Properties

Label 840.2.z.d.811.5
Level $840$
Weight $2$
Character 840.811
Analytic conductor $6.707$
Analytic rank $0$
Dimension $28$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [840,2,Mod(811,840)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(840, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("840.811"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 840 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 840.z (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [28,2,0,-2,28] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.70743376979\)
Analytic rank: \(0\)
Dimension: \(28\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 811.5
Character \(\chi\) \(=\) 840.811
Dual form 840.2.z.d.811.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.22597 - 0.704981i) q^{2} -1.00000i q^{3} +(1.00600 + 1.72857i) q^{4} +1.00000 q^{5} +(-0.704981 + 1.22597i) q^{6} +(2.37591 - 1.16407i) q^{7} +(-0.0147234 - 2.82839i) q^{8} -1.00000 q^{9} +(-1.22597 - 0.704981i) q^{10} -2.29742 q^{11} +(1.72857 - 1.00600i) q^{12} -6.22162 q^{13} +(-3.73344 - 0.247852i) q^{14} -1.00000i q^{15} +(-1.97591 + 3.47790i) q^{16} -2.99183i q^{17} +(1.22597 + 0.704981i) q^{18} +0.901647i q^{19} +(1.00600 + 1.72857i) q^{20} +(-1.16407 - 2.37591i) q^{21} +(2.81657 + 1.61964i) q^{22} -8.15215i q^{23} +(-2.82839 + 0.0147234i) q^{24} +1.00000 q^{25} +(7.62752 + 4.38612i) q^{26} +1.00000i q^{27} +(4.40235 + 2.93586i) q^{28} -1.15423i q^{29} +(-0.704981 + 1.22597i) q^{30} -1.82156 q^{31} +(4.87426 - 2.87082i) q^{32} +2.29742i q^{33} +(-2.10918 + 3.66790i) q^{34} +(2.37591 - 1.16407i) q^{35} +(-1.00600 - 1.72857i) q^{36} -1.80548i q^{37} +(0.635644 - 1.10539i) q^{38} +6.22162i q^{39} +(-0.0147234 - 2.82839i) q^{40} -11.3040i q^{41} +(-0.247852 + 3.73344i) q^{42} +11.5218 q^{43} +(-2.31121 - 3.97125i) q^{44} -1.00000 q^{45} +(-5.74710 + 9.99429i) q^{46} -9.48888 q^{47} +(3.47790 + 1.97591i) q^{48} +(4.28987 - 5.53145i) q^{49} +(-1.22597 - 0.704981i) q^{50} -2.99183 q^{51} +(-6.25898 - 10.7545i) q^{52} -4.44952i q^{53} +(0.704981 - 1.22597i) q^{54} -2.29742 q^{55} +(-3.32743 - 6.70285i) q^{56} +0.901647 q^{57} +(-0.813710 + 1.41505i) q^{58} +5.71571i q^{59} +(1.72857 - 1.00600i) q^{60} -11.0303 q^{61} +(2.23318 + 1.28417i) q^{62} +(-2.37591 + 1.16407i) q^{63} +(-7.99957 + 0.0832869i) q^{64} -6.22162 q^{65} +(1.61964 - 2.81657i) q^{66} +6.42834 q^{67} +(5.17159 - 3.00980i) q^{68} -8.15215 q^{69} +(-3.73344 - 0.247852i) q^{70} -7.96854i q^{71} +(0.0147234 + 2.82839i) q^{72} +4.10159i q^{73} +(-1.27282 + 2.21346i) q^{74} -1.00000i q^{75} +(-1.55856 + 0.907061i) q^{76} +(-5.45846 + 2.67436i) q^{77} +(4.38612 - 7.62752i) q^{78} +14.9684i q^{79} +(-1.97591 + 3.47790i) q^{80} +1.00000 q^{81} +(-7.96912 + 13.8584i) q^{82} +10.3637i q^{83} +(2.93586 - 4.40235i) q^{84} -2.99183i q^{85} +(-14.1254 - 8.12264i) q^{86} -1.15423 q^{87} +(0.0338258 + 6.49800i) q^{88} -1.36087i q^{89} +(1.22597 + 0.704981i) q^{90} +(-14.7820 + 7.24242i) q^{91} +(14.0916 - 8.20110i) q^{92} +1.82156i q^{93} +(11.6331 + 6.68948i) q^{94} +0.901647i q^{95} +(-2.87082 - 4.87426i) q^{96} -8.12945i q^{97} +(-9.15882 + 3.75712i) q^{98} +2.29742 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28 q + 2 q^{2} - 2 q^{4} + 28 q^{5} + 4 q^{6} + 4 q^{7} - 10 q^{8} - 28 q^{9} + 2 q^{10} - 8 q^{12} - 8 q^{13} + 2 q^{14} + 6 q^{16} - 2 q^{18} - 2 q^{20} - 4 q^{24} + 28 q^{25} + 16 q^{26} + 10 q^{28}+ \cdots - 30 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/840\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(281\) \(337\) \(421\) \(631\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.22597 0.704981i −0.866892 0.498497i
\(3\) 1.00000i 0.577350i
\(4\) 1.00600 + 1.72857i 0.503002 + 0.864285i
\(5\) 1.00000 0.447214
\(6\) −0.704981 + 1.22597i −0.287807 + 0.500500i
\(7\) 2.37591 1.16407i 0.898009 0.439978i
\(8\) −0.0147234 2.82839i −0.00520550 0.999986i
\(9\) −1.00000 −0.333333
\(10\) −1.22597 0.704981i −0.387686 0.222934i
\(11\) −2.29742 −0.692698 −0.346349 0.938106i \(-0.612579\pi\)
−0.346349 + 0.938106i \(0.612579\pi\)
\(12\) 1.72857 1.00600i 0.498995 0.290409i
\(13\) −6.22162 −1.72557 −0.862784 0.505573i \(-0.831281\pi\)
−0.862784 + 0.505573i \(0.831281\pi\)
\(14\) −3.73344 0.247852i −0.997804 0.0662412i
\(15\) 1.00000i 0.258199i
\(16\) −1.97591 + 3.47790i −0.493977 + 0.869475i
\(17\) 2.99183i 0.725626i −0.931862 0.362813i \(-0.881816\pi\)
0.931862 0.362813i \(-0.118184\pi\)
\(18\) 1.22597 + 0.704981i 0.288964 + 0.166166i
\(19\) 0.901647i 0.206852i 0.994637 + 0.103426i \(0.0329805\pi\)
−0.994637 + 0.103426i \(0.967019\pi\)
\(20\) 1.00600 + 1.72857i 0.224950 + 0.386520i
\(21\) −1.16407 2.37591i −0.254021 0.518466i
\(22\) 2.81657 + 1.61964i 0.600494 + 0.345308i
\(23\) 8.15215i 1.69984i −0.526912 0.849920i \(-0.676650\pi\)
0.526912 0.849920i \(-0.323350\pi\)
\(24\) −2.82839 + 0.0147234i −0.577342 + 0.00300540i
\(25\) 1.00000 0.200000
\(26\) 7.62752 + 4.38612i 1.49588 + 0.860190i
\(27\) 1.00000i 0.192450i
\(28\) 4.40235 + 2.93586i 0.831967 + 0.554826i
\(29\) 1.15423i 0.214335i −0.994241 0.107168i \(-0.965822\pi\)
0.994241 0.107168i \(-0.0341781\pi\)
\(30\) −0.704981 + 1.22597i −0.128711 + 0.223830i
\(31\) −1.82156 −0.327163 −0.163581 0.986530i \(-0.552305\pi\)
−0.163581 + 0.986530i \(0.552305\pi\)
\(32\) 4.87426 2.87082i 0.861655 0.507495i
\(33\) 2.29742i 0.399929i
\(34\) −2.10918 + 3.66790i −0.361722 + 0.629039i
\(35\) 2.37591 1.16407i 0.401602 0.196764i
\(36\) −1.00600 1.72857i −0.167667 0.288095i
\(37\) 1.80548i 0.296818i −0.988926 0.148409i \(-0.952585\pi\)
0.988926 0.148409i \(-0.0474153\pi\)
\(38\) 0.635644 1.10539i 0.103115 0.179318i
\(39\) 6.22162i 0.996257i
\(40\) −0.0147234 2.82839i −0.00232797 0.447208i
\(41\) 11.3040i 1.76539i −0.469944 0.882696i \(-0.655726\pi\)
0.469944 0.882696i \(-0.344274\pi\)
\(42\) −0.247852 + 3.73344i −0.0382444 + 0.576082i
\(43\) 11.5218 1.75706 0.878528 0.477691i \(-0.158526\pi\)
0.878528 + 0.477691i \(0.158526\pi\)
\(44\) −2.31121 3.97125i −0.348429 0.598688i
\(45\) −1.00000 −0.149071
\(46\) −5.74710 + 9.99429i −0.847364 + 1.47358i
\(47\) −9.48888 −1.38410 −0.692048 0.721852i \(-0.743291\pi\)
−0.692048 + 0.721852i \(0.743291\pi\)
\(48\) 3.47790 + 1.97591i 0.501992 + 0.285198i
\(49\) 4.28987 5.53145i 0.612839 0.790208i
\(50\) −1.22597 0.704981i −0.173378 0.0996993i
\(51\) −2.99183 −0.418940
\(52\) −6.25898 10.7545i −0.867965 1.49138i
\(53\) 4.44952i 0.611188i −0.952162 0.305594i \(-0.901145\pi\)
0.952162 0.305594i \(-0.0988551\pi\)
\(54\) 0.704981 1.22597i 0.0959357 0.166833i
\(55\) −2.29742 −0.309784
\(56\) −3.32743 6.70285i −0.444646 0.895706i
\(57\) 0.901647 0.119426
\(58\) −0.813710 + 1.41505i −0.106845 + 0.185805i
\(59\) 5.71571i 0.744122i 0.928208 + 0.372061i \(0.121349\pi\)
−0.928208 + 0.372061i \(0.878651\pi\)
\(60\) 1.72857 1.00600i 0.223157 0.129875i
\(61\) −11.0303 −1.41229 −0.706145 0.708067i \(-0.749567\pi\)
−0.706145 + 0.708067i \(0.749567\pi\)
\(62\) 2.23318 + 1.28417i 0.283614 + 0.163089i
\(63\) −2.37591 + 1.16407i −0.299336 + 0.146659i
\(64\) −7.99957 + 0.0832869i −0.999946 + 0.0104109i
\(65\) −6.22162 −0.771697
\(66\) 1.61964 2.81657i 0.199363 0.346695i
\(67\) 6.42834 0.785347 0.392673 0.919678i \(-0.371550\pi\)
0.392673 + 0.919678i \(0.371550\pi\)
\(68\) 5.17159 3.00980i 0.627148 0.364992i
\(69\) −8.15215 −0.981403
\(70\) −3.73344 0.247852i −0.446231 0.0296240i
\(71\) 7.96854i 0.945692i −0.881145 0.472846i \(-0.843227\pi\)
0.881145 0.472846i \(-0.156773\pi\)
\(72\) 0.0147234 + 2.82839i 0.00173517 + 0.333329i
\(73\) 4.10159i 0.480055i 0.970766 + 0.240027i \(0.0771565\pi\)
−0.970766 + 0.240027i \(0.922844\pi\)
\(74\) −1.27282 + 2.21346i −0.147963 + 0.257309i
\(75\) 1.00000i 0.115470i
\(76\) −1.55856 + 0.907061i −0.178779 + 0.104047i
\(77\) −5.45846 + 2.67436i −0.622049 + 0.304772i
\(78\) 4.38612 7.62752i 0.496631 0.863647i
\(79\) 14.9684i 1.68408i 0.539419 + 0.842038i \(0.318644\pi\)
−0.539419 + 0.842038i \(0.681356\pi\)
\(80\) −1.97591 + 3.47790i −0.220913 + 0.388841i
\(81\) 1.00000 0.111111
\(82\) −7.96912 + 13.8584i −0.880042 + 1.53040i
\(83\) 10.3637i 1.13756i 0.822489 + 0.568782i \(0.192585\pi\)
−0.822489 + 0.568782i \(0.807415\pi\)
\(84\) 2.93586 4.40235i 0.320329 0.480336i
\(85\) 2.99183i 0.324510i
\(86\) −14.1254 8.12264i −1.52318 0.875886i
\(87\) −1.15423 −0.123746
\(88\) 0.0338258 + 6.49800i 0.00360584 + 0.692689i
\(89\) 1.36087i 0.144252i −0.997396 0.0721260i \(-0.977022\pi\)
0.997396 0.0721260i \(-0.0229784\pi\)
\(90\) 1.22597 + 0.704981i 0.129229 + 0.0743115i
\(91\) −14.7820 + 7.24242i −1.54958 + 0.759211i
\(92\) 14.0916 8.20110i 1.46915 0.855024i
\(93\) 1.82156i 0.188887i
\(94\) 11.6331 + 6.68948i 1.19986 + 0.689967i
\(95\) 0.901647i 0.0925071i
\(96\) −2.87082 4.87426i −0.293002 0.497477i
\(97\) 8.12945i 0.825420i −0.910862 0.412710i \(-0.864582\pi\)
0.910862 0.412710i \(-0.135418\pi\)
\(98\) −9.15882 + 3.75712i −0.925181 + 0.379526i
\(99\) 2.29742 0.230899
\(100\) 1.00600 + 1.72857i 0.100600 + 0.172857i
\(101\) −4.56052 −0.453789 −0.226894 0.973919i \(-0.572857\pi\)
−0.226894 + 0.973919i \(0.572857\pi\)
\(102\) 3.66790 + 2.10918i 0.363176 + 0.208840i
\(103\) 1.65646 0.163216 0.0816079 0.996665i \(-0.473994\pi\)
0.0816079 + 0.996665i \(0.473994\pi\)
\(104\) 0.0916033 + 17.5972i 0.00898244 + 1.72554i
\(105\) −1.16407 2.37591i −0.113602 0.231865i
\(106\) −3.13682 + 5.45498i −0.304675 + 0.529834i
\(107\) −5.99730 −0.579781 −0.289891 0.957060i \(-0.593619\pi\)
−0.289891 + 0.957060i \(0.593619\pi\)
\(108\) −1.72857 + 1.00600i −0.166332 + 0.0968029i
\(109\) 14.4206i 1.38124i −0.723215 0.690622i \(-0.757337\pi\)
0.723215 0.690622i \(-0.242663\pi\)
\(110\) 2.81657 + 1.61964i 0.268549 + 0.154426i
\(111\) −1.80548 −0.171368
\(112\) −0.646053 + 10.5633i −0.0610463 + 0.998135i
\(113\) 20.3916 1.91828 0.959139 0.282936i \(-0.0913083\pi\)
0.959139 + 0.282936i \(0.0913083\pi\)
\(114\) −1.10539 0.635644i −0.103529 0.0595335i
\(115\) 8.15215i 0.760192i
\(116\) 1.99517 1.16116i 0.185247 0.107811i
\(117\) 6.22162 0.575189
\(118\) 4.02946 7.00729i 0.370942 0.645073i
\(119\) −3.48271 7.10832i −0.319259 0.651619i
\(120\) −2.82839 + 0.0147234i −0.258195 + 0.00134405i
\(121\) −5.72186 −0.520170
\(122\) 13.5229 + 7.77617i 1.22430 + 0.704022i
\(123\) −11.3040 −1.01925
\(124\) −1.83250 3.14870i −0.164564 0.282762i
\(125\) 1.00000 0.0894427
\(126\) 3.73344 + 0.247852i 0.332601 + 0.0220804i
\(127\) 7.73916i 0.686739i −0.939200 0.343370i \(-0.888432\pi\)
0.939200 0.343370i \(-0.111568\pi\)
\(128\) 9.86594 + 5.53743i 0.872034 + 0.489444i
\(129\) 11.5218i 1.01444i
\(130\) 7.62752 + 4.38612i 0.668978 + 0.384689i
\(131\) 0.428007i 0.0373951i 0.999825 + 0.0186976i \(0.00595197\pi\)
−0.999825 + 0.0186976i \(0.994048\pi\)
\(132\) −3.97125 + 2.31121i −0.345653 + 0.201165i
\(133\) 1.04958 + 2.14223i 0.0910103 + 0.185755i
\(134\) −7.88095 4.53185i −0.680811 0.391493i
\(135\) 1.00000i 0.0860663i
\(136\) −8.46207 + 0.0440499i −0.725616 + 0.00377725i
\(137\) −12.2390 −1.04564 −0.522822 0.852442i \(-0.675121\pi\)
−0.522822 + 0.852442i \(0.675121\pi\)
\(138\) 9.99429 + 5.74710i 0.850770 + 0.489226i
\(139\) 10.3041i 0.873980i 0.899466 + 0.436990i \(0.143955\pi\)
−0.899466 + 0.436990i \(0.856045\pi\)
\(140\) 4.40235 + 2.93586i 0.372067 + 0.248126i
\(141\) 9.48888i 0.799108i
\(142\) −5.61767 + 9.76920i −0.471424 + 0.819813i
\(143\) 14.2937 1.19530
\(144\) 1.97591 3.47790i 0.164659 0.289825i
\(145\) 1.15423i 0.0958536i
\(146\) 2.89154 5.02843i 0.239306 0.416156i
\(147\) −5.53145 4.28987i −0.456227 0.353823i
\(148\) 3.12089 1.81632i 0.256536 0.149300i
\(149\) 3.34559i 0.274081i 0.990565 + 0.137041i \(0.0437591\pi\)
−0.990565 + 0.137041i \(0.956241\pi\)
\(150\) −0.704981 + 1.22597i −0.0575614 + 0.100100i
\(151\) 10.4431i 0.849850i −0.905228 0.424925i \(-0.860300\pi\)
0.905228 0.424925i \(-0.139700\pi\)
\(152\) 2.55021 0.0132753i 0.206849 0.00107677i
\(153\) 2.99183i 0.241875i
\(154\) 8.57728 + 0.569420i 0.691177 + 0.0458852i
\(155\) −1.82156 −0.146312
\(156\) −10.7545 + 6.25898i −0.861050 + 0.501120i
\(157\) −3.76672 −0.300617 −0.150309 0.988639i \(-0.548027\pi\)
−0.150309 + 0.988639i \(0.548027\pi\)
\(158\) 10.5524 18.3508i 0.839506 1.45991i
\(159\) −4.44952 −0.352870
\(160\) 4.87426 2.87082i 0.385344 0.226958i
\(161\) −9.48968 19.3687i −0.747892 1.52647i
\(162\) −1.22597 0.704981i −0.0963213 0.0553885i
\(163\) −11.7746 −0.922259 −0.461129 0.887333i \(-0.652556\pi\)
−0.461129 + 0.887333i \(0.652556\pi\)
\(164\) 19.5398 11.3719i 1.52580 0.887997i
\(165\) 2.29742i 0.178854i
\(166\) 7.30620 12.7056i 0.567071 0.986144i
\(167\) 24.1292 1.86717 0.933587 0.358352i \(-0.116661\pi\)
0.933587 + 0.358352i \(0.116661\pi\)
\(168\) −6.70285 + 3.32743i −0.517136 + 0.256717i
\(169\) 25.7086 1.97758
\(170\) −2.10918 + 3.66790i −0.161767 + 0.281315i
\(171\) 0.901647i 0.0689507i
\(172\) 11.5910 + 19.9162i 0.883803 + 1.51860i
\(173\) −11.5661 −0.879354 −0.439677 0.898156i \(-0.644907\pi\)
−0.439677 + 0.898156i \(0.644907\pi\)
\(174\) 1.41505 + 0.813710i 0.107275 + 0.0616872i
\(175\) 2.37591 1.16407i 0.179602 0.0879955i
\(176\) 4.53949 7.99019i 0.342177 0.602283i
\(177\) 5.71571 0.429619
\(178\) −0.959387 + 1.66839i −0.0719091 + 0.125051i
\(179\) 26.1436 1.95407 0.977033 0.213086i \(-0.0683514\pi\)
0.977033 + 0.213086i \(0.0683514\pi\)
\(180\) −1.00600 1.72857i −0.0749832 0.128840i
\(181\) 12.9659 0.963749 0.481875 0.876240i \(-0.339956\pi\)
0.481875 + 0.876240i \(0.339956\pi\)
\(182\) 23.2281 + 1.54204i 1.72178 + 0.114304i
\(183\) 11.0303i 0.815386i
\(184\) −23.0574 + 0.120027i −1.69982 + 0.00884852i
\(185\) 1.80548i 0.132741i
\(186\) 1.28417 2.23318i 0.0941597 0.163745i
\(187\) 6.87350i 0.502640i
\(188\) −9.54586 16.4022i −0.696203 1.19625i
\(189\) 1.16407 + 2.37591i 0.0846737 + 0.172822i
\(190\) 0.635644 1.10539i 0.0461144 0.0801936i
\(191\) 21.5890i 1.56212i 0.624454 + 0.781062i \(0.285322\pi\)
−0.624454 + 0.781062i \(0.714678\pi\)
\(192\) 0.0832869 + 7.99957i 0.00601071 + 0.577319i
\(193\) 16.0794 1.15742 0.578711 0.815532i \(-0.303556\pi\)
0.578711 + 0.815532i \(0.303556\pi\)
\(194\) −5.73110 + 9.96646i −0.411469 + 0.715550i
\(195\) 6.22162i 0.445540i
\(196\) 13.8771 + 1.85068i 0.991224 + 0.132191i
\(197\) 2.13232i 0.151922i −0.997111 0.0759609i \(-0.975798\pi\)
0.997111 0.0759609i \(-0.0242024\pi\)
\(198\) −2.81657 1.61964i −0.200165 0.115103i
\(199\) 4.06306 0.288023 0.144011 0.989576i \(-0.454000\pi\)
0.144011 + 0.989576i \(0.454000\pi\)
\(200\) −0.0147234 2.82839i −0.00104110 0.199997i
\(201\) 6.42834i 0.453420i
\(202\) 5.59106 + 3.21508i 0.393386 + 0.226212i
\(203\) −1.34361 2.74234i −0.0943027 0.192475i
\(204\) −3.00980 5.17159i −0.210728 0.362084i
\(205\) 11.3040i 0.789507i
\(206\) −2.03077 1.16777i −0.141490 0.0813625i
\(207\) 8.15215i 0.566613i
\(208\) 12.2934 21.6382i 0.852391 1.50034i
\(209\) 2.07146i 0.143286i
\(210\) −0.247852 + 3.73344i −0.0171034 + 0.257632i
\(211\) −9.66474 −0.665348 −0.332674 0.943042i \(-0.607951\pi\)
−0.332674 + 0.943042i \(0.607951\pi\)
\(212\) 7.69130 4.47624i 0.528241 0.307429i
\(213\) −7.96854 −0.545996
\(214\) 7.35251 + 4.22798i 0.502607 + 0.289019i
\(215\) 11.5218 0.785779
\(216\) 2.82839 0.0147234i 0.192447 0.00100180i
\(217\) −4.32787 + 2.12043i −0.293795 + 0.143944i
\(218\) −10.1663 + 17.6792i −0.688546 + 1.19739i
\(219\) 4.10159 0.277160
\(220\) −2.31121 3.97125i −0.155822 0.267742i
\(221\) 18.6141i 1.25212i
\(222\) 2.21346 + 1.27282i 0.148558 + 0.0854264i
\(223\) 15.6666 1.04912 0.524558 0.851375i \(-0.324231\pi\)
0.524558 + 0.851375i \(0.324231\pi\)
\(224\) 8.23894 12.4948i 0.550487 0.834844i
\(225\) −1.00000 −0.0666667
\(226\) −24.9995 14.3757i −1.66294 0.956255i
\(227\) 2.75915i 0.183131i 0.995799 + 0.0915657i \(0.0291871\pi\)
−0.995799 + 0.0915657i \(0.970813\pi\)
\(228\) 0.907061 + 1.55856i 0.0600716 + 0.103218i
\(229\) 18.5792 1.22775 0.613873 0.789405i \(-0.289611\pi\)
0.613873 + 0.789405i \(0.289611\pi\)
\(230\) −5.74710 + 9.99429i −0.378953 + 0.659004i
\(231\) 2.67436 + 5.45846i 0.175960 + 0.359140i
\(232\) −3.26461 + 0.0169942i −0.214332 + 0.00111572i
\(233\) −13.6689 −0.895481 −0.447740 0.894164i \(-0.647771\pi\)
−0.447740 + 0.894164i \(0.647771\pi\)
\(234\) −7.62752 4.38612i −0.498627 0.286730i
\(235\) −9.48888 −0.618986
\(236\) −9.88000 + 5.75003i −0.643133 + 0.374295i
\(237\) 14.9684 0.972301
\(238\) −0.741532 + 11.1698i −0.0480664 + 0.724032i
\(239\) 17.4682i 1.12993i 0.825116 + 0.564964i \(0.191110\pi\)
−0.825116 + 0.564964i \(0.808890\pi\)
\(240\) 3.47790 + 1.97591i 0.224497 + 0.127544i
\(241\) 29.1215i 1.87588i 0.346799 + 0.937939i \(0.387268\pi\)
−0.346799 + 0.937939i \(0.612732\pi\)
\(242\) 7.01483 + 4.03380i 0.450931 + 0.259303i
\(243\) 1.00000i 0.0641500i
\(244\) −11.0966 19.0667i −0.710385 1.22062i
\(245\) 4.28987 5.53145i 0.274070 0.353392i
\(246\) 13.8584 + 7.96912i 0.883579 + 0.508092i
\(247\) 5.60971i 0.356937i
\(248\) 0.0268196 + 5.15209i 0.00170304 + 0.327158i
\(249\) 10.3637 0.656773
\(250\) −1.22597 0.704981i −0.0775371 0.0445869i
\(251\) 11.4415i 0.722178i −0.932531 0.361089i \(-0.882405\pi\)
0.932531 0.361089i \(-0.117595\pi\)
\(252\) −4.40235 2.93586i −0.277322 0.184942i
\(253\) 18.7289i 1.17748i
\(254\) −5.45596 + 9.48798i −0.342337 + 0.595329i
\(255\) −2.99183 −0.187356
\(256\) −8.19157 13.7440i −0.511973 0.859001i
\(257\) 7.10334i 0.443094i 0.975150 + 0.221547i \(0.0711107\pi\)
−0.975150 + 0.221547i \(0.928889\pi\)
\(258\) −8.12264 + 14.1254i −0.505693 + 0.879407i
\(259\) −2.10170 4.28964i −0.130593 0.266545i
\(260\) −6.25898 10.7545i −0.388166 0.666967i
\(261\) 1.15423i 0.0714450i
\(262\) 0.301736 0.524723i 0.0186413 0.0324175i
\(263\) 4.84190i 0.298565i 0.988795 + 0.149282i \(0.0476963\pi\)
−0.988795 + 0.149282i \(0.952304\pi\)
\(264\) 6.49800 0.0338258i 0.399924 0.00208183i
\(265\) 4.44952i 0.273332i
\(266\) 0.223475 3.36625i 0.0137021 0.206398i
\(267\) −1.36087 −0.0832839
\(268\) 6.46694 + 11.1118i 0.395031 + 0.678763i
\(269\) 4.83187 0.294605 0.147302 0.989092i \(-0.452941\pi\)
0.147302 + 0.989092i \(0.452941\pi\)
\(270\) 0.704981 1.22597i 0.0429038 0.0746102i
\(271\) 10.5338 0.639885 0.319942 0.947437i \(-0.396336\pi\)
0.319942 + 0.947437i \(0.396336\pi\)
\(272\) 10.4053 + 5.91159i 0.630914 + 0.358443i
\(273\) 7.24242 + 14.7820i 0.438331 + 0.894648i
\(274\) 15.0046 + 8.62822i 0.906460 + 0.521250i
\(275\) −2.29742 −0.138540
\(276\) −8.20110 14.0916i −0.493648 0.848212i
\(277\) 24.5049i 1.47236i −0.676787 0.736179i \(-0.736628\pi\)
0.676787 0.736179i \(-0.263372\pi\)
\(278\) 7.26417 12.6325i 0.435676 0.757646i
\(279\) 1.82156 0.109054
\(280\) −3.32743 6.70285i −0.198852 0.400572i
\(281\) 4.78715 0.285577 0.142789 0.989753i \(-0.454393\pi\)
0.142789 + 0.989753i \(0.454393\pi\)
\(282\) 6.68948 11.6331i 0.398353 0.692740i
\(283\) 9.64555i 0.573369i 0.958025 + 0.286684i \(0.0925531\pi\)
−0.958025 + 0.286684i \(0.907447\pi\)
\(284\) 13.7742 8.01639i 0.817348 0.475685i
\(285\) 0.901647 0.0534090
\(286\) −17.5236 10.0768i −1.03619 0.595852i
\(287\) −13.1587 26.8573i −0.776733 1.58534i
\(288\) −4.87426 + 2.87082i −0.287218 + 0.169165i
\(289\) 8.04893 0.473467
\(290\) −0.813710 + 1.41505i −0.0477827 + 0.0830947i
\(291\) −8.12945 −0.476557
\(292\) −7.08989 + 4.12622i −0.414904 + 0.241469i
\(293\) −21.5351 −1.25809 −0.629047 0.777367i \(-0.716555\pi\)
−0.629047 + 0.777367i \(0.716555\pi\)
\(294\) 3.75712 + 9.15882i 0.219120 + 0.534154i
\(295\) 5.71571i 0.332781i
\(296\) −5.10659 + 0.0265827i −0.296814 + 0.00154509i
\(297\) 2.29742i 0.133310i
\(298\) 2.35857 4.10159i 0.136628 0.237599i
\(299\) 50.7196i 2.93319i
\(300\) 1.72857 1.00600i 0.0997990 0.0580817i
\(301\) 27.3747 13.4122i 1.57785 0.773065i
\(302\) −7.36221 + 12.8030i −0.423647 + 0.736728i
\(303\) 4.56052i 0.261995i
\(304\) −3.13584 1.78157i −0.179853 0.102180i
\(305\) −11.0303 −0.631595
\(306\) 2.10918 3.66790i 0.120574 0.209680i
\(307\) 9.82813i 0.560921i −0.959866 0.280461i \(-0.909513\pi\)
0.959866 0.280461i \(-0.0904872\pi\)
\(308\) −10.1141 6.74490i −0.576302 0.384327i
\(309\) 1.65646i 0.0942326i
\(310\) 2.23318 + 1.28417i 0.126836 + 0.0729358i
\(311\) 1.48451 0.0841788 0.0420894 0.999114i \(-0.486599\pi\)
0.0420894 + 0.999114i \(0.486599\pi\)
\(312\) 17.5972 0.0916033i 0.996244 0.00518602i
\(313\) 32.7794i 1.85280i −0.376539 0.926401i \(-0.622886\pi\)
0.376539 0.926401i \(-0.377114\pi\)
\(314\) 4.61789 + 2.65547i 0.260603 + 0.149857i
\(315\) −2.37591 + 1.16407i −0.133867 + 0.0655880i
\(316\) −25.8739 + 15.0583i −1.45552 + 0.847094i
\(317\) 4.41901i 0.248196i 0.992270 + 0.124098i \(0.0396038\pi\)
−0.992270 + 0.124098i \(0.960396\pi\)
\(318\) 5.45498 + 3.13682i 0.305900 + 0.175904i
\(319\) 2.65175i 0.148470i
\(320\) −7.99957 + 0.0832869i −0.447189 + 0.00465588i
\(321\) 5.99730i 0.334737i
\(322\) −2.02053 + 30.4355i −0.112599 + 1.69611i
\(323\) 2.69758 0.150097
\(324\) 1.00600 + 1.72857i 0.0558892 + 0.0960317i
\(325\) −6.22162 −0.345114
\(326\) 14.4353 + 8.30087i 0.799498 + 0.459743i
\(327\) −14.4206 −0.797462
\(328\) −31.9722 + 0.166433i −1.76537 + 0.00918975i
\(329\) −22.5447 + 11.0457i −1.24293 + 0.608971i
\(330\) 1.61964 2.81657i 0.0891580 0.155047i
\(331\) 1.77031 0.0973051 0.0486526 0.998816i \(-0.484507\pi\)
0.0486526 + 0.998816i \(0.484507\pi\)
\(332\) −17.9144 + 10.4259i −0.983179 + 0.572197i
\(333\) 1.80548i 0.0989394i
\(334\) −29.5817 17.0106i −1.61864 0.930779i
\(335\) 6.42834 0.351218
\(336\) 10.5633 + 0.646053i 0.576273 + 0.0352451i
\(337\) 9.97437 0.543339 0.271669 0.962391i \(-0.412424\pi\)
0.271669 + 0.962391i \(0.412424\pi\)
\(338\) −31.5180 18.1241i −1.71435 0.985819i
\(339\) 20.3916i 1.10752i
\(340\) 5.17159 3.00980i 0.280469 0.163229i
\(341\) 4.18490 0.226625
\(342\) −0.635644 + 1.10539i −0.0343717 + 0.0597728i
\(343\) 3.75334 18.1359i 0.202661 0.979249i
\(344\) −0.169640 32.5881i −0.00914636 1.75703i
\(345\) −8.15215 −0.438897
\(346\) 14.1797 + 8.15388i 0.762305 + 0.438355i
\(347\) −3.02998 −0.162658 −0.0813289 0.996687i \(-0.525916\pi\)
−0.0813289 + 0.996687i \(0.525916\pi\)
\(348\) −1.16116 1.99517i −0.0622448 0.106952i
\(349\) −7.89793 −0.422766 −0.211383 0.977403i \(-0.567797\pi\)
−0.211383 + 0.977403i \(0.567797\pi\)
\(350\) −3.73344 0.247852i −0.199561 0.0132482i
\(351\) 6.22162i 0.332086i
\(352\) −11.1982 + 6.59548i −0.596867 + 0.351540i
\(353\) 0.204746i 0.0108975i 0.999985 + 0.00544876i \(0.00173440\pi\)
−0.999985 + 0.00544876i \(0.998266\pi\)
\(354\) −7.00729 4.02946i −0.372433 0.214164i
\(355\) 7.96854i 0.422926i
\(356\) 2.35236 1.36904i 0.124675 0.0725591i
\(357\) −7.10832 + 3.48271i −0.376212 + 0.184324i
\(358\) −32.0513 18.4308i −1.69396 0.974096i
\(359\) 22.8226i 1.20453i 0.798295 + 0.602267i \(0.205736\pi\)
−0.798295 + 0.602267i \(0.794264\pi\)
\(360\) 0.0147234 + 2.82839i 0.000775990 + 0.149069i
\(361\) 18.1870 0.957212
\(362\) −15.8958 9.14072i −0.835466 0.480426i
\(363\) 5.72186i 0.300320i
\(364\) −27.3898 18.2658i −1.43562 0.957389i
\(365\) 4.10159i 0.214687i
\(366\) 7.77617 13.5229i 0.406467 0.706851i
\(367\) 20.8979 1.09086 0.545430 0.838156i \(-0.316366\pi\)
0.545430 + 0.838156i \(0.316366\pi\)
\(368\) 28.3523 + 16.1079i 1.47797 + 0.839682i
\(369\) 11.3040i 0.588464i
\(370\) −1.27282 + 2.21346i −0.0661710 + 0.115072i
\(371\) −5.17956 10.5716i −0.268909 0.548852i
\(372\) −3.14870 + 1.83250i −0.163253 + 0.0950108i
\(373\) 23.6880i 1.22652i −0.789881 0.613260i \(-0.789858\pi\)
0.789881 0.613260i \(-0.210142\pi\)
\(374\) 4.84568 8.42670i 0.250564 0.435734i
\(375\) 1.00000i 0.0516398i
\(376\) 0.139708 + 26.8382i 0.00720491 + 1.38408i
\(377\) 7.18119i 0.369850i
\(378\) 0.247852 3.73344i 0.0127481 0.192027i
\(379\) 17.8551 0.917157 0.458579 0.888654i \(-0.348359\pi\)
0.458579 + 0.888654i \(0.348359\pi\)
\(380\) −1.55856 + 0.907061i −0.0799525 + 0.0465313i
\(381\) −7.73916 −0.396489
\(382\) 15.2198 26.4674i 0.778713 1.35419i
\(383\) −11.0569 −0.564981 −0.282490 0.959270i \(-0.591161\pi\)
−0.282490 + 0.959270i \(0.591161\pi\)
\(384\) 5.53743 9.86594i 0.282581 0.503469i
\(385\) −5.45846 + 2.67436i −0.278189 + 0.136298i
\(386\) −19.7129 11.3357i −1.00336 0.576971i
\(387\) −11.5218 −0.585685
\(388\) 14.0523 8.17826i 0.713398 0.415188i
\(389\) 3.00471i 0.152345i 0.997095 + 0.0761724i \(0.0242699\pi\)
−0.997095 + 0.0761724i \(0.975730\pi\)
\(390\) 4.38612 7.62752i 0.222100 0.386235i
\(391\) −24.3899 −1.23345
\(392\) −15.7083 12.0520i −0.793387 0.608718i
\(393\) 0.428007 0.0215901
\(394\) −1.50325 + 2.61417i −0.0757325 + 0.131700i
\(395\) 14.9684i 0.753141i
\(396\) 2.31121 + 3.97125i 0.116143 + 0.199563i
\(397\) −2.11804 −0.106302 −0.0531508 0.998586i \(-0.516926\pi\)
−0.0531508 + 0.998586i \(0.516926\pi\)
\(398\) −4.98119 2.86438i −0.249684 0.143578i
\(399\) 2.14223 1.04958i 0.107246 0.0525448i
\(400\) −1.97591 + 3.47790i −0.0987954 + 0.173895i
\(401\) −12.4039 −0.619420 −0.309710 0.950831i \(-0.600232\pi\)
−0.309710 + 0.950831i \(0.600232\pi\)
\(402\) −4.53185 + 7.88095i −0.226028 + 0.393066i
\(403\) 11.3331 0.564541
\(404\) −4.58791 7.88318i −0.228257 0.392203i
\(405\) 1.00000 0.0496904
\(406\) −0.286078 + 4.30925i −0.0141978 + 0.213864i
\(407\) 4.14793i 0.205605i
\(408\) 0.0440499 + 8.46207i 0.00218079 + 0.418935i
\(409\) 11.7088i 0.578961i 0.957184 + 0.289480i \(0.0934825\pi\)
−0.957184 + 0.289480i \(0.906518\pi\)
\(410\) −7.96912 + 13.8584i −0.393567 + 0.684417i
\(411\) 12.2390i 0.603703i
\(412\) 1.66641 + 2.86330i 0.0820979 + 0.141065i
\(413\) 6.65349 + 13.5800i 0.327397 + 0.668228i
\(414\) 5.74710 9.99429i 0.282455 0.491192i
\(415\) 10.3637i 0.508734i
\(416\) −30.3258 + 17.8612i −1.48684 + 0.875716i
\(417\) 10.3041 0.504593
\(418\) −1.46034 + 2.53955i −0.0714276 + 0.124213i
\(419\) 27.1287i 1.32532i −0.748919 0.662661i \(-0.769427\pi\)
0.748919 0.662661i \(-0.230573\pi\)
\(420\) 2.93586 4.40235i 0.143255 0.214813i
\(421\) 29.4793i 1.43673i 0.695665 + 0.718367i \(0.255110\pi\)
−0.695665 + 0.718367i \(0.744890\pi\)
\(422\) 11.8487 + 6.81346i 0.576785 + 0.331674i
\(423\) 9.48888 0.461365
\(424\) −12.5850 + 0.0655119i −0.611180 + 0.00318154i
\(425\) 2.99183i 0.145125i
\(426\) 9.76920 + 5.61767i 0.473319 + 0.272177i
\(427\) −26.2071 + 12.8401i −1.26825 + 0.621376i
\(428\) −6.03331 10.3668i −0.291631 0.501096i
\(429\) 14.2937i 0.690105i
\(430\) −14.1254 8.12264i −0.681186 0.391708i
\(431\) 36.4672i 1.75656i −0.478143 0.878282i \(-0.658690\pi\)
0.478143 0.878282i \(-0.341310\pi\)
\(432\) −3.47790 1.97591i −0.167331 0.0950660i
\(433\) 3.04286i 0.146231i −0.997323 0.0731153i \(-0.976706\pi\)
0.997323 0.0731153i \(-0.0232941\pi\)
\(434\) 6.80070 + 0.451478i 0.326444 + 0.0216716i
\(435\) −1.15423 −0.0553411
\(436\) 24.9271 14.5072i 1.19379 0.694770i
\(437\) 7.35036 0.351615
\(438\) −5.02843 2.89154i −0.240268 0.138163i
\(439\) −10.5106 −0.501645 −0.250823 0.968033i \(-0.580701\pi\)
−0.250823 + 0.968033i \(0.580701\pi\)
\(440\) 0.0338258 + 6.49800i 0.00161258 + 0.309780i
\(441\) −4.28987 + 5.53145i −0.204280 + 0.263403i
\(442\) 13.1226 22.8203i 0.624176 1.08545i
\(443\) 15.1671 0.720610 0.360305 0.932835i \(-0.382673\pi\)
0.360305 + 0.932835i \(0.382673\pi\)
\(444\) −1.81632 3.12089i −0.0861986 0.148111i
\(445\) 1.36087i 0.0645115i
\(446\) −19.2068 11.0447i −0.909470 0.522980i
\(447\) 3.34559 0.158241
\(448\) −18.9093 + 9.50995i −0.893379 + 0.449303i
\(449\) 8.62232 0.406912 0.203456 0.979084i \(-0.434783\pi\)
0.203456 + 0.979084i \(0.434783\pi\)
\(450\) 1.22597 + 0.704981i 0.0577928 + 0.0332331i
\(451\) 25.9701i 1.22288i
\(452\) 20.5140 + 35.2483i 0.964898 + 1.65794i
\(453\) −10.4431 −0.490661
\(454\) 1.94515 3.38264i 0.0912903 0.158755i
\(455\) −14.7820 + 7.24242i −0.692991 + 0.339530i
\(456\) −0.0132753 2.55021i −0.000621673 0.119424i
\(457\) −13.9018 −0.650299 −0.325149 0.945663i \(-0.605415\pi\)
−0.325149 + 0.945663i \(0.605415\pi\)
\(458\) −22.7775 13.0980i −1.06432 0.612027i
\(459\) 2.99183 0.139647
\(460\) 14.0916 8.20110i 0.657022 0.382378i
\(461\) −10.0656 −0.468802 −0.234401 0.972140i \(-0.575313\pi\)
−0.234401 + 0.972140i \(0.575313\pi\)
\(462\) 0.569420 8.57728i 0.0264918 0.399051i
\(463\) 14.4980i 0.673777i −0.941545 0.336889i \(-0.890625\pi\)
0.941545 0.336889i \(-0.109375\pi\)
\(464\) 4.01430 + 2.28065i 0.186359 + 0.105877i
\(465\) 1.82156i 0.0844730i
\(466\) 16.7577 + 9.63632i 0.776285 + 0.446394i
\(467\) 18.9342i 0.876171i 0.898933 + 0.438085i \(0.144343\pi\)
−0.898933 + 0.438085i \(0.855657\pi\)
\(468\) 6.25898 + 10.7545i 0.289322 + 0.497128i
\(469\) 15.2731 7.48305i 0.705248 0.345535i
\(470\) 11.6331 + 6.68948i 0.536594 + 0.308563i
\(471\) 3.76672i 0.173561i
\(472\) 16.1662 0.0841545i 0.744112 0.00387353i
\(473\) −26.4704 −1.21711
\(474\) −18.3508 10.5524i −0.842880 0.484689i
\(475\) 0.901647i 0.0413704i
\(476\) 8.78361 13.1711i 0.402596 0.603697i
\(477\) 4.44952i 0.203729i
\(478\) 12.3148 21.4155i 0.563265 0.979524i
\(479\) −1.61491 −0.0737871 −0.0368935 0.999319i \(-0.511746\pi\)
−0.0368935 + 0.999319i \(0.511746\pi\)
\(480\) −2.87082 4.87426i −0.131035 0.222478i
\(481\) 11.2330i 0.512180i
\(482\) 20.5301 35.7020i 0.935119 1.62618i
\(483\) −19.3687 + 9.48968i −0.881309 + 0.431795i
\(484\) −5.75622 9.89064i −0.261647 0.449575i
\(485\) 8.12945i 0.369139i
\(486\) −0.704981 + 1.22597i −0.0319786 + 0.0556111i
\(487\) 3.92912i 0.178045i 0.996030 + 0.0890226i \(0.0283743\pi\)
−0.996030 + 0.0890226i \(0.971626\pi\)
\(488\) 0.162404 + 31.1981i 0.00735167 + 1.41227i
\(489\) 11.7746i 0.532466i
\(490\) −9.15882 + 3.75712i −0.413754 + 0.169729i
\(491\) 31.7817 1.43429 0.717143 0.696926i \(-0.245449\pi\)
0.717143 + 0.696926i \(0.245449\pi\)
\(492\) −11.3719 19.5398i −0.512685 0.880922i
\(493\) −3.45326 −0.155527
\(494\) −3.95474 + 6.87734i −0.177932 + 0.309426i
\(495\) 2.29742 0.103261
\(496\) 3.59924 6.33522i 0.161611 0.284460i
\(497\) −9.27595 18.9325i −0.416083 0.849240i
\(498\) −12.7056 7.30620i −0.569351 0.327399i
\(499\) 35.4380 1.58642 0.793210 0.608948i \(-0.208408\pi\)
0.793210 + 0.608948i \(0.208408\pi\)
\(500\) 1.00600 + 1.72857i 0.0449899 + 0.0773040i
\(501\) 24.1292i 1.07801i
\(502\) −8.06600 + 14.0269i −0.360003 + 0.626050i
\(503\) 3.85502 0.171887 0.0859435 0.996300i \(-0.472610\pi\)
0.0859435 + 0.996300i \(0.472610\pi\)
\(504\) 3.32743 + 6.70285i 0.148215 + 0.298569i
\(505\) −4.56052 −0.202941
\(506\) 13.2035 22.9611i 0.586968 1.02074i
\(507\) 25.7086i 1.14176i
\(508\) 13.3777 7.78563i 0.593538 0.345431i
\(509\) −6.50757 −0.288443 −0.144222 0.989545i \(-0.546068\pi\)
−0.144222 + 0.989545i \(0.546068\pi\)
\(510\) 3.66790 + 2.10918i 0.162417 + 0.0933963i
\(511\) 4.77455 + 9.74500i 0.211213 + 0.431093i
\(512\) 0.353348 + 22.6247i 0.0156159 + 0.999878i
\(513\) −0.901647 −0.0398087
\(514\) 5.00772 8.70849i 0.220881 0.384115i
\(515\) 1.65646 0.0729923
\(516\) 19.9162 11.5910i 0.876763 0.510264i
\(517\) 21.7999 0.958760
\(518\) −0.447491 + 6.74063i −0.0196616 + 0.296166i
\(519\) 11.5661i 0.507695i
\(520\) 0.0916033 + 17.5972i 0.00401707 + 0.771687i
\(521\) 28.8683i 1.26474i −0.774666 0.632371i \(-0.782082\pi\)
0.774666 0.632371i \(-0.217918\pi\)
\(522\) 0.813710 1.41505i 0.0356151 0.0619351i
\(523\) 38.1691i 1.66902i −0.550996 0.834508i \(-0.685752\pi\)
0.550996 0.834508i \(-0.314248\pi\)
\(524\) −0.739840 + 0.430577i −0.0323200 + 0.0188098i
\(525\) −1.16407 2.37591i −0.0508042 0.103693i
\(526\) 3.41345 5.93603i 0.148833 0.258823i
\(527\) 5.44982i 0.237398i
\(528\) −7.99019 4.53949i −0.347729 0.197556i
\(529\) −43.4575 −1.88946
\(530\) −3.13682 + 5.45498i −0.136255 + 0.236949i
\(531\) 5.71571i 0.248041i
\(532\) −2.64711 + 3.96937i −0.114767 + 0.172094i
\(533\) 70.3294i 3.04630i
\(534\) 1.66839 + 0.959387i 0.0721982 + 0.0415168i
\(535\) −5.99730 −0.259286
\(536\) −0.0946469 18.1818i −0.00408812 0.785336i
\(537\) 26.1436i 1.12818i
\(538\) −5.92373 3.40638i −0.255390 0.146859i
\(539\) −9.85564 + 12.7081i −0.424513 + 0.547375i
\(540\) −1.72857 + 1.00600i −0.0743858 + 0.0432916i
\(541\) 35.9517i 1.54568i −0.634598 0.772842i \(-0.718834\pi\)
0.634598 0.772842i \(-0.281166\pi\)
\(542\) −12.9142 7.42615i −0.554711 0.318980i
\(543\) 12.9659i 0.556421i
\(544\) −8.58902 14.5830i −0.368251 0.625239i
\(545\) 14.4206i 0.617712i
\(546\) 1.54204 23.2281i 0.0659933 0.994069i
\(547\) −6.04725 −0.258562 −0.129281 0.991608i \(-0.541267\pi\)
−0.129281 + 0.991608i \(0.541267\pi\)
\(548\) −12.3124 21.1559i −0.525962 0.903735i
\(549\) 11.0303 0.470763
\(550\) 2.81657 + 1.61964i 0.120099 + 0.0690615i
\(551\) 1.04071 0.0443357
\(552\) 0.120027 + 23.0574i 0.00510869 + 0.981390i
\(553\) 17.4243 + 35.5635i 0.740956 + 1.51231i
\(554\) −17.2755 + 30.0423i −0.733965 + 1.27637i
\(555\) −1.80548 −0.0766382
\(556\) −17.8113 + 10.3659i −0.755368 + 0.439614i
\(557\) 18.3660i 0.778191i −0.921197 0.389095i \(-0.872788\pi\)
0.921197 0.389095i \(-0.127212\pi\)
\(558\) −2.23318 1.28417i −0.0945382 0.0543631i
\(559\) −71.6842 −3.03192
\(560\) −0.646053 + 10.5633i −0.0273007 + 0.446380i
\(561\) 6.87350 0.290199
\(562\) −5.86890 3.37485i −0.247565 0.142359i
\(563\) 30.6429i 1.29144i −0.763573 0.645722i \(-0.776557\pi\)
0.763573 0.645722i \(-0.223443\pi\)
\(564\) −16.4022 + 9.54586i −0.690657 + 0.401953i
\(565\) 20.3916 0.857880
\(566\) 6.79993 11.8252i 0.285822 0.497048i
\(567\) 2.37591 1.16407i 0.0997787 0.0488864i
\(568\) −22.5381 + 0.117324i −0.945679 + 0.00492280i
\(569\) −22.9060 −0.960271 −0.480135 0.877194i \(-0.659412\pi\)
−0.480135 + 0.877194i \(0.659412\pi\)
\(570\) −1.10539 0.635644i −0.0462998 0.0266242i
\(571\) −22.5813 −0.944997 −0.472499 0.881331i \(-0.656648\pi\)
−0.472499 + 0.881331i \(0.656648\pi\)
\(572\) 14.3795 + 24.7076i 0.601237 + 1.03308i
\(573\) 21.5890 0.901892
\(574\) −2.80173 + 42.2029i −0.116942 + 1.76151i
\(575\) 8.15215i 0.339968i
\(576\) 7.99957 0.0832869i 0.333315 0.00347029i
\(577\) 10.6634i 0.443922i 0.975056 + 0.221961i \(0.0712458\pi\)
−0.975056 + 0.221961i \(0.928754\pi\)
\(578\) −9.86775 5.67434i −0.410444 0.236021i
\(579\) 16.0794i 0.668238i
\(580\) 1.99517 1.16116i 0.0828448 0.0482146i
\(581\) 12.0641 + 24.6232i 0.500503 + 1.02154i
\(582\) 9.96646 + 5.73110i 0.413123 + 0.237562i
\(583\) 10.2224i 0.423369i
\(584\) 11.6009 0.0603893i 0.480048 0.00249893i
\(585\) 6.22162 0.257232
\(586\) 26.4014 + 15.1818i 1.09063 + 0.627155i
\(587\) 6.52728i 0.269410i −0.990886 0.134705i \(-0.956991\pi\)
0.990886 0.134705i \(-0.0430086\pi\)
\(588\) 1.85068 13.8771i 0.0763208 0.572284i
\(589\) 1.64241i 0.0676742i
\(590\) 4.02946 7.00729i 0.165890 0.288485i
\(591\) −2.13232 −0.0877121
\(592\) 6.27926 + 3.56745i 0.258076 + 0.146621i
\(593\) 39.6101i 1.62659i 0.581849 + 0.813297i \(0.302329\pi\)
−0.581849 + 0.813297i \(0.697671\pi\)
\(594\) −1.61964 + 2.81657i −0.0664545 + 0.115565i
\(595\) −3.48271 7.10832i −0.142777 0.291413i
\(596\) −5.78308 + 3.36568i −0.236884 + 0.137863i
\(597\) 4.06306i 0.166290i
\(598\) 35.7563 62.1807i 1.46218 2.54276i
\(599\) 27.7828i 1.13518i 0.823313 + 0.567588i \(0.192123\pi\)
−0.823313 + 0.567588i \(0.807877\pi\)
\(600\) −2.82839 + 0.0147234i −0.115468 + 0.000601079i
\(601\) 27.2341i 1.11090i 0.831549 + 0.555451i \(0.187454\pi\)
−0.831549 + 0.555451i \(0.812546\pi\)
\(602\) −43.0159 2.85570i −1.75320 0.116390i
\(603\) −6.42834 −0.261782
\(604\) 18.0517 10.5058i 0.734513 0.427477i
\(605\) −5.72186 −0.232627
\(606\) 3.21508 5.59106i 0.130604 0.227121i
\(607\) 34.4235 1.39720 0.698602 0.715510i \(-0.253806\pi\)
0.698602 + 0.715510i \(0.253806\pi\)
\(608\) 2.58847 + 4.39486i 0.104976 + 0.178235i
\(609\) −2.74234 + 1.34361i −0.111125 + 0.0544457i
\(610\) 13.5229 + 7.77617i 0.547525 + 0.314848i
\(611\) 59.0363 2.38835
\(612\) −5.17159 + 3.00980i −0.209049 + 0.121664i
\(613\) 44.2261i 1.78628i 0.449781 + 0.893139i \(0.351502\pi\)
−0.449781 + 0.893139i \(0.648498\pi\)
\(614\) −6.92864 + 12.0490i −0.279617 + 0.486258i
\(615\) −11.3040 −0.455822
\(616\) 7.64450 + 15.3993i 0.308006 + 0.620454i
\(617\) −6.97816 −0.280930 −0.140465 0.990086i \(-0.544860\pi\)
−0.140465 + 0.990086i \(0.544860\pi\)
\(618\) −1.16777 + 2.03077i −0.0469746 + 0.0816895i
\(619\) 27.7858i 1.11681i 0.829569 + 0.558404i \(0.188586\pi\)
−0.829569 + 0.558404i \(0.811414\pi\)
\(620\) −1.83250 3.14870i −0.0735951 0.126455i
\(621\) 8.15215 0.327134
\(622\) −1.81996 1.04655i −0.0729739 0.0419628i
\(623\) −1.58415 3.23330i −0.0634677 0.129540i
\(624\) −21.6382 12.2934i −0.866221 0.492128i
\(625\) 1.00000 0.0400000
\(626\) −23.1088 + 40.1866i −0.923615 + 1.60618i
\(627\) −2.07146 −0.0827262
\(628\) −3.78934 6.51105i −0.151211 0.259819i
\(629\) −5.40168 −0.215379
\(630\) 3.73344 + 0.247852i 0.148744 + 0.00987466i
\(631\) 20.7366i 0.825511i −0.910842 0.412755i \(-0.864566\pi\)
0.910842 0.412755i \(-0.135434\pi\)
\(632\) 42.3364 0.220385i 1.68405 0.00876645i
\(633\) 9.66474i 0.384139i
\(634\) 3.11532 5.41758i 0.123725 0.215159i
\(635\) 7.73916i 0.307119i
\(636\) −4.47624 7.69130i −0.177494 0.304980i
\(637\) −26.6900 + 34.4146i −1.05750 + 1.36356i
\(638\) 1.86943 3.25097i 0.0740115 0.128707i
\(639\) 7.96854i 0.315231i
\(640\) 9.86594 + 5.53743i 0.389986 + 0.218886i
\(641\) 45.9031 1.81306 0.906531 0.422139i \(-0.138721\pi\)
0.906531 + 0.422139i \(0.138721\pi\)
\(642\) 4.22798 7.35251i 0.166865 0.290181i
\(643\) 23.5366i 0.928194i −0.885784 0.464097i \(-0.846379\pi\)
0.885784 0.464097i \(-0.153621\pi\)
\(644\) 23.9336 35.8886i 0.943115 1.41421i
\(645\) 11.5218i 0.453670i
\(646\) −3.30715 1.90174i −0.130118 0.0748230i
\(647\) −33.7916 −1.32849 −0.664243 0.747517i \(-0.731246\pi\)
−0.664243 + 0.747517i \(0.731246\pi\)
\(648\) −0.0147234 2.82839i −0.000578389 0.111110i
\(649\) 13.1314i 0.515452i
\(650\) 7.62752 + 4.38612i 0.299176 + 0.172038i
\(651\) 2.12043 + 4.32787i 0.0831062 + 0.169623i
\(652\) −11.8453 20.3532i −0.463898 0.797094i
\(653\) 5.09217i 0.199272i −0.995024 0.0996360i \(-0.968232\pi\)
0.995024 0.0996360i \(-0.0317678\pi\)
\(654\) 17.6792 + 10.1663i 0.691313 + 0.397532i
\(655\) 0.428007i 0.0167236i
\(656\) 39.3143 + 22.3357i 1.53496 + 0.872064i
\(657\) 4.10159i 0.160018i
\(658\) 35.4262 + 2.35184i 1.38106 + 0.0916842i
\(659\) 33.9376 1.32202 0.661011 0.750376i \(-0.270128\pi\)
0.661011 + 0.750376i \(0.270128\pi\)
\(660\) −3.97125 + 2.31121i −0.154581 + 0.0899639i
\(661\) −38.7912 −1.50880 −0.754401 0.656414i \(-0.772073\pi\)
−0.754401 + 0.656414i \(0.772073\pi\)
\(662\) −2.17035 1.24804i −0.0843530 0.0485063i
\(663\) 18.6141 0.722910
\(664\) 29.3126 0.152589i 1.13755 0.00592159i
\(665\) 1.04958 + 2.14223i 0.0407010 + 0.0830721i
\(666\) 1.27282 2.21346i 0.0493210 0.0857698i
\(667\) −9.40945 −0.364335
\(668\) 24.2741 + 41.7090i 0.939193 + 1.61377i
\(669\) 15.6666i 0.605707i
\(670\) −7.88095 4.53185i −0.304468 0.175081i
\(671\) 25.3413 0.978290
\(672\) −12.4948 8.23894i −0.481997 0.317824i
\(673\) 0.899363 0.0346679 0.0173339 0.999850i \(-0.494482\pi\)
0.0173339 + 0.999850i \(0.494482\pi\)
\(674\) −12.2283 7.03174i −0.471016 0.270852i
\(675\) 1.00000i 0.0384900i
\(676\) 25.8630 + 44.4391i 0.994730 + 1.70920i
\(677\) 3.54935 0.136413 0.0682064 0.997671i \(-0.478272\pi\)
0.0682064 + 0.997671i \(0.478272\pi\)
\(678\) −14.3757 + 24.9995i −0.552094 + 0.960098i
\(679\) −9.46326 19.3148i −0.363167 0.741235i
\(680\) −8.46207 + 0.0440499i −0.324506 + 0.00168924i
\(681\) 2.75915 0.105731
\(682\) −5.13056 2.95027i −0.196459 0.112972i
\(683\) −9.48240 −0.362834 −0.181417 0.983406i \(-0.558068\pi\)
−0.181417 + 0.983406i \(0.558068\pi\)
\(684\) 1.55856 0.907061i 0.0595930 0.0346824i
\(685\) −12.2390 −0.467626
\(686\) −17.3870 + 19.5881i −0.663838 + 0.747877i
\(687\) 18.5792i 0.708840i
\(688\) −22.7660 + 40.0716i −0.867946 + 1.52772i
\(689\) 27.6832i 1.05465i
\(690\) 9.99429 + 5.74710i 0.380476 + 0.218789i
\(691\) 33.5009i 1.27443i −0.770684 0.637217i \(-0.780086\pi\)
0.770684 0.637217i \(-0.219914\pi\)
\(692\) −11.6356 19.9928i −0.442317 0.760013i
\(693\) 5.45846 2.67436i 0.207350 0.101591i
\(694\) 3.71466 + 2.13608i 0.141007 + 0.0810843i
\(695\) 10.3041i 0.390856i
\(696\) 0.0169942 + 3.26461i 0.000644162 + 0.123745i
\(697\) −33.8198 −1.28101
\(698\) 9.68262 + 5.56788i 0.366493 + 0.210748i
\(699\) 13.6689i 0.517006i
\(700\) 4.40235 + 2.93586i 0.166393 + 0.110965i
\(701\) 20.6009i 0.778084i 0.921220 + 0.389042i \(0.127194\pi\)
−0.921220 + 0.389042i \(0.872806\pi\)
\(702\) −4.38612 + 7.62752i −0.165544 + 0.287882i
\(703\) 1.62790 0.0613975
\(704\) 18.3784 0.191345i 0.692660 0.00721158i
\(705\) 9.48888i 0.357372i
\(706\) 0.144342 0.251012i 0.00543238 0.00944697i
\(707\) −10.8354 + 5.30877i −0.407506 + 0.199657i
\(708\) 5.75003 + 9.88000i 0.216099 + 0.371313i
\(709\) 19.7440i 0.741503i 0.928732 + 0.370751i \(0.120900\pi\)
−0.928732 + 0.370751i \(0.879100\pi\)
\(710\) −5.61767 + 9.76920i −0.210827 + 0.366631i
\(711\) 14.9684i 0.561358i
\(712\) −3.84907 + 0.0200366i −0.144250 + 0.000750904i
\(713\) 14.8497i 0.556124i
\(714\) 11.1698 + 0.741532i 0.418020 + 0.0277511i
\(715\) 14.2937 0.534553
\(716\) 26.3006 + 45.1911i 0.982900 + 1.68887i
\(717\) 17.4682 0.652364
\(718\) 16.0895 27.9799i 0.600456 1.04420i
\(719\) 15.5196 0.578783 0.289391 0.957211i \(-0.406547\pi\)
0.289391 + 0.957211i \(0.406547\pi\)
\(720\) 1.97591 3.47790i 0.0736378 0.129614i
\(721\) 3.93559 1.92824i 0.146569 0.0718113i
\(722\) −22.2968 12.8215i −0.829799 0.477167i
\(723\) 29.1215 1.08304
\(724\) 13.0438 + 22.4125i 0.484768 + 0.832954i
\(725\) 1.15423i 0.0428670i
\(726\) 4.03380 7.01483i 0.149708 0.260345i
\(727\) 35.0266 1.29907 0.649533 0.760334i \(-0.274965\pi\)
0.649533 + 0.760334i \(0.274965\pi\)
\(728\) 20.7020 + 41.7026i 0.767267 + 1.54560i
\(729\) −1.00000 −0.0370370
\(730\) 2.89154 5.02843i 0.107021 0.186110i
\(731\) 34.4713i 1.27497i
\(732\) −19.0667 + 11.0966i −0.704726 + 0.410141i
\(733\) 29.2688 1.08107 0.540534 0.841322i \(-0.318222\pi\)
0.540534 + 0.841322i \(0.318222\pi\)
\(734\) −25.6202 14.7326i −0.945657 0.543790i
\(735\) −5.53145 4.28987i −0.204031 0.158234i
\(736\) −23.4034 39.7357i −0.862660 1.46468i
\(737\) −14.7686 −0.544008
\(738\) 7.96912 13.8584i 0.293347 0.510135i
\(739\) −0.196034 −0.00721123 −0.00360561 0.999993i \(-0.501148\pi\)
−0.00360561 + 0.999993i \(0.501148\pi\)
\(740\) 3.12089 1.81632i 0.114726 0.0667691i
\(741\) −5.60971 −0.206078
\(742\) −1.10282 + 16.6120i −0.0404859 + 0.609846i
\(743\) 28.7856i 1.05604i −0.849232 0.528020i \(-0.822935\pi\)
0.849232 0.528020i \(-0.177065\pi\)
\(744\) 5.15209 0.0268196i 0.188885 0.000983253i
\(745\) 3.34559i 0.122573i
\(746\) −16.6996 + 29.0408i −0.611416 + 1.06326i
\(747\) 10.3637i 0.379188i
\(748\) −11.8813 + 6.91477i −0.434424 + 0.252829i
\(749\) −14.2490 + 6.98129i −0.520648 + 0.255091i
\(750\) −0.704981 + 1.22597i −0.0257423 + 0.0447661i
\(751\) 0.377068i 0.0137594i −0.999976 0.00687971i \(-0.997810\pi\)
0.999976 0.00687971i \(-0.00218990\pi\)
\(752\) 18.7492 33.0014i 0.683712 1.20344i
\(753\) −11.4415 −0.416950
\(754\) 5.06260 8.80392i 0.184369 0.320620i
\(755\) 10.4431i 0.380065i
\(756\) −2.93586 + 4.40235i −0.106776 + 0.160112i
\(757\) 1.79202i 0.0651322i −0.999470 0.0325661i \(-0.989632\pi\)
0.999470 0.0325661i \(-0.0103679\pi\)
\(758\) −21.8899 12.5875i −0.795076 0.457200i
\(759\) 18.7289 0.679816
\(760\) 2.55021 0.0132753i 0.0925058 0.000481545i
\(761\) 17.8760i 0.648004i −0.946056 0.324002i \(-0.894972\pi\)
0.946056 0.324002i \(-0.105028\pi\)
\(762\) 9.48798 + 5.45596i 0.343713 + 0.197648i
\(763\) −16.7866 34.2621i −0.607717 1.24037i
\(764\) −37.3181 + 21.7186i −1.35012 + 0.785752i
\(765\) 2.99183i 0.108170i
\(766\) 13.5554 + 7.79489i 0.489777 + 0.281641i
\(767\) 35.5610i 1.28403i
\(768\) −13.7440 + 8.19157i −0.495945 + 0.295588i
\(769\) 18.0096i 0.649444i −0.945809 0.324722i \(-0.894729\pi\)
0.945809 0.324722i \(-0.105271\pi\)
\(770\) 8.57728 + 0.569420i 0.309104 + 0.0205205i
\(771\) 7.10334 0.255821
\(772\) 16.1760 + 27.7944i 0.582186 + 1.00034i
\(773\) −4.23548 −0.152339 −0.0761697 0.997095i \(-0.524269\pi\)
−0.0761697 + 0.997095i \(0.524269\pi\)
\(774\) 14.1254 + 8.12264i 0.507726 + 0.291962i
\(775\) −1.82156 −0.0654325
\(776\) −22.9932 + 0.119693i −0.825409 + 0.00429673i
\(777\) −4.28964 + 2.10170i −0.153890 + 0.0753982i
\(778\) 2.11826 3.68368i 0.0759433 0.132066i
\(779\) 10.1922 0.365175
\(780\) −10.7545 + 6.25898i −0.385073 + 0.224108i
\(781\) 18.3071i 0.655079i
\(782\) 29.9012 + 17.1944i 1.06927 + 0.614870i
\(783\) 1.15423 0.0412488
\(784\) 10.7614 + 25.8494i 0.384337 + 0.923193i
\(785\) −3.76672 −0.134440
\(786\) −0.524723 0.301736i −0.0187163 0.0107626i
\(787\) 45.4344i 1.61956i −0.586732 0.809781i \(-0.699586\pi\)
0.586732 0.809781i \(-0.300414\pi\)
\(788\) 3.68587 2.14513i 0.131304 0.0764170i
\(789\) 4.84190 0.172376
\(790\) 10.5524 18.3508i 0.375438 0.652892i
\(791\) 48.4485 23.7373i 1.72263 0.843999i
\(792\) −0.0338258 6.49800i −0.00120195 0.230896i
\(793\) 68.6266 2.43700
\(794\) 2.59666 + 1.49318i 0.0921520 + 0.0529910i
\(795\) −4.44952 −0.157808
\(796\) 4.08746 + 7.02328i 0.144876 + 0.248934i
\(797\) −0.590784 −0.0209266 −0.0104633 0.999945i \(-0.503331\pi\)
−0.0104633 + 0.999945i \(0.503331\pi\)
\(798\) −3.36625 0.223475i −0.119164 0.00791093i
\(799\) 28.3892i 1.00434i
\(800\) 4.87426 2.87082i 0.172331 0.101499i
\(801\) 1.36087i 0.0480840i
\(802\) 15.2068 + 8.74449i 0.536970 + 0.308779i
\(803\) 9.42307i 0.332533i
\(804\) 11.1118 6.46694i 0.391884 0.228071i
\(805\) −9.48968 19.3687i −0.334467 0.682659i
\(806\) −13.8940 7.98961i −0.489396 0.281422i
\(807\) 4.83187i 0.170090i
\(808\) 0.0671463 + 12.8989i 0.00236220 + 0.453783i
\(809\) −36.1351 −1.27044 −0.635222 0.772330i \(-0.719091\pi\)
−0.635222 + 0.772330i \(0.719091\pi\)
\(810\) −1.22597 0.704981i −0.0430762 0.0247705i
\(811\) 34.3052i 1.20462i 0.798262 + 0.602310i \(0.205753\pi\)
−0.798262 + 0.602310i \(0.794247\pi\)
\(812\) 3.38866 5.08133i 0.118919 0.178320i
\(813\) 10.5338i 0.369438i
\(814\) 2.92421 5.08524i 0.102494 0.178238i
\(815\) −11.7746 −0.412447
\(816\) 5.91159 10.4053i 0.206947 0.364258i
\(817\) 10.3886i 0.363451i
\(818\) 8.25444 14.3546i 0.288610 0.501896i
\(819\) 14.7820 7.24242i 0.516525 0.253070i
\(820\) 19.5398 11.3719i 0.682359 0.397124i
\(821\) 16.9389i 0.591172i 0.955316 + 0.295586i \(0.0955148\pi\)
−0.955316 + 0.295586i \(0.904485\pi\)
\(822\) 8.62822 15.0046i 0.300944 0.523345i
\(823\) 5.74264i 0.200176i −0.994979 0.100088i \(-0.968088\pi\)
0.994979 0.100088i \(-0.0319124\pi\)
\(824\) −0.0243887 4.68511i −0.000849619 0.163214i
\(825\) 2.29742i 0.0799859i
\(826\) 1.41665 21.3392i 0.0492915 0.742487i
\(827\) −32.5276 −1.13110 −0.565548 0.824715i \(-0.691335\pi\)
−0.565548 + 0.824715i \(0.691335\pi\)
\(828\) −14.0916 + 8.20110i −0.489715 + 0.285008i
\(829\) 41.7857 1.45128 0.725639 0.688075i \(-0.241544\pi\)
0.725639 + 0.688075i \(0.241544\pi\)
\(830\) 7.30620 12.7056i 0.253602 0.441017i
\(831\) −24.5049 −0.850066
\(832\) 49.7703 0.518180i 1.72547 0.0179646i
\(833\) −16.5492 12.8346i −0.573395 0.444692i
\(834\) −12.6325 7.26417i −0.437427 0.251538i
\(835\) 24.1292 0.835025
\(836\) 3.58067 2.08390i 0.123840 0.0720732i
\(837\) 1.82156i 0.0629625i
\(838\) −19.1252 + 33.2589i −0.660669 + 1.14891i
\(839\) −30.2011 −1.04266 −0.521329 0.853356i \(-0.674563\pi\)
−0.521329 + 0.853356i \(0.674563\pi\)
\(840\) −6.70285 + 3.32743i −0.231270 + 0.114807i
\(841\) 27.6678 0.954060
\(842\) 20.7823 36.1407i 0.716207 1.24549i
\(843\) 4.78715i 0.164878i
\(844\) −9.72278 16.7062i −0.334672 0.575051i
\(845\) 25.7086 0.884403
\(846\) −11.6331 6.68948i −0.399954 0.229989i
\(847\) −13.5946 + 6.66066i −0.467117 + 0.228863i
\(848\) 15.4750 + 8.79184i 0.531413 + 0.301913i
\(849\) 9.64555 0.331034
\(850\) −2.10918 + 3.66790i −0.0723444 + 0.125808i
\(851\) −14.7185 −0.504544
\(852\) −8.01639 13.7742i −0.274637 0.471896i
\(853\) −14.7231 −0.504110 −0.252055 0.967713i \(-0.581106\pi\)
−0.252055 + 0.967713i \(0.581106\pi\)
\(854\) 41.1811 + 2.73389i 1.40919 + 0.0935518i
\(855\) 0.901647i 0.0308357i
\(856\) 0.0883005 + 16.9627i 0.00301805 + 0.579773i
\(857\) 26.9516i 0.920649i −0.887751 0.460324i \(-0.847733\pi\)
0.887751 0.460324i \(-0.152267\pi\)
\(858\) −10.0768 + 17.5236i −0.344015 + 0.598247i
\(859\) 6.46227i 0.220490i −0.993904 0.110245i \(-0.964836\pi\)
0.993904 0.110245i \(-0.0351635\pi\)
\(860\) 11.5910 + 19.9162i 0.395249 + 0.679137i
\(861\) −26.8573 + 13.1587i −0.915295 + 0.448447i
\(862\) −25.7087 + 44.7077i −0.875641 + 1.52275i
\(863\) 47.9907i 1.63362i −0.576905 0.816811i \(-0.695740\pi\)
0.576905 0.816811i \(-0.304260\pi\)
\(864\) 2.87082 + 4.87426i 0.0976674 + 0.165826i
\(865\) −11.5661 −0.393259
\(866\) −2.14516 + 3.73046i −0.0728955 + 0.126766i
\(867\) 8.04893i 0.273356i
\(868\) −8.01917 5.34786i −0.272188 0.181518i
\(869\) 34.3887i 1.16656i
\(870\) 1.41505 + 0.813710i 0.0479747 + 0.0275873i
\(871\) −39.9947 −1.35517
\(872\) −40.7871 + 0.212320i −1.38123 + 0.00719007i
\(873\) 8.12945i 0.275140i
\(874\) −9.01132 5.18186i −0.304812 0.175279i
\(875\) 2.37591 1.16407i 0.0803203 0.0393528i
\(876\) 4.12622 + 7.08989i 0.139412 + 0.239545i
\(877\) 36.1441i 1.22050i −0.792209 0.610250i \(-0.791069\pi\)
0.792209 0.610250i \(-0.208931\pi\)
\(878\) 12.8857 + 7.40979i 0.434872 + 0.250068i
\(879\) 21.5351i 0.726361i
\(880\) 4.53949 7.99019i 0.153026 0.269349i
\(881\) 38.9201i 1.31125i 0.755087 + 0.655625i \(0.227595\pi\)
−0.755087 + 0.655625i \(0.772405\pi\)
\(882\) 9.15882 3.75712i 0.308394 0.126509i
\(883\) −30.3454 −1.02120 −0.510601 0.859818i \(-0.670577\pi\)
−0.510601 + 0.859818i \(0.670577\pi\)
\(884\) −32.1757 + 18.7258i −1.08219 + 0.629818i
\(885\) 5.71571 0.192131
\(886\) −18.5944 10.6925i −0.624691 0.359221i
\(887\) −26.4748 −0.888935 −0.444468 0.895795i \(-0.646607\pi\)
−0.444468 + 0.895795i \(0.646607\pi\)
\(888\) 0.0265827 + 5.10659i 0.000892057 + 0.171366i
\(889\) −9.00893 18.3875i −0.302150 0.616698i
\(890\) −0.959387 + 1.66839i −0.0321587 + 0.0559245i
\(891\) −2.29742 −0.0769664
\(892\) 15.7607 + 27.0809i 0.527708 + 0.906735i
\(893\) 8.55562i 0.286303i
\(894\) −4.10159 2.35857i −0.137178 0.0788825i
\(895\) 26.1436 0.873885
\(896\) 29.8865 + 1.67176i 0.998439 + 0.0558496i
\(897\) 50.7196 1.69348
\(898\) −10.5707 6.07857i −0.352749 0.202844i
\(899\) 2.10250i 0.0701224i
\(900\) −1.00600 1.72857i −0.0335335 0.0576190i
\(901\) −13.3122 −0.443494
\(902\) 18.3084 31.8385i 0.609603 1.06011i
\(903\) −13.4122 27.3747i −0.446330 0.910973i
\(904\) −0.300233 57.6753i −0.00998560 1.91825i
\(905\) 12.9659 0.431002
\(906\) 12.8030 + 7.36221i 0.425350 + 0.244593i
\(907\) 11.6034 0.385285 0.192642 0.981269i \(-0.438294\pi\)
0.192642 + 0.981269i \(0.438294\pi\)
\(908\) −4.76939 + 2.77572i −0.158278 + 0.0921155i
\(909\) 4.56052 0.151263
\(910\) 23.2281 + 1.54204i 0.770003 + 0.0511182i
\(911\) 8.63401i 0.286058i −0.989719 0.143029i \(-0.954316\pi\)
0.989719 0.143029i \(-0.0456841\pi\)
\(912\) −1.78157 + 3.13584i −0.0589938 + 0.103838i
\(913\) 23.8098i 0.787988i
\(914\) 17.0432 + 9.80050i 0.563739 + 0.324172i
\(915\) 11.0303i 0.364652i
\(916\) 18.6907 + 32.1154i 0.617559 + 1.06112i
\(917\) 0.498231 + 1.01690i 0.0164530 + 0.0335811i
\(918\) −3.66790 2.10918i −0.121059 0.0696135i
\(919\) 31.2405i 1.03053i 0.857031 + 0.515264i \(0.172306\pi\)
−0.857031 + 0.515264i \(0.827694\pi\)
\(920\) −23.0574 + 0.120027i −0.760181 + 0.00395718i
\(921\) −9.82813 −0.323848
\(922\) 12.3401 + 7.09605i 0.406400 + 0.233696i
\(923\) 49.5773i 1.63186i
\(924\) −6.74490 + 10.1141i −0.221891 + 0.332728i
\(925\) 1.80548i 0.0593637i
\(926\) −10.2208 + 17.7741i −0.335876 + 0.584092i
\(927\) −1.65646 −0.0544052
\(928\) −3.31359 5.62601i −0.108774 0.184683i
\(929\) 35.5969i 1.16790i 0.811791 + 0.583949i \(0.198493\pi\)
−0.811791 + 0.583949i \(0.801507\pi\)
\(930\) 1.28417 2.23318i 0.0421095 0.0732289i
\(931\) 4.98742 + 3.86795i 0.163456 + 0.126767i
\(932\) −13.7510 23.6277i −0.450429 0.773950i
\(933\) 1.48451i 0.0486007i
\(934\) 13.3482 23.2128i 0.436768 0.759545i
\(935\) 6.87350i 0.224787i
\(936\) −0.0916033 17.5972i −0.00299415 0.575182i
\(937\) 24.2014i 0.790625i 0.918547 + 0.395312i \(0.129364\pi\)
−0.918547 + 0.395312i \(0.870636\pi\)
\(938\) −23.9998 1.59328i −0.783622 0.0520223i
\(939\) −32.7794 −1.06972
\(940\) −9.54586 16.4022i −0.311352 0.534981i
\(941\) 25.0093 0.815280 0.407640 0.913143i \(-0.366352\pi\)
0.407640 + 0.913143i \(0.366352\pi\)
\(942\) 2.65547 4.61789i 0.0865198 0.150459i
\(943\) −92.1521 −3.00088
\(944\) −19.8787 11.2937i −0.646995 0.367579i
\(945\) 1.16407 + 2.37591i 0.0378673 + 0.0772883i
\(946\) 32.4519 + 18.6611i 1.05510 + 0.606725i
\(947\) 31.5832 1.02632 0.513158 0.858294i \(-0.328475\pi\)
0.513158 + 0.858294i \(0.328475\pi\)
\(948\) 15.0583 + 25.8739i 0.489070 + 0.840345i
\(949\) 25.5186i 0.828367i
\(950\) 0.635644 1.10539i 0.0206230 0.0358637i
\(951\) 4.41901 0.143296
\(952\) −20.0538 + 9.95511i −0.649948 + 0.322647i
\(953\) 24.1766 0.783156 0.391578 0.920145i \(-0.371929\pi\)
0.391578 + 0.920145i \(0.371929\pi\)
\(954\) 3.13682 5.45498i 0.101558 0.176611i
\(955\) 21.5890i 0.698603i
\(956\) −30.1951 + 17.5731i −0.976579 + 0.568356i
\(957\) 2.65175 0.0857189
\(958\) 1.97983 + 1.13848i 0.0639654 + 0.0367826i
\(959\) −29.0786 + 14.2470i −0.938998 + 0.460060i
\(960\) 0.0832869 + 7.99957i 0.00268807 + 0.258185i
\(961\) −27.6819 −0.892965
\(962\) 7.91904 13.7713i 0.255320 0.444005i
\(963\) 5.99730 0.193260
\(964\) −50.3385 + 29.2963i −1.62129 + 0.943571i
\(965\) 16.0794 0.517615
\(966\) 30.4355 + 2.02053i 0.979248 + 0.0650093i
\(967\) 43.4745i 1.39805i 0.715100 + 0.699023i \(0.246381\pi\)
−0.715100 + 0.699023i \(0.753619\pi\)
\(968\) 0.0842452 + 16.1837i 0.00270774 + 0.520162i
\(969\) 2.69758i 0.0866587i
\(970\) −5.73110 + 9.96646i −0.184015 + 0.320004i
\(971\) 14.1268i 0.453350i 0.973970 + 0.226675i \(0.0727856\pi\)
−0.973970 + 0.226675i \(0.927214\pi\)
\(972\) 1.72857 1.00600i 0.0554439 0.0322676i
\(973\) 11.9947 + 24.4815i 0.384532 + 0.784842i
\(974\) 2.76995 4.81698i 0.0887549 0.154346i
\(975\) 6.22162i 0.199251i
\(976\) 21.7949 38.3624i 0.697639 1.22795i
\(977\) −36.8170 −1.17788 −0.588940 0.808177i \(-0.700455\pi\)
−0.588940 + 0.808177i \(0.700455\pi\)
\(978\) 8.30087 14.4353i 0.265433 0.461591i
\(979\) 3.12649i 0.0999231i
\(980\) 13.8771 + 1.85068i 0.443289 + 0.0591178i
\(981\) 14.4206i 0.460415i
\(982\) −38.9634 22.4054i −1.24337 0.714987i
\(983\) 7.29735 0.232749 0.116375 0.993205i \(-0.462873\pi\)
0.116375 + 0.993205i \(0.462873\pi\)
\(984\) 0.166433 + 31.9722i 0.00530570 + 1.01924i
\(985\) 2.13232i 0.0679415i
\(986\) 4.23360 + 2.43448i 0.134825 + 0.0775298i
\(987\) 11.0457 + 22.5447i 0.351590 + 0.717606i
\(988\) 9.69678 5.64340i 0.308496 0.179540i
\(989\) 93.9273i 2.98671i
\(990\) −2.81657 1.61964i −0.0895164 0.0514754i
\(991\) 33.4174i 1.06154i 0.847517 + 0.530769i \(0.178097\pi\)
−0.847517 + 0.530769i \(0.821903\pi\)
\(992\) −8.87877 + 5.22939i −0.281901 + 0.166033i
\(993\) 1.77031i 0.0561791i
\(994\) −1.97502 + 29.7501i −0.0626438 + 0.943615i
\(995\) 4.06306 0.128808
\(996\) 10.4259 + 17.9144i 0.330358 + 0.567639i
\(997\) −47.1312 −1.49266 −0.746330 0.665576i \(-0.768186\pi\)
−0.746330 + 0.665576i \(0.768186\pi\)
\(998\) −43.4459 24.9831i −1.37526 0.790825i
\(999\) 1.80548 0.0571227
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 840.2.z.d.811.5 yes 28
4.3 odd 2 3360.2.z.d.1231.12 28
7.6 odd 2 840.2.z.c.811.5 28
8.3 odd 2 840.2.z.c.811.6 yes 28
8.5 even 2 3360.2.z.c.1231.18 28
28.27 even 2 3360.2.z.c.1231.17 28
56.13 odd 2 3360.2.z.d.1231.11 28
56.27 even 2 inner 840.2.z.d.811.6 yes 28
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
840.2.z.c.811.5 28 7.6 odd 2
840.2.z.c.811.6 yes 28 8.3 odd 2
840.2.z.d.811.5 yes 28 1.1 even 1 trivial
840.2.z.d.811.6 yes 28 56.27 even 2 inner
3360.2.z.c.1231.17 28 28.27 even 2
3360.2.z.c.1231.18 28 8.5 even 2
3360.2.z.d.1231.11 28 56.13 odd 2
3360.2.z.d.1231.12 28 4.3 odd 2