Properties

Label 840.4.a.o.1.2
Level $840$
Weight $4$
Character 840.1
Self dual yes
Analytic conductor $49.562$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [840,4,Mod(1,840)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("840.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(840, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 840 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 840.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,6,0,10,0,-14,0,18,0,-22] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(49.5616044048\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{2881}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 720 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-26.3375\) of defining polynomial
Character \(\chi\) \(=\) 840.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.00000 q^{3} +5.00000 q^{5} -7.00000 q^{7} +9.00000 q^{9} +42.6749 q^{11} -64.6749 q^{13} +15.0000 q^{15} -14.0000 q^{17} +53.3251 q^{19} -21.0000 q^{21} +37.3499 q^{23} +25.0000 q^{25} +27.0000 q^{27} +294.000 q^{29} +228.025 q^{31} +128.025 q^{33} -35.0000 q^{35} -234.050 q^{37} -194.025 q^{39} +12.6501 q^{41} -433.400 q^{43} +45.0000 q^{45} +96.0000 q^{47} +49.0000 q^{49} -42.0000 q^{51} +607.375 q^{53} +213.375 q^{55} +159.975 q^{57} +588.050 q^{59} +758.099 q^{61} -63.0000 q^{63} -323.375 q^{65} -329.400 q^{67} +112.050 q^{69} +134.625 q^{71} +384.774 q^{73} +75.0000 q^{75} -298.725 q^{77} -21.3002 q^{79} +81.0000 q^{81} -468.099 q^{83} -70.0000 q^{85} +882.000 q^{87} -1104.70 q^{89} +452.725 q^{91} +684.075 q^{93} +266.625 q^{95} +240.625 q^{97} +384.075 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 6 q^{3} + 10 q^{5} - 14 q^{7} + 18 q^{9} - 22 q^{11} - 22 q^{13} + 30 q^{15} - 28 q^{17} + 214 q^{19} - 42 q^{21} - 140 q^{23} + 50 q^{25} + 54 q^{27} + 588 q^{29} + 134 q^{31} - 66 q^{33} - 70 q^{35}+ \cdots - 198 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.00000 0.577350
\(4\) 0 0
\(5\) 5.00000 0.447214
\(6\) 0 0
\(7\) −7.00000 −0.377964
\(8\) 0 0
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) 42.6749 1.16973 0.584863 0.811132i \(-0.301148\pi\)
0.584863 + 0.811132i \(0.301148\pi\)
\(12\) 0 0
\(13\) −64.6749 −1.37982 −0.689908 0.723897i \(-0.742349\pi\)
−0.689908 + 0.723897i \(0.742349\pi\)
\(14\) 0 0
\(15\) 15.0000 0.258199
\(16\) 0 0
\(17\) −14.0000 −0.199735 −0.0998676 0.995001i \(-0.531842\pi\)
−0.0998676 + 0.995001i \(0.531842\pi\)
\(18\) 0 0
\(19\) 53.3251 0.643874 0.321937 0.946761i \(-0.395666\pi\)
0.321937 + 0.946761i \(0.395666\pi\)
\(20\) 0 0
\(21\) −21.0000 −0.218218
\(22\) 0 0
\(23\) 37.3499 0.338608 0.169304 0.985564i \(-0.445848\pi\)
0.169304 + 0.985564i \(0.445848\pi\)
\(24\) 0 0
\(25\) 25.0000 0.200000
\(26\) 0 0
\(27\) 27.0000 0.192450
\(28\) 0 0
\(29\) 294.000 1.88257 0.941283 0.337618i \(-0.109621\pi\)
0.941283 + 0.337618i \(0.109621\pi\)
\(30\) 0 0
\(31\) 228.025 1.32111 0.660556 0.750777i \(-0.270321\pi\)
0.660556 + 0.750777i \(0.270321\pi\)
\(32\) 0 0
\(33\) 128.025 0.675341
\(34\) 0 0
\(35\) −35.0000 −0.169031
\(36\) 0 0
\(37\) −234.050 −1.03993 −0.519967 0.854187i \(-0.674056\pi\)
−0.519967 + 0.854187i \(0.674056\pi\)
\(38\) 0 0
\(39\) −194.025 −0.796637
\(40\) 0 0
\(41\) 12.6501 0.0481857 0.0240929 0.999710i \(-0.492330\pi\)
0.0240929 + 0.999710i \(0.492330\pi\)
\(42\) 0 0
\(43\) −433.400 −1.53704 −0.768521 0.639824i \(-0.779007\pi\)
−0.768521 + 0.639824i \(0.779007\pi\)
\(44\) 0 0
\(45\) 45.0000 0.149071
\(46\) 0 0
\(47\) 96.0000 0.297937 0.148969 0.988842i \(-0.452405\pi\)
0.148969 + 0.988842i \(0.452405\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) 0 0
\(51\) −42.0000 −0.115317
\(52\) 0 0
\(53\) 607.375 1.57414 0.787069 0.616865i \(-0.211597\pi\)
0.787069 + 0.616865i \(0.211597\pi\)
\(54\) 0 0
\(55\) 213.375 0.523117
\(56\) 0 0
\(57\) 159.975 0.371741
\(58\) 0 0
\(59\) 588.050 1.29759 0.648793 0.760965i \(-0.275274\pi\)
0.648793 + 0.760965i \(0.275274\pi\)
\(60\) 0 0
\(61\) 758.099 1.59122 0.795612 0.605806i \(-0.207149\pi\)
0.795612 + 0.605806i \(0.207149\pi\)
\(62\) 0 0
\(63\) −63.0000 −0.125988
\(64\) 0 0
\(65\) −323.375 −0.617072
\(66\) 0 0
\(67\) −329.400 −0.600635 −0.300318 0.953839i \(-0.597093\pi\)
−0.300318 + 0.953839i \(0.597093\pi\)
\(68\) 0 0
\(69\) 112.050 0.195496
\(70\) 0 0
\(71\) 134.625 0.225029 0.112515 0.993650i \(-0.464109\pi\)
0.112515 + 0.993650i \(0.464109\pi\)
\(72\) 0 0
\(73\) 384.774 0.616910 0.308455 0.951239i \(-0.400188\pi\)
0.308455 + 0.951239i \(0.400188\pi\)
\(74\) 0 0
\(75\) 75.0000 0.115470
\(76\) 0 0
\(77\) −298.725 −0.442115
\(78\) 0 0
\(79\) −21.3002 −0.0303349 −0.0151675 0.999885i \(-0.504828\pi\)
−0.0151675 + 0.999885i \(0.504828\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 0 0
\(83\) −468.099 −0.619043 −0.309522 0.950892i \(-0.600169\pi\)
−0.309522 + 0.950892i \(0.600169\pi\)
\(84\) 0 0
\(85\) −70.0000 −0.0893243
\(86\) 0 0
\(87\) 882.000 1.08690
\(88\) 0 0
\(89\) −1104.70 −1.31571 −0.657854 0.753146i \(-0.728535\pi\)
−0.657854 + 0.753146i \(0.728535\pi\)
\(90\) 0 0
\(91\) 452.725 0.521521
\(92\) 0 0
\(93\) 684.075 0.762744
\(94\) 0 0
\(95\) 266.625 0.287949
\(96\) 0 0
\(97\) 240.625 0.251874 0.125937 0.992038i \(-0.459806\pi\)
0.125937 + 0.992038i \(0.459806\pi\)
\(98\) 0 0
\(99\) 384.075 0.389909
\(100\) 0 0
\(101\) 1494.15 1.47201 0.736007 0.676974i \(-0.236709\pi\)
0.736007 + 0.676974i \(0.236709\pi\)
\(102\) 0 0
\(103\) 968.000 0.926018 0.463009 0.886354i \(-0.346770\pi\)
0.463009 + 0.886354i \(0.346770\pi\)
\(104\) 0 0
\(105\) −105.000 −0.0975900
\(106\) 0 0
\(107\) 116.099 0.104895 0.0524474 0.998624i \(-0.483298\pi\)
0.0524474 + 0.998624i \(0.483298\pi\)
\(108\) 0 0
\(109\) 248.551 0.218411 0.109206 0.994019i \(-0.465169\pi\)
0.109206 + 0.994019i \(0.465169\pi\)
\(110\) 0 0
\(111\) −702.149 −0.600406
\(112\) 0 0
\(113\) −1991.62 −1.65802 −0.829010 0.559235i \(-0.811095\pi\)
−0.829010 + 0.559235i \(0.811095\pi\)
\(114\) 0 0
\(115\) 186.749 0.151430
\(116\) 0 0
\(117\) −582.075 −0.459939
\(118\) 0 0
\(119\) 98.0000 0.0754928
\(120\) 0 0
\(121\) 490.151 0.368258
\(122\) 0 0
\(123\) 37.9503 0.0278200
\(124\) 0 0
\(125\) 125.000 0.0894427
\(126\) 0 0
\(127\) 901.598 0.629952 0.314976 0.949100i \(-0.398004\pi\)
0.314976 + 0.949100i \(0.398004\pi\)
\(128\) 0 0
\(129\) −1300.20 −0.887412
\(130\) 0 0
\(131\) −745.300 −0.497078 −0.248539 0.968622i \(-0.579950\pi\)
−0.248539 + 0.968622i \(0.579950\pi\)
\(132\) 0 0
\(133\) −373.275 −0.243361
\(134\) 0 0
\(135\) 135.000 0.0860663
\(136\) 0 0
\(137\) 2430.22 1.51553 0.757766 0.652526i \(-0.226291\pi\)
0.757766 + 0.652526i \(0.226291\pi\)
\(138\) 0 0
\(139\) −424.174 −0.258834 −0.129417 0.991590i \(-0.541311\pi\)
−0.129417 + 0.991590i \(0.541311\pi\)
\(140\) 0 0
\(141\) 288.000 0.172014
\(142\) 0 0
\(143\) −2760.00 −1.61401
\(144\) 0 0
\(145\) 1470.00 0.841909
\(146\) 0 0
\(147\) 147.000 0.0824786
\(148\) 0 0
\(149\) −217.851 −0.119779 −0.0598894 0.998205i \(-0.519075\pi\)
−0.0598894 + 0.998205i \(0.519075\pi\)
\(150\) 0 0
\(151\) −229.350 −0.123604 −0.0618021 0.998088i \(-0.519685\pi\)
−0.0618021 + 0.998088i \(0.519685\pi\)
\(152\) 0 0
\(153\) −126.000 −0.0665784
\(154\) 0 0
\(155\) 1140.12 0.590819
\(156\) 0 0
\(157\) 1490.07 0.757458 0.378729 0.925508i \(-0.376361\pi\)
0.378729 + 0.925508i \(0.376361\pi\)
\(158\) 0 0
\(159\) 1822.12 0.908829
\(160\) 0 0
\(161\) −261.449 −0.127982
\(162\) 0 0
\(163\) 838.700 0.403019 0.201509 0.979487i \(-0.435415\pi\)
0.201509 + 0.979487i \(0.435415\pi\)
\(164\) 0 0
\(165\) 640.124 0.302022
\(166\) 0 0
\(167\) 3037.60 1.40752 0.703762 0.710436i \(-0.251502\pi\)
0.703762 + 0.710436i \(0.251502\pi\)
\(168\) 0 0
\(169\) 1985.85 0.903891
\(170\) 0 0
\(171\) 479.925 0.214625
\(172\) 0 0
\(173\) 3725.95 1.63745 0.818725 0.574186i \(-0.194681\pi\)
0.818725 + 0.574186i \(0.194681\pi\)
\(174\) 0 0
\(175\) −175.000 −0.0755929
\(176\) 0 0
\(177\) 1764.15 0.749161
\(178\) 0 0
\(179\) −1928.32 −0.805193 −0.402597 0.915377i \(-0.631892\pi\)
−0.402597 + 0.915377i \(0.631892\pi\)
\(180\) 0 0
\(181\) 0.451362 0.000185356 0 9.26782e−5 1.00000i \(-0.499970\pi\)
9.26782e−5 1.00000i \(0.499970\pi\)
\(182\) 0 0
\(183\) 2274.30 0.918694
\(184\) 0 0
\(185\) −1170.25 −0.465072
\(186\) 0 0
\(187\) −597.449 −0.233635
\(188\) 0 0
\(189\) −189.000 −0.0727393
\(190\) 0 0
\(191\) −1204.12 −0.456164 −0.228082 0.973642i \(-0.573245\pi\)
−0.228082 + 0.973642i \(0.573245\pi\)
\(192\) 0 0
\(193\) 3522.40 1.31372 0.656859 0.754013i \(-0.271885\pi\)
0.656859 + 0.754013i \(0.271885\pi\)
\(194\) 0 0
\(195\) −970.124 −0.356267
\(196\) 0 0
\(197\) 1815.42 0.656567 0.328283 0.944579i \(-0.393530\pi\)
0.328283 + 0.944579i \(0.393530\pi\)
\(198\) 0 0
\(199\) −5145.97 −1.83311 −0.916553 0.399913i \(-0.869040\pi\)
−0.916553 + 0.399913i \(0.869040\pi\)
\(200\) 0 0
\(201\) −988.199 −0.346777
\(202\) 0 0
\(203\) −2058.00 −0.711543
\(204\) 0 0
\(205\) 63.2505 0.0215493
\(206\) 0 0
\(207\) 336.149 0.112869
\(208\) 0 0
\(209\) 2275.64 0.753156
\(210\) 0 0
\(211\) 1894.50 0.618118 0.309059 0.951043i \(-0.399986\pi\)
0.309059 + 0.951043i \(0.399986\pi\)
\(212\) 0 0
\(213\) 403.876 0.129921
\(214\) 0 0
\(215\) −2167.00 −0.687386
\(216\) 0 0
\(217\) −1596.17 −0.499333
\(218\) 0 0
\(219\) 1154.32 0.356173
\(220\) 0 0
\(221\) 905.449 0.275598
\(222\) 0 0
\(223\) −4285.35 −1.28685 −0.643427 0.765508i \(-0.722488\pi\)
−0.643427 + 0.765508i \(0.722488\pi\)
\(224\) 0 0
\(225\) 225.000 0.0666667
\(226\) 0 0
\(227\) −1582.50 −0.462706 −0.231353 0.972870i \(-0.574315\pi\)
−0.231353 + 0.972870i \(0.574315\pi\)
\(228\) 0 0
\(229\) 3107.50 0.896722 0.448361 0.893853i \(-0.352008\pi\)
0.448361 + 0.893853i \(0.352008\pi\)
\(230\) 0 0
\(231\) −896.174 −0.255255
\(232\) 0 0
\(233\) 336.675 0.0946623 0.0473311 0.998879i \(-0.484928\pi\)
0.0473311 + 0.998879i \(0.484928\pi\)
\(234\) 0 0
\(235\) 480.000 0.133241
\(236\) 0 0
\(237\) −63.9006 −0.0175139
\(238\) 0 0
\(239\) −4545.57 −1.23025 −0.615123 0.788431i \(-0.710894\pi\)
−0.615123 + 0.788431i \(0.710894\pi\)
\(240\) 0 0
\(241\) 4314.05 1.15308 0.576540 0.817069i \(-0.304402\pi\)
0.576540 + 0.817069i \(0.304402\pi\)
\(242\) 0 0
\(243\) 243.000 0.0641500
\(244\) 0 0
\(245\) 245.000 0.0638877
\(246\) 0 0
\(247\) −3448.79 −0.888427
\(248\) 0 0
\(249\) −1404.30 −0.357405
\(250\) 0 0
\(251\) 2204.75 0.554431 0.277216 0.960808i \(-0.410588\pi\)
0.277216 + 0.960808i \(0.410588\pi\)
\(252\) 0 0
\(253\) 1593.90 0.396079
\(254\) 0 0
\(255\) −210.000 −0.0515714
\(256\) 0 0
\(257\) −5835.95 −1.41648 −0.708242 0.705970i \(-0.750511\pi\)
−0.708242 + 0.705970i \(0.750511\pi\)
\(258\) 0 0
\(259\) 1638.35 0.393058
\(260\) 0 0
\(261\) 2646.00 0.627522
\(262\) 0 0
\(263\) −7768.60 −1.82142 −0.910708 0.413052i \(-0.864463\pi\)
−0.910708 + 0.413052i \(0.864463\pi\)
\(264\) 0 0
\(265\) 3036.87 0.703976
\(266\) 0 0
\(267\) −3314.10 −0.759624
\(268\) 0 0
\(269\) −7987.04 −1.81033 −0.905165 0.425061i \(-0.860253\pi\)
−0.905165 + 0.425061i \(0.860253\pi\)
\(270\) 0 0
\(271\) 636.472 0.142668 0.0713338 0.997452i \(-0.477274\pi\)
0.0713338 + 0.997452i \(0.477274\pi\)
\(272\) 0 0
\(273\) 1358.17 0.301100
\(274\) 0 0
\(275\) 1066.87 0.233945
\(276\) 0 0
\(277\) 3621.95 0.785639 0.392819 0.919616i \(-0.371500\pi\)
0.392819 + 0.919616i \(0.371500\pi\)
\(278\) 0 0
\(279\) 2052.22 0.440371
\(280\) 0 0
\(281\) −173.553 −0.0368445 −0.0184222 0.999830i \(-0.505864\pi\)
−0.0184222 + 0.999830i \(0.505864\pi\)
\(282\) 0 0
\(283\) 3620.89 0.760565 0.380282 0.924870i \(-0.375827\pi\)
0.380282 + 0.924870i \(0.375827\pi\)
\(284\) 0 0
\(285\) 799.876 0.166248
\(286\) 0 0
\(287\) −88.5507 −0.0182125
\(288\) 0 0
\(289\) −4717.00 −0.960106
\(290\) 0 0
\(291\) 721.876 0.145420
\(292\) 0 0
\(293\) −1444.75 −0.288065 −0.144033 0.989573i \(-0.546007\pi\)
−0.144033 + 0.989573i \(0.546007\pi\)
\(294\) 0 0
\(295\) 2940.25 0.580298
\(296\) 0 0
\(297\) 1152.22 0.225114
\(298\) 0 0
\(299\) −2415.60 −0.467217
\(300\) 0 0
\(301\) 3033.80 0.580947
\(302\) 0 0
\(303\) 4482.45 0.849868
\(304\) 0 0
\(305\) 3790.50 0.711617
\(306\) 0 0
\(307\) −10316.8 −1.91796 −0.958980 0.283475i \(-0.908513\pi\)
−0.958980 + 0.283475i \(0.908513\pi\)
\(308\) 0 0
\(309\) 2904.00 0.534637
\(310\) 0 0
\(311\) −4878.00 −0.889408 −0.444704 0.895678i \(-0.646691\pi\)
−0.444704 + 0.895678i \(0.646691\pi\)
\(312\) 0 0
\(313\) −3596.48 −0.649472 −0.324736 0.945805i \(-0.605276\pi\)
−0.324736 + 0.945805i \(0.605276\pi\)
\(314\) 0 0
\(315\) −315.000 −0.0563436
\(316\) 0 0
\(317\) −8995.72 −1.59385 −0.796924 0.604079i \(-0.793541\pi\)
−0.796924 + 0.604079i \(0.793541\pi\)
\(318\) 0 0
\(319\) 12546.4 2.20209
\(320\) 0 0
\(321\) 348.298 0.0605611
\(322\) 0 0
\(323\) −746.551 −0.128604
\(324\) 0 0
\(325\) −1616.87 −0.275963
\(326\) 0 0
\(327\) 745.652 0.126100
\(328\) 0 0
\(329\) −672.000 −0.112610
\(330\) 0 0
\(331\) 2746.10 0.456009 0.228005 0.973660i \(-0.426780\pi\)
0.228005 + 0.973660i \(0.426780\pi\)
\(332\) 0 0
\(333\) −2106.45 −0.346644
\(334\) 0 0
\(335\) −1647.00 −0.268612
\(336\) 0 0
\(337\) 12083.2 1.95316 0.976578 0.215165i \(-0.0690288\pi\)
0.976578 + 0.215165i \(0.0690288\pi\)
\(338\) 0 0
\(339\) −5974.87 −0.957258
\(340\) 0 0
\(341\) 9730.95 1.54534
\(342\) 0 0
\(343\) −343.000 −0.0539949
\(344\) 0 0
\(345\) 560.248 0.0874283
\(346\) 0 0
\(347\) −10143.0 −1.56919 −0.784593 0.620012i \(-0.787128\pi\)
−0.784593 + 0.620012i \(0.787128\pi\)
\(348\) 0 0
\(349\) −1903.80 −0.292000 −0.146000 0.989285i \(-0.546640\pi\)
−0.146000 + 0.989285i \(0.546640\pi\)
\(350\) 0 0
\(351\) −1746.22 −0.265546
\(352\) 0 0
\(353\) 3042.79 0.458787 0.229393 0.973334i \(-0.426326\pi\)
0.229393 + 0.973334i \(0.426326\pi\)
\(354\) 0 0
\(355\) 673.126 0.100636
\(356\) 0 0
\(357\) 294.000 0.0435858
\(358\) 0 0
\(359\) −4407.62 −0.647981 −0.323991 0.946060i \(-0.605025\pi\)
−0.323991 + 0.946060i \(0.605025\pi\)
\(360\) 0 0
\(361\) −4015.44 −0.585426
\(362\) 0 0
\(363\) 1470.45 0.212614
\(364\) 0 0
\(365\) 1923.87 0.275891
\(366\) 0 0
\(367\) −7853.35 −1.11701 −0.558503 0.829502i \(-0.688624\pi\)
−0.558503 + 0.829502i \(0.688624\pi\)
\(368\) 0 0
\(369\) 113.851 0.0160619
\(370\) 0 0
\(371\) −4251.62 −0.594968
\(372\) 0 0
\(373\) −12600.3 −1.74911 −0.874556 0.484925i \(-0.838847\pi\)
−0.874556 + 0.484925i \(0.838847\pi\)
\(374\) 0 0
\(375\) 375.000 0.0516398
\(376\) 0 0
\(377\) −19014.4 −2.59759
\(378\) 0 0
\(379\) −12191.9 −1.65240 −0.826198 0.563380i \(-0.809501\pi\)
−0.826198 + 0.563380i \(0.809501\pi\)
\(380\) 0 0
\(381\) 2704.79 0.363703
\(382\) 0 0
\(383\) 10778.8 1.43804 0.719022 0.694987i \(-0.244590\pi\)
0.719022 + 0.694987i \(0.244590\pi\)
\(384\) 0 0
\(385\) −1493.62 −0.197720
\(386\) 0 0
\(387\) −3900.60 −0.512347
\(388\) 0 0
\(389\) −164.153 −0.0213956 −0.0106978 0.999943i \(-0.503405\pi\)
−0.0106978 + 0.999943i \(0.503405\pi\)
\(390\) 0 0
\(391\) −522.899 −0.0676320
\(392\) 0 0
\(393\) −2235.90 −0.286988
\(394\) 0 0
\(395\) −106.501 −0.0135662
\(396\) 0 0
\(397\) 14960.8 1.89134 0.945670 0.325129i \(-0.105408\pi\)
0.945670 + 0.325129i \(0.105408\pi\)
\(398\) 0 0
\(399\) −1119.83 −0.140505
\(400\) 0 0
\(401\) 2023.80 0.252029 0.126014 0.992028i \(-0.459781\pi\)
0.126014 + 0.992028i \(0.459781\pi\)
\(402\) 0 0
\(403\) −14747.5 −1.82289
\(404\) 0 0
\(405\) 405.000 0.0496904
\(406\) 0 0
\(407\) −9988.06 −1.21644
\(408\) 0 0
\(409\) −8059.10 −0.974320 −0.487160 0.873313i \(-0.661967\pi\)
−0.487160 + 0.873313i \(0.661967\pi\)
\(410\) 0 0
\(411\) 7290.67 0.874993
\(412\) 0 0
\(413\) −4116.35 −0.490441
\(414\) 0 0
\(415\) −2340.50 −0.276845
\(416\) 0 0
\(417\) −1272.52 −0.149438
\(418\) 0 0
\(419\) 977.996 0.114029 0.0570146 0.998373i \(-0.481842\pi\)
0.0570146 + 0.998373i \(0.481842\pi\)
\(420\) 0 0
\(421\) −663.797 −0.0768444 −0.0384222 0.999262i \(-0.512233\pi\)
−0.0384222 + 0.999262i \(0.512233\pi\)
\(422\) 0 0
\(423\) 864.000 0.0993123
\(424\) 0 0
\(425\) −350.000 −0.0399470
\(426\) 0 0
\(427\) −5306.70 −0.601426
\(428\) 0 0
\(429\) −8280.00 −0.931847
\(430\) 0 0
\(431\) 5130.02 0.573328 0.286664 0.958031i \(-0.407454\pi\)
0.286664 + 0.958031i \(0.407454\pi\)
\(432\) 0 0
\(433\) 12236.2 1.35805 0.679024 0.734116i \(-0.262403\pi\)
0.679024 + 0.734116i \(0.262403\pi\)
\(434\) 0 0
\(435\) 4410.00 0.486077
\(436\) 0 0
\(437\) 1991.69 0.218021
\(438\) 0 0
\(439\) 7296.63 0.793278 0.396639 0.917975i \(-0.370176\pi\)
0.396639 + 0.917975i \(0.370176\pi\)
\(440\) 0 0
\(441\) 441.000 0.0476190
\(442\) 0 0
\(443\) −1810.86 −0.194213 −0.0971066 0.995274i \(-0.530959\pi\)
−0.0971066 + 0.995274i \(0.530959\pi\)
\(444\) 0 0
\(445\) −5523.50 −0.588402
\(446\) 0 0
\(447\) −653.553 −0.0691543
\(448\) 0 0
\(449\) −15610.5 −1.64077 −0.820384 0.571814i \(-0.806240\pi\)
−0.820384 + 0.571814i \(0.806240\pi\)
\(450\) 0 0
\(451\) 539.843 0.0563641
\(452\) 0 0
\(453\) −688.050 −0.0713629
\(454\) 0 0
\(455\) 2263.62 0.233231
\(456\) 0 0
\(457\) 2093.84 0.214323 0.107162 0.994242i \(-0.465824\pi\)
0.107162 + 0.994242i \(0.465824\pi\)
\(458\) 0 0
\(459\) −378.000 −0.0384391
\(460\) 0 0
\(461\) −10575.9 −1.06848 −0.534239 0.845333i \(-0.679402\pi\)
−0.534239 + 0.845333i \(0.679402\pi\)
\(462\) 0 0
\(463\) −15367.1 −1.54248 −0.771241 0.636543i \(-0.780364\pi\)
−0.771241 + 0.636543i \(0.780364\pi\)
\(464\) 0 0
\(465\) 3420.37 0.341110
\(466\) 0 0
\(467\) 4263.00 0.422415 0.211208 0.977441i \(-0.432260\pi\)
0.211208 + 0.977441i \(0.432260\pi\)
\(468\) 0 0
\(469\) 2305.80 0.227019
\(470\) 0 0
\(471\) 4470.22 0.437319
\(472\) 0 0
\(473\) −18495.3 −1.79792
\(474\) 0 0
\(475\) 1333.13 0.128775
\(476\) 0 0
\(477\) 5466.37 0.524713
\(478\) 0 0
\(479\) 11270.5 1.07508 0.537539 0.843239i \(-0.319354\pi\)
0.537539 + 0.843239i \(0.319354\pi\)
\(480\) 0 0
\(481\) 15137.2 1.43492
\(482\) 0 0
\(483\) −784.348 −0.0738904
\(484\) 0 0
\(485\) 1203.13 0.112642
\(486\) 0 0
\(487\) −667.909 −0.0621475 −0.0310738 0.999517i \(-0.509893\pi\)
−0.0310738 + 0.999517i \(0.509893\pi\)
\(488\) 0 0
\(489\) 2516.10 0.232683
\(490\) 0 0
\(491\) −4715.92 −0.433455 −0.216727 0.976232i \(-0.569538\pi\)
−0.216727 + 0.976232i \(0.569538\pi\)
\(492\) 0 0
\(493\) −4116.00 −0.376015
\(494\) 0 0
\(495\) 1920.37 0.174372
\(496\) 0 0
\(497\) −942.377 −0.0850531
\(498\) 0 0
\(499\) −11138.9 −0.999293 −0.499647 0.866229i \(-0.666537\pi\)
−0.499647 + 0.866229i \(0.666537\pi\)
\(500\) 0 0
\(501\) 9112.79 0.812634
\(502\) 0 0
\(503\) 6345.09 0.562453 0.281226 0.959641i \(-0.409259\pi\)
0.281226 + 0.959641i \(0.409259\pi\)
\(504\) 0 0
\(505\) 7470.75 0.658305
\(506\) 0 0
\(507\) 5957.55 0.521862
\(508\) 0 0
\(509\) −18247.5 −1.58901 −0.794507 0.607255i \(-0.792271\pi\)
−0.794507 + 0.607255i \(0.792271\pi\)
\(510\) 0 0
\(511\) −2693.42 −0.233170
\(512\) 0 0
\(513\) 1439.78 0.123914
\(514\) 0 0
\(515\) 4840.00 0.414128
\(516\) 0 0
\(517\) 4096.79 0.348505
\(518\) 0 0
\(519\) 11177.9 0.945382
\(520\) 0 0
\(521\) −13328.2 −1.12077 −0.560384 0.828233i \(-0.689347\pi\)
−0.560384 + 0.828233i \(0.689347\pi\)
\(522\) 0 0
\(523\) −1688.65 −0.141185 −0.0705924 0.997505i \(-0.522489\pi\)
−0.0705924 + 0.997505i \(0.522489\pi\)
\(524\) 0 0
\(525\) −525.000 −0.0436436
\(526\) 0 0
\(527\) −3192.35 −0.263873
\(528\) 0 0
\(529\) −10772.0 −0.885344
\(530\) 0 0
\(531\) 5292.45 0.432529
\(532\) 0 0
\(533\) −818.145 −0.0664874
\(534\) 0 0
\(535\) 580.497 0.0469104
\(536\) 0 0
\(537\) −5784.97 −0.464879
\(538\) 0 0
\(539\) 2091.07 0.167104
\(540\) 0 0
\(541\) 5579.50 0.443404 0.221702 0.975115i \(-0.428839\pi\)
0.221702 + 0.975115i \(0.428839\pi\)
\(542\) 0 0
\(543\) 1.35409 0.000107016 0
\(544\) 0 0
\(545\) 1242.75 0.0976765
\(546\) 0 0
\(547\) −7416.70 −0.579736 −0.289868 0.957067i \(-0.593611\pi\)
−0.289868 + 0.957067i \(0.593611\pi\)
\(548\) 0 0
\(549\) 6822.89 0.530408
\(550\) 0 0
\(551\) 15677.6 1.21214
\(552\) 0 0
\(553\) 149.101 0.0114655
\(554\) 0 0
\(555\) −3510.75 −0.268510
\(556\) 0 0
\(557\) −11055.2 −0.840978 −0.420489 0.907298i \(-0.638141\pi\)
−0.420489 + 0.907298i \(0.638141\pi\)
\(558\) 0 0
\(559\) 28030.1 2.12083
\(560\) 0 0
\(561\) −1792.35 −0.134889
\(562\) 0 0
\(563\) −9941.09 −0.744169 −0.372084 0.928199i \(-0.621357\pi\)
−0.372084 + 0.928199i \(0.621357\pi\)
\(564\) 0 0
\(565\) −9958.12 −0.741489
\(566\) 0 0
\(567\) −567.000 −0.0419961
\(568\) 0 0
\(569\) 8321.98 0.613138 0.306569 0.951848i \(-0.400819\pi\)
0.306569 + 0.951848i \(0.400819\pi\)
\(570\) 0 0
\(571\) 9419.06 0.690324 0.345162 0.938543i \(-0.387824\pi\)
0.345162 + 0.938543i \(0.387824\pi\)
\(572\) 0 0
\(573\) −3612.37 −0.263367
\(574\) 0 0
\(575\) 933.747 0.0677217
\(576\) 0 0
\(577\) −23276.3 −1.67938 −0.839691 0.543064i \(-0.817264\pi\)
−0.839691 + 0.543064i \(0.817264\pi\)
\(578\) 0 0
\(579\) 10567.2 0.758476
\(580\) 0 0
\(581\) 3276.70 0.233976
\(582\) 0 0
\(583\) 25919.7 1.84131
\(584\) 0 0
\(585\) −2910.37 −0.205691
\(586\) 0 0
\(587\) −13074.8 −0.919343 −0.459672 0.888089i \(-0.652033\pi\)
−0.459672 + 0.888089i \(0.652033\pi\)
\(588\) 0 0
\(589\) 12159.4 0.850630
\(590\) 0 0
\(591\) 5446.27 0.379069
\(592\) 0 0
\(593\) 12548.1 0.868951 0.434476 0.900684i \(-0.356934\pi\)
0.434476 + 0.900684i \(0.356934\pi\)
\(594\) 0 0
\(595\) 490.000 0.0337614
\(596\) 0 0
\(597\) −15437.9 −1.05834
\(598\) 0 0
\(599\) −8168.02 −0.557155 −0.278578 0.960414i \(-0.589863\pi\)
−0.278578 + 0.960414i \(0.589863\pi\)
\(600\) 0 0
\(601\) 8870.85 0.602079 0.301040 0.953612i \(-0.402666\pi\)
0.301040 + 0.953612i \(0.402666\pi\)
\(602\) 0 0
\(603\) −2964.60 −0.200212
\(604\) 0 0
\(605\) 2450.76 0.164690
\(606\) 0 0
\(607\) −21269.9 −1.42227 −0.711137 0.703054i \(-0.751819\pi\)
−0.711137 + 0.703054i \(0.751819\pi\)
\(608\) 0 0
\(609\) −6174.00 −0.410810
\(610\) 0 0
\(611\) −6208.79 −0.411098
\(612\) 0 0
\(613\) 19271.0 1.26974 0.634870 0.772619i \(-0.281054\pi\)
0.634870 + 0.772619i \(0.281054\pi\)
\(614\) 0 0
\(615\) 189.752 0.0124415
\(616\) 0 0
\(617\) 5430.37 0.354325 0.177163 0.984182i \(-0.443308\pi\)
0.177163 + 0.984182i \(0.443308\pi\)
\(618\) 0 0
\(619\) 5118.91 0.332385 0.166193 0.986093i \(-0.446853\pi\)
0.166193 + 0.986093i \(0.446853\pi\)
\(620\) 0 0
\(621\) 1008.45 0.0651652
\(622\) 0 0
\(623\) 7732.90 0.497291
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) 0 0
\(627\) 6826.93 0.434835
\(628\) 0 0
\(629\) 3276.70 0.207711
\(630\) 0 0
\(631\) 30035.6 1.89493 0.947463 0.319866i \(-0.103638\pi\)
0.947463 + 0.319866i \(0.103638\pi\)
\(632\) 0 0
\(633\) 5683.50 0.356870
\(634\) 0 0
\(635\) 4507.99 0.281723
\(636\) 0 0
\(637\) −3169.07 −0.197117
\(638\) 0 0
\(639\) 1211.63 0.0750098
\(640\) 0 0
\(641\) −14304.4 −0.881416 −0.440708 0.897650i \(-0.645273\pi\)
−0.440708 + 0.897650i \(0.645273\pi\)
\(642\) 0 0
\(643\) −9179.06 −0.562965 −0.281483 0.959566i \(-0.590826\pi\)
−0.281483 + 0.959566i \(0.590826\pi\)
\(644\) 0 0
\(645\) −6500.99 −0.396863
\(646\) 0 0
\(647\) 8125.60 0.493741 0.246870 0.969049i \(-0.420598\pi\)
0.246870 + 0.969049i \(0.420598\pi\)
\(648\) 0 0
\(649\) 25095.0 1.51782
\(650\) 0 0
\(651\) −4788.52 −0.288290
\(652\) 0 0
\(653\) 11530.1 0.690978 0.345489 0.938423i \(-0.387713\pi\)
0.345489 + 0.938423i \(0.387713\pi\)
\(654\) 0 0
\(655\) −3726.50 −0.222300
\(656\) 0 0
\(657\) 3462.97 0.205637
\(658\) 0 0
\(659\) 8613.62 0.509164 0.254582 0.967051i \(-0.418062\pi\)
0.254582 + 0.967051i \(0.418062\pi\)
\(660\) 0 0
\(661\) 30559.5 1.79822 0.899112 0.437718i \(-0.144213\pi\)
0.899112 + 0.437718i \(0.144213\pi\)
\(662\) 0 0
\(663\) 2716.35 0.159116
\(664\) 0 0
\(665\) −1866.38 −0.108835
\(666\) 0 0
\(667\) 10980.9 0.637453
\(668\) 0 0
\(669\) −12856.0 −0.742965
\(670\) 0 0
\(671\) 32351.9 1.86130
\(672\) 0 0
\(673\) 20623.0 1.18121 0.590607 0.806960i \(-0.298889\pi\)
0.590607 + 0.806960i \(0.298889\pi\)
\(674\) 0 0
\(675\) 675.000 0.0384900
\(676\) 0 0
\(677\) 17307.6 0.982551 0.491275 0.871004i \(-0.336531\pi\)
0.491275 + 0.871004i \(0.336531\pi\)
\(678\) 0 0
\(679\) −1684.38 −0.0951995
\(680\) 0 0
\(681\) −4747.50 −0.267143
\(682\) 0 0
\(683\) −4549.64 −0.254886 −0.127443 0.991846i \(-0.540677\pi\)
−0.127443 + 0.991846i \(0.540677\pi\)
\(684\) 0 0
\(685\) 12151.1 0.677767
\(686\) 0 0
\(687\) 9322.50 0.517723
\(688\) 0 0
\(689\) −39281.9 −2.17202
\(690\) 0 0
\(691\) 13761.7 0.757625 0.378813 0.925473i \(-0.376332\pi\)
0.378813 + 0.925473i \(0.376332\pi\)
\(692\) 0 0
\(693\) −2688.52 −0.147372
\(694\) 0 0
\(695\) −2120.87 −0.115754
\(696\) 0 0
\(697\) −177.101 −0.00962439
\(698\) 0 0
\(699\) 1010.02 0.0546533
\(700\) 0 0
\(701\) 32136.0 1.73147 0.865734 0.500504i \(-0.166852\pi\)
0.865734 + 0.500504i \(0.166852\pi\)
\(702\) 0 0
\(703\) −12480.7 −0.669586
\(704\) 0 0
\(705\) 1440.00 0.0769270
\(706\) 0 0
\(707\) −10459.0 −0.556369
\(708\) 0 0
\(709\) −14508.4 −0.768511 −0.384256 0.923227i \(-0.625542\pi\)
−0.384256 + 0.923227i \(0.625542\pi\)
\(710\) 0 0
\(711\) −191.702 −0.0101116
\(712\) 0 0
\(713\) 8516.70 0.447340
\(714\) 0 0
\(715\) −13800.0 −0.721805
\(716\) 0 0
\(717\) −13636.7 −0.710283
\(718\) 0 0
\(719\) 27588.2 1.43097 0.715485 0.698628i \(-0.246206\pi\)
0.715485 + 0.698628i \(0.246206\pi\)
\(720\) 0 0
\(721\) −6776.00 −0.350002
\(722\) 0 0
\(723\) 12942.1 0.665731
\(724\) 0 0
\(725\) 7350.00 0.376513
\(726\) 0 0
\(727\) 15720.5 0.801984 0.400992 0.916082i \(-0.368666\pi\)
0.400992 + 0.916082i \(0.368666\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) 6067.59 0.307001
\(732\) 0 0
\(733\) 1204.03 0.0606710 0.0303355 0.999540i \(-0.490342\pi\)
0.0303355 + 0.999540i \(0.490342\pi\)
\(734\) 0 0
\(735\) 735.000 0.0368856
\(736\) 0 0
\(737\) −14057.1 −0.702578
\(738\) 0 0
\(739\) −34173.9 −1.70109 −0.850547 0.525899i \(-0.823729\pi\)
−0.850547 + 0.525899i \(0.823729\pi\)
\(740\) 0 0
\(741\) −10346.4 −0.512934
\(742\) 0 0
\(743\) 27756.0 1.37048 0.685241 0.728317i \(-0.259697\pi\)
0.685241 + 0.728317i \(0.259697\pi\)
\(744\) 0 0
\(745\) −1089.25 −0.0535667
\(746\) 0 0
\(747\) −4212.89 −0.206348
\(748\) 0 0
\(749\) −812.696 −0.0396465
\(750\) 0 0
\(751\) −6453.50 −0.313571 −0.156785 0.987633i \(-0.550113\pi\)
−0.156785 + 0.987633i \(0.550113\pi\)
\(752\) 0 0
\(753\) 6614.24 0.320101
\(754\) 0 0
\(755\) −1146.75 −0.0552775
\(756\) 0 0
\(757\) −483.888 −0.0232328 −0.0116164 0.999933i \(-0.503698\pi\)
−0.0116164 + 0.999933i \(0.503698\pi\)
\(758\) 0 0
\(759\) 4781.71 0.228676
\(760\) 0 0
\(761\) 24641.6 1.17379 0.586897 0.809662i \(-0.300349\pi\)
0.586897 + 0.809662i \(0.300349\pi\)
\(762\) 0 0
\(763\) −1739.86 −0.0825517
\(764\) 0 0
\(765\) −630.000 −0.0297748
\(766\) 0 0
\(767\) −38032.1 −1.79043
\(768\) 0 0
\(769\) 7129.75 0.334337 0.167169 0.985928i \(-0.446538\pi\)
0.167169 + 0.985928i \(0.446538\pi\)
\(770\) 0 0
\(771\) −17507.8 −0.817807
\(772\) 0 0
\(773\) −14834.7 −0.690253 −0.345127 0.938556i \(-0.612164\pi\)
−0.345127 + 0.938556i \(0.612164\pi\)
\(774\) 0 0
\(775\) 5700.62 0.264222
\(776\) 0 0
\(777\) 4915.04 0.226932
\(778\) 0 0
\(779\) 674.568 0.0310255
\(780\) 0 0
\(781\) 5745.13 0.263222
\(782\) 0 0
\(783\) 7938.00 0.362300
\(784\) 0 0
\(785\) 7450.37 0.338745
\(786\) 0 0
\(787\) −37440.1 −1.69580 −0.847901 0.530154i \(-0.822134\pi\)
−0.847901 + 0.530154i \(0.822134\pi\)
\(788\) 0 0
\(789\) −23305.8 −1.05159
\(790\) 0 0
\(791\) 13941.4 0.626672
\(792\) 0 0
\(793\) −49030.0 −2.19560
\(794\) 0 0
\(795\) 9110.62 0.406441
\(796\) 0 0
\(797\) −10964.3 −0.487298 −0.243649 0.969863i \(-0.578345\pi\)
−0.243649 + 0.969863i \(0.578345\pi\)
\(798\) 0 0
\(799\) −1344.00 −0.0595085
\(800\) 0 0
\(801\) −9942.30 −0.438569
\(802\) 0 0
\(803\) 16420.2 0.721615
\(804\) 0 0
\(805\) −1307.25 −0.0572353
\(806\) 0 0
\(807\) −23961.1 −1.04519
\(808\) 0 0
\(809\) 15621.2 0.678879 0.339440 0.940628i \(-0.389763\pi\)
0.339440 + 0.940628i \(0.389763\pi\)
\(810\) 0 0
\(811\) 30591.5 1.32455 0.662277 0.749259i \(-0.269590\pi\)
0.662277 + 0.749259i \(0.269590\pi\)
\(812\) 0 0
\(813\) 1909.42 0.0823692
\(814\) 0 0
\(815\) 4193.50 0.180235
\(816\) 0 0
\(817\) −23111.1 −0.989662
\(818\) 0 0
\(819\) 4074.52 0.173840
\(820\) 0 0
\(821\) −39126.0 −1.66322 −0.831611 0.555358i \(-0.812581\pi\)
−0.831611 + 0.555358i \(0.812581\pi\)
\(822\) 0 0
\(823\) −24681.8 −1.04539 −0.522693 0.852521i \(-0.675073\pi\)
−0.522693 + 0.852521i \(0.675073\pi\)
\(824\) 0 0
\(825\) 3200.62 0.135068
\(826\) 0 0
\(827\) −21801.3 −0.916693 −0.458346 0.888774i \(-0.651558\pi\)
−0.458346 + 0.888774i \(0.651558\pi\)
\(828\) 0 0
\(829\) −7571.94 −0.317231 −0.158615 0.987340i \(-0.550703\pi\)
−0.158615 + 0.987340i \(0.550703\pi\)
\(830\) 0 0
\(831\) 10865.9 0.453589
\(832\) 0 0
\(833\) −686.000 −0.0285336
\(834\) 0 0
\(835\) 15188.0 0.629464
\(836\) 0 0
\(837\) 6156.67 0.254248
\(838\) 0 0
\(839\) 15347.3 0.631521 0.315761 0.948839i \(-0.397740\pi\)
0.315761 + 0.948839i \(0.397740\pi\)
\(840\) 0 0
\(841\) 62047.0 2.54406
\(842\) 0 0
\(843\) −520.658 −0.0212722
\(844\) 0 0
\(845\) 9929.24 0.404232
\(846\) 0 0
\(847\) −3431.06 −0.139188
\(848\) 0 0
\(849\) 10862.7 0.439112
\(850\) 0 0
\(851\) −8741.73 −0.352130
\(852\) 0 0
\(853\) −37886.3 −1.52075 −0.760376 0.649483i \(-0.774985\pi\)
−0.760376 + 0.649483i \(0.774985\pi\)
\(854\) 0 0
\(855\) 2399.63 0.0959831
\(856\) 0 0
\(857\) 5381.53 0.214503 0.107252 0.994232i \(-0.465795\pi\)
0.107252 + 0.994232i \(0.465795\pi\)
\(858\) 0 0
\(859\) 29448.1 1.16968 0.584840 0.811149i \(-0.301157\pi\)
0.584840 + 0.811149i \(0.301157\pi\)
\(860\) 0 0
\(861\) −265.652 −0.0105150
\(862\) 0 0
\(863\) 27156.1 1.07115 0.535577 0.844486i \(-0.320094\pi\)
0.535577 + 0.844486i \(0.320094\pi\)
\(864\) 0 0
\(865\) 18629.8 0.732290
\(866\) 0 0
\(867\) −14151.0 −0.554317
\(868\) 0 0
\(869\) −908.985 −0.0354836
\(870\) 0 0
\(871\) 21303.9 0.828766
\(872\) 0 0
\(873\) 2165.63 0.0839581
\(874\) 0 0
\(875\) −875.000 −0.0338062
\(876\) 0 0
\(877\) 8688.67 0.334544 0.167272 0.985911i \(-0.446504\pi\)
0.167272 + 0.985911i \(0.446504\pi\)
\(878\) 0 0
\(879\) −4334.25 −0.166315
\(880\) 0 0
\(881\) 30771.8 1.17676 0.588381 0.808584i \(-0.299765\pi\)
0.588381 + 0.808584i \(0.299765\pi\)
\(882\) 0 0
\(883\) 43804.5 1.66946 0.834732 0.550656i \(-0.185622\pi\)
0.834732 + 0.550656i \(0.185622\pi\)
\(884\) 0 0
\(885\) 8820.75 0.335035
\(886\) 0 0
\(887\) 40119.7 1.51870 0.759350 0.650683i \(-0.225517\pi\)
0.759350 + 0.650683i \(0.225517\pi\)
\(888\) 0 0
\(889\) −6311.19 −0.238100
\(890\) 0 0
\(891\) 3456.67 0.129970
\(892\) 0 0
\(893\) 5119.21 0.191834
\(894\) 0 0
\(895\) −9641.61 −0.360093
\(896\) 0 0
\(897\) −7246.81 −0.269748
\(898\) 0 0
\(899\) 67039.3 2.48708
\(900\) 0 0
\(901\) −8503.25 −0.314411
\(902\) 0 0
\(903\) 9101.39 0.335410
\(904\) 0 0
\(905\) 2.25681 8.28939e−5 0
\(906\) 0 0
\(907\) −24417.7 −0.893910 −0.446955 0.894556i \(-0.647492\pi\)
−0.446955 + 0.894556i \(0.647492\pi\)
\(908\) 0 0
\(909\) 13447.3 0.490671
\(910\) 0 0
\(911\) 9147.15 0.332666 0.166333 0.986070i \(-0.446807\pi\)
0.166333 + 0.986070i \(0.446807\pi\)
\(912\) 0 0
\(913\) −19976.1 −0.724111
\(914\) 0 0
\(915\) 11371.5 0.410852
\(916\) 0 0
\(917\) 5217.10 0.187878
\(918\) 0 0
\(919\) −49339.8 −1.77102 −0.885511 0.464619i \(-0.846191\pi\)
−0.885511 + 0.464619i \(0.846191\pi\)
\(920\) 0 0
\(921\) −30950.5 −1.10733
\(922\) 0 0
\(923\) −8706.88 −0.310499
\(924\) 0 0
\(925\) −5851.24 −0.207987
\(926\) 0 0
\(927\) 8712.00 0.308673
\(928\) 0 0
\(929\) 2526.82 0.0892382 0.0446191 0.999004i \(-0.485793\pi\)
0.0446191 + 0.999004i \(0.485793\pi\)
\(930\) 0 0
\(931\) 2612.93 0.0919820
\(932\) 0 0
\(933\) −14634.0 −0.513500
\(934\) 0 0
\(935\) −2987.25 −0.104485
\(936\) 0 0
\(937\) 47067.7 1.64102 0.820510 0.571632i \(-0.193689\pi\)
0.820510 + 0.571632i \(0.193689\pi\)
\(938\) 0 0
\(939\) −10789.4 −0.374973
\(940\) 0 0
\(941\) −41999.4 −1.45498 −0.727492 0.686116i \(-0.759314\pi\)
−0.727492 + 0.686116i \(0.759314\pi\)
\(942\) 0 0
\(943\) 472.480 0.0163161
\(944\) 0 0
\(945\) −945.000 −0.0325300
\(946\) 0 0
\(947\) −26732.6 −0.917312 −0.458656 0.888614i \(-0.651669\pi\)
−0.458656 + 0.888614i \(0.651669\pi\)
\(948\) 0 0
\(949\) −24885.3 −0.851222
\(950\) 0 0
\(951\) −26987.2 −0.920209
\(952\) 0 0
\(953\) −19555.5 −0.664706 −0.332353 0.943155i \(-0.607843\pi\)
−0.332353 + 0.943155i \(0.607843\pi\)
\(954\) 0 0
\(955\) −6020.62 −0.204003
\(956\) 0 0
\(957\) 37639.3 1.27138
\(958\) 0 0
\(959\) −17011.6 −0.572818
\(960\) 0 0
\(961\) 22204.3 0.745337
\(962\) 0 0
\(963\) 1044.89 0.0349650
\(964\) 0 0
\(965\) 17612.0 0.587513
\(966\) 0 0
\(967\) 38903.5 1.29375 0.646873 0.762598i \(-0.276076\pi\)
0.646873 + 0.762598i \(0.276076\pi\)
\(968\) 0 0
\(969\) −2239.65 −0.0742497
\(970\) 0 0
\(971\) −796.132 −0.0263122 −0.0131561 0.999913i \(-0.504188\pi\)
−0.0131561 + 0.999913i \(0.504188\pi\)
\(972\) 0 0
\(973\) 2969.22 0.0978302
\(974\) 0 0
\(975\) −4850.62 −0.159327
\(976\) 0 0
\(977\) 6186.46 0.202582 0.101291 0.994857i \(-0.467703\pi\)
0.101291 + 0.994857i \(0.467703\pi\)
\(978\) 0 0
\(979\) −47143.0 −1.53902
\(980\) 0 0
\(981\) 2236.96 0.0728038
\(982\) 0 0
\(983\) −3542.18 −0.114932 −0.0574659 0.998347i \(-0.518302\pi\)
−0.0574659 + 0.998347i \(0.518302\pi\)
\(984\) 0 0
\(985\) 9077.12 0.293626
\(986\) 0 0
\(987\) −2016.00 −0.0650152
\(988\) 0 0
\(989\) −16187.4 −0.520455
\(990\) 0 0
\(991\) −21923.2 −0.702737 −0.351369 0.936237i \(-0.614284\pi\)
−0.351369 + 0.936237i \(0.614284\pi\)
\(992\) 0 0
\(993\) 8238.29 0.263277
\(994\) 0 0
\(995\) −25729.9 −0.819790
\(996\) 0 0
\(997\) −126.571 −0.00402062 −0.00201031 0.999998i \(-0.500640\pi\)
−0.00201031 + 0.999998i \(0.500640\pi\)
\(998\) 0 0
\(999\) −6319.34 −0.200135
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 840.4.a.o.1.2 2
4.3 odd 2 1680.4.a.bf.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
840.4.a.o.1.2 2 1.1 even 1 trivial
1680.4.a.bf.1.1 2 4.3 odd 2