0.874461i \(0.338785\pi\)
\(152\) 1598.24 0.852856
\(153\) 313.662 0.165739
\(154\) −697.460 −0.364954
\(155\) 210.720 0.109196
\(156\) −93.9159 −0.0482006
\(157\) 369.755 0.187960 0.0939799 0.995574i \(-0.470041\pi\)
0.0939799 + 0.995574i \(0.470041\pi\)
\(158\) 3896.65 1.96203
\(159\) −2425.35 −1.20970
\(160\) −59.5831 −0.0294404
\(161\) 2300.71 1.12622
\(162\) 1407.58 0.682654
\(163\) −1391.28 −0.668551 −0.334275 0.942475i \(-0.608492\pi\)
−0.334275 + 0.942475i \(0.608492\pi\)
\(164\) −151.670 −0.0722162
\(165\) 101.210 0.0477529
\(166\) 2249.06 1.05157
\(167\) 2009.34 0.931063 0.465531 0.885031i \(-0.345863\pi\)
0.465531 + 0.885031i \(0.345863\pi\)
\(168\) −3415.75 −1.56864
\(169\) 558.058 0.254009
\(170\) −418.580 −0.188845
\(171\) −517.450 −0.231406
\(172\) 43.3843 0.0192327
\(173\) −1303.20 −0.572720 −0.286360 0.958122i \(-0.592445\pi\)
−0.286360 + 0.958122i \(0.592445\pi\)
\(174\) 0 0
\(175\) 3974.06 1.71663
\(176\) 463.721 0.198604
\(177\) −1560.49 −0.662674
\(178\) −242.863 −0.102266
\(179\) −2153.92 −0.899395 −0.449698 0.893181i \(-0.648468\pi\)
−0.449698 + 0.893181i \(0.648468\pi\)
\(180\) 9.39721 0.00389126
\(181\) 3542.77 1.45487 0.727437 0.686174i \(-0.240711\pi\)
0.727437 + 0.686174i \(0.240711\pi\)
\(182\) −5293.31 −2.15586
\(183\) 3480.25 1.40583
\(184\) −1456.41 −0.583523
\(185\) −393.747 −0.156480
\(186\) 829.264 0.326907
\(187\) 304.215 0.118965
\(188\) 95.8571 0.0371867
\(189\) 5293.26 2.03718
\(190\) 690.535 0.263667
\(191\) 2097.93 0.794768 0.397384 0.917652i \(-0.369918\pi\)
0.397384 + 0.917652i \(0.369918\pi\)
\(192\) 2156.52 0.810590
\(193\) 324.877 0.121166 0.0605832 0.998163i \(-0.480704\pi\)
0.0605832 + 0.998163i \(0.480704\pi\)
\(194\) 410.506 0.151921
\(195\) 768.128 0.282086
\(196\) 348.228 0.126905
\(197\) −1475.86 −0.533760 −0.266880 0.963730i \(-0.585993\pi\)
−0.266880 + 0.963730i \(0.585993\pi\)
\(198\) −142.945 −0.0513065
\(199\) 1468.57 0.523137 0.261569 0.965185i \(-0.415760\pi\)
0.261569 + 0.965185i \(0.415760\pi\)
\(200\) −2515.69 −0.889431
\(201\) 1343.07 0.471307
\(202\) −3958.64 −1.37886
\(203\) 0 0
\(204\) −78.7043 −0.0270118
\(205\) 1240.49 0.422634
\(206\) 4645.60 1.57123
\(207\) 471.534 0.158328
\(208\) 3519.37 1.17319
\(209\) −501.867 −0.166100
\(210\) −1475.81 −0.484955
\(211\) 5862.62 1.91279 0.956396 0.292073i \(-0.0943451\pi\)
0.956396 + 0.292073i \(0.0943451\pi\)
\(212\) −218.407 −0.0707561
\(213\) 4429.05 1.42476
\(214\) 2344.07 0.748772
\(215\) −354.836 −0.112556
\(216\) −3350.78 −1.05552
\(217\) 2233.12 0.698591
\(218\) −2157.83 −0.670396
\(219\) 1767.42 0.545348
\(220\) 9.11420 0.00279309
\(221\) 2308.82 0.702751
\(222\) −1549.55 −0.468463
\(223\) 2024.94 0.608071 0.304036 0.952661i \(-0.401666\pi\)
0.304036 + 0.952661i \(0.401666\pi\)
\(224\) −631.439 −0.188347
\(225\) 814.489 0.241330
\(226\) −109.701 −0.0322885
\(227\) 4417.82 1.29172 0.645861 0.763455i \(-0.276498\pi\)
0.645861 + 0.763455i \(0.276498\pi\)
\(228\) 129.839 0.0377141
\(229\) 177.751 0.0512931 0.0256466 0.999671i \(-0.491836\pi\)
0.0256466 + 0.999671i \(0.491836\pi\)
\(230\) −629.259 −0.180401
\(231\) 1072.59 0.305503
\(232\) 0 0
\(233\) 3219.30 0.905164 0.452582 0.891723i \(-0.350503\pi\)
0.452582 + 0.891723i \(0.350503\pi\)
\(234\) −1084.87 −0.303078
\(235\) −784.005 −0.217629
\(236\) −140.525 −0.0387601
\(237\) −5992.47 −1.64242
\(238\) −4435.95 −1.20815
\(239\) −2800.82 −0.758032 −0.379016 0.925390i \(-0.623737\pi\)
−0.379016 + 0.925390i \(0.623737\pi\)
\(240\) 981.224 0.263907
\(241\) −4873.54 −1.30262 −0.651312 0.758810i \(-0.725781\pi\)
−0.651312 + 0.758810i \(0.725781\pi\)
\(242\) 3719.29 0.987954
\(243\) 1943.07 0.512954
\(244\) 313.404 0.0822279
\(245\) −2848.12 −0.742693
\(246\) 4881.83 1.26526
\(247\) −3808.88 −0.981186
\(248\) −1413.63 −0.361958
\(249\) −3458.72 −0.880270
\(250\) −2276.43 −0.575896
\(251\) 2615.86 0.657816 0.328908 0.944362i \(-0.393319\pi\)
0.328908 + 0.944362i \(0.393319\pi\)
\(252\) 99.5880 0.0248947
\(253\) 457.333 0.113645
\(254\) 341.748 0.0844220
\(255\) 643.714 0.158082
\(256\) 615.033 0.150155
\(257\) −5809.30 −1.41002 −0.705008 0.709199i \(-0.749057\pi\)
−0.705008 + 0.709199i \(0.749057\pi\)
\(258\) −1396.42 −0.336966
\(259\) −4172.77 −1.00109
\(260\) 69.1715 0.0164994
\(261\) 0 0
\(262\) −868.923 −0.204894
\(263\) −2725.55 −0.639029 −0.319514 0.947581i \(-0.603520\pi\)
−0.319514 + 0.947581i \(0.603520\pi\)
\(264\) −678.979 −0.158289
\(265\) 1786.33 0.414089
\(266\) 7318.02 1.68683
\(267\) 373.487 0.0856069
\(268\) 120.946 0.0275670
\(269\) 1564.87 0.354691 0.177346 0.984149i \(-0.443249\pi\)
0.177346 + 0.984149i \(0.443249\pi\)
\(270\) −1447.74 −0.326321
\(271\) −4324.63 −0.969383 −0.484692 0.874685i \(-0.661068\pi\)
−0.484692 + 0.874685i \(0.661068\pi\)
\(272\) 2949.33 0.657462
\(273\) 8140.33 1.80467
\(274\) −6518.22 −1.43715
\(275\) 789.960 0.173223
\(276\) −118.318 −0.0258039
\(277\) 1051.60 0.228102 0.114051 0.993475i \(-0.463617\pi\)
0.114051 + 0.993475i \(0.463617\pi\)
\(278\) 1569.47 0.338600
\(279\) 457.682 0.0982104
\(280\) 2515.79 0.536953
\(281\) −4842.35 −1.02801 −0.514004 0.857788i \(-0.671838\pi\)
−0.514004 + 0.857788i \(0.671838\pi\)
\(282\) −3085.37 −0.651529
\(283\) −4944.27 −1.03854 −0.519269 0.854611i \(-0.673796\pi\)
−0.519269 + 0.854611i \(0.673796\pi\)
\(284\) 398.844 0.0833347
\(285\) −1061.94 −0.220716
\(286\) −1052.20 −0.217545
\(287\) 13146.3 2.70383
\(288\) −129.414 −0.0264785
\(289\) −2978.14 −0.606176
\(290\) 0 0
\(291\) −631.297 −0.127173
\(292\) 159.160 0.0318977
\(293\) −6806.76 −1.35719 −0.678593 0.734515i \(-0.737410\pi\)
−0.678593 + 0.734515i \(0.737410\pi\)
\(294\) −11208.5 −2.22344
\(295\) 1149.34 0.226837
\(296\) 2641.48 0.518693
\(297\) 1052.19 0.205570
\(298\) −6099.44 −1.18567
\(299\) 3470.89 0.671327
\(300\) −204.372 −0.0393315
\(301\) −3760.41 −0.720088
\(302\) −5217.94 −0.994234
\(303\) 6087.80 1.15424
\(304\) −4865.54 −0.917954
\(305\) −2563.29 −0.481226
\(306\) −909.154 −0.169846
\(307\) 1047.99 0.194828 0.0974139 0.995244i \(-0.468943\pi\)
0.0974139 + 0.995244i \(0.468943\pi\)
\(308\) 96.5888 0.0178690
\(309\) −7144.24 −1.31528
\(310\) −610.774 −0.111902
\(311\) −2493.86 −0.454707 −0.227353 0.973812i \(-0.573007\pi\)
−0.227353 + 0.973812i \(0.573007\pi\)
\(312\) −5153.06 −0.935046
\(313\) 3490.12 0.630266 0.315133 0.949047i \(-0.397951\pi\)
0.315133 + 0.949047i \(0.397951\pi\)
\(314\) −1071.74 −0.192618
\(315\) −814.519 −0.145692
\(316\) −539.633 −0.0960657
\(317\) 5935.04 1.05156 0.525781 0.850620i \(-0.323773\pi\)
0.525781 + 0.850620i \(0.323773\pi\)
\(318\) 7029.92 1.23968
\(319\) 0 0
\(320\) −1588.33 −0.277470
\(321\) −3604.83 −0.626797
\(322\) −6668.65 −1.15413
\(323\) −3191.95 −0.549860
\(324\) −194.931 −0.0334244
\(325\) 5995.33 1.02327
\(326\) 4032.66 0.685118
\(327\) 3318.42 0.561189
\(328\) −8321.97 −1.40093
\(329\) −8308.59 −1.39230
\(330\) −293.360 −0.0489362
\(331\) −7078.74 −1.17548 −0.587739 0.809051i \(-0.699982\pi\)
−0.587739 + 0.809051i \(0.699982\pi\)
\(332\) −311.464 −0.0514874
\(333\) −855.216 −0.140737
\(334\) −5824.11 −0.954135
\(335\) −989.203 −0.161331
\(336\) 10398.6 1.68837
\(337\) 2205.74 0.356541 0.178271 0.983982i \(-0.442950\pi\)
0.178271 + 0.983982i \(0.442950\pi\)
\(338\) −1617.54 −0.260303
\(339\) 168.704 0.0270287
\(340\) 57.9677 0.00924629
\(341\) 443.898 0.0704940
\(342\) 1499.84 0.237140
\(343\) −18249.4 −2.87282
\(344\) 2380.45 0.373096
\(345\) 967.708 0.151013
\(346\) 3777.35 0.586912
\(347\) 6318.41 0.977493 0.488746 0.872426i \(-0.337454\pi\)
0.488746 + 0.872426i \(0.337454\pi\)
\(348\) 0 0
\(349\) −4618.78 −0.708417 −0.354208 0.935167i \(-0.615250\pi\)
−0.354208 + 0.935167i \(0.615250\pi\)
\(350\) −11518.9 −1.75917
\(351\) 7985.50 1.21434
\(352\) −125.517 −0.0190059
\(353\) −7078.84 −1.06733 −0.533667 0.845695i \(-0.679186\pi\)
−0.533667 + 0.845695i \(0.679186\pi\)
\(354\) 4523.10 0.679096
\(355\) −3262.11 −0.487703
\(356\) 33.6332 0.00500719
\(357\) 6821.83 1.01134
\(358\) 6243.18 0.921683
\(359\) 10670.6 1.56872 0.784361 0.620305i \(-0.212991\pi\)
0.784361 + 0.620305i \(0.212991\pi\)
\(360\) 515.614 0.0754867
\(361\) −1593.21 −0.232281
\(362\) −10268.8 −1.49093
\(363\) −5719.71 −0.827016
\(364\) 733.053 0.105556
\(365\) −1301.75 −0.186676
\(366\) −10087.6 −1.44067
\(367\) −9102.82 −1.29472 −0.647361 0.762183i \(-0.724127\pi\)
−0.647361 + 0.762183i \(0.724127\pi\)
\(368\) 4433.79 0.628063
\(369\) 2694.35 0.380114
\(370\) 1141.28 0.160358
\(371\) 18930.9 2.64917
\(372\) −114.842 −0.0160061
\(373\) −3650.08 −0.506687 −0.253343 0.967376i \(-0.581530\pi\)
−0.253343 + 0.967376i \(0.581530\pi\)
\(374\) −881.774 −0.121913
\(375\) 3500.81 0.482083
\(376\) 5259.57 0.721387
\(377\) 0 0
\(378\) −15342.6 −2.08767
\(379\) −2299.72 −0.311685 −0.155843 0.987782i \(-0.549809\pi\)
−0.155843 + 0.987782i \(0.549809\pi\)
\(380\) −95.6298 −0.0129098
\(381\) −525.558 −0.0706697
\(382\) −6080.88 −0.814463
\(383\) 1012.28 0.135053 0.0675265 0.997717i \(-0.478489\pi\)
0.0675265 + 0.997717i \(0.478489\pi\)
\(384\) −6897.89 −0.916683
\(385\) −789.990 −0.104576
\(386\) −941.660 −0.124169
\(387\) −770.702 −0.101232
\(388\) −56.8496 −0.00743840
\(389\) 7379.62 0.961855 0.480928 0.876760i \(-0.340300\pi\)
0.480928 + 0.876760i \(0.340300\pi\)
\(390\) −2226.43 −0.289077
\(391\) 2908.71 0.376214
\(392\) 19106.9 2.46184
\(393\) 1336.27 0.171517
\(394\) 4277.81 0.546987
\(395\) 4413.60 0.562209
\(396\) 19.7960 0.00251209
\(397\) 7990.41 1.01014 0.505072 0.863077i \(-0.331466\pi\)
0.505072 + 0.863077i \(0.331466\pi\)
\(398\) −4256.68 −0.536101
\(399\) −11254.0 −1.41205
\(400\) 7658.57 0.957321
\(401\) −7743.98 −0.964379 −0.482190 0.876067i \(-0.660158\pi\)
−0.482190 + 0.876067i \(0.660158\pi\)
\(402\) −3892.90 −0.482986
\(403\) 3368.93 0.416423
\(404\) 548.218 0.0675121
\(405\) 1594.32 0.195611
\(406\) 0 0
\(407\) −829.460 −0.101019
\(408\) −4318.41 −0.524003
\(409\) −7076.84 −0.855567 −0.427784 0.903881i \(-0.640706\pi\)
−0.427784 + 0.903881i \(0.640706\pi\)
\(410\) −3595.60 −0.433107
\(411\) 10024.1 1.20304
\(412\) −643.353 −0.0769314
\(413\) 12180.2 1.45121
\(414\) −1366.75 −0.162251
\(415\) 2547.43 0.301322
\(416\) −952.599 −0.112272
\(417\) −2413.62 −0.283442
\(418\) 1454.67 0.170216
\(419\) −3078.66 −0.358955 −0.179478 0.983762i \(-0.557441\pi\)
−0.179478 + 0.983762i \(0.557441\pi\)
\(420\) 204.380 0.0237446
\(421\) −9755.18 −1.12931 −0.564654 0.825328i \(-0.690990\pi\)
−0.564654 + 0.825328i \(0.690990\pi\)
\(422\) −16992.9 −1.96019
\(423\) −1702.86 −0.195735
\(424\) −11983.8 −1.37260
\(425\) 5024.26 0.573441
\(426\) −12837.7 −1.46006
\(427\) −27164.8 −3.07868
\(428\) −324.622 −0.0366617
\(429\) 1618.13 0.182107
\(430\) 1028.50 0.115345
\(431\) −1533.99 −0.171438 −0.0857191 0.996319i \(-0.527319\pi\)
−0.0857191 + 0.996319i \(0.527319\pi\)
\(432\) 10200.8 1.13608
\(433\) 1352.29 0.150086 0.0750428 0.997180i \(-0.476091\pi\)
0.0750428 + 0.997180i \(0.476091\pi\)
\(434\) −6472.75 −0.715903
\(435\) 0 0
\(436\) 298.830 0.0328242
\(437\) −4798.52 −0.525273
\(438\) −5122.90 −0.558862
\(439\) 14450.1 1.57099 0.785494 0.618870i \(-0.212409\pi\)
0.785494 + 0.618870i \(0.212409\pi\)
\(440\) 500.086 0.0541833
\(441\) −6186.11 −0.667974
\(442\) −6692.15 −0.720165
\(443\) 8009.20 0.858981 0.429491 0.903071i \(-0.358693\pi\)
0.429491 + 0.903071i \(0.358693\pi\)
\(444\) 214.592 0.0229371
\(445\) −275.083 −0.0293038
\(446\) −5869.32 −0.623140
\(447\) 9380.03 0.992529
\(448\) −16832.5 −1.77514
\(449\) −10099.0 −1.06147 −0.530735 0.847538i \(-0.678084\pi\)
−0.530735 + 0.847538i \(0.678084\pi\)
\(450\) −2360.81 −0.247310
\(451\) 2613.21 0.272841
\(452\) 15.1921 0.00158092
\(453\) 8024.42 0.832274
\(454\) −12805.1 −1.32373
\(455\) −5995.56 −0.617750
\(456\) 7124.12 0.731617
\(457\) −981.643 −0.100480 −0.0502400 0.998737i \(-0.515999\pi\)
−0.0502400 + 0.998737i \(0.515999\pi\)
\(458\) −515.215 −0.0525642
\(459\) 6692.08 0.680522
\(460\) 87.1440 0.00883284
\(461\) −10537.5 −1.06460 −0.532298 0.846557i \(-0.678671\pi\)
−0.532298 + 0.846557i \(0.678671\pi\)
\(462\) −3108.92 −0.313074
\(463\) −4266.69 −0.428271 −0.214136 0.976804i \(-0.568693\pi\)
−0.214136 + 0.976804i \(0.568693\pi\)
\(464\) 0 0
\(465\) 939.280 0.0936733
\(466\) −9331.19 −0.927595
\(467\) −14724.5 −1.45903 −0.729514 0.683966i \(-0.760254\pi\)
−0.729514 + 0.683966i \(0.760254\pi\)
\(468\) 150.240 0.0148394
\(469\) −10483.2 −1.03213
\(470\) 2272.45 0.223022
\(471\) 1648.18 0.161240
\(472\) −7710.43 −0.751910
\(473\) −747.491 −0.0726632
\(474\) 17369.3 1.68312
\(475\) −8288.57 −0.800644
\(476\) 614.319 0.0591539
\(477\) 3879.90 0.372429
\(478\) 8118.21 0.776817
\(479\) −9083.72 −0.866483 −0.433242 0.901278i \(-0.642630\pi\)
−0.433242 + 0.901278i \(0.642630\pi\)
\(480\) −265.591 −0.0252553
\(481\) −6295.12 −0.596742
\(482\) 14126.1 1.33491
\(483\) 10255.4 0.966121
\(484\) −515.071 −0.0483726
\(485\) 464.966 0.0435320
\(486\) −5632.01 −0.525665
\(487\) 782.150 0.0727774 0.0363887 0.999338i \(-0.488415\pi\)
0.0363887 + 0.999338i \(0.488415\pi\)
\(488\) 17196.1 1.59514
\(489\) −6201.64 −0.573513
\(490\) 8255.33 0.761097
\(491\) 3228.96 0.296784 0.148392 0.988929i \(-0.452590\pi\)
0.148392 + 0.988929i \(0.452590\pi\)
\(492\) −676.068 −0.0619502
\(493\) 0 0
\(494\) 11040.1 1.00550
\(495\) −161.909 −0.0147016
\(496\) 4303.54 0.389586
\(497\) −34570.5 −3.12012
\(498\) 10025.2 0.902084
\(499\) −6626.01 −0.594431 −0.297215 0.954810i \(-0.596058\pi\)
−0.297215 + 0.954810i \(0.596058\pi\)
\(500\) 315.255 0.0281973
\(501\) 8956.62 0.798707
\(502\) −7582.13 −0.674117
\(503\) −12530.9 −1.11079 −0.555393 0.831588i \(-0.687432\pi\)
−0.555393 + 0.831588i \(0.687432\pi\)
\(504\) 5464.28 0.482933
\(505\) −4483.82 −0.395104
\(506\) −1325.59 −0.116462
\(507\) 2487.54 0.217900
\(508\) −47.3275 −0.00413350
\(509\) 19121.0 1.66507 0.832537 0.553970i \(-0.186888\pi\)
0.832537 + 0.553970i \(0.186888\pi\)
\(510\) −1865.82 −0.161999
\(511\) −13795.4 −1.19427
\(512\) 10597.2 0.914714
\(513\) −11040.0 −0.950150
\(514\) 16838.4 1.44496
\(515\) 5261.91 0.450228
\(516\) 193.385 0.0164987
\(517\) −1651.57 −0.140495
\(518\) 12094.9 1.02590
\(519\) −5809.01 −0.491305
\(520\) 3795.36 0.320072
\(521\) 7261.51 0.610619 0.305310 0.952253i \(-0.401240\pi\)
0.305310 + 0.952253i \(0.401240\pi\)
\(522\) 0 0
\(523\) 1886.78 0.157750 0.0788749 0.996885i \(-0.474867\pi\)
0.0788749 + 0.996885i \(0.474867\pi\)
\(524\) 120.334 0.0100321
\(525\) 17714.3 1.47260
\(526\) 7900.06 0.654865
\(527\) 2823.26 0.233365
\(528\) 2067.03 0.170371
\(529\) −7794.28 −0.640609
\(530\) −5177.71 −0.424350
\(531\) 2496.36 0.204016
\(532\) −1013.45 −0.0825912
\(533\) 19832.7 1.61173
\(534\) −1082.56 −0.0877283
\(535\) 2655.05 0.214557
\(536\) 6636.16 0.534773
\(537\) −9601.09 −0.771541
\(538\) −4535.81 −0.363481
\(539\) −5999.81 −0.479462
\(540\) 200.493 0.0159775
\(541\) −2306.54 −0.183301 −0.0916507 0.995791i \(-0.529214\pi\)
−0.0916507 + 0.995791i \(0.529214\pi\)
\(542\) 12535.0 0.993405
\(543\) 15791.9 1.24806
\(544\) −798.306 −0.0629174
\(545\) −2444.10 −0.192098
\(546\) −23594.9 −1.84939
\(547\) 309.663 0.0242052 0.0121026 0.999927i \(-0.496148\pi\)
0.0121026 + 0.999927i \(0.496148\pi\)
\(548\) 902.686 0.0703665
\(549\) −5567.46 −0.432812
\(550\) −2289.71 −0.177516
\(551\) 0 0
\(552\) −6491.95 −0.500572
\(553\) 46773.7 3.59678
\(554\) −3048.07 −0.233755
\(555\) −1755.12 −0.134236
\(556\) −217.351 −0.0165787
\(557\) −12306.2 −0.936140 −0.468070 0.883691i \(-0.655050\pi\)
−0.468070 + 0.883691i \(0.655050\pi\)
\(558\) −1326.60 −0.100644
\(559\) −5673.02 −0.429237
\(560\) −7658.86 −0.577939
\(561\) 1356.04 0.102053
\(562\) 14035.6 1.05348
\(563\) 2558.68 0.191537 0.0957685 0.995404i \(-0.469469\pi\)
0.0957685 + 0.995404i \(0.469469\pi\)
\(564\) 427.282 0.0319004
\(565\) −124.255 −0.00925210
\(566\) 14331.1 1.06427
\(567\) 16896.0 1.25144
\(568\) 21884.1 1.61662
\(569\) 8601.85 0.633758 0.316879 0.948466i \(-0.397365\pi\)
0.316879 + 0.948466i \(0.397365\pi\)
\(570\) 3078.05 0.226185
\(571\) 7867.60 0.576618 0.288309 0.957537i \(-0.406907\pi\)
0.288309 + 0.957537i \(0.406907\pi\)
\(572\) 145.716 0.0106515
\(573\) 9351.49 0.681787
\(574\) −38104.7 −2.77084
\(575\) 7553.07 0.547800
\(576\) −3449.85 −0.249555
\(577\) −978.513 −0.0705997 −0.0352998 0.999377i \(-0.511239\pi\)
−0.0352998 + 0.999377i \(0.511239\pi\)
\(578\) 8632.20 0.621198
\(579\) 1448.13 0.103942
\(580\) 0 0
\(581\) 26996.7 1.92773
\(582\) 1829.83 0.130324
\(583\) 3763.06 0.267324
\(584\) 8732.90 0.618784
\(585\) −1228.80 −0.0868454
\(586\) 19729.5 1.39082
\(587\) 17958.7 1.26275 0.631374 0.775478i \(-0.282491\pi\)
0.631374 + 0.775478i \(0.282491\pi\)
\(588\) 1552.22 0.108865
\(589\) −4657.56 −0.325826
\(590\) −3331.38 −0.232459
\(591\) −6578.63 −0.457883
\(592\) −8041.52 −0.558285
\(593\) 1749.15 0.121128 0.0605640 0.998164i \(-0.480710\pi\)
0.0605640 + 0.998164i \(0.480710\pi\)
\(594\) −3049.79 −0.210664
\(595\) −5024.45 −0.346189
\(596\) 844.690 0.0580535
\(597\) 6546.15 0.448770
\(598\) −10060.4 −0.687963
\(599\) −18932.1 −1.29140 −0.645698 0.763593i \(-0.723434\pi\)
−0.645698 + 0.763593i \(0.723434\pi\)
\(600\) −11213.7 −0.762993
\(601\) 15333.4 1.04070 0.520352 0.853952i \(-0.325801\pi\)
0.520352 + 0.853952i \(0.325801\pi\)
\(602\) 10899.6 0.737933
\(603\) −2148.55 −0.145100
\(604\) 722.615 0.0486801
\(605\) 4212.71 0.283093
\(606\) −17645.6 −1.18284
\(607\) −8597.83 −0.574918 −0.287459 0.957793i \(-0.592811\pi\)
−0.287459 + 0.957793i \(0.592811\pi\)
\(608\) 1316.97 0.0878459
\(609\) 0 0
\(610\) 7429.75 0.493151
\(611\) −12534.5 −0.829936
\(612\) 125.906 0.00831606
\(613\) 14218.4 0.936830 0.468415 0.883509i \(-0.344825\pi\)
0.468415 + 0.883509i \(0.344825\pi\)
\(614\) −3037.63 −0.199656
\(615\) 5529.49 0.362554
\(616\) 5299.71 0.346642
\(617\) −17355.2 −1.13240 −0.566202 0.824266i \(-0.691588\pi\)
−0.566202 + 0.824266i \(0.691588\pi\)
\(618\) 20707.7 1.34787
\(619\) −1358.21 −0.0881921 −0.0440961 0.999027i \(-0.514041\pi\)
−0.0440961 + 0.999027i \(0.514041\pi\)
\(620\) 84.5840 0.00547899
\(621\) 10060.3 0.650092
\(622\) 7228.50 0.465975
\(623\) −2915.22 −0.187473
\(624\) 15687.6 1.00642
\(625\) 11699.3 0.748752
\(626\) −10116.2 −0.645885
\(627\) −2237.07 −0.142488
\(628\) 148.422 0.00943102
\(629\) −5275.49 −0.334416
\(630\) 2360.90 0.149302
\(631\) 16959.5 1.06997 0.534983 0.844863i \(-0.320318\pi\)
0.534983 + 0.844863i \(0.320318\pi\)
\(632\) −29609.1 −1.86358
\(633\) 26132.6 1.64088
\(634\) −17202.8 −1.07762
\(635\) 387.087 0.0241907
\(636\) −973.549 −0.0606977
\(637\) −45535.0 −2.83228
\(638\) 0 0
\(639\) −7085.28 −0.438637
\(640\) 5080.47 0.313786
\(641\) −466.812 −0.0287644 −0.0143822 0.999897i \(-0.504578\pi\)
−0.0143822 + 0.999897i \(0.504578\pi\)
\(642\) 10448.7 0.642330
\(643\) −4041.33 −0.247861 −0.123930 0.992291i \(-0.539550\pi\)
−0.123930 + 0.992291i \(0.539550\pi\)
\(644\) 923.518 0.0565089
\(645\) −1581.68 −0.0965557
\(646\) 9251.92 0.563486
\(647\) 150.558 0.00914844 0.00457422 0.999990i \(-0.498544\pi\)
0.00457422 + 0.999990i \(0.498544\pi\)
\(648\) −10695.6 −0.648402
\(649\) 2421.18 0.146440
\(650\) −17377.6 −1.04862
\(651\) 9954.13 0.599283
\(652\) −558.470 −0.0335450
\(653\) 21849.5 1.30940 0.654700 0.755889i \(-0.272795\pi\)
0.654700 + 0.755889i \(0.272795\pi\)
\(654\) −9618.49 −0.575096
\(655\) −984.200 −0.0587113
\(656\) 25334.7 1.50786
\(657\) −2827.39 −0.167895
\(658\) 24082.6 1.42680
\(659\) −2858.89 −0.168993 −0.0844966 0.996424i \(-0.526928\pi\)
−0.0844966 + 0.996424i \(0.526928\pi\)
\(660\) 40.6265 0.00239604
\(661\) 7204.91 0.423961 0.211981 0.977274i \(-0.432009\pi\)
0.211981 + 0.977274i \(0.432009\pi\)
\(662\) 20517.9 1.20461
\(663\) 10291.5 0.602851
\(664\) −17089.7 −0.998807
\(665\) 8288.88 0.483352
\(666\) 2478.86 0.144225
\(667\) 0 0
\(668\) 806.561 0.0467167
\(669\) 9026.14 0.521631
\(670\) 2867.22 0.165329
\(671\) −5399.80 −0.310666
\(672\) −2814.63 −0.161573
\(673\) −16504.0 −0.945295 −0.472648 0.881251i \(-0.656702\pi\)
−0.472648 + 0.881251i \(0.656702\pi\)
\(674\) −6393.38 −0.365377
\(675\) 17377.4 0.990898
\(676\) 224.007 0.0127451
\(677\) 33702.2 1.91327 0.956633 0.291297i \(-0.0940866\pi\)
0.956633 + 0.291297i \(0.0940866\pi\)
\(678\) −488.992 −0.0276985
\(679\) 4927.54 0.278500
\(680\) 3180.62 0.179369
\(681\) 19692.4 1.10810
\(682\) −1286.65 −0.0722409
\(683\) −12477.9 −0.699051 −0.349526 0.936927i \(-0.613657\pi\)
−0.349526 + 0.936927i \(0.613657\pi\)
\(684\) −207.708 −0.0116110
\(685\) −7382.98 −0.411809
\(686\) 52896.3 2.94401
\(687\) 792.324 0.0440015
\(688\) −7246.84 −0.401574
\(689\) 28559.4 1.57914
\(690\) −2804.92 −0.154756
\(691\) −12346.2 −0.679697 −0.339849 0.940480i \(-0.610376\pi\)
−0.339849 + 0.940480i \(0.610376\pi\)
\(692\) −523.112 −0.0287366
\(693\) −1715.85 −0.0940547
\(694\) −18314.0 −1.00172
\(695\) 1777.69 0.0970240
\(696\) 0 0
\(697\) 16620.4 0.903216
\(698\) 13387.6 0.725972
\(699\) 14350.0 0.776490
\(700\) 1595.21 0.0861332
\(701\) 5760.03 0.310347 0.155173 0.987887i \(-0.450406\pi\)
0.155173 + 0.987887i \(0.450406\pi\)
\(702\) −23146.1 −1.24444
\(703\) 8703.03 0.466914
\(704\) −3345.95 −0.179127
\(705\) −3494.70 −0.186692
\(706\) 20518.1 1.09378
\(707\) −47517.8 −2.52771
\(708\) −626.388 −0.0332501
\(709\) 14317.5 0.758401 0.379201 0.925315i \(-0.376199\pi\)
0.379201 + 0.925315i \(0.376199\pi\)
\(710\) 9455.27 0.499789
\(711\) 9586.33 0.505648
\(712\) 1845.42 0.0971347
\(713\) 4244.26 0.222930
\(714\) −19773.2 −1.03641
\(715\) −1191.79 −0.0623364
\(716\) −864.597 −0.0451278
\(717\) −12484.6 −0.650274
\(718\) −30928.8 −1.60760
\(719\) 26651.8 1.38240 0.691198 0.722665i \(-0.257083\pi\)
0.691198 + 0.722665i \(0.257083\pi\)
\(720\) −1569.69 −0.0812486
\(721\) 55763.7 2.88037
\(722\) 4617.96 0.238037
\(723\) −21723.8 −1.11745
\(724\) 1422.09 0.0729994
\(725\) 0 0
\(726\) 16578.7 0.847511
\(727\) 11378.5 0.580475 0.290237 0.956955i \(-0.406266\pi\)
0.290237 + 0.956955i \(0.406266\pi\)
\(728\) 40221.7 2.04769
\(729\) 21773.0 1.10618
\(730\) 3773.15 0.191302
\(731\) −4754.16 −0.240546
\(732\) 1396.99 0.0705387
\(733\) 7154.35 0.360507 0.180254 0.983620i \(-0.442308\pi\)
0.180254 + 0.983620i \(0.442308\pi\)
\(734\) 26384.7 1.32681
\(735\) −12695.5 −0.637115
\(736\) −1200.11 −0.0601041
\(737\) −2083.84 −0.104151
\(738\) −7809.62 −0.389534
\(739\) 7654.00 0.380997 0.190499 0.981687i \(-0.438990\pi\)
0.190499 + 0.981687i \(0.438990\pi\)
\(740\) −158.052 −0.00785150
\(741\) −16978.0 −0.841705
\(742\) −54871.4 −2.71482
\(743\) 24833.6 1.22619 0.613093 0.790011i \(-0.289925\pi\)
0.613093 + 0.790011i \(0.289925\pi\)
\(744\) −6301.24 −0.310504
\(745\) −6908.63 −0.339749
\(746\) 10579.8 0.519243
\(747\) 5533.01 0.271007
\(748\) 122.114 0.00596915
\(749\) 28137.2 1.37264
\(750\) −10147.2 −0.494030
\(751\) −30438.4 −1.47898 −0.739491 0.673167i \(-0.764934\pi\)
−0.739491 + 0.673167i \(0.764934\pi\)
\(752\) −16011.8 −0.776450
\(753\) 11660.2 0.564304
\(754\) 0 0
\(755\) −5910.19 −0.284892
\(756\) 2124.74 0.102217
\(757\) −23768.5 −1.14119 −0.570596 0.821231i \(-0.693288\pi\)
−0.570596 + 0.821231i \(0.693288\pi\)
\(758\) 6665.78 0.319409
\(759\) 2038.56 0.0974901
\(760\) −5247.10 −0.250437
\(761\) −27539.0 −1.31181 −0.655905 0.754843i \(-0.727713\pi\)
−0.655905 + 0.754843i \(0.727713\pi\)
\(762\) 1523.34 0.0724209
\(763\) −25901.6 −1.22897
\(764\) 842.120 0.0398781
\(765\) −1029.77 −0.0486684
\(766\) −2934.12 −0.138400
\(767\) 18375.3 0.865051
\(768\) 2741.50 0.128809
\(769\) −29142.6 −1.36659 −0.683297 0.730141i \(-0.739454\pi\)
−0.683297 + 0.730141i \(0.739454\pi\)
\(770\) 2289.80 0.107167
\(771\) −25894.9 −1.20957
\(772\) 130.407 0.00607961
\(773\) −16314.8 −0.759123 −0.379561 0.925167i \(-0.623925\pi\)
−0.379561 + 0.925167i \(0.623925\pi\)
\(774\) 2233.89 0.103741
\(775\) 7331.19 0.339799
\(776\) −3119.27 −0.144298
\(777\) −18600.1 −0.858784
\(778\) −21390.0 −0.985691
\(779\) −27418.8 −1.26108
\(780\) 308.331 0.0141539
\(781\) −6871.90 −0.314848
\(782\) −8430.94 −0.385537
\(783\) 0 0
\(784\) −58167.4 −2.64975
\(785\) −1213.93 −0.0551935
\(786\) −3873.22 −0.175767
\(787\) 15125.1 0.685070 0.342535 0.939505i \(-0.388714\pi\)
0.342535 + 0.939505i \(0.388714\pi\)
\(788\) −592.419 −0.0267818
\(789\) −12149.1 −0.548187
\(790\) −12792.9 −0.576141
\(791\) −1316.80 −0.0591911
\(792\) 1086.18 0.0487321
\(793\) −40981.3 −1.83517
\(794\) −23160.3 −1.03518
\(795\) 7962.55 0.355224
\(796\) 589.493 0.0262488
\(797\) −18301.4 −0.813387 −0.406693 0.913565i \(-0.633318\pi\)
−0.406693 + 0.913565i \(0.633318\pi\)
\(798\) 32620.0 1.44704
\(799\) −10504.3 −0.465099
\(800\) −2072.97 −0.0916132
\(801\) −597.478 −0.0263556
\(802\) 22446.1 0.988278
\(803\) −2742.25 −0.120513
\(804\) 539.115 0.0236482
\(805\) −7553.36 −0.330709
\(806\) −9764.90 −0.426742
\(807\) 6975.41 0.304270
\(808\) 30080.1 1.30967
\(809\) 24890.7 1.08172 0.540859 0.841113i \(-0.318099\pi\)
0.540859 + 0.841113i \(0.318099\pi\)
\(810\) −4621.16 −0.200458
\(811\) 19933.7 0.863093 0.431546 0.902091i \(-0.357968\pi\)
0.431546 + 0.902091i \(0.357968\pi\)
\(812\) 0 0
\(813\) −19277.0 −0.831580
\(814\) 2404.21 0.103523
\(815\) 4567.66 0.196317
\(816\) 13146.6 0.564000
\(817\) 7842.97 0.335852
\(818\) 20512.3 0.876769
\(819\) −13022.3 −0.555601
\(820\) 497.942 0.0212059
\(821\) 38903.6 1.65377 0.826885 0.562371i \(-0.190111\pi\)
0.826885 + 0.562371i \(0.190111\pi\)
\(822\) −29054.9 −1.23285
\(823\) −40479.3 −1.71448 −0.857242 0.514914i \(-0.827824\pi\)
−0.857242 + 0.514914i \(0.827824\pi\)
\(824\) −35300.0 −1.49240
\(825\) 3521.24 0.148599
\(826\) −35304.6 −1.48717
\(827\) −1318.15 −0.0554253 −0.0277126 0.999616i \(-0.508822\pi\)
−0.0277126 + 0.999616i \(0.508822\pi\)
\(828\) 189.276 0.00794421
\(829\) 15446.1 0.647125 0.323563 0.946207i \(-0.395119\pi\)
0.323563 + 0.946207i \(0.395119\pi\)
\(830\) −7383.78 −0.308789
\(831\) 4687.48 0.195676
\(832\) −25393.8 −1.05814
\(833\) −38159.7 −1.58722
\(834\) 6995.91 0.290466
\(835\) −6596.78 −0.273402
\(836\) −201.452 −0.00833418
\(837\) 9764.80 0.403251
\(838\) 8923.55 0.367851
\(839\) 32339.6 1.33074 0.665369 0.746515i \(-0.268274\pi\)
0.665369 + 0.746515i \(0.268274\pi\)
\(840\) 11214.1 0.460622
\(841\) 0 0
\(842\) 28275.6 1.15729
\(843\) −21584.7 −0.881871
\(844\) 2353.29 0.0959757
\(845\) −1832.13 −0.0745885
\(846\) 4935.76 0.200585
\(847\) 44644.7 1.81111
\(848\) 36482.4 1.47737
\(849\) −22039.0 −0.890905
\(850\) −14562.9 −0.587652
\(851\) −7930.75 −0.319463
\(852\) 1777.84 0.0714882
\(853\) −6726.56 −0.270003 −0.135002 0.990845i \(-0.543104\pi\)
−0.135002 + 0.990845i \(0.543104\pi\)
\(854\) 78737.7 3.15497
\(855\) 1698.82 0.0679513
\(856\) −17811.6 −0.711202
\(857\) −17643.8 −0.703267 −0.351633 0.936138i \(-0.614374\pi\)
−0.351633 + 0.936138i \(0.614374\pi\)
\(858\) −4690.17 −0.186620
\(859\) −11080.5 −0.440118 −0.220059 0.975487i \(-0.570625\pi\)
−0.220059 + 0.975487i \(0.570625\pi\)
\(860\) −142.433 −0.00564759
\(861\) 58599.4 2.31947
\(862\) 4446.31 0.175687
\(863\) −4923.23 −0.194193 −0.0970966 0.995275i \(-0.530956\pi\)
−0.0970966 + 0.995275i \(0.530956\pi\)
\(864\) −2761.10 −0.108720
\(865\) 4278.48 0.168177
\(866\) −3919.64 −0.153805
\(867\) −13275.0 −0.520005
\(868\) 896.389 0.0350523
\(869\) 9297.63 0.362947
\(870\) 0 0
\(871\) −15815.1 −0.615241
\(872\) 16396.4 0.636759
\(873\) 1009.91 0.0391525
\(874\) 13908.6 0.538290
\(875\) −27325.3 −1.05573
\(876\) 709.453 0.0273632
\(877\) −1195.41 −0.0460276 −0.0230138 0.999735i \(-0.507326\pi\)
−0.0230138 + 0.999735i \(0.507326\pi\)
\(878\) −41883.7 −1.60992
\(879\) −30341.1 −1.16425
\(880\) −1522.42 −0.0583191
\(881\) −937.102 −0.0358363 −0.0179181 0.999839i \(-0.505704\pi\)
−0.0179181 + 0.999839i \(0.505704\pi\)
\(882\) 17930.5 0.684527
\(883\) −18133.8 −0.691112 −0.345556 0.938398i \(-0.612310\pi\)
−0.345556 + 0.938398i \(0.612310\pi\)
\(884\) 926.773 0.0352610
\(885\) 5123.16 0.194591
\(886\) −23214.8 −0.880268
\(887\) 26591.9 1.00662 0.503309 0.864106i \(-0.332116\pi\)
0.503309 + 0.864106i \(0.332116\pi\)
\(888\) 11774.4 0.444958
\(889\) 4102.20 0.154762
\(890\) 797.332 0.0300299
\(891\) 3358.57 0.126281
\(892\) 812.822 0.0305104
\(893\) 17329.0 0.649375
\(894\) −27188.2 −1.01712
\(895\) 7071.45 0.264103
\(896\) 53840.9 2.00747
\(897\) 15471.5 0.575894
\(898\) 29272.1 1.08777
\(899\) 0 0
\(900\) 326.940 0.0121089
\(901\) 23933.6 0.884955
\(902\) −7574.42 −0.279602
\(903\) −16762.0 −0.617724
\(904\) 833.574 0.0306684
\(905\) −11631.1 −0.427217
\(906\) −23258.9 −0.852898
\(907\) 352.360 0.0128996 0.00644979 0.999979i \(-0.497947\pi\)
0.00644979 + 0.999979i \(0.497947\pi\)
\(908\) 1773.34 0.0648131
\(909\) −9738.83 −0.355354
\(910\) 17378.2 0.633058
\(911\) −51218.5 −1.86273 −0.931363 0.364091i \(-0.881380\pi\)
−0.931363 + 0.364091i \(0.881380\pi\)
\(912\) −21688.1 −0.787461
\(913\) 5366.38 0.194525
\(914\) 2845.31 0.102970
\(915\) −11425.9 −0.412817
\(916\) 71.3503 0.00257367
\(917\) −10430.2 −0.375610
\(918\) −19397.1 −0.697385
\(919\) 44262.9 1.58879 0.794395 0.607401i \(-0.207788\pi\)
0.794395 + 0.607401i \(0.207788\pi\)
\(920\) 4781.49 0.171349
\(921\) 4671.42 0.167132
\(922\) 30543.0 1.09098
\(923\) −52153.7 −1.85987
\(924\) 430.544 0.0153288
\(925\) −13698.9 −0.486939
\(926\) 12367.1 0.438884
\(927\) 11428.9 0.404933
\(928\) 0 0
\(929\) −15097.5 −0.533189 −0.266595 0.963809i \(-0.585898\pi\)
−0.266595 + 0.963809i \(0.585898\pi\)
\(930\) −2722.52 −0.0959946
\(931\) 62952.3 2.21609
\(932\) 1292.24 0.0454173
\(933\) −11116.4 −0.390068
\(934\) 42679.1 1.49518
\(935\) −998.756 −0.0349335
\(936\) 8243.50 0.287871
\(937\) 44931.7 1.56655 0.783274 0.621677i \(-0.213548\pi\)
0.783274 + 0.621677i \(0.213548\pi\)
\(938\) 30385.7 1.05771
\(939\) 15557.2 0.540670
\(940\) −314.704 −0.0109197
\(941\) 18872.4 0.653797 0.326898 0.945059i \(-0.393996\pi\)
0.326898 + 0.945059i \(0.393996\pi\)
\(942\) −4777.28 −0.165236
\(943\) 24985.7 0.862829
\(944\) 23473.0 0.809303
\(945\) −17378.0 −0.598209
\(946\) 2166.62 0.0744638
\(947\) 12651.5 0.434128 0.217064 0.976157i \(-0.430352\pi\)
0.217064 + 0.976157i \(0.430352\pi\)
\(948\) −2405.41 −0.0824094
\(949\) −20812.0 −0.711894
\(950\) 24024.6 0.820484
\(951\) 26455.4 0.902076
\(952\) 33707.0 1.14753
\(953\) −27783.7 −0.944389 −0.472194 0.881494i \(-0.656538\pi\)
−0.472194 + 0.881494i \(0.656538\pi\)
\(954\) −11246.0 −0.381658
\(955\) −6887.61 −0.233380
\(956\) −1124.26 −0.0380348
\(957\) 0 0
\(958\) 26329.3 0.887956
\(959\) −78241.9 −2.63458
\(960\) −7079.97 −0.238026
\(961\) −25671.4 −0.861717
\(962\) 18246.5 0.611529
\(963\) 5766.75 0.192971
\(964\) −1956.27 −0.0653601
\(965\) −1066.59 −0.0355800
\(966\) −29725.4 −0.990062
\(967\) 2625.48 0.0873109 0.0436555 0.999047i \(-0.486100\pi\)
0.0436555 + 0.999047i \(0.486100\pi\)
\(968\) −28261.4 −0.938382
\(969\) −14228.1 −0.471694
\(970\) −1347.71 −0.0446108
\(971\) 58845.8 1.94485 0.972426 0.233210i \(-0.0749229\pi\)
0.972426 + 0.233210i \(0.0749229\pi\)
\(972\) 779.958 0.0257378
\(973\) 18839.3 0.620719
\(974\) −2267.08 −0.0745809
\(975\) 26724.1 0.877803
\(976\) −52350.4 −1.71690
\(977\) −39646.6 −1.29827 −0.649133 0.760675i \(-0.724868\pi\)
−0.649133 + 0.760675i \(0.724868\pi\)
\(978\) 17975.6 0.587725
\(979\) −579.485 −0.0189177
\(980\) −1143.25 −0.0372651
\(981\) −5308.57 −0.172772
\(982\) −9359.19 −0.304138
\(983\) 1316.50 0.0427160 0.0213580 0.999772i \(-0.493201\pi\)
0.0213580 + 0.999772i \(0.493201\pi\)
\(984\) −37095.1 −1.20178
\(985\) 4845.33 0.156736
\(986\) 0 0
\(987\) −37035.4 −1.19438
\(988\) −1528.91 −0.0492317
\(989\) −7147.02 −0.229790
\(990\) 469.297 0.0150659
\(991\) −8398.31 −0.269204 −0.134602 0.990900i \(-0.542976\pi\)
−0.134602 + 0.990900i \(0.542976\pi\)
\(992\) −1164.85 −0.0372824
\(993\) −31553.4 −1.00838
\(994\) 100203. 3.19744
\(995\) −4821.40 −0.153617
\(996\) −1388.35 −0.0441682
\(997\) 22199.2 0.705170 0.352585 0.935780i \(-0.385303\pi\)
0.352585 + 0.935780i \(0.385303\pi\)
\(998\) 19205.6 0.609161
\(999\) −18246.3 −0.577866
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 841.4.a.h.1.7 21
29.7 even 7 29.4.d.a.20.5 yes 42
29.25 even 7 29.4.d.a.16.5 42
29.28 even 2 841.4.a.i.1.15 21
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
29.4.d.a.16.5 42 29.25 even 7
29.4.d.a.20.5 yes 42 29.7 even 7
841.4.a.h.1.7 21 1.1 even 1 trivial
841.4.a.i.1.15 21 29.28 even 2