Properties

Label 840.4.a.r.1.3
Level $840$
Weight $4$
Character 840.1
Self dual yes
Analytic conductor $49.562$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [840,4,Mod(1,840)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("840.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(840, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 840 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 840.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,9,0,-15,0,21,0,27,0,14] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(49.5616044048\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.851417.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 125x - 404 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-3.60762\) of defining polynomial
Character \(\chi\) \(=\) 840.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.00000 q^{3} -5.00000 q^{5} +7.00000 q^{7} +9.00000 q^{9} +64.1622 q^{11} +37.3012 q^{13} -15.0000 q^{15} -134.324 q^{17} +84.1622 q^{19} +21.0000 q^{21} +105.722 q^{23} +25.0000 q^{25} +27.0000 q^{27} -73.4633 q^{29} -236.811 q^{31} +192.487 q^{33} -35.0000 q^{35} +67.7220 q^{37} +111.904 q^{39} -390.112 q^{41} +119.676 q^{43} -45.0000 q^{45} +252.324 q^{47} +49.0000 q^{49} -402.973 q^{51} +460.340 q^{53} -320.811 q^{55} +252.487 q^{57} +397.012 q^{59} +520.946 q^{61} +63.0000 q^{63} -186.506 q^{65} +907.000 q^{67} +317.166 q^{69} +508.679 q^{71} -232.321 q^{73} +75.0000 q^{75} +449.135 q^{77} +718.583 q^{79} +81.0000 q^{81} +1246.94 q^{83} +671.622 q^{85} -220.390 q^{87} -485.019 q^{89} +261.108 q^{91} -710.433 q^{93} -420.811 q^{95} +142.892 q^{97} +577.460 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 9 q^{3} - 15 q^{5} + 21 q^{7} + 27 q^{9} + 14 q^{11} + 20 q^{13} - 45 q^{15} - 46 q^{17} + 74 q^{19} + 63 q^{21} + 144 q^{23} + 75 q^{25} + 81 q^{27} + 50 q^{29} + 182 q^{31} + 42 q^{33} - 105 q^{35}+ \cdots + 126 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.00000 0.577350
\(4\) 0 0
\(5\) −5.00000 −0.447214
\(6\) 0 0
\(7\) 7.00000 0.377964
\(8\) 0 0
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) 64.1622 1.75869 0.879346 0.476182i \(-0.157980\pi\)
0.879346 + 0.476182i \(0.157980\pi\)
\(12\) 0 0
\(13\) 37.3012 0.795806 0.397903 0.917427i \(-0.369738\pi\)
0.397903 + 0.917427i \(0.369738\pi\)
\(14\) 0 0
\(15\) −15.0000 −0.258199
\(16\) 0 0
\(17\) −134.324 −1.91638 −0.958189 0.286135i \(-0.907629\pi\)
−0.958189 + 0.286135i \(0.907629\pi\)
\(18\) 0 0
\(19\) 84.1622 1.01622 0.508109 0.861293i \(-0.330345\pi\)
0.508109 + 0.861293i \(0.330345\pi\)
\(20\) 0 0
\(21\) 21.0000 0.218218
\(22\) 0 0
\(23\) 105.722 0.958459 0.479230 0.877690i \(-0.340916\pi\)
0.479230 + 0.877690i \(0.340916\pi\)
\(24\) 0 0
\(25\) 25.0000 0.200000
\(26\) 0 0
\(27\) 27.0000 0.192450
\(28\) 0 0
\(29\) −73.4633 −0.470407 −0.235203 0.971946i \(-0.575576\pi\)
−0.235203 + 0.971946i \(0.575576\pi\)
\(30\) 0 0
\(31\) −236.811 −1.37202 −0.686008 0.727594i \(-0.740638\pi\)
−0.686008 + 0.727594i \(0.740638\pi\)
\(32\) 0 0
\(33\) 192.487 1.01538
\(34\) 0 0
\(35\) −35.0000 −0.169031
\(36\) 0 0
\(37\) 67.7220 0.300903 0.150452 0.988617i \(-0.451927\pi\)
0.150452 + 0.988617i \(0.451927\pi\)
\(38\) 0 0
\(39\) 111.904 0.459459
\(40\) 0 0
\(41\) −390.112 −1.48598 −0.742991 0.669301i \(-0.766594\pi\)
−0.742991 + 0.669301i \(0.766594\pi\)
\(42\) 0 0
\(43\) 119.676 0.424427 0.212214 0.977223i \(-0.431933\pi\)
0.212214 + 0.977223i \(0.431933\pi\)
\(44\) 0 0
\(45\) −45.0000 −0.149071
\(46\) 0 0
\(47\) 252.324 0.783091 0.391546 0.920159i \(-0.371941\pi\)
0.391546 + 0.920159i \(0.371941\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) 0 0
\(51\) −402.973 −1.10642
\(52\) 0 0
\(53\) 460.340 1.19307 0.596533 0.802588i \(-0.296544\pi\)
0.596533 + 0.802588i \(0.296544\pi\)
\(54\) 0 0
\(55\) −320.811 −0.786511
\(56\) 0 0
\(57\) 252.487 0.586713
\(58\) 0 0
\(59\) 397.012 0.876043 0.438021 0.898965i \(-0.355679\pi\)
0.438021 + 0.898965i \(0.355679\pi\)
\(60\) 0 0
\(61\) 520.946 1.09345 0.546724 0.837313i \(-0.315875\pi\)
0.546724 + 0.837313i \(0.315875\pi\)
\(62\) 0 0
\(63\) 63.0000 0.125988
\(64\) 0 0
\(65\) −186.506 −0.355895
\(66\) 0 0
\(67\) 907.000 1.65385 0.826923 0.562315i \(-0.190089\pi\)
0.826923 + 0.562315i \(0.190089\pi\)
\(68\) 0 0
\(69\) 317.166 0.553367
\(70\) 0 0
\(71\) 508.679 0.850270 0.425135 0.905130i \(-0.360227\pi\)
0.425135 + 0.905130i \(0.360227\pi\)
\(72\) 0 0
\(73\) −232.321 −0.372480 −0.186240 0.982504i \(-0.559630\pi\)
−0.186240 + 0.982504i \(0.559630\pi\)
\(74\) 0 0
\(75\) 75.0000 0.115470
\(76\) 0 0
\(77\) 449.135 0.664723
\(78\) 0 0
\(79\) 718.583 1.02338 0.511689 0.859171i \(-0.329020\pi\)
0.511689 + 0.859171i \(0.329020\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 0 0
\(83\) 1246.94 1.64903 0.824514 0.565842i \(-0.191449\pi\)
0.824514 + 0.565842i \(0.191449\pi\)
\(84\) 0 0
\(85\) 671.622 0.857031
\(86\) 0 0
\(87\) −220.390 −0.271590
\(88\) 0 0
\(89\) −485.019 −0.577662 −0.288831 0.957380i \(-0.593267\pi\)
−0.288831 + 0.957380i \(0.593267\pi\)
\(90\) 0 0
\(91\) 261.108 0.300787
\(92\) 0 0
\(93\) −710.433 −0.792134
\(94\) 0 0
\(95\) −420.811 −0.454466
\(96\) 0 0
\(97\) 142.892 0.149572 0.0747859 0.997200i \(-0.476173\pi\)
0.0747859 + 0.997200i \(0.476173\pi\)
\(98\) 0 0
\(99\) 577.460 0.586231
\(100\) 0 0
\(101\) 274.405 0.270340 0.135170 0.990822i \(-0.456842\pi\)
0.135170 + 0.990822i \(0.456842\pi\)
\(102\) 0 0
\(103\) −1722.86 −1.64814 −0.824069 0.566490i \(-0.808301\pi\)
−0.824069 + 0.566490i \(0.808301\pi\)
\(104\) 0 0
\(105\) −105.000 −0.0975900
\(106\) 0 0
\(107\) −1977.94 −1.78705 −0.893526 0.449012i \(-0.851776\pi\)
−0.893526 + 0.449012i \(0.851776\pi\)
\(108\) 0 0
\(109\) 489.888 0.430484 0.215242 0.976561i \(-0.430946\pi\)
0.215242 + 0.976561i \(0.430946\pi\)
\(110\) 0 0
\(111\) 203.166 0.173727
\(112\) 0 0
\(113\) −470.348 −0.391563 −0.195781 0.980648i \(-0.562724\pi\)
−0.195781 + 0.980648i \(0.562724\pi\)
\(114\) 0 0
\(115\) −528.610 −0.428636
\(116\) 0 0
\(117\) 335.711 0.265269
\(118\) 0 0
\(119\) −940.270 −0.724323
\(120\) 0 0
\(121\) 2785.78 2.09300
\(122\) 0 0
\(123\) −1170.34 −0.857932
\(124\) 0 0
\(125\) −125.000 −0.0894427
\(126\) 0 0
\(127\) 1836.70 1.28331 0.641656 0.766992i \(-0.278248\pi\)
0.641656 + 0.766992i \(0.278248\pi\)
\(128\) 0 0
\(129\) 359.027 0.245043
\(130\) 0 0
\(131\) −2164.22 −1.44343 −0.721714 0.692191i \(-0.756646\pi\)
−0.721714 + 0.692191i \(0.756646\pi\)
\(132\) 0 0
\(133\) 589.135 0.384094
\(134\) 0 0
\(135\) −135.000 −0.0860663
\(136\) 0 0
\(137\) 248.742 0.155120 0.0775600 0.996988i \(-0.475287\pi\)
0.0775600 + 0.996988i \(0.475287\pi\)
\(138\) 0 0
\(139\) 2622.05 1.60000 0.799999 0.600001i \(-0.204833\pi\)
0.799999 + 0.600001i \(0.204833\pi\)
\(140\) 0 0
\(141\) 756.973 0.452118
\(142\) 0 0
\(143\) 2393.32 1.39958
\(144\) 0 0
\(145\) 367.317 0.210372
\(146\) 0 0
\(147\) 147.000 0.0824786
\(148\) 0 0
\(149\) −28.8458 −0.0158600 −0.00792999 0.999969i \(-0.502524\pi\)
−0.00792999 + 0.999969i \(0.502524\pi\)
\(150\) 0 0
\(151\) 991.355 0.534274 0.267137 0.963659i \(-0.413922\pi\)
0.267137 + 0.963659i \(0.413922\pi\)
\(152\) 0 0
\(153\) −1208.92 −0.638793
\(154\) 0 0
\(155\) 1184.05 0.613584
\(156\) 0 0
\(157\) 1727.31 0.878053 0.439026 0.898474i \(-0.355324\pi\)
0.439026 + 0.898474i \(0.355324\pi\)
\(158\) 0 0
\(159\) 1381.02 0.688818
\(160\) 0 0
\(161\) 740.054 0.362263
\(162\) 0 0
\(163\) −531.081 −0.255199 −0.127600 0.991826i \(-0.540727\pi\)
−0.127600 + 0.991826i \(0.540727\pi\)
\(164\) 0 0
\(165\) −962.433 −0.454093
\(166\) 0 0
\(167\) −1793.48 −0.831039 −0.415520 0.909584i \(-0.636400\pi\)
−0.415520 + 0.909584i \(0.636400\pi\)
\(168\) 0 0
\(169\) −805.622 −0.366692
\(170\) 0 0
\(171\) 757.460 0.338739
\(172\) 0 0
\(173\) 3632.96 1.59658 0.798291 0.602272i \(-0.205738\pi\)
0.798291 + 0.602272i \(0.205738\pi\)
\(174\) 0 0
\(175\) 175.000 0.0755929
\(176\) 0 0
\(177\) 1191.04 0.505784
\(178\) 0 0
\(179\) −2659.65 −1.11057 −0.555283 0.831662i \(-0.687390\pi\)
−0.555283 + 0.831662i \(0.687390\pi\)
\(180\) 0 0
\(181\) −2504.85 −1.02864 −0.514320 0.857599i \(-0.671956\pi\)
−0.514320 + 0.857599i \(0.671956\pi\)
\(182\) 0 0
\(183\) 1562.84 0.631302
\(184\) 0 0
\(185\) −338.610 −0.134568
\(186\) 0 0
\(187\) −8618.54 −3.37032
\(188\) 0 0
\(189\) 189.000 0.0727393
\(190\) 0 0
\(191\) 700.765 0.265474 0.132737 0.991151i \(-0.457623\pi\)
0.132737 + 0.991151i \(0.457623\pi\)
\(192\) 0 0
\(193\) −77.4910 −0.0289012 −0.0144506 0.999896i \(-0.504600\pi\)
−0.0144506 + 0.999896i \(0.504600\pi\)
\(194\) 0 0
\(195\) −559.518 −0.205476
\(196\) 0 0
\(197\) 1452.73 0.525396 0.262698 0.964878i \(-0.415388\pi\)
0.262698 + 0.964878i \(0.415388\pi\)
\(198\) 0 0
\(199\) −83.6214 −0.0297878 −0.0148939 0.999889i \(-0.504741\pi\)
−0.0148939 + 0.999889i \(0.504741\pi\)
\(200\) 0 0
\(201\) 2721.00 0.954848
\(202\) 0 0
\(203\) −514.243 −0.177797
\(204\) 0 0
\(205\) 1950.56 0.664551
\(206\) 0 0
\(207\) 951.498 0.319486
\(208\) 0 0
\(209\) 5400.03 1.78721
\(210\) 0 0
\(211\) −2405.10 −0.784711 −0.392355 0.919814i \(-0.628340\pi\)
−0.392355 + 0.919814i \(0.628340\pi\)
\(212\) 0 0
\(213\) 1526.04 0.490903
\(214\) 0 0
\(215\) −598.378 −0.189810
\(216\) 0 0
\(217\) −1657.68 −0.518573
\(218\) 0 0
\(219\) −696.962 −0.215052
\(220\) 0 0
\(221\) −5010.46 −1.52507
\(222\) 0 0
\(223\) 4020.13 1.20721 0.603605 0.797283i \(-0.293730\pi\)
0.603605 + 0.797283i \(0.293730\pi\)
\(224\) 0 0
\(225\) 225.000 0.0666667
\(226\) 0 0
\(227\) 4082.33 1.19363 0.596814 0.802379i \(-0.296433\pi\)
0.596814 + 0.802379i \(0.296433\pi\)
\(228\) 0 0
\(229\) −722.892 −0.208603 −0.104301 0.994546i \(-0.533261\pi\)
−0.104301 + 0.994546i \(0.533261\pi\)
\(230\) 0 0
\(231\) 1347.41 0.383778
\(232\) 0 0
\(233\) −775.992 −0.218184 −0.109092 0.994032i \(-0.534794\pi\)
−0.109092 + 0.994032i \(0.534794\pi\)
\(234\) 0 0
\(235\) −1261.62 −0.350209
\(236\) 0 0
\(237\) 2155.75 0.590848
\(238\) 0 0
\(239\) −6340.95 −1.71616 −0.858080 0.513517i \(-0.828342\pi\)
−0.858080 + 0.513517i \(0.828342\pi\)
\(240\) 0 0
\(241\) 2444.73 0.653438 0.326719 0.945121i \(-0.394057\pi\)
0.326719 + 0.945121i \(0.394057\pi\)
\(242\) 0 0
\(243\) 243.000 0.0641500
\(244\) 0 0
\(245\) −245.000 −0.0638877
\(246\) 0 0
\(247\) 3139.35 0.808712
\(248\) 0 0
\(249\) 3740.82 0.952066
\(250\) 0 0
\(251\) −5451.97 −1.37102 −0.685508 0.728065i \(-0.740420\pi\)
−0.685508 + 0.728065i \(0.740420\pi\)
\(252\) 0 0
\(253\) 6783.35 1.68564
\(254\) 0 0
\(255\) 2014.87 0.494807
\(256\) 0 0
\(257\) −2336.97 −0.567223 −0.283612 0.958939i \(-0.591533\pi\)
−0.283612 + 0.958939i \(0.591533\pi\)
\(258\) 0 0
\(259\) 474.054 0.113731
\(260\) 0 0
\(261\) −661.170 −0.156802
\(262\) 0 0
\(263\) 1454.58 0.341039 0.170519 0.985354i \(-0.445455\pi\)
0.170519 + 0.985354i \(0.445455\pi\)
\(264\) 0 0
\(265\) −2301.70 −0.533556
\(266\) 0 0
\(267\) −1455.06 −0.333514
\(268\) 0 0
\(269\) 7702.27 1.74578 0.872891 0.487915i \(-0.162242\pi\)
0.872891 + 0.487915i \(0.162242\pi\)
\(270\) 0 0
\(271\) −2505.75 −0.561672 −0.280836 0.959756i \(-0.590612\pi\)
−0.280836 + 0.959756i \(0.590612\pi\)
\(272\) 0 0
\(273\) 783.325 0.173659
\(274\) 0 0
\(275\) 1604.05 0.351739
\(276\) 0 0
\(277\) −190.819 −0.0413906 −0.0206953 0.999786i \(-0.506588\pi\)
−0.0206953 + 0.999786i \(0.506588\pi\)
\(278\) 0 0
\(279\) −2131.30 −0.457339
\(280\) 0 0
\(281\) −1163.40 −0.246985 −0.123493 0.992345i \(-0.539410\pi\)
−0.123493 + 0.992345i \(0.539410\pi\)
\(282\) 0 0
\(283\) −5727.95 −1.20315 −0.601574 0.798817i \(-0.705460\pi\)
−0.601574 + 0.798817i \(0.705460\pi\)
\(284\) 0 0
\(285\) −1262.43 −0.262386
\(286\) 0 0
\(287\) −2730.78 −0.561648
\(288\) 0 0
\(289\) 13130.0 2.67251
\(290\) 0 0
\(291\) 428.675 0.0863553
\(292\) 0 0
\(293\) −2856.53 −0.569558 −0.284779 0.958593i \(-0.591920\pi\)
−0.284779 + 0.958593i \(0.591920\pi\)
\(294\) 0 0
\(295\) −1985.06 −0.391778
\(296\) 0 0
\(297\) 1732.38 0.338461
\(298\) 0 0
\(299\) 3943.55 0.762748
\(300\) 0 0
\(301\) 837.730 0.160418
\(302\) 0 0
\(303\) 823.216 0.156081
\(304\) 0 0
\(305\) −2604.73 −0.489005
\(306\) 0 0
\(307\) 3854.82 0.716632 0.358316 0.933600i \(-0.383351\pi\)
0.358316 + 0.933600i \(0.383351\pi\)
\(308\) 0 0
\(309\) −5168.57 −0.951553
\(310\) 0 0
\(311\) −7401.57 −1.34953 −0.674766 0.738032i \(-0.735755\pi\)
−0.674766 + 0.738032i \(0.735755\pi\)
\(312\) 0 0
\(313\) 997.193 0.180079 0.0900395 0.995938i \(-0.471301\pi\)
0.0900395 + 0.995938i \(0.471301\pi\)
\(314\) 0 0
\(315\) −315.000 −0.0563436
\(316\) 0 0
\(317\) −10790.8 −1.91190 −0.955950 0.293531i \(-0.905170\pi\)
−0.955950 + 0.293531i \(0.905170\pi\)
\(318\) 0 0
\(319\) −4713.57 −0.827301
\(320\) 0 0
\(321\) −5933.82 −1.03175
\(322\) 0 0
\(323\) −11305.0 −1.94746
\(324\) 0 0
\(325\) 932.529 0.159161
\(326\) 0 0
\(327\) 1469.66 0.248540
\(328\) 0 0
\(329\) 1766.27 0.295981
\(330\) 0 0
\(331\) −1644.00 −0.272997 −0.136499 0.990640i \(-0.543585\pi\)
−0.136499 + 0.990640i \(0.543585\pi\)
\(332\) 0 0
\(333\) 609.498 0.100301
\(334\) 0 0
\(335\) −4535.00 −0.739622
\(336\) 0 0
\(337\) 1432.59 0.231567 0.115783 0.993274i \(-0.463062\pi\)
0.115783 + 0.993274i \(0.463062\pi\)
\(338\) 0 0
\(339\) −1411.04 −0.226069
\(340\) 0 0
\(341\) −15194.3 −2.41295
\(342\) 0 0
\(343\) 343.000 0.0539949
\(344\) 0 0
\(345\) −1585.83 −0.247473
\(346\) 0 0
\(347\) 8712.12 1.34781 0.673906 0.738817i \(-0.264615\pi\)
0.673906 + 0.738817i \(0.264615\pi\)
\(348\) 0 0
\(349\) 9774.41 1.49917 0.749587 0.661906i \(-0.230252\pi\)
0.749587 + 0.661906i \(0.230252\pi\)
\(350\) 0 0
\(351\) 1007.13 0.153153
\(352\) 0 0
\(353\) −13113.2 −1.97718 −0.988590 0.150629i \(-0.951870\pi\)
−0.988590 + 0.150629i \(0.951870\pi\)
\(354\) 0 0
\(355\) −2543.40 −0.380252
\(356\) 0 0
\(357\) −2820.81 −0.418188
\(358\) 0 0
\(359\) −9439.68 −1.38776 −0.693882 0.720088i \(-0.744101\pi\)
−0.693882 + 0.720088i \(0.744101\pi\)
\(360\) 0 0
\(361\) 224.271 0.0326973
\(362\) 0 0
\(363\) 8357.35 1.20839
\(364\) 0 0
\(365\) 1161.60 0.166578
\(366\) 0 0
\(367\) 10579.2 1.50472 0.752359 0.658754i \(-0.228916\pi\)
0.752359 + 0.658754i \(0.228916\pi\)
\(368\) 0 0
\(369\) −3511.01 −0.495327
\(370\) 0 0
\(371\) 3222.38 0.450937
\(372\) 0 0
\(373\) 1105.36 0.153440 0.0767202 0.997053i \(-0.475555\pi\)
0.0767202 + 0.997053i \(0.475555\pi\)
\(374\) 0 0
\(375\) −375.000 −0.0516398
\(376\) 0 0
\(377\) −2740.27 −0.374353
\(378\) 0 0
\(379\) −4108.67 −0.556855 −0.278428 0.960457i \(-0.589813\pi\)
−0.278428 + 0.960457i \(0.589813\pi\)
\(380\) 0 0
\(381\) 5510.10 0.740921
\(382\) 0 0
\(383\) −5483.47 −0.731572 −0.365786 0.930699i \(-0.619200\pi\)
−0.365786 + 0.930699i \(0.619200\pi\)
\(384\) 0 0
\(385\) −2245.68 −0.297273
\(386\) 0 0
\(387\) 1077.08 0.141476
\(388\) 0 0
\(389\) 2363.93 0.308113 0.154056 0.988062i \(-0.450766\pi\)
0.154056 + 0.988062i \(0.450766\pi\)
\(390\) 0 0
\(391\) −14201.0 −1.83677
\(392\) 0 0
\(393\) −6492.67 −0.833364
\(394\) 0 0
\(395\) −3592.91 −0.457669
\(396\) 0 0
\(397\) 3084.33 0.389920 0.194960 0.980811i \(-0.437542\pi\)
0.194960 + 0.980811i \(0.437542\pi\)
\(398\) 0 0
\(399\) 1767.41 0.221757
\(400\) 0 0
\(401\) −9721.19 −1.21061 −0.605303 0.795995i \(-0.706948\pi\)
−0.605303 + 0.795995i \(0.706948\pi\)
\(402\) 0 0
\(403\) −8833.32 −1.09186
\(404\) 0 0
\(405\) −405.000 −0.0496904
\(406\) 0 0
\(407\) 4345.19 0.529197
\(408\) 0 0
\(409\) −4918.07 −0.594579 −0.297290 0.954787i \(-0.596083\pi\)
−0.297290 + 0.954787i \(0.596083\pi\)
\(410\) 0 0
\(411\) 746.225 0.0895586
\(412\) 0 0
\(413\) 2779.08 0.331113
\(414\) 0 0
\(415\) −6234.69 −0.737467
\(416\) 0 0
\(417\) 7866.16 0.923759
\(418\) 0 0
\(419\) −5134.19 −0.598619 −0.299310 0.954156i \(-0.596756\pi\)
−0.299310 + 0.954156i \(0.596756\pi\)
\(420\) 0 0
\(421\) −5483.03 −0.634742 −0.317371 0.948301i \(-0.602800\pi\)
−0.317371 + 0.948301i \(0.602800\pi\)
\(422\) 0 0
\(423\) 2270.92 0.261030
\(424\) 0 0
\(425\) −3358.11 −0.383276
\(426\) 0 0
\(427\) 3646.62 0.413284
\(428\) 0 0
\(429\) 7179.97 0.808047
\(430\) 0 0
\(431\) −5786.67 −0.646715 −0.323358 0.946277i \(-0.604812\pi\)
−0.323358 + 0.946277i \(0.604812\pi\)
\(432\) 0 0
\(433\) 4120.24 0.457289 0.228645 0.973510i \(-0.426571\pi\)
0.228645 + 0.973510i \(0.426571\pi\)
\(434\) 0 0
\(435\) 1101.95 0.121459
\(436\) 0 0
\(437\) 8897.79 0.974003
\(438\) 0 0
\(439\) −2138.78 −0.232525 −0.116262 0.993219i \(-0.537091\pi\)
−0.116262 + 0.993219i \(0.537091\pi\)
\(440\) 0 0
\(441\) 441.000 0.0476190
\(442\) 0 0
\(443\) 1510.82 0.162034 0.0810171 0.996713i \(-0.474183\pi\)
0.0810171 + 0.996713i \(0.474183\pi\)
\(444\) 0 0
\(445\) 2425.10 0.258338
\(446\) 0 0
\(447\) −86.5373 −0.00915677
\(448\) 0 0
\(449\) −11961.0 −1.25718 −0.628589 0.777738i \(-0.716367\pi\)
−0.628589 + 0.777738i \(0.716367\pi\)
\(450\) 0 0
\(451\) −25030.4 −2.61339
\(452\) 0 0
\(453\) 2974.07 0.308463
\(454\) 0 0
\(455\) −1305.54 −0.134516
\(456\) 0 0
\(457\) −16355.0 −1.67408 −0.837042 0.547139i \(-0.815717\pi\)
−0.837042 + 0.547139i \(0.815717\pi\)
\(458\) 0 0
\(459\) −3626.76 −0.368807
\(460\) 0 0
\(461\) 8224.60 0.830928 0.415464 0.909610i \(-0.363619\pi\)
0.415464 + 0.909610i \(0.363619\pi\)
\(462\) 0 0
\(463\) 14108.2 1.41612 0.708058 0.706155i \(-0.249572\pi\)
0.708058 + 0.706155i \(0.249572\pi\)
\(464\) 0 0
\(465\) 3552.16 0.354253
\(466\) 0 0
\(467\) −19708.3 −1.95287 −0.976437 0.215801i \(-0.930764\pi\)
−0.976437 + 0.215801i \(0.930764\pi\)
\(468\) 0 0
\(469\) 6349.00 0.625095
\(470\) 0 0
\(471\) 5181.93 0.506944
\(472\) 0 0
\(473\) 7678.65 0.746437
\(474\) 0 0
\(475\) 2104.05 0.203243
\(476\) 0 0
\(477\) 4143.06 0.397689
\(478\) 0 0
\(479\) 2640.71 0.251894 0.125947 0.992037i \(-0.459803\pi\)
0.125947 + 0.992037i \(0.459803\pi\)
\(480\) 0 0
\(481\) 2526.11 0.239461
\(482\) 0 0
\(483\) 2220.16 0.209153
\(484\) 0 0
\(485\) −714.459 −0.0668905
\(486\) 0 0
\(487\) 9088.39 0.845656 0.422828 0.906210i \(-0.361038\pi\)
0.422828 + 0.906210i \(0.361038\pi\)
\(488\) 0 0
\(489\) −1593.24 −0.147339
\(490\) 0 0
\(491\) 16740.6 1.53869 0.769343 0.638837i \(-0.220584\pi\)
0.769343 + 0.638837i \(0.220584\pi\)
\(492\) 0 0
\(493\) 9867.92 0.901478
\(494\) 0 0
\(495\) −2887.30 −0.262170
\(496\) 0 0
\(497\) 3560.76 0.321372
\(498\) 0 0
\(499\) −10407.4 −0.933669 −0.466834 0.884345i \(-0.654606\pi\)
−0.466834 + 0.884345i \(0.654606\pi\)
\(500\) 0 0
\(501\) −5380.44 −0.479801
\(502\) 0 0
\(503\) −10912.5 −0.967325 −0.483663 0.875254i \(-0.660694\pi\)
−0.483663 + 0.875254i \(0.660694\pi\)
\(504\) 0 0
\(505\) −1372.03 −0.120900
\(506\) 0 0
\(507\) −2416.87 −0.211710
\(508\) 0 0
\(509\) −19663.0 −1.71228 −0.856138 0.516747i \(-0.827143\pi\)
−0.856138 + 0.516747i \(0.827143\pi\)
\(510\) 0 0
\(511\) −1626.24 −0.140784
\(512\) 0 0
\(513\) 2272.38 0.195571
\(514\) 0 0
\(515\) 8614.29 0.737070
\(516\) 0 0
\(517\) 16189.7 1.37722
\(518\) 0 0
\(519\) 10898.9 0.921787
\(520\) 0 0
\(521\) 6146.99 0.516899 0.258449 0.966025i \(-0.416788\pi\)
0.258449 + 0.966025i \(0.416788\pi\)
\(522\) 0 0
\(523\) −4531.94 −0.378906 −0.189453 0.981890i \(-0.560671\pi\)
−0.189453 + 0.981890i \(0.560671\pi\)
\(524\) 0 0
\(525\) 525.000 0.0436436
\(526\) 0 0
\(527\) 31809.5 2.62930
\(528\) 0 0
\(529\) −989.860 −0.0813561
\(530\) 0 0
\(531\) 3573.11 0.292014
\(532\) 0 0
\(533\) −14551.6 −1.18255
\(534\) 0 0
\(535\) 9889.69 0.799194
\(536\) 0 0
\(537\) −7978.94 −0.641185
\(538\) 0 0
\(539\) 3143.95 0.251242
\(540\) 0 0
\(541\) −9434.26 −0.749742 −0.374871 0.927077i \(-0.622313\pi\)
−0.374871 + 0.927077i \(0.622313\pi\)
\(542\) 0 0
\(543\) −7514.54 −0.593885
\(544\) 0 0
\(545\) −2449.44 −0.192518
\(546\) 0 0
\(547\) 22550.6 1.76270 0.881349 0.472467i \(-0.156636\pi\)
0.881349 + 0.472467i \(0.156636\pi\)
\(548\) 0 0
\(549\) 4688.51 0.364483
\(550\) 0 0
\(551\) −6182.83 −0.478036
\(552\) 0 0
\(553\) 5030.08 0.386801
\(554\) 0 0
\(555\) −1015.83 −0.0776929
\(556\) 0 0
\(557\) −18831.6 −1.43253 −0.716266 0.697827i \(-0.754150\pi\)
−0.716266 + 0.697827i \(0.754150\pi\)
\(558\) 0 0
\(559\) 4464.04 0.337762
\(560\) 0 0
\(561\) −25855.6 −1.94586
\(562\) 0 0
\(563\) −17888.6 −1.33910 −0.669552 0.742765i \(-0.733514\pi\)
−0.669552 + 0.742765i \(0.733514\pi\)
\(564\) 0 0
\(565\) 2351.74 0.175112
\(566\) 0 0
\(567\) 567.000 0.0419961
\(568\) 0 0
\(569\) 21384.1 1.57552 0.787759 0.615984i \(-0.211241\pi\)
0.787759 + 0.615984i \(0.211241\pi\)
\(570\) 0 0
\(571\) 4342.21 0.318242 0.159121 0.987259i \(-0.449134\pi\)
0.159121 + 0.987259i \(0.449134\pi\)
\(572\) 0 0
\(573\) 2102.29 0.153272
\(574\) 0 0
\(575\) 2643.05 0.191692
\(576\) 0 0
\(577\) −6822.39 −0.492235 −0.246118 0.969240i \(-0.579155\pi\)
−0.246118 + 0.969240i \(0.579155\pi\)
\(578\) 0 0
\(579\) −232.473 −0.0166861
\(580\) 0 0
\(581\) 8728.57 0.623274
\(582\) 0 0
\(583\) 29536.4 2.09824
\(584\) 0 0
\(585\) −1678.55 −0.118632
\(586\) 0 0
\(587\) −14838.0 −1.04332 −0.521660 0.853154i \(-0.674687\pi\)
−0.521660 + 0.853154i \(0.674687\pi\)
\(588\) 0 0
\(589\) −19930.5 −1.39427
\(590\) 0 0
\(591\) 4358.20 0.303337
\(592\) 0 0
\(593\) −14718.8 −1.01927 −0.509635 0.860390i \(-0.670220\pi\)
−0.509635 + 0.860390i \(0.670220\pi\)
\(594\) 0 0
\(595\) 4701.35 0.323927
\(596\) 0 0
\(597\) −250.864 −0.0171980
\(598\) 0 0
\(599\) 8013.13 0.546590 0.273295 0.961930i \(-0.411886\pi\)
0.273295 + 0.961930i \(0.411886\pi\)
\(600\) 0 0
\(601\) −7175.55 −0.487016 −0.243508 0.969899i \(-0.578298\pi\)
−0.243508 + 0.969899i \(0.578298\pi\)
\(602\) 0 0
\(603\) 8163.00 0.551282
\(604\) 0 0
\(605\) −13928.9 −0.936018
\(606\) 0 0
\(607\) 1315.22 0.0879458 0.0439729 0.999033i \(-0.485998\pi\)
0.0439729 + 0.999033i \(0.485998\pi\)
\(608\) 0 0
\(609\) −1542.73 −0.102651
\(610\) 0 0
\(611\) 9411.99 0.623189
\(612\) 0 0
\(613\) 2688.90 0.177168 0.0885838 0.996069i \(-0.471766\pi\)
0.0885838 + 0.996069i \(0.471766\pi\)
\(614\) 0 0
\(615\) 5851.68 0.383679
\(616\) 0 0
\(617\) 13505.4 0.881212 0.440606 0.897701i \(-0.354764\pi\)
0.440606 + 0.897701i \(0.354764\pi\)
\(618\) 0 0
\(619\) 4610.97 0.299403 0.149702 0.988731i \(-0.452169\pi\)
0.149702 + 0.988731i \(0.452169\pi\)
\(620\) 0 0
\(621\) 2854.49 0.184456
\(622\) 0 0
\(623\) −3395.14 −0.218336
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) 0 0
\(627\) 16200.1 1.03185
\(628\) 0 0
\(629\) −9096.71 −0.576645
\(630\) 0 0
\(631\) −16967.6 −1.07047 −0.535237 0.844702i \(-0.679778\pi\)
−0.535237 + 0.844702i \(0.679778\pi\)
\(632\) 0 0
\(633\) −7215.30 −0.453053
\(634\) 0 0
\(635\) −9183.50 −0.573915
\(636\) 0 0
\(637\) 1827.76 0.113687
\(638\) 0 0
\(639\) 4578.12 0.283423
\(640\) 0 0
\(641\) −17874.6 −1.10141 −0.550704 0.834700i \(-0.685641\pi\)
−0.550704 + 0.834700i \(0.685641\pi\)
\(642\) 0 0
\(643\) 2800.34 0.171749 0.0858746 0.996306i \(-0.472632\pi\)
0.0858746 + 0.996306i \(0.472632\pi\)
\(644\) 0 0
\(645\) −1795.13 −0.109587
\(646\) 0 0
\(647\) 30486.5 1.85247 0.926235 0.376946i \(-0.123026\pi\)
0.926235 + 0.376946i \(0.123026\pi\)
\(648\) 0 0
\(649\) 25473.1 1.54069
\(650\) 0 0
\(651\) −4973.03 −0.299398
\(652\) 0 0
\(653\) 21920.8 1.31367 0.656834 0.754035i \(-0.271895\pi\)
0.656834 + 0.754035i \(0.271895\pi\)
\(654\) 0 0
\(655\) 10821.1 0.645521
\(656\) 0 0
\(657\) −2090.88 −0.124160
\(658\) 0 0
\(659\) −8017.07 −0.473901 −0.236951 0.971522i \(-0.576148\pi\)
−0.236951 + 0.971522i \(0.576148\pi\)
\(660\) 0 0
\(661\) 6149.43 0.361854 0.180927 0.983497i \(-0.442090\pi\)
0.180927 + 0.983497i \(0.442090\pi\)
\(662\) 0 0
\(663\) −15031.4 −0.880498
\(664\) 0 0
\(665\) −2945.68 −0.171772
\(666\) 0 0
\(667\) −7766.69 −0.450866
\(668\) 0 0
\(669\) 12060.4 0.696983
\(670\) 0 0
\(671\) 33425.0 1.92304
\(672\) 0 0
\(673\) −21943.3 −1.25684 −0.628419 0.777875i \(-0.716298\pi\)
−0.628419 + 0.777875i \(0.716298\pi\)
\(674\) 0 0
\(675\) 675.000 0.0384900
\(676\) 0 0
\(677\) 22975.6 1.30432 0.652161 0.758081i \(-0.273863\pi\)
0.652161 + 0.758081i \(0.273863\pi\)
\(678\) 0 0
\(679\) 1000.24 0.0565328
\(680\) 0 0
\(681\) 12247.0 0.689142
\(682\) 0 0
\(683\) 24792.7 1.38897 0.694486 0.719506i \(-0.255632\pi\)
0.694486 + 0.719506i \(0.255632\pi\)
\(684\) 0 0
\(685\) −1243.71 −0.0693718
\(686\) 0 0
\(687\) −2168.68 −0.120437
\(688\) 0 0
\(689\) 17171.2 0.949450
\(690\) 0 0
\(691\) −10258.6 −0.564767 −0.282383 0.959302i \(-0.591125\pi\)
−0.282383 + 0.959302i \(0.591125\pi\)
\(692\) 0 0
\(693\) 4042.22 0.221574
\(694\) 0 0
\(695\) −13110.3 −0.715541
\(696\) 0 0
\(697\) 52401.5 2.84770
\(698\) 0 0
\(699\) −2327.98 −0.125969
\(700\) 0 0
\(701\) −26568.8 −1.43151 −0.715756 0.698350i \(-0.753918\pi\)
−0.715756 + 0.698350i \(0.753918\pi\)
\(702\) 0 0
\(703\) 5699.63 0.305783
\(704\) 0 0
\(705\) −3784.87 −0.202193
\(706\) 0 0
\(707\) 1920.84 0.102179
\(708\) 0 0
\(709\) 22638.3 1.19915 0.599575 0.800319i \(-0.295336\pi\)
0.599575 + 0.800319i \(0.295336\pi\)
\(710\) 0 0
\(711\) 6467.25 0.341126
\(712\) 0 0
\(713\) −25036.1 −1.31502
\(714\) 0 0
\(715\) −11966.6 −0.625911
\(716\) 0 0
\(717\) −19022.9 −0.990825
\(718\) 0 0
\(719\) 27763.3 1.44005 0.720026 0.693947i \(-0.244130\pi\)
0.720026 + 0.693947i \(0.244130\pi\)
\(720\) 0 0
\(721\) −12060.0 −0.622938
\(722\) 0 0
\(723\) 7334.18 0.377263
\(724\) 0 0
\(725\) −1836.58 −0.0940814
\(726\) 0 0
\(727\) −26880.4 −1.37130 −0.685652 0.727930i \(-0.740483\pi\)
−0.685652 + 0.727930i \(0.740483\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) −16075.4 −0.813363
\(732\) 0 0
\(733\) −10606.3 −0.534450 −0.267225 0.963634i \(-0.586107\pi\)
−0.267225 + 0.963634i \(0.586107\pi\)
\(734\) 0 0
\(735\) −735.000 −0.0368856
\(736\) 0 0
\(737\) 58195.1 2.90861
\(738\) 0 0
\(739\) 23156.4 1.15267 0.576334 0.817215i \(-0.304483\pi\)
0.576334 + 0.817215i \(0.304483\pi\)
\(740\) 0 0
\(741\) 9418.04 0.466910
\(742\) 0 0
\(743\) 5393.39 0.266305 0.133152 0.991096i \(-0.457490\pi\)
0.133152 + 0.991096i \(0.457490\pi\)
\(744\) 0 0
\(745\) 144.229 0.00709280
\(746\) 0 0
\(747\) 11222.4 0.549676
\(748\) 0 0
\(749\) −13845.6 −0.675442
\(750\) 0 0
\(751\) −15724.7 −0.764049 −0.382024 0.924152i \(-0.624773\pi\)
−0.382024 + 0.924152i \(0.624773\pi\)
\(752\) 0 0
\(753\) −16355.9 −0.791557
\(754\) 0 0
\(755\) −4956.78 −0.238935
\(756\) 0 0
\(757\) −15875.1 −0.762206 −0.381103 0.924533i \(-0.624456\pi\)
−0.381103 + 0.924533i \(0.624456\pi\)
\(758\) 0 0
\(759\) 20350.1 0.973202
\(760\) 0 0
\(761\) −15321.4 −0.729828 −0.364914 0.931041i \(-0.618902\pi\)
−0.364914 + 0.931041i \(0.618902\pi\)
\(762\) 0 0
\(763\) 3429.22 0.162708
\(764\) 0 0
\(765\) 6044.60 0.285677
\(766\) 0 0
\(767\) 14809.0 0.697161
\(768\) 0 0
\(769\) 23892.3 1.12039 0.560195 0.828361i \(-0.310726\pi\)
0.560195 + 0.828361i \(0.310726\pi\)
\(770\) 0 0
\(771\) −7010.92 −0.327487
\(772\) 0 0
\(773\) 39844.3 1.85394 0.926972 0.375131i \(-0.122402\pi\)
0.926972 + 0.375131i \(0.122402\pi\)
\(774\) 0 0
\(775\) −5920.27 −0.274403
\(776\) 0 0
\(777\) 1422.16 0.0656625
\(778\) 0 0
\(779\) −32832.7 −1.51008
\(780\) 0 0
\(781\) 32638.0 1.49536
\(782\) 0 0
\(783\) −1983.51 −0.0905299
\(784\) 0 0
\(785\) −8636.54 −0.392677
\(786\) 0 0
\(787\) 3713.76 0.168210 0.0841050 0.996457i \(-0.473197\pi\)
0.0841050 + 0.996457i \(0.473197\pi\)
\(788\) 0 0
\(789\) 4363.74 0.196899
\(790\) 0 0
\(791\) −3292.43 −0.147997
\(792\) 0 0
\(793\) 19431.9 0.870173
\(794\) 0 0
\(795\) −6905.10 −0.308049
\(796\) 0 0
\(797\) −38977.2 −1.73230 −0.866150 0.499784i \(-0.833413\pi\)
−0.866150 + 0.499784i \(0.833413\pi\)
\(798\) 0 0
\(799\) −33893.3 −1.50070
\(800\) 0 0
\(801\) −4365.17 −0.192554
\(802\) 0 0
\(803\) −14906.2 −0.655078
\(804\) 0 0
\(805\) −3700.27 −0.162009
\(806\) 0 0
\(807\) 23106.8 1.00793
\(808\) 0 0
\(809\) −3120.01 −0.135592 −0.0677958 0.997699i \(-0.521597\pi\)
−0.0677958 + 0.997699i \(0.521597\pi\)
\(810\) 0 0
\(811\) −29109.5 −1.26038 −0.630192 0.776439i \(-0.717024\pi\)
−0.630192 + 0.776439i \(0.717024\pi\)
\(812\) 0 0
\(813\) −7517.24 −0.324282
\(814\) 0 0
\(815\) 2655.40 0.114129
\(816\) 0 0
\(817\) 10072.2 0.431310
\(818\) 0 0
\(819\) 2349.97 0.100262
\(820\) 0 0
\(821\) −40513.0 −1.72218 −0.861092 0.508449i \(-0.830219\pi\)
−0.861092 + 0.508449i \(0.830219\pi\)
\(822\) 0 0
\(823\) 23901.9 1.01235 0.506177 0.862430i \(-0.331058\pi\)
0.506177 + 0.862430i \(0.331058\pi\)
\(824\) 0 0
\(825\) 4812.16 0.203076
\(826\) 0 0
\(827\) 15304.0 0.643498 0.321749 0.946825i \(-0.395729\pi\)
0.321749 + 0.946825i \(0.395729\pi\)
\(828\) 0 0
\(829\) −11830.6 −0.495650 −0.247825 0.968805i \(-0.579716\pi\)
−0.247825 + 0.968805i \(0.579716\pi\)
\(830\) 0 0
\(831\) −572.456 −0.0238969
\(832\) 0 0
\(833\) −6581.89 −0.273768
\(834\) 0 0
\(835\) 8967.39 0.371652
\(836\) 0 0
\(837\) −6393.89 −0.264045
\(838\) 0 0
\(839\) 23656.2 0.973425 0.486712 0.873562i \(-0.338196\pi\)
0.486712 + 0.873562i \(0.338196\pi\)
\(840\) 0 0
\(841\) −18992.1 −0.778717
\(842\) 0 0
\(843\) −3490.21 −0.142597
\(844\) 0 0
\(845\) 4028.11 0.163990
\(846\) 0 0
\(847\) 19500.5 0.791080
\(848\) 0 0
\(849\) −17183.8 −0.694638
\(850\) 0 0
\(851\) 7159.70 0.288404
\(852\) 0 0
\(853\) −36520.8 −1.46594 −0.732970 0.680260i \(-0.761867\pi\)
−0.732970 + 0.680260i \(0.761867\pi\)
\(854\) 0 0
\(855\) −3787.30 −0.151489
\(856\) 0 0
\(857\) 18593.1 0.741106 0.370553 0.928811i \(-0.379168\pi\)
0.370553 + 0.928811i \(0.379168\pi\)
\(858\) 0 0
\(859\) −37547.5 −1.49139 −0.745696 0.666287i \(-0.767883\pi\)
−0.745696 + 0.666287i \(0.767883\pi\)
\(860\) 0 0
\(861\) −8192.35 −0.324268
\(862\) 0 0
\(863\) 27100.5 1.06896 0.534479 0.845182i \(-0.320508\pi\)
0.534479 + 0.845182i \(0.320508\pi\)
\(864\) 0 0
\(865\) −18164.8 −0.714013
\(866\) 0 0
\(867\) 39390.1 1.54297
\(868\) 0 0
\(869\) 46105.8 1.79981
\(870\) 0 0
\(871\) 33832.2 1.31614
\(872\) 0 0
\(873\) 1286.03 0.0498573
\(874\) 0 0
\(875\) −875.000 −0.0338062
\(876\) 0 0
\(877\) 18493.3 0.712057 0.356028 0.934475i \(-0.384131\pi\)
0.356028 + 0.934475i \(0.384131\pi\)
\(878\) 0 0
\(879\) −8569.60 −0.328834
\(880\) 0 0
\(881\) −22217.0 −0.849614 −0.424807 0.905284i \(-0.639658\pi\)
−0.424807 + 0.905284i \(0.639658\pi\)
\(882\) 0 0
\(883\) 25125.6 0.957581 0.478790 0.877929i \(-0.341075\pi\)
0.478790 + 0.877929i \(0.341075\pi\)
\(884\) 0 0
\(885\) −5955.18 −0.226193
\(886\) 0 0
\(887\) 30683.1 1.16149 0.580743 0.814087i \(-0.302762\pi\)
0.580743 + 0.814087i \(0.302762\pi\)
\(888\) 0 0
\(889\) 12856.9 0.485047
\(890\) 0 0
\(891\) 5197.14 0.195410
\(892\) 0 0
\(893\) 21236.2 0.795791
\(894\) 0 0
\(895\) 13298.2 0.496660
\(896\) 0 0
\(897\) 11830.7 0.440373
\(898\) 0 0
\(899\) 17396.9 0.645406
\(900\) 0 0
\(901\) −61834.9 −2.28637
\(902\) 0 0
\(903\) 2513.19 0.0926176
\(904\) 0 0
\(905\) 12524.2 0.460021
\(906\) 0 0
\(907\) −5114.94 −0.187253 −0.0936266 0.995607i \(-0.529846\pi\)
−0.0936266 + 0.995607i \(0.529846\pi\)
\(908\) 0 0
\(909\) 2469.65 0.0901133
\(910\) 0 0
\(911\) 25031.4 0.910347 0.455174 0.890403i \(-0.349577\pi\)
0.455174 + 0.890403i \(0.349577\pi\)
\(912\) 0 0
\(913\) 80006.3 2.90013
\(914\) 0 0
\(915\) −7814.19 −0.282327
\(916\) 0 0
\(917\) −15149.6 −0.545565
\(918\) 0 0
\(919\) −21211.8 −0.761384 −0.380692 0.924702i \(-0.624314\pi\)
−0.380692 + 0.924702i \(0.624314\pi\)
\(920\) 0 0
\(921\) 11564.5 0.413748
\(922\) 0 0
\(923\) 18974.3 0.676650
\(924\) 0 0
\(925\) 1693.05 0.0601807
\(926\) 0 0
\(927\) −15505.7 −0.549379
\(928\) 0 0
\(929\) −43267.9 −1.52807 −0.764034 0.645176i \(-0.776784\pi\)
−0.764034 + 0.645176i \(0.776784\pi\)
\(930\) 0 0
\(931\) 4123.95 0.145174
\(932\) 0 0
\(933\) −22204.7 −0.779153
\(934\) 0 0
\(935\) 43092.7 1.50725
\(936\) 0 0
\(937\) −48574.6 −1.69356 −0.846778 0.531946i \(-0.821461\pi\)
−0.846778 + 0.531946i \(0.821461\pi\)
\(938\) 0 0
\(939\) 2991.58 0.103969
\(940\) 0 0
\(941\) 5802.60 0.201020 0.100510 0.994936i \(-0.467953\pi\)
0.100510 + 0.994936i \(0.467953\pi\)
\(942\) 0 0
\(943\) −41243.4 −1.42425
\(944\) 0 0
\(945\) −945.000 −0.0325300
\(946\) 0 0
\(947\) 38033.8 1.30510 0.652551 0.757745i \(-0.273699\pi\)
0.652551 + 0.757745i \(0.273699\pi\)
\(948\) 0 0
\(949\) −8665.83 −0.296422
\(950\) 0 0
\(951\) −32372.4 −1.10384
\(952\) 0 0
\(953\) 10519.4 0.357563 0.178782 0.983889i \(-0.442784\pi\)
0.178782 + 0.983889i \(0.442784\pi\)
\(954\) 0 0
\(955\) −3503.82 −0.118724
\(956\) 0 0
\(957\) −14140.7 −0.477643
\(958\) 0 0
\(959\) 1741.19 0.0586298
\(960\) 0 0
\(961\) 26288.4 0.882427
\(962\) 0 0
\(963\) −17801.4 −0.595684
\(964\) 0 0
\(965\) 387.455 0.0129250
\(966\) 0 0
\(967\) −501.274 −0.0166700 −0.00833500 0.999965i \(-0.502653\pi\)
−0.00833500 + 0.999965i \(0.502653\pi\)
\(968\) 0 0
\(969\) −33915.1 −1.12436
\(970\) 0 0
\(971\) −53115.6 −1.75547 −0.877734 0.479148i \(-0.840946\pi\)
−0.877734 + 0.479148i \(0.840946\pi\)
\(972\) 0 0
\(973\) 18354.4 0.604742
\(974\) 0 0
\(975\) 2797.59 0.0918918
\(976\) 0 0
\(977\) −48265.5 −1.58050 −0.790250 0.612784i \(-0.790049\pi\)
−0.790250 + 0.612784i \(0.790049\pi\)
\(978\) 0 0
\(979\) −31119.9 −1.01593
\(980\) 0 0
\(981\) 4408.99 0.143495
\(982\) 0 0
\(983\) −4660.45 −0.151216 −0.0756080 0.997138i \(-0.524090\pi\)
−0.0756080 + 0.997138i \(0.524090\pi\)
\(984\) 0 0
\(985\) −7263.67 −0.234964
\(986\) 0 0
\(987\) 5298.81 0.170885
\(988\) 0 0
\(989\) 12652.3 0.406796
\(990\) 0 0
\(991\) −8652.42 −0.277349 −0.138675 0.990338i \(-0.544284\pi\)
−0.138675 + 0.990338i \(0.544284\pi\)
\(992\) 0 0
\(993\) −4931.99 −0.157615
\(994\) 0 0
\(995\) 418.107 0.0133215
\(996\) 0 0
\(997\) −32335.4 −1.02715 −0.513577 0.858044i \(-0.671680\pi\)
−0.513577 + 0.858044i \(0.671680\pi\)
\(998\) 0 0
\(999\) 1828.49 0.0579089
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 840.4.a.r.1.3 3
4.3 odd 2 1680.4.a.bq.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
840.4.a.r.1.3 3 1.1 even 1 trivial
1680.4.a.bq.1.1 3 4.3 odd 2