Properties

Label 840.4.a.s.1.2
Level $840$
Weight $4$
Character 840.1
Self dual yes
Analytic conductor $49.562$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [840,4,Mod(1,840)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("840.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(840, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 840 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 840.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,9,0,15,0,21,0,27,0,36] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(49.5616044048\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.79853.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 67x + 228 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{5} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(5.75974\) of defining polynomial
Character \(\chi\) \(=\) 840.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.00000 q^{3} +5.00000 q^{5} +7.00000 q^{7} +9.00000 q^{9} +29.8155 q^{11} +77.8935 q^{13} +15.0000 q^{15} -28.0780 q^{17} +129.971 q^{19} +21.0000 q^{21} -185.496 q^{23} +25.0000 q^{25} +27.0000 q^{27} -187.496 q^{29} +16.6313 q^{31} +89.4466 q^{33} +35.0000 q^{35} -106.971 q^{37} +233.680 q^{39} +384.836 q^{41} -290.177 q^{43} +45.0000 q^{45} +530.333 q^{47} +49.0000 q^{49} -84.2339 q^{51} +167.603 q^{53} +149.078 q^{55} +389.914 q^{57} -75.7870 q^{59} -471.226 q^{61} +63.0000 q^{63} +389.467 q^{65} +138.078 q^{67} -556.488 q^{69} +272.999 q^{71} +706.304 q^{73} +75.0000 q^{75} +208.709 q^{77} +538.467 q^{79} +81.0000 q^{81} -648.721 q^{83} -140.390 q^{85} -562.488 q^{87} -626.623 q^{89} +545.254 q^{91} +49.8940 q^{93} +649.857 q^{95} +565.892 q^{97} +268.340 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 9 q^{3} + 15 q^{5} + 21 q^{7} + 27 q^{9} + 36 q^{11} + 50 q^{13} + 45 q^{15} + 46 q^{17} + 76 q^{19} + 63 q^{21} + 48 q^{23} + 75 q^{25} + 81 q^{27} + 42 q^{29} + 80 q^{31} + 108 q^{33} + 105 q^{35}+ \cdots + 324 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.00000 0.577350
\(4\) 0 0
\(5\) 5.00000 0.447214
\(6\) 0 0
\(7\) 7.00000 0.377964
\(8\) 0 0
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) 29.8155 0.817248 0.408624 0.912703i \(-0.366009\pi\)
0.408624 + 0.912703i \(0.366009\pi\)
\(12\) 0 0
\(13\) 77.8935 1.66183 0.830914 0.556401i \(-0.187818\pi\)
0.830914 + 0.556401i \(0.187818\pi\)
\(14\) 0 0
\(15\) 15.0000 0.258199
\(16\) 0 0
\(17\) −28.0780 −0.400583 −0.200291 0.979736i \(-0.564189\pi\)
−0.200291 + 0.979736i \(0.564189\pi\)
\(18\) 0 0
\(19\) 129.971 1.56934 0.784671 0.619913i \(-0.212832\pi\)
0.784671 + 0.619913i \(0.212832\pi\)
\(20\) 0 0
\(21\) 21.0000 0.218218
\(22\) 0 0
\(23\) −185.496 −1.68168 −0.840839 0.541285i \(-0.817938\pi\)
−0.840839 + 0.541285i \(0.817938\pi\)
\(24\) 0 0
\(25\) 25.0000 0.200000
\(26\) 0 0
\(27\) 27.0000 0.192450
\(28\) 0 0
\(29\) −187.496 −1.20059 −0.600295 0.799778i \(-0.704950\pi\)
−0.600295 + 0.799778i \(0.704950\pi\)
\(30\) 0 0
\(31\) 16.6313 0.0963573 0.0481787 0.998839i \(-0.484658\pi\)
0.0481787 + 0.998839i \(0.484658\pi\)
\(32\) 0 0
\(33\) 89.4466 0.471838
\(34\) 0 0
\(35\) 35.0000 0.169031
\(36\) 0 0
\(37\) −106.971 −0.475296 −0.237648 0.971351i \(-0.576376\pi\)
−0.237648 + 0.971351i \(0.576376\pi\)
\(38\) 0 0
\(39\) 233.680 0.959457
\(40\) 0 0
\(41\) 384.836 1.46589 0.732943 0.680290i \(-0.238146\pi\)
0.732943 + 0.680290i \(0.238146\pi\)
\(42\) 0 0
\(43\) −290.177 −1.02911 −0.514553 0.857459i \(-0.672042\pi\)
−0.514553 + 0.857459i \(0.672042\pi\)
\(44\) 0 0
\(45\) 45.0000 0.149071
\(46\) 0 0
\(47\) 530.333 1.64589 0.822946 0.568119i \(-0.192329\pi\)
0.822946 + 0.568119i \(0.192329\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) 0 0
\(51\) −84.2339 −0.231276
\(52\) 0 0
\(53\) 167.603 0.434377 0.217188 0.976130i \(-0.430311\pi\)
0.217188 + 0.976130i \(0.430311\pi\)
\(54\) 0 0
\(55\) 149.078 0.365484
\(56\) 0 0
\(57\) 389.914 0.906060
\(58\) 0 0
\(59\) −75.7870 −0.167231 −0.0836155 0.996498i \(-0.526647\pi\)
−0.0836155 + 0.996498i \(0.526647\pi\)
\(60\) 0 0
\(61\) −471.226 −0.989087 −0.494543 0.869153i \(-0.664665\pi\)
−0.494543 + 0.869153i \(0.664665\pi\)
\(62\) 0 0
\(63\) 63.0000 0.125988
\(64\) 0 0
\(65\) 389.467 0.743192
\(66\) 0 0
\(67\) 138.078 0.251775 0.125887 0.992045i \(-0.459822\pi\)
0.125887 + 0.992045i \(0.459822\pi\)
\(68\) 0 0
\(69\) −556.488 −0.970917
\(70\) 0 0
\(71\) 272.999 0.456325 0.228162 0.973623i \(-0.426728\pi\)
0.228162 + 0.973623i \(0.426728\pi\)
\(72\) 0 0
\(73\) 706.304 1.13242 0.566210 0.824261i \(-0.308409\pi\)
0.566210 + 0.824261i \(0.308409\pi\)
\(74\) 0 0
\(75\) 75.0000 0.115470
\(76\) 0 0
\(77\) 208.709 0.308891
\(78\) 0 0
\(79\) 538.467 0.766864 0.383432 0.923569i \(-0.374742\pi\)
0.383432 + 0.923569i \(0.374742\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 0 0
\(83\) −648.721 −0.857909 −0.428954 0.903326i \(-0.641118\pi\)
−0.428954 + 0.903326i \(0.641118\pi\)
\(84\) 0 0
\(85\) −140.390 −0.179146
\(86\) 0 0
\(87\) −562.488 −0.693161
\(88\) 0 0
\(89\) −626.623 −0.746313 −0.373157 0.927768i \(-0.621725\pi\)
−0.373157 + 0.927768i \(0.621725\pi\)
\(90\) 0 0
\(91\) 545.254 0.628112
\(92\) 0 0
\(93\) 49.8940 0.0556319
\(94\) 0 0
\(95\) 649.857 0.701831
\(96\) 0 0
\(97\) 565.892 0.592347 0.296174 0.955134i \(-0.404289\pi\)
0.296174 + 0.955134i \(0.404289\pi\)
\(98\) 0 0
\(99\) 268.340 0.272416
\(100\) 0 0
\(101\) 1169.19 1.15187 0.575934 0.817496i \(-0.304638\pi\)
0.575934 + 0.817496i \(0.304638\pi\)
\(102\) 0 0
\(103\) 1093.67 1.04624 0.523120 0.852259i \(-0.324768\pi\)
0.523120 + 0.852259i \(0.324768\pi\)
\(104\) 0 0
\(105\) 105.000 0.0975900
\(106\) 0 0
\(107\) −876.898 −0.792270 −0.396135 0.918192i \(-0.629649\pi\)
−0.396135 + 0.918192i \(0.629649\pi\)
\(108\) 0 0
\(109\) −464.836 −0.408470 −0.204235 0.978922i \(-0.565471\pi\)
−0.204235 + 0.978922i \(0.565471\pi\)
\(110\) 0 0
\(111\) −320.914 −0.274412
\(112\) 0 0
\(113\) −878.226 −0.731120 −0.365560 0.930788i \(-0.619122\pi\)
−0.365560 + 0.930788i \(0.619122\pi\)
\(114\) 0 0
\(115\) −927.480 −0.752069
\(116\) 0 0
\(117\) 701.041 0.553943
\(118\) 0 0
\(119\) −196.546 −0.151406
\(120\) 0 0
\(121\) −442.034 −0.332106
\(122\) 0 0
\(123\) 1154.51 0.846329
\(124\) 0 0
\(125\) 125.000 0.0894427
\(126\) 0 0
\(127\) 1812.03 1.26607 0.633037 0.774122i \(-0.281808\pi\)
0.633037 + 0.774122i \(0.281808\pi\)
\(128\) 0 0
\(129\) −870.530 −0.594154
\(130\) 0 0
\(131\) 1001.67 0.668065 0.334032 0.942562i \(-0.391590\pi\)
0.334032 + 0.942562i \(0.391590\pi\)
\(132\) 0 0
\(133\) 909.800 0.593155
\(134\) 0 0
\(135\) 135.000 0.0860663
\(136\) 0 0
\(137\) −1166.21 −0.727272 −0.363636 0.931541i \(-0.618465\pi\)
−0.363636 + 0.931541i \(0.618465\pi\)
\(138\) 0 0
\(139\) 1178.17 0.718928 0.359464 0.933159i \(-0.382960\pi\)
0.359464 + 0.933159i \(0.382960\pi\)
\(140\) 0 0
\(141\) 1591.00 0.950257
\(142\) 0 0
\(143\) 2322.44 1.35813
\(144\) 0 0
\(145\) −937.480 −0.536921
\(146\) 0 0
\(147\) 147.000 0.0824786
\(148\) 0 0
\(149\) 719.947 0.395841 0.197921 0.980218i \(-0.436581\pi\)
0.197921 + 0.980218i \(0.436581\pi\)
\(150\) 0 0
\(151\) −2391.00 −1.28859 −0.644294 0.764778i \(-0.722849\pi\)
−0.644294 + 0.764778i \(0.722849\pi\)
\(152\) 0 0
\(153\) −252.702 −0.133528
\(154\) 0 0
\(155\) 83.1567 0.0430923
\(156\) 0 0
\(157\) −14.9421 −0.00759560 −0.00379780 0.999993i \(-0.501209\pi\)
−0.00379780 + 0.999993i \(0.501209\pi\)
\(158\) 0 0
\(159\) 502.808 0.250788
\(160\) 0 0
\(161\) −1298.47 −0.635615
\(162\) 0 0
\(163\) 3289.95 1.58091 0.790455 0.612520i \(-0.209844\pi\)
0.790455 + 0.612520i \(0.209844\pi\)
\(164\) 0 0
\(165\) 447.233 0.211012
\(166\) 0 0
\(167\) 604.093 0.279917 0.139958 0.990157i \(-0.455303\pi\)
0.139958 + 0.990157i \(0.455303\pi\)
\(168\) 0 0
\(169\) 3870.40 1.76167
\(170\) 0 0
\(171\) 1169.74 0.523114
\(172\) 0 0
\(173\) −2457.72 −1.08010 −0.540048 0.841634i \(-0.681594\pi\)
−0.540048 + 0.841634i \(0.681594\pi\)
\(174\) 0 0
\(175\) 175.000 0.0755929
\(176\) 0 0
\(177\) −227.361 −0.0965508
\(178\) 0 0
\(179\) 418.636 0.174806 0.0874031 0.996173i \(-0.472143\pi\)
0.0874031 + 0.996173i \(0.472143\pi\)
\(180\) 0 0
\(181\) 1754.59 0.720538 0.360269 0.932848i \(-0.382685\pi\)
0.360269 + 0.932848i \(0.382685\pi\)
\(182\) 0 0
\(183\) −1413.68 −0.571049
\(184\) 0 0
\(185\) −534.856 −0.212559
\(186\) 0 0
\(187\) −837.159 −0.327375
\(188\) 0 0
\(189\) 189.000 0.0727393
\(190\) 0 0
\(191\) 704.277 0.266805 0.133402 0.991062i \(-0.457410\pi\)
0.133402 + 0.991062i \(0.457410\pi\)
\(192\) 0 0
\(193\) −813.843 −0.303532 −0.151766 0.988416i \(-0.548496\pi\)
−0.151766 + 0.988416i \(0.548496\pi\)
\(194\) 0 0
\(195\) 1168.40 0.429082
\(196\) 0 0
\(197\) −3737.63 −1.35175 −0.675875 0.737016i \(-0.736234\pi\)
−0.675875 + 0.737016i \(0.736234\pi\)
\(198\) 0 0
\(199\) −2276.16 −0.810817 −0.405408 0.914136i \(-0.632871\pi\)
−0.405408 + 0.914136i \(0.632871\pi\)
\(200\) 0 0
\(201\) 414.234 0.145362
\(202\) 0 0
\(203\) −1312.47 −0.453781
\(204\) 0 0
\(205\) 1924.18 0.655564
\(206\) 0 0
\(207\) −1669.46 −0.560559
\(208\) 0 0
\(209\) 3875.17 1.28254
\(210\) 0 0
\(211\) 319.819 0.104347 0.0521736 0.998638i \(-0.483385\pi\)
0.0521736 + 0.998638i \(0.483385\pi\)
\(212\) 0 0
\(213\) 818.998 0.263459
\(214\) 0 0
\(215\) −1450.88 −0.460230
\(216\) 0 0
\(217\) 116.419 0.0364196
\(218\) 0 0
\(219\) 2118.91 0.653803
\(220\) 0 0
\(221\) −2187.09 −0.665699
\(222\) 0 0
\(223\) −2485.86 −0.746483 −0.373241 0.927734i \(-0.621754\pi\)
−0.373241 + 0.927734i \(0.621754\pi\)
\(224\) 0 0
\(225\) 225.000 0.0666667
\(226\) 0 0
\(227\) 3791.10 1.10848 0.554238 0.832358i \(-0.313010\pi\)
0.554238 + 0.832358i \(0.313010\pi\)
\(228\) 0 0
\(229\) −5659.08 −1.63302 −0.816512 0.577329i \(-0.804095\pi\)
−0.816512 + 0.577329i \(0.804095\pi\)
\(230\) 0 0
\(231\) 626.126 0.178338
\(232\) 0 0
\(233\) −5623.08 −1.58103 −0.790516 0.612441i \(-0.790188\pi\)
−0.790516 + 0.612441i \(0.790188\pi\)
\(234\) 0 0
\(235\) 2651.66 0.736066
\(236\) 0 0
\(237\) 1615.40 0.442749
\(238\) 0 0
\(239\) −2675.51 −0.724119 −0.362059 0.932155i \(-0.617926\pi\)
−0.362059 + 0.932155i \(0.617926\pi\)
\(240\) 0 0
\(241\) 3532.97 0.944311 0.472155 0.881515i \(-0.343476\pi\)
0.472155 + 0.881515i \(0.343476\pi\)
\(242\) 0 0
\(243\) 243.000 0.0641500
\(244\) 0 0
\(245\) 245.000 0.0638877
\(246\) 0 0
\(247\) 10123.9 2.60798
\(248\) 0 0
\(249\) −1946.16 −0.495314
\(250\) 0 0
\(251\) 6738.38 1.69451 0.847256 0.531185i \(-0.178253\pi\)
0.847256 + 0.531185i \(0.178253\pi\)
\(252\) 0 0
\(253\) −5530.66 −1.37435
\(254\) 0 0
\(255\) −421.169 −0.103430
\(256\) 0 0
\(257\) 2500.63 0.606946 0.303473 0.952840i \(-0.401854\pi\)
0.303473 + 0.952840i \(0.401854\pi\)
\(258\) 0 0
\(259\) −748.798 −0.179645
\(260\) 0 0
\(261\) −1687.46 −0.400197
\(262\) 0 0
\(263\) 2692.99 0.631395 0.315698 0.948860i \(-0.397761\pi\)
0.315698 + 0.948860i \(0.397761\pi\)
\(264\) 0 0
\(265\) 838.013 0.194259
\(266\) 0 0
\(267\) −1879.87 −0.430884
\(268\) 0 0
\(269\) −7265.79 −1.64685 −0.823426 0.567424i \(-0.807940\pi\)
−0.823426 + 0.567424i \(0.807940\pi\)
\(270\) 0 0
\(271\) 7991.87 1.79141 0.895704 0.444651i \(-0.146672\pi\)
0.895704 + 0.444651i \(0.146672\pi\)
\(272\) 0 0
\(273\) 1635.76 0.362641
\(274\) 0 0
\(275\) 745.388 0.163450
\(276\) 0 0
\(277\) −546.762 −0.118598 −0.0592991 0.998240i \(-0.518887\pi\)
−0.0592991 + 0.998240i \(0.518887\pi\)
\(278\) 0 0
\(279\) 149.682 0.0321191
\(280\) 0 0
\(281\) −4387.55 −0.931457 −0.465729 0.884928i \(-0.654208\pi\)
−0.465729 + 0.884928i \(0.654208\pi\)
\(282\) 0 0
\(283\) 5565.87 1.16910 0.584552 0.811356i \(-0.301270\pi\)
0.584552 + 0.811356i \(0.301270\pi\)
\(284\) 0 0
\(285\) 1949.57 0.405202
\(286\) 0 0
\(287\) 2693.85 0.554053
\(288\) 0 0
\(289\) −4124.63 −0.839534
\(290\) 0 0
\(291\) 1697.68 0.341992
\(292\) 0 0
\(293\) −4355.58 −0.868449 −0.434224 0.900805i \(-0.642978\pi\)
−0.434224 + 0.900805i \(0.642978\pi\)
\(294\) 0 0
\(295\) −378.935 −0.0747879
\(296\) 0 0
\(297\) 805.020 0.157279
\(298\) 0 0
\(299\) −14448.9 −2.79466
\(300\) 0 0
\(301\) −2031.24 −0.388965
\(302\) 0 0
\(303\) 3507.57 0.665032
\(304\) 0 0
\(305\) −2356.13 −0.442333
\(306\) 0 0
\(307\) 2068.98 0.384634 0.192317 0.981333i \(-0.438400\pi\)
0.192317 + 0.981333i \(0.438400\pi\)
\(308\) 0 0
\(309\) 3281.02 0.604047
\(310\) 0 0
\(311\) −5390.40 −0.982835 −0.491418 0.870924i \(-0.663521\pi\)
−0.491418 + 0.870924i \(0.663521\pi\)
\(312\) 0 0
\(313\) −4070.92 −0.735149 −0.367575 0.929994i \(-0.619812\pi\)
−0.367575 + 0.929994i \(0.619812\pi\)
\(314\) 0 0
\(315\) 315.000 0.0563436
\(316\) 0 0
\(317\) −4795.15 −0.849598 −0.424799 0.905288i \(-0.639655\pi\)
−0.424799 + 0.905288i \(0.639655\pi\)
\(318\) 0 0
\(319\) −5590.29 −0.981180
\(320\) 0 0
\(321\) −2630.69 −0.457417
\(322\) 0 0
\(323\) −3649.33 −0.628651
\(324\) 0 0
\(325\) 1947.34 0.332366
\(326\) 0 0
\(327\) −1394.51 −0.235830
\(328\) 0 0
\(329\) 3712.33 0.622089
\(330\) 0 0
\(331\) 3655.45 0.607015 0.303507 0.952829i \(-0.401842\pi\)
0.303507 + 0.952829i \(0.401842\pi\)
\(332\) 0 0
\(333\) −962.741 −0.158432
\(334\) 0 0
\(335\) 690.390 0.112597
\(336\) 0 0
\(337\) −10832.1 −1.75092 −0.875461 0.483290i \(-0.839442\pi\)
−0.875461 + 0.483290i \(0.839442\pi\)
\(338\) 0 0
\(339\) −2634.68 −0.422112
\(340\) 0 0
\(341\) 495.872 0.0787478
\(342\) 0 0
\(343\) 343.000 0.0539949
\(344\) 0 0
\(345\) −2782.44 −0.434207
\(346\) 0 0
\(347\) −9468.42 −1.46482 −0.732408 0.680866i \(-0.761604\pi\)
−0.732408 + 0.680866i \(0.761604\pi\)
\(348\) 0 0
\(349\) −10596.8 −1.62532 −0.812659 0.582739i \(-0.801981\pi\)
−0.812659 + 0.582739i \(0.801981\pi\)
\(350\) 0 0
\(351\) 2103.12 0.319819
\(352\) 0 0
\(353\) 9564.40 1.44210 0.721050 0.692883i \(-0.243660\pi\)
0.721050 + 0.692883i \(0.243660\pi\)
\(354\) 0 0
\(355\) 1365.00 0.204075
\(356\) 0 0
\(357\) −589.637 −0.0874143
\(358\) 0 0
\(359\) −9841.20 −1.44679 −0.723396 0.690433i \(-0.757420\pi\)
−0.723396 + 0.690433i \(0.757420\pi\)
\(360\) 0 0
\(361\) 10033.6 1.46283
\(362\) 0 0
\(363\) −1326.10 −0.191742
\(364\) 0 0
\(365\) 3531.52 0.506434
\(366\) 0 0
\(367\) 567.255 0.0806825 0.0403413 0.999186i \(-0.487155\pi\)
0.0403413 + 0.999186i \(0.487155\pi\)
\(368\) 0 0
\(369\) 3463.53 0.488628
\(370\) 0 0
\(371\) 1173.22 0.164179
\(372\) 0 0
\(373\) 1388.26 0.192712 0.0963560 0.995347i \(-0.469281\pi\)
0.0963560 + 0.995347i \(0.469281\pi\)
\(374\) 0 0
\(375\) 375.000 0.0516398
\(376\) 0 0
\(377\) −14604.7 −1.99518
\(378\) 0 0
\(379\) 13163.5 1.78407 0.892036 0.451965i \(-0.149277\pi\)
0.892036 + 0.451965i \(0.149277\pi\)
\(380\) 0 0
\(381\) 5436.08 0.730968
\(382\) 0 0
\(383\) −14445.1 −1.92718 −0.963589 0.267386i \(-0.913840\pi\)
−0.963589 + 0.267386i \(0.913840\pi\)
\(384\) 0 0
\(385\) 1043.54 0.138140
\(386\) 0 0
\(387\) −2611.59 −0.343035
\(388\) 0 0
\(389\) 12118.3 1.57949 0.789747 0.613433i \(-0.210212\pi\)
0.789747 + 0.613433i \(0.210212\pi\)
\(390\) 0 0
\(391\) 5208.35 0.673651
\(392\) 0 0
\(393\) 3005.02 0.385707
\(394\) 0 0
\(395\) 2692.34 0.342952
\(396\) 0 0
\(397\) −14256.7 −1.80233 −0.901164 0.433477i \(-0.857286\pi\)
−0.901164 + 0.433477i \(0.857286\pi\)
\(398\) 0 0
\(399\) 2729.40 0.342458
\(400\) 0 0
\(401\) 9.50036 0.00118311 0.000591553 1.00000i \(-0.499812\pi\)
0.000591553 1.00000i \(0.499812\pi\)
\(402\) 0 0
\(403\) 1295.47 0.160129
\(404\) 0 0
\(405\) 405.000 0.0496904
\(406\) 0 0
\(407\) −3189.40 −0.388435
\(408\) 0 0
\(409\) −2879.25 −0.348092 −0.174046 0.984737i \(-0.555684\pi\)
−0.174046 + 0.984737i \(0.555684\pi\)
\(410\) 0 0
\(411\) −3498.64 −0.419891
\(412\) 0 0
\(413\) −530.509 −0.0632073
\(414\) 0 0
\(415\) −3243.61 −0.383668
\(416\) 0 0
\(417\) 3534.51 0.415073
\(418\) 0 0
\(419\) −5527.10 −0.644431 −0.322215 0.946666i \(-0.604428\pi\)
−0.322215 + 0.946666i \(0.604428\pi\)
\(420\) 0 0
\(421\) −1747.81 −0.202335 −0.101167 0.994869i \(-0.532258\pi\)
−0.101167 + 0.994869i \(0.532258\pi\)
\(422\) 0 0
\(423\) 4772.99 0.548631
\(424\) 0 0
\(425\) −701.949 −0.0801165
\(426\) 0 0
\(427\) −3298.58 −0.373840
\(428\) 0 0
\(429\) 6967.31 0.784114
\(430\) 0 0
\(431\) −6288.80 −0.702833 −0.351416 0.936219i \(-0.614300\pi\)
−0.351416 + 0.936219i \(0.614300\pi\)
\(432\) 0 0
\(433\) −10816.9 −1.20053 −0.600263 0.799803i \(-0.704937\pi\)
−0.600263 + 0.799803i \(0.704937\pi\)
\(434\) 0 0
\(435\) −2812.44 −0.309991
\(436\) 0 0
\(437\) −24109.2 −2.63913
\(438\) 0 0
\(439\) 8418.06 0.915198 0.457599 0.889159i \(-0.348709\pi\)
0.457599 + 0.889159i \(0.348709\pi\)
\(440\) 0 0
\(441\) 441.000 0.0476190
\(442\) 0 0
\(443\) −8854.55 −0.949644 −0.474822 0.880082i \(-0.657488\pi\)
−0.474822 + 0.880082i \(0.657488\pi\)
\(444\) 0 0
\(445\) −3133.11 −0.333761
\(446\) 0 0
\(447\) 2159.84 0.228539
\(448\) 0 0
\(449\) 3742.98 0.393412 0.196706 0.980462i \(-0.436975\pi\)
0.196706 + 0.980462i \(0.436975\pi\)
\(450\) 0 0
\(451\) 11474.1 1.19799
\(452\) 0 0
\(453\) −7173.00 −0.743967
\(454\) 0 0
\(455\) 2726.27 0.280900
\(456\) 0 0
\(457\) −7611.40 −0.779095 −0.389548 0.921006i \(-0.627369\pi\)
−0.389548 + 0.921006i \(0.627369\pi\)
\(458\) 0 0
\(459\) −758.105 −0.0770922
\(460\) 0 0
\(461\) −10901.1 −1.10133 −0.550665 0.834727i \(-0.685626\pi\)
−0.550665 + 0.834727i \(0.685626\pi\)
\(462\) 0 0
\(463\) −14958.9 −1.50151 −0.750755 0.660581i \(-0.770310\pi\)
−0.750755 + 0.660581i \(0.770310\pi\)
\(464\) 0 0
\(465\) 249.470 0.0248794
\(466\) 0 0
\(467\) −391.313 −0.0387748 −0.0193874 0.999812i \(-0.506172\pi\)
−0.0193874 + 0.999812i \(0.506172\pi\)
\(468\) 0 0
\(469\) 966.546 0.0951619
\(470\) 0 0
\(471\) −44.8263 −0.00438532
\(472\) 0 0
\(473\) −8651.78 −0.841034
\(474\) 0 0
\(475\) 3249.29 0.313868
\(476\) 0 0
\(477\) 1508.42 0.144792
\(478\) 0 0
\(479\) −3512.61 −0.335063 −0.167531 0.985867i \(-0.553580\pi\)
−0.167531 + 0.985867i \(0.553580\pi\)
\(480\) 0 0
\(481\) −8332.36 −0.789860
\(482\) 0 0
\(483\) −3895.42 −0.366972
\(484\) 0 0
\(485\) 2829.46 0.264906
\(486\) 0 0
\(487\) −12027.8 −1.11917 −0.559583 0.828775i \(-0.689039\pi\)
−0.559583 + 0.828775i \(0.689039\pi\)
\(488\) 0 0
\(489\) 9869.84 0.912739
\(490\) 0 0
\(491\) 6430.72 0.591067 0.295534 0.955332i \(-0.404503\pi\)
0.295534 + 0.955332i \(0.404503\pi\)
\(492\) 0 0
\(493\) 5264.50 0.480936
\(494\) 0 0
\(495\) 1341.70 0.121828
\(496\) 0 0
\(497\) 1910.99 0.172474
\(498\) 0 0
\(499\) −15084.4 −1.35325 −0.676625 0.736327i \(-0.736558\pi\)
−0.676625 + 0.736327i \(0.736558\pi\)
\(500\) 0 0
\(501\) 1812.28 0.161610
\(502\) 0 0
\(503\) 13464.9 1.19358 0.596788 0.802399i \(-0.296443\pi\)
0.596788 + 0.802399i \(0.296443\pi\)
\(504\) 0 0
\(505\) 5845.95 0.515131
\(506\) 0 0
\(507\) 11611.2 1.01710
\(508\) 0 0
\(509\) −13625.6 −1.18653 −0.593263 0.805008i \(-0.702161\pi\)
−0.593263 + 0.805008i \(0.702161\pi\)
\(510\) 0 0
\(511\) 4944.13 0.428014
\(512\) 0 0
\(513\) 3509.23 0.302020
\(514\) 0 0
\(515\) 5468.36 0.467893
\(516\) 0 0
\(517\) 15812.2 1.34510
\(518\) 0 0
\(519\) −7373.15 −0.623594
\(520\) 0 0
\(521\) 14367.8 1.20818 0.604092 0.796914i \(-0.293536\pi\)
0.604092 + 0.796914i \(0.293536\pi\)
\(522\) 0 0
\(523\) 1548.22 0.129443 0.0647216 0.997903i \(-0.479384\pi\)
0.0647216 + 0.997903i \(0.479384\pi\)
\(524\) 0 0
\(525\) 525.000 0.0436436
\(526\) 0 0
\(527\) −466.974 −0.0385991
\(528\) 0 0
\(529\) 22241.8 1.82804
\(530\) 0 0
\(531\) −682.083 −0.0557436
\(532\) 0 0
\(533\) 29976.2 2.43605
\(534\) 0 0
\(535\) −4384.49 −0.354314
\(536\) 0 0
\(537\) 1255.91 0.100924
\(538\) 0 0
\(539\) 1460.96 0.116750
\(540\) 0 0
\(541\) 19041.9 1.51327 0.756633 0.653839i \(-0.226843\pi\)
0.756633 + 0.653839i \(0.226843\pi\)
\(542\) 0 0
\(543\) 5263.76 0.416003
\(544\) 0 0
\(545\) −2324.18 −0.182673
\(546\) 0 0
\(547\) −19812.1 −1.54863 −0.774317 0.632798i \(-0.781906\pi\)
−0.774317 + 0.632798i \(0.781906\pi\)
\(548\) 0 0
\(549\) −4241.03 −0.329696
\(550\) 0 0
\(551\) −24369.1 −1.88414
\(552\) 0 0
\(553\) 3769.27 0.289848
\(554\) 0 0
\(555\) −1604.57 −0.122721
\(556\) 0 0
\(557\) 11494.2 0.874375 0.437188 0.899370i \(-0.355975\pi\)
0.437188 + 0.899370i \(0.355975\pi\)
\(558\) 0 0
\(559\) −22602.9 −1.71020
\(560\) 0 0
\(561\) −2511.48 −0.189010
\(562\) 0 0
\(563\) −1776.27 −0.132968 −0.0664839 0.997787i \(-0.521178\pi\)
−0.0664839 + 0.997787i \(0.521178\pi\)
\(564\) 0 0
\(565\) −4391.13 −0.326967
\(566\) 0 0
\(567\) 567.000 0.0419961
\(568\) 0 0
\(569\) −4941.21 −0.364054 −0.182027 0.983294i \(-0.558266\pi\)
−0.182027 + 0.983294i \(0.558266\pi\)
\(570\) 0 0
\(571\) 17039.1 1.24880 0.624398 0.781106i \(-0.285344\pi\)
0.624398 + 0.781106i \(0.285344\pi\)
\(572\) 0 0
\(573\) 2112.83 0.154040
\(574\) 0 0
\(575\) −4637.40 −0.336336
\(576\) 0 0
\(577\) −10568.8 −0.762536 −0.381268 0.924465i \(-0.624512\pi\)
−0.381268 + 0.924465i \(0.624512\pi\)
\(578\) 0 0
\(579\) −2441.53 −0.175244
\(580\) 0 0
\(581\) −4541.05 −0.324259
\(582\) 0 0
\(583\) 4997.16 0.354993
\(584\) 0 0
\(585\) 3505.21 0.247731
\(586\) 0 0
\(587\) −26447.8 −1.85965 −0.929826 0.367999i \(-0.880043\pi\)
−0.929826 + 0.367999i \(0.880043\pi\)
\(588\) 0 0
\(589\) 2161.60 0.151218
\(590\) 0 0
\(591\) −11212.9 −0.780433
\(592\) 0 0
\(593\) 2986.35 0.206804 0.103402 0.994640i \(-0.467027\pi\)
0.103402 + 0.994640i \(0.467027\pi\)
\(594\) 0 0
\(595\) −982.728 −0.0677108
\(596\) 0 0
\(597\) −6828.47 −0.468125
\(598\) 0 0
\(599\) 6665.58 0.454672 0.227336 0.973816i \(-0.426998\pi\)
0.227336 + 0.973816i \(0.426998\pi\)
\(600\) 0 0
\(601\) 16493.8 1.11946 0.559729 0.828675i \(-0.310905\pi\)
0.559729 + 0.828675i \(0.310905\pi\)
\(602\) 0 0
\(603\) 1242.70 0.0839249
\(604\) 0 0
\(605\) −2210.17 −0.148523
\(606\) 0 0
\(607\) −13215.3 −0.883679 −0.441839 0.897094i \(-0.645674\pi\)
−0.441839 + 0.897094i \(0.645674\pi\)
\(608\) 0 0
\(609\) −3937.42 −0.261990
\(610\) 0 0
\(611\) 41309.5 2.73519
\(612\) 0 0
\(613\) −16667.9 −1.09822 −0.549111 0.835750i \(-0.685033\pi\)
−0.549111 + 0.835750i \(0.685033\pi\)
\(614\) 0 0
\(615\) 5772.54 0.378490
\(616\) 0 0
\(617\) 15660.8 1.02185 0.510923 0.859627i \(-0.329304\pi\)
0.510923 + 0.859627i \(0.329304\pi\)
\(618\) 0 0
\(619\) 29769.4 1.93301 0.966505 0.256648i \(-0.0826182\pi\)
0.966505 + 0.256648i \(0.0826182\pi\)
\(620\) 0 0
\(621\) −5008.39 −0.323639
\(622\) 0 0
\(623\) −4386.36 −0.282080
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) 0 0
\(627\) 11625.5 0.740475
\(628\) 0 0
\(629\) 3003.53 0.190395
\(630\) 0 0
\(631\) 1789.65 0.112908 0.0564538 0.998405i \(-0.482021\pi\)
0.0564538 + 0.998405i \(0.482021\pi\)
\(632\) 0 0
\(633\) 959.457 0.0602448
\(634\) 0 0
\(635\) 9060.13 0.566205
\(636\) 0 0
\(637\) 3816.78 0.237404
\(638\) 0 0
\(639\) 2456.99 0.152108
\(640\) 0 0
\(641\) 30542.7 1.88200 0.941001 0.338405i \(-0.109887\pi\)
0.941001 + 0.338405i \(0.109887\pi\)
\(642\) 0 0
\(643\) 30530.7 1.87249 0.936246 0.351346i \(-0.114276\pi\)
0.936246 + 0.351346i \(0.114276\pi\)
\(644\) 0 0
\(645\) −4352.65 −0.265714
\(646\) 0 0
\(647\) −5584.47 −0.339332 −0.169666 0.985502i \(-0.554269\pi\)
−0.169666 + 0.985502i \(0.554269\pi\)
\(648\) 0 0
\(649\) −2259.63 −0.136669
\(650\) 0 0
\(651\) 349.258 0.0210269
\(652\) 0 0
\(653\) 28563.9 1.71178 0.855890 0.517158i \(-0.173010\pi\)
0.855890 + 0.517158i \(0.173010\pi\)
\(654\) 0 0
\(655\) 5008.36 0.298768
\(656\) 0 0
\(657\) 6356.74 0.377473
\(658\) 0 0
\(659\) −27049.9 −1.59896 −0.799480 0.600693i \(-0.794892\pi\)
−0.799480 + 0.600693i \(0.794892\pi\)
\(660\) 0 0
\(661\) 14059.7 0.827319 0.413660 0.910432i \(-0.364250\pi\)
0.413660 + 0.910432i \(0.364250\pi\)
\(662\) 0 0
\(663\) −6561.27 −0.384342
\(664\) 0 0
\(665\) 4549.00 0.265267
\(666\) 0 0
\(667\) 34779.8 2.01901
\(668\) 0 0
\(669\) −7457.59 −0.430982
\(670\) 0 0
\(671\) −14049.9 −0.808329
\(672\) 0 0
\(673\) −11466.4 −0.656754 −0.328377 0.944547i \(-0.606502\pi\)
−0.328377 + 0.944547i \(0.606502\pi\)
\(674\) 0 0
\(675\) 675.000 0.0384900
\(676\) 0 0
\(677\) −29429.1 −1.67068 −0.835340 0.549734i \(-0.814729\pi\)
−0.835340 + 0.549734i \(0.814729\pi\)
\(678\) 0 0
\(679\) 3961.25 0.223886
\(680\) 0 0
\(681\) 11373.3 0.639979
\(682\) 0 0
\(683\) −8962.58 −0.502114 −0.251057 0.967972i \(-0.580778\pi\)
−0.251057 + 0.967972i \(0.580778\pi\)
\(684\) 0 0
\(685\) −5831.06 −0.325246
\(686\) 0 0
\(687\) −16977.2 −0.942827
\(688\) 0 0
\(689\) 13055.1 0.721860
\(690\) 0 0
\(691\) −429.183 −0.0236279 −0.0118140 0.999930i \(-0.503761\pi\)
−0.0118140 + 0.999930i \(0.503761\pi\)
\(692\) 0 0
\(693\) 1878.38 0.102964
\(694\) 0 0
\(695\) 5890.85 0.321514
\(696\) 0 0
\(697\) −10805.4 −0.587208
\(698\) 0 0
\(699\) −16869.2 −0.912809
\(700\) 0 0
\(701\) −597.896 −0.0322143 −0.0161071 0.999870i \(-0.505127\pi\)
−0.0161071 + 0.999870i \(0.505127\pi\)
\(702\) 0 0
\(703\) −13903.2 −0.745902
\(704\) 0 0
\(705\) 7954.99 0.424968
\(706\) 0 0
\(707\) 8184.33 0.435365
\(708\) 0 0
\(709\) 17195.6 0.910850 0.455425 0.890274i \(-0.349487\pi\)
0.455425 + 0.890274i \(0.349487\pi\)
\(710\) 0 0
\(711\) 4846.20 0.255621
\(712\) 0 0
\(713\) −3085.05 −0.162042
\(714\) 0 0
\(715\) 11612.2 0.607372
\(716\) 0 0
\(717\) −8026.53 −0.418070
\(718\) 0 0
\(719\) 4278.40 0.221916 0.110958 0.993825i \(-0.464608\pi\)
0.110958 + 0.993825i \(0.464608\pi\)
\(720\) 0 0
\(721\) 7655.71 0.395442
\(722\) 0 0
\(723\) 10598.9 0.545198
\(724\) 0 0
\(725\) −4687.40 −0.240118
\(726\) 0 0
\(727\) 10680.1 0.544845 0.272423 0.962178i \(-0.412175\pi\)
0.272423 + 0.962178i \(0.412175\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) 8147.57 0.412242
\(732\) 0 0
\(733\) 26337.1 1.32712 0.663562 0.748121i \(-0.269044\pi\)
0.663562 + 0.748121i \(0.269044\pi\)
\(734\) 0 0
\(735\) 735.000 0.0368856
\(736\) 0 0
\(737\) 4116.87 0.205762
\(738\) 0 0
\(739\) −1170.60 −0.0582696 −0.0291348 0.999575i \(-0.509275\pi\)
−0.0291348 + 0.999575i \(0.509275\pi\)
\(740\) 0 0
\(741\) 30371.8 1.50572
\(742\) 0 0
\(743\) −21396.9 −1.05649 −0.528247 0.849091i \(-0.677150\pi\)
−0.528247 + 0.849091i \(0.677150\pi\)
\(744\) 0 0
\(745\) 3599.74 0.177026
\(746\) 0 0
\(747\) −5838.49 −0.285970
\(748\) 0 0
\(749\) −6138.28 −0.299450
\(750\) 0 0
\(751\) 24731.8 1.20170 0.600850 0.799362i \(-0.294829\pi\)
0.600850 + 0.799362i \(0.294829\pi\)
\(752\) 0 0
\(753\) 20215.1 0.978327
\(754\) 0 0
\(755\) −11955.0 −0.576274
\(756\) 0 0
\(757\) −1375.15 −0.0660249 −0.0330124 0.999455i \(-0.510510\pi\)
−0.0330124 + 0.999455i \(0.510510\pi\)
\(758\) 0 0
\(759\) −16592.0 −0.793480
\(760\) 0 0
\(761\) −2821.55 −0.134404 −0.0672018 0.997739i \(-0.521407\pi\)
−0.0672018 + 0.997739i \(0.521407\pi\)
\(762\) 0 0
\(763\) −3253.85 −0.154387
\(764\) 0 0
\(765\) −1263.51 −0.0597153
\(766\) 0 0
\(767\) −5903.31 −0.277909
\(768\) 0 0
\(769\) −28343.6 −1.32912 −0.664562 0.747233i \(-0.731382\pi\)
−0.664562 + 0.747233i \(0.731382\pi\)
\(770\) 0 0
\(771\) 7501.89 0.350420
\(772\) 0 0
\(773\) −17071.8 −0.794348 −0.397174 0.917743i \(-0.630009\pi\)
−0.397174 + 0.917743i \(0.630009\pi\)
\(774\) 0 0
\(775\) 415.783 0.0192715
\(776\) 0 0
\(777\) −2246.39 −0.103718
\(778\) 0 0
\(779\) 50017.7 2.30048
\(780\) 0 0
\(781\) 8139.62 0.372930
\(782\) 0 0
\(783\) −5062.39 −0.231054
\(784\) 0 0
\(785\) −74.7105 −0.00339686
\(786\) 0 0
\(787\) 21482.7 0.973029 0.486515 0.873672i \(-0.338268\pi\)
0.486515 + 0.873672i \(0.338268\pi\)
\(788\) 0 0
\(789\) 8078.98 0.364536
\(790\) 0 0
\(791\) −6147.58 −0.276337
\(792\) 0 0
\(793\) −36705.4 −1.64369
\(794\) 0 0
\(795\) 2514.04 0.112156
\(796\) 0 0
\(797\) −16836.2 −0.748269 −0.374134 0.927375i \(-0.622060\pi\)
−0.374134 + 0.927375i \(0.622060\pi\)
\(798\) 0 0
\(799\) −14890.7 −0.659316
\(800\) 0 0
\(801\) −5639.60 −0.248771
\(802\) 0 0
\(803\) 21058.8 0.925467
\(804\) 0 0
\(805\) −6492.36 −0.284255
\(806\) 0 0
\(807\) −21797.4 −0.950811
\(808\) 0 0
\(809\) −5794.57 −0.251825 −0.125912 0.992041i \(-0.540186\pi\)
−0.125912 + 0.992041i \(0.540186\pi\)
\(810\) 0 0
\(811\) −11502.9 −0.498052 −0.249026 0.968497i \(-0.580110\pi\)
−0.249026 + 0.968497i \(0.580110\pi\)
\(812\) 0 0
\(813\) 23975.6 1.03427
\(814\) 0 0
\(815\) 16449.7 0.707005
\(816\) 0 0
\(817\) −37714.7 −1.61502
\(818\) 0 0
\(819\) 4907.29 0.209371
\(820\) 0 0
\(821\) −11280.7 −0.479537 −0.239768 0.970830i \(-0.577071\pi\)
−0.239768 + 0.970830i \(0.577071\pi\)
\(822\) 0 0
\(823\) 39386.7 1.66820 0.834102 0.551610i \(-0.185986\pi\)
0.834102 + 0.551610i \(0.185986\pi\)
\(824\) 0 0
\(825\) 2236.17 0.0943676
\(826\) 0 0
\(827\) −3916.64 −0.164686 −0.0823428 0.996604i \(-0.526240\pi\)
−0.0823428 + 0.996604i \(0.526240\pi\)
\(828\) 0 0
\(829\) 40515.5 1.69742 0.848710 0.528858i \(-0.177380\pi\)
0.848710 + 0.528858i \(0.177380\pi\)
\(830\) 0 0
\(831\) −1640.29 −0.0684728
\(832\) 0 0
\(833\) −1375.82 −0.0572261
\(834\) 0 0
\(835\) 3020.46 0.125183
\(836\) 0 0
\(837\) 449.046 0.0185440
\(838\) 0 0
\(839\) −31999.4 −1.31674 −0.658369 0.752695i \(-0.728753\pi\)
−0.658369 + 0.752695i \(0.728753\pi\)
\(840\) 0 0
\(841\) 10765.8 0.441418
\(842\) 0 0
\(843\) −13162.7 −0.537777
\(844\) 0 0
\(845\) 19352.0 0.787844
\(846\) 0 0
\(847\) −3094.24 −0.125524
\(848\) 0 0
\(849\) 16697.6 0.674983
\(850\) 0 0
\(851\) 19842.7 0.799295
\(852\) 0 0
\(853\) −31615.9 −1.26906 −0.634529 0.772899i \(-0.718806\pi\)
−0.634529 + 0.772899i \(0.718806\pi\)
\(854\) 0 0
\(855\) 5848.71 0.233944
\(856\) 0 0
\(857\) 31652.3 1.26164 0.630818 0.775931i \(-0.282719\pi\)
0.630818 + 0.775931i \(0.282719\pi\)
\(858\) 0 0
\(859\) −12761.4 −0.506886 −0.253443 0.967350i \(-0.581563\pi\)
−0.253443 + 0.967350i \(0.581563\pi\)
\(860\) 0 0
\(861\) 8081.56 0.319882
\(862\) 0 0
\(863\) −27328.3 −1.07794 −0.538972 0.842323i \(-0.681187\pi\)
−0.538972 + 0.842323i \(0.681187\pi\)
\(864\) 0 0
\(865\) −12288.6 −0.483034
\(866\) 0 0
\(867\) −12373.9 −0.484705
\(868\) 0 0
\(869\) 16054.7 0.626718
\(870\) 0 0
\(871\) 10755.4 0.418406
\(872\) 0 0
\(873\) 5093.03 0.197449
\(874\) 0 0
\(875\) 875.000 0.0338062
\(876\) 0 0
\(877\) −16663.9 −0.641619 −0.320810 0.947144i \(-0.603955\pi\)
−0.320810 + 0.947144i \(0.603955\pi\)
\(878\) 0 0
\(879\) −13066.7 −0.501399
\(880\) 0 0
\(881\) 11100.5 0.424499 0.212250 0.977215i \(-0.431921\pi\)
0.212250 + 0.977215i \(0.431921\pi\)
\(882\) 0 0
\(883\) −48077.0 −1.83230 −0.916150 0.400835i \(-0.868720\pi\)
−0.916150 + 0.400835i \(0.868720\pi\)
\(884\) 0 0
\(885\) −1136.80 −0.0431788
\(886\) 0 0
\(887\) −35284.9 −1.33568 −0.667841 0.744304i \(-0.732781\pi\)
−0.667841 + 0.744304i \(0.732781\pi\)
\(888\) 0 0
\(889\) 12684.2 0.478531
\(890\) 0 0
\(891\) 2415.06 0.0908053
\(892\) 0 0
\(893\) 68928.1 2.58297
\(894\) 0 0
\(895\) 2093.18 0.0781757
\(896\) 0 0
\(897\) −43346.8 −1.61350
\(898\) 0 0
\(899\) −3118.31 −0.115686
\(900\) 0 0
\(901\) −4705.94 −0.174004
\(902\) 0 0
\(903\) −6093.71 −0.224569
\(904\) 0 0
\(905\) 8772.93 0.322234
\(906\) 0 0
\(907\) 35871.1 1.31321 0.656605 0.754235i \(-0.271992\pi\)
0.656605 + 0.754235i \(0.271992\pi\)
\(908\) 0 0
\(909\) 10522.7 0.383956
\(910\) 0 0
\(911\) 19485.1 0.708638 0.354319 0.935125i \(-0.384713\pi\)
0.354319 + 0.935125i \(0.384713\pi\)
\(912\) 0 0
\(913\) −19342.0 −0.701124
\(914\) 0 0
\(915\) −7068.39 −0.255381
\(916\) 0 0
\(917\) 7011.71 0.252505
\(918\) 0 0
\(919\) −37981.6 −1.36333 −0.681663 0.731666i \(-0.738743\pi\)
−0.681663 + 0.731666i \(0.738743\pi\)
\(920\) 0 0
\(921\) 6206.93 0.222069
\(922\) 0 0
\(923\) 21264.9 0.758333
\(924\) 0 0
\(925\) −2674.28 −0.0950592
\(926\) 0 0
\(927\) 9843.05 0.348747
\(928\) 0 0
\(929\) −21714.2 −0.766867 −0.383434 0.923568i \(-0.625258\pi\)
−0.383434 + 0.923568i \(0.625258\pi\)
\(930\) 0 0
\(931\) 6368.60 0.224192
\(932\) 0 0
\(933\) −16171.2 −0.567440
\(934\) 0 0
\(935\) −4185.80 −0.146407
\(936\) 0 0
\(937\) 2540.53 0.0885758 0.0442879 0.999019i \(-0.485898\pi\)
0.0442879 + 0.999019i \(0.485898\pi\)
\(938\) 0 0
\(939\) −12212.7 −0.424439
\(940\) 0 0
\(941\) 50111.1 1.73600 0.868000 0.496565i \(-0.165406\pi\)
0.868000 + 0.496565i \(0.165406\pi\)
\(942\) 0 0
\(943\) −71385.6 −2.46515
\(944\) 0 0
\(945\) 945.000 0.0325300
\(946\) 0 0
\(947\) −14172.8 −0.486331 −0.243165 0.969985i \(-0.578186\pi\)
−0.243165 + 0.969985i \(0.578186\pi\)
\(948\) 0 0
\(949\) 55016.5 1.88189
\(950\) 0 0
\(951\) −14385.5 −0.490516
\(952\) 0 0
\(953\) −2767.29 −0.0940621 −0.0470310 0.998893i \(-0.514976\pi\)
−0.0470310 + 0.998893i \(0.514976\pi\)
\(954\) 0 0
\(955\) 3521.38 0.119319
\(956\) 0 0
\(957\) −16770.9 −0.566484
\(958\) 0 0
\(959\) −8163.49 −0.274883
\(960\) 0 0
\(961\) −29514.4 −0.990715
\(962\) 0 0
\(963\) −7892.08 −0.264090
\(964\) 0 0
\(965\) −4069.22 −0.135744
\(966\) 0 0
\(967\) 4657.55 0.154888 0.0774441 0.996997i \(-0.475324\pi\)
0.0774441 + 0.996997i \(0.475324\pi\)
\(968\) 0 0
\(969\) −10948.0 −0.362952
\(970\) 0 0
\(971\) 27887.3 0.921675 0.460837 0.887485i \(-0.347549\pi\)
0.460837 + 0.887485i \(0.347549\pi\)
\(972\) 0 0
\(973\) 8247.18 0.271729
\(974\) 0 0
\(975\) 5842.01 0.191891
\(976\) 0 0
\(977\) 15830.8 0.518396 0.259198 0.965824i \(-0.416542\pi\)
0.259198 + 0.965824i \(0.416542\pi\)
\(978\) 0 0
\(979\) −18683.1 −0.609922
\(980\) 0 0
\(981\) −4183.53 −0.136157
\(982\) 0 0
\(983\) 47949.9 1.55581 0.777906 0.628380i \(-0.216282\pi\)
0.777906 + 0.628380i \(0.216282\pi\)
\(984\) 0 0
\(985\) −18688.1 −0.604521
\(986\) 0 0
\(987\) 11137.0 0.359163
\(988\) 0 0
\(989\) 53826.6 1.73062
\(990\) 0 0
\(991\) 13279.2 0.425657 0.212829 0.977090i \(-0.431732\pi\)
0.212829 + 0.977090i \(0.431732\pi\)
\(992\) 0 0
\(993\) 10966.4 0.350460
\(994\) 0 0
\(995\) −11380.8 −0.362608
\(996\) 0 0
\(997\) −23018.4 −0.731193 −0.365596 0.930773i \(-0.619135\pi\)
−0.365596 + 0.930773i \(0.619135\pi\)
\(998\) 0 0
\(999\) −2888.22 −0.0914708
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 840.4.a.s.1.2 3
4.3 odd 2 1680.4.a.br.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
840.4.a.s.1.2 3 1.1 even 1 trivial
1680.4.a.br.1.2 3 4.3 odd 2